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Abstract
Cardiac health of the human heart is an intriguing issue for many decades as cardiovascular diseases (CVDs) are the leading 
cause of death worldwide. Electrocardiogram (ECG) signal is a powerful complete non-invasive tool for analyzing cardiac 
health. ECG signal is the primary choice of various health practitioners to determine vital information about the human 
heart. In the literature, the ECG signals are studied to diagnose and detect heart abnormalities such as enlargement of a heart 
chamber, detect cardiovascular diseases, detect ischemia, measure heart rate, biometric identification, and name a few. ECG 
signal being feeble suffers from the different kinds of noises, which might damage the ECG signal's morphological features, 
leading to wrong information and improper treatment. Removal of the noises from the ECG signal is an essential part of ECG 
signal processing. The denoised ECG signal facilitates the correct detection of the morphological features, which provides 
appropriate information about the cardiac health of the human heart. Detection of morphological features typically includes 
detecting QRS complex, R peak, and other ECG signal characteristics. These detected features are used to predict CVDs 
and other heart abnormalities. Earlier and accurate detection of CVDs involves two main steps: denoising and detection of 
a morphological feature. The increasing mortality rate due to CVDs compelled researchers to invent efficient computational 
techniques that automatically detect abnormalities in the heart. In the past few decades, various researchers have been 
proposed many computational methods to denoise and detect the ECG signal. This paper presents a comparative study of 
various existing state-of-the-art techniques used to analyze the ECG signal. Various noises influence the performance of the 
existing computational methods; hence, a summary of the different noises presented in the ECG signal is also included. The 
advantages and drawbacks of each method for ECG signal denoising and detection are discussed briefly. The efficiency of 
denoising and detection techniques was evaluated by testing the proposed algorithms using different standard databases like 
MIT-BIH, AHA, PTB, MIT-BIH noise stress test, Apnea-ECG. Details of these standard databases are provided in the paper. 
The performance of existing ECG signal denoising and detection algorithms is compared using parameters like signal-to-
noise ratio improvement, percentage root mean square difference, root mean square error, sensitivity, positive predictivity, 
error, and accuracy. Finally, the challenges and gaps of the existing state-of-the-art techniques to analyze the ECG signal for 
automatic detection of CVDs are discussed.

1 Introduction

Cardiovascular diseases (CVDs) are a major health con-
cern to humanity. The mortality rate due to CVDs is still 
the highest across the world. In 2016, as per the World 
Health Organization (WHO) report, 17.9 million died due 
to cardiovascular diseases. Out of these, 85% of deaths 
are because of stroke and heart attack. In low and middle-
income countries, the number of deaths caused by CVDs 
is huge [1]. Economically, CVDs are leaving an enormous 
burden on societal resources. Increasing stress due to life-
style changes, hypertension, unhealthy diet, obesity, physical 
inactivity, diabetes, hyperlipidemia, consumption of harmful 
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substances like tobacco and alcohol can cause cardiovascular 
diseases. Major cardiovascular diseases include congenital 
heart defects, coronary artery disease, cardiomyopathy, myo-
carditis, and myocardial infarction [2]. Early detection and 
diagnosis are vital to prevent and treat cardiovascular dis-
eases. Real-time monitoring of heart activity is required to 
detect CVDs accurately. Electrocardiogram (ECG), echocar-
diogram, cardiac catheterization, cardiac computerized 
tomography scan, and cardiac magnetic resonance imaging 
are some popular methods to detect. CVDs. ECG depicts a 
graphic pattern that represents the electrical and muscular 
function of the heart. Being a non-invasive method, ECG 
avoids the perils of invasive methods. ECG measured from 
the skin of a subject provides the electrical activity of dif-
ferent cardiac tissues within the heart and is shown in Fig. 1. 
ECG is a reliable, popular, inexpensive method to trace and 
study the electrical activity of a heart, hence making it ubiq-
uitous. A careful analysis of each heartbeat is required to 
detect CVDs [3, 4].

Nowadays, ECG is not only used to detect CVDs but also 
used for various other purposes like biometric identification 
[6], identification of various other diseases like pneumonia 
[7], estimation of respiratory frequency [8]. The ECG wave-
form mainly consists of P, Q, R, S, and T waves, as shown in 
Fig. 2. A detailed description of an ECG waveform is found 
in [9]. The detailed description of amplitude, frequency, 
duration, and origin is summarized in Table 1 [5, 10–12]. 
The amplitude values in Table 1 are measured across lead 
II. The wave amplitude is measured with reference to the 
ECG signal baseline level defined by the isoelectric line, 
immediately preceding the QRS complex. Two-time instants 
determine the duration of a wave; the wave either crosses the 
baseline or deviates significantly from the zero reference line 
[5]. As the researchers use ECG for cardiac monitoring and 

various applications, it is essential to analyze and classify 
the ECG signals sensibly and precisely. During continuous 
monitoring, manual analysis of an ECG signal is a tedious 
and erroneous task. Hence, an automatic system to analyze 
and classify the ECG signal is in great demand.

A fully automatic system to analyze and categorize an 
ECG signal includes various steps like pre-processing, data 
transformation, fiducial point detection, and feature extrac-
tion. The block diagram representing various steps involved 
in the ECG signal analysis are shown in Fig. 3. Pre-process-
ing or noise filtering is vital because it directly influences the 
performance of the system. Hence removing various kinds 
of noise present in the ECG signal is vital and challenging.

The pre-processed signal is applied to data transforma-
tion, which includes processes like differentiation and squar-
ing. The purpose of this data transformation is to compute 
the slope and width information of the QRS complex. The 
derivative stage provides the slope information of the QRS 
complex while squaring operation converts the bipolar sig-
nal into a unipolar signal and provides non-linear amplifi-
cation to the output of the derivative stage. The squaring 
operation helps minimize the false positive caused by the T 
waves, whose energies are higher than usual spectral ener-
gies [13]. The moving window integration provides a signal 
which contains the slope and width information of the QRS 
complex [13]. This vital information (slope and width of the 
QRS complex) is used to detect the R peak (peak of QRS 
complex). The feature extraction unit extracts various statis-
tical and morphological features of an ECG signal, including 
P-wave, QRS complex, and T wave. With the features men-
tioned above, the ECG signal is analyzed to obtain various 
heart conditions.

The organization of the paper is as follows. In Sect. 2, 
different types of noises are discussed. Pre-processing or 
denoising techniques are presented in Sect. 3. Section 4 
includes data transformation and detection techniques. Fig. 1  The electrical activity of various cardiac tissues [5]

Fig. 2  Basic ECG waveform
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Various databases are discussed in Sect.  5. Evaluation 
parameters are introduced in Sect. 6. Section 7 includes dis-
cussion and challenges. Finally, conclusions are presented 
in Sect. 8.

2  Noises in ECG Signal

Noise, the most critical object in the ECG signal analysis, 
must be given full attention to accurately and precisely 
detect QRS complexes. Various noises present in an input 
ECG signal must be filtered before proceeding to further 
processing. Various noise and artifacts that contaminate an 
ECG signal are briefly discussed below.

(a) Power line Interference (PLI) is the most common 
noise in the ECG signal is due to the inductive inter-
ference between the power line and the electronics of 
ECG recording equipment. PLI has an amplitude of up 
to 50% of peak-to-peak ECG amplitude. The frequency 
of PLI is 60 Hz and its harmonics (or 50 ± 0.2 Hz in 
some data sets). Signal amplitude and frequency both 
vary with the power line interference. The bandwidth 
of this noise is below 1 Hz [14]. Figure 4a shows the 
reference ECG signal (record 100) taken from the MIT-
BIH arrhythmia database, while the PLI included signal 
is shown in Fig. 4b.

(b) Electrode Contact Noise is a randomly occurring noise 
with an amplitude equal to maximum recorder output. 
The loss of contact between skin and electrodes results 
in a transient interference with a one-second duration. 
The contact break can be permanent; it can be spas-
modic when a loose electrode comes into contact or 
out of contact with the skin due to vibration and move-
ment. The consequence of this noise is the baseline 
transition, which decreases exponentially to the base-

line value [14]. The effect of electrode contact noise on 
MIT-BIH record 100 is shown in Fig. 4c.

(c) Baseline Wander or baseline shift is a low-frequency 
noise in the frequency range of 0.15–0.3 Hz with an 
amplitude of 15% of peak-to-peak ECG amplitude. 
This noise arises from the respiration of the subject 
and forces the baseline shift in the ECG signal. Base-
line wandering increases with an increased breathing 
rate. Various aspects like impedance of the skin, the 
subject's movement, electrode features, and electrolyte 
properties influence the baseline shift's amplitude and 
duration [15, 16]. Figure 4d represents the effect of 
baseline wander on MIT-BIH ECG record 100.

(d) Motion Artifacts result from the electrode movement 
over the skin due to movements by the subject. The 
movement of electrodes causes a change in the skin–
electrode impedance, resulting in a variation in the 
ECG signal baseline. The amplitude of motion artifact 
is about 500% of peak-to-peak ECG signal amplitude 
for a duration ranging from 100–500 ms. The motion 
artifact thus results in a transient baseline change. 
Motion artifacts and baseline wander can damage the 
low-frequency component and ST-segment of the ECG 
signal. Distorted ST-segment may lead to a false pre-
diction of various diseases like myocarditis, ischemia, 
infarction, Brugada syndrome, infiltrative or myo-
pathic processes [15, 16]. Motion artifacts are shown 
in Fig. 4e.

(e) Electromyographic (EMG) noise is due to muscle con-
traction, which generates potentials in the millivolt 
range. The duration of EMG noise is 50 ms and con-
tains frequency components in the range of 0–10 kHz. 
The average amplitude of EMG noise is about 10% of 
peak-to-peak ECG signal amplitude. The EMG noise 
overlaps with the ECG signal in the 0.01–0.1 kHz fre-
quency range [15, 16]. Removal of this noise without 

Table 1  Summary of various 
ECG waveform

Wave Frequency Origin Amplitude Duration

P 0.67–5 Hz Depolarization of atrial musculature 0.25 mV  < 120 ms
Q 10–50 Hz QRS complex reflects depolarization of 

the right and left ventricles
25% of R Wave 70–110 ms

R 1.60 mV
S –
T 1–7 Hz Ventricular repolarisation 0.1–0.5 mV 100–250 ms

Fig. 3  ECG signal processing algorithm
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Fig. 4  Effect of various noises 
on ECG signal, a MIT-BIH 
arrhythmia record 100 b pow-
erline interference, c electrode 
contact noise, d baseline drift, 
e motion artefacts, f muscle 
contraction, g instrumentation 
noise
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disturbing the features in an ECG signal is quite tricky. 
The effect of EMG noise on MIT-BIH ECG record 100 
is represented in Fig. 4f.

(f) Instrumentation Noise is produced by improper usage 
of electronic components used to record ECG signals. 
An example of instrumentation noise is the saturation 
in the amplitude of an ECG signal due to improper 
biasing of an input amplifier, thus causing an improper 
recording of ECG signal [15, 16]. Instrumentation 
noise is shown in Fig. 4g.

(g) Electrosurgical Noise is the noise produced by the 
medical equipment present in the patient monitoring 
environment. This type of noise significantly corrupts 
the ECG signals. This noise is modeled as a sinusoidal 
of large amplitude with frequencies ranging between 
0.1–1 MHz for 1–10 s. The amplitude of this noise is 
approximately 200% of peak-to-peak ECG amplitude.

3  Pre‑processing of ECG Signal

Until the 1970s, the direct-writing electrocardiograph was 
prominent, and the recorded signals were analog. Before fur-
ther processing, nearly all ECG machines digitize the analog 
ECG signal at a particular sampling rate [17] using analog 
to digital (A/D) conversion techniques. At the front end, the 
initial A/D conversion sampling rate is significantly higher 
than the targeted sampling rate of the ECG signal process-
ing. This higher initial sampling rate is known as oversam-
pling. Oversampling is required to detect the output stimulus 
of a pacemaker with a duration of smaller than 0.5 ms. Over-
sampling has other advantages like improvement in quanti-
zation error regarding the precision of the least significant 
bit and implementation of lower-order analog anti-aliasing 
filter [17, 18]. In the sampling process, aliasing is a com-
mon problem that must be removed. To remove aliasing, 
LPF is used, known as an anti-aliasing filter. In ECG signal 
processing, two LPFs are used to avoid aliasing: an analog 
LPF and a digital decimation LPF. The analog anti-aliasing 
LPF is used before A/D conversion for the oversampling 
process. Digital decimation LPF is located after digitization 
for the down-sampling process. If both the filters have weak 
attenuation at their stopbands, aliasing could appear [17].

The analog LPF at the front of an A/D converter avoids 
aliasing by limiting the spectrum of the input ECG signal at 
the limit set by the Nyquist criterion. The analog LPF per-
forms three more functions: offer a flat frequency response 
in the passband, minimize non-linear phase response, and 
oversampling cut-off much higher than 150 Hz. Similarly, 
the decimation filter provides a flat frequency response in 
the passband and sets the upper cut-off frequency at 150 Hz 
with 3-dB attenuation [17]. However, the implementation 
of an analog filter involves low tolerance value resistors and 

capacitors. When realized using VLSI implementation, their 
IC requires considerable chip area with the increased process 
and circuit complexity. The resistors implemented in VLSI 
circuits have a vast process variation. As the quality factor 
and resonant frequency of a filter depend on component val-
ues, the process variations result in huge circuit variations. 
The parasitic capacitances can also affect the performance of 
the circuits. Parasitic capacitances significantly affect high 
impedance nodes due to their small values [19].

Various noise removal techniques have been proposed to 
suppress noises and artifacts in an ECG signal in the last 
few decades. A detailed description of noise removal tech-
niques is provided in Table 2. Filters are attractive tools for 
ECG signal pre-processing and denoising. Digital filters are 
preferred over analog filters to remove noises and artifacts 
[20, 21] as digital filter offers design flexibility. A digital 
filter can be implemented in a software environment before 
realizing it as hardware. Any change in filter characteristics 
can be realized in a digital filter by merely changing the fil-
ter coefficients, which is achieved by tweaking the program 
code. Once the performance is satisfactory, then the digital 
filter can be realized using hardware. Physical reconstruc-
tion of a circuit is required to design an analog filter that 
demands more time and cost to implement. Unlike analog 
filters, digital filters are immune to environmental conditions 
and the aging effect as their operation depends on numeri-
cal computations rather than the electrical characteristics 
of components [22]. The cutoff frequency of a digital filter 
can be represented with excellent precision, while in analog 
filtering, a 5% deviation in cutoff frequency is accepted [22, 
23]. These virtues of the digital filter make them suitable for 
analyzing very low-frequency signals. Various researchers 
use various types of filters like a low-pass filter (LPF), high-
pass filter (HPF), a band-pass filter (BPF), median, notch, 
adaptive, Savitsky-Golay (S–G), Moving average (MA) for 
noise removal.

LPF is a universally accepted method for ECG denoising 
[24]. The low-pass filter removes high-frequency compo-
nents of an ECG waveform and leaves a significant portion 
of the ECG waveform for further processing. The popular 
cut-off frequencies of low-pass filters in ECG signal analysis 
are 11 Hz, 30 Hz, 35 Hz, 50 Hz, 90 Hz. A low-pass filter 
removes high-frequency noises like PLI, EMG but, more 
importantly, affects high-frequency components of ECG 
signals such as QRS complex, pacemaker spike and J-wave 
[62–64]. To preserve these useful high-frequency compo-
nents, the American Heart Association (AHA) has changed 
its recommendation for cut-off frequencies of the low-pass 
filter from 35 to 150 Hz and 250 Hz for adults and children, 
respectively [17, 65]. The effect of LPF on an ECG record 
203, taken from the MIT-BIH arrhythmia database, is shown 
in Fig. 5. Figure 5a represents the original MIT-BIH record 
203 and the low-pass filtered version of this ECG record, 
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while the spectrum of the original ECG record and low-pass 
filtered signal is shown in Fig. 5b. The power is normalized 
in the Figures. The cut-off frequency of LPF is about 11 Hz. 
Although the LPF removes the high-frequency noises like 
PLI and many more, it also attenuates the ECG amplitude 
and distorts some significant ECG characteristics.

The low-pass filter significantly affects the ECG signal, 
so various researchers proposed a high-pass filter as an 
alternative for noise elimination. HPF being simple, eas-
ily implementable, is used to remove baseline wander, DC 
offset, and drift suppression [66]. HPF with cut-off frequen-
cies of 0.05 Hz, 0.5 Hz, 1 Hz, and 2.2 Hz is used frequently 
to remove baseline wander and drift. The effect of HPF 
on the MIT-BIH record 203, in both the time-domain and 
frequency-domain, is demonstrated in Fig. 6. The cut-off 
frequency for this high-pass filtering operation is 5 Hz. Fig-
ure 6 shows that the HPF removes the DC offset and mini-
mizes the baseline wander noise. Since all the heart infor-
mation lies in a frequency range, researchers are interested 
in using a band-pass filter for pre-processing. BPF is used 

to eliminate different kinds of noise like baseline wander, 
EMG, PLI, and other low and high-frequency noise com-
ponents. Various authors use different frequency range for 
BPF which are: 0.5–40 Hz, 1–30 Hz, 0.05–40 Hz, 1–100 Hz 
[67–70]. The response of a typical BPF with cut-off fre-
quency 5–15 Hz for MIT-BIH record 203 is shown in Fig. 7. 
The time-domain and frequency-domain responses in Fig. 7 
show that the BPF enhances the QRS complex characteris-
tics by eliminating low and high-frequency noises.

Along with many advantageous features, the band-pass 
filter suffers from some disadvantages also. There are two 
important features of a band-pass filter. First, the BPF output 
may contain some artifacts and ripple due to low-frequency 
components. Second, it is challenging to select cut-off fre-
quencies that do not overlap with the desired ECG signal 
[71]. In [28], Mourad combined group sparsity and singu-
lar spectrum algorithm (GSSSA) with BPF for ECG signal 
denoising. The block diagram of a typical filtering method, 
based on low-pass and high-pass filtering for ECG signal 
analysis, is shown in Fig. 8.

Fig. 5  Effect of LPF on ECG 
Signal (a) Input ECG signal and 
its low-pass filtered version (b) 
Spectrum of input ECG signal 
and low-pass filtered ECG 
signal

(a) Input ECG signal and its low-pass filtered version

(b) Spectrum of input ECG signal and low-pass filtered ECG signal
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Above mentioned filters can remove a range of frequen-
cies, but sometimes removing a single frequency is neces-
sary. A notch filter is popularly used to remove a single fre-
quency component like PLI (50 or 60 Hz) [7, 72]. A notch 
filter is a band-stop filter of a very narrow bandwidth. A 
good quality notch filter should attenuate the targeted fre-
quency and preserve the rest. Various research groups use a 
notch filter with 50 or 60 Hz center frequency to remove the 
power line interference. Although a notch filter preserves 

the other frequencies for rapidly changing waveform, they 
produce unusual ringing.

Notch filters are suitable for removing a single frequency 
noise, but other noises cannot be removed simultaneously 
[73]. The effect of the notch filter on MIT-BIH arrhythmia 
record 203 is shown in Fig. 9. As the ECG signal contains 
some impulsive noises, their presence may lead to false 
detection of QRS complex or R-peak. Conventional filters 
like LPF and HPF cannot remove impulsive noises. Hence 

Fig. 6  Effect of HPF on ECG 
signal

Fig. 7  Effect of BPF on ECG 
signal

Fig. 8  The filtering method of ECG signal analysis
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many researchers propose a median filter as an attractive tool 
to remove impulsive noise while preserving signal edges. 
A median filter is a non-linear digital filter used to remove 
noises from the images and signals.

Median filtering has unique advantages over linear fil-
tering techniques. The linear filter cannot handle impulsive 
noise (sharp discontinuities of small duration) without alter-
ing the signal characteristics [74]. The median filter operates 
on the signal, entry by entry, and replaces every entry by the 
median of neighboring entries. The neighboring pattern is 
called a window, which slides over the entire signal. Gener-
ally, median filters with a window size of 200 to 600 ms are 
used to restore the baseline of an ECG signal. In the median 
filter, the predicted value of the current point depends on the 
past and future values. A median filter removes the baseline 
wander by assuming that the ECG signal and baseline wan-
der have different amplitude distributions within the win-
dow. A median filter's main drawback is a longer computa-
tional time for wide window width and complex behavior.

During filtering, preserving the shape of the ECG wave-
form is essential as the shape contains crucial information 
on cardiac health. Savitsky–Golay's (S–G) filtering scheme 
removes noise and preserves the waveform shape. This filter-
ing scheme based on the least square polynomial approxima-
tion method draws the attention of many researchers. Pre-
serving the peak height and width of the signal waveform 
in a noisy environment makes S–G filtering an attractive 
choice for ECG signal analysis. S–G filters are low-pass fil-
ters obtained by fitting a polynomial to the input samples 
sequence and calculating that polynomial at a point within 
the selected interval. An extremely flat passband and moder-
ate attenuation in the stopband of an S–G filter help achieve 
excellent results. In S–G filtering, the computational time 
is proportional to window width, so window width must 
be appropriately selected. S–G filters are useful in those 
applications where signal spectrum and noise overlap with 
each other. This fact of the S–G filter is used to remove the 

baseline drift in the ECG signal. The denoising accuracy of 
an S–G filter depends on the frame length and order of the 
polynomials. In an S–G filter, the frame length and order of 
the polynomial are determined by experimentation, which 
is a disadvantage of the S–G filter [75].

All the filters mentioned above require some prior knowl-
edge about signal or noise. Based on this knowledge, the 
filters are designed for a particular task and thus catego-
rized as fixed filters. A fixed filter requires a new design 
whenever there is a change in the input or any other con-
dition. An adaptive filter resolves the problem of a fixed 
filter. Adaptive filters can automatically adjust the filter 
coefficients according to the specific requirement. Unlike 
a fixed filter, the design of an adaptive filter requires little 
or no prior knowledge of input or noise [76]. The adaptive 
filter minimizes the mean squared error between the primary 
input and a reference signal. Generally, the primary input is 
a noisy ECG signal, and the reference signal is either noise 
or a signal correlated with noise or ECG signal in primary 
input, respectively. Easy implementation of advanced hard-
ware or microcontrollers with digital numerical capabilities 
makes adaptive filters suitable for the digital environment 
[77]. Based on requirements, various algorithms like least 
mean square (LMS), normalized least mean square (NLMS), 
recursive least square (RLS), sign-LMS, and sign-sign LMS 
are used to design adaptive filters. LMS algorithm has the 
advantages of implementation simplicity and tracking the 
statistical changes of non-stationary signals. In contrast, the 
RMS algorithm offers a faster convergence rate at the cost 
of increased computational complexity.

Based on the computational unit used to implement an 
adaptive filter, the filters are categorized as linear and non-
linear adaptive filters. In a linear adaptive filter, the output is 
a linear combination of the observations applied to the input 
of the filter. The linear adaptive filter has a single compu-
tational unit for each output. Linear adaptive filtering is not 
capable of exploring the higher-order statistics of input data. 

Fig. 9  Effect of notch filter on 
ECG signal
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On the other hand, non-linear adaptive filtering uses non-
linear computational units to explore the complete informa-
tion contained in the input signal. Non-linear components 
in non-linear adaptive filtering make mathematical analysis 
much more complicated than linear filtering methods. Adap-
tive filtering is useful in removing motion artifacts, PLI, 
baseline wander, and EMG [77]. Although adaptive filtering 
has numerous advantages, the main drawback is the refer-
ence signal requirement, as the choice of the reference signal 
may significantly affect the efficiency of the method [78, 79].

Many researchers used a moving average filter in ECG 
signal processing due to its simplicity and ease of use. Mov-
ing average filter is a finite impulse response filter used to 
minimize the random noise while maintaining a sharp step 
response. The idea behind the moving average filter is to 
take samples from the input dataset at predefined intervals 
and take the average of that input to produce an output. 
This process is repeated over the entire dataset, and a line, 
known as moving average, is constructed by connecting all 
these averages. The moving average filter losses the inter-
beat information due to averaging. The moving average filter 
is more suitable for time-domain encoded signals. Moving 
average filter is unsuitable for a frequency-domain encoded 
signal as it cannot separate one frequency band from the 
other [80]. While denoising, the edge-preservation of the 
ECG signal is essential, so some researchers found non-local 
mean filtering (NLM) suitable for denoising the ECG signal. 
Non-local mean (NLM) filtering was initially used for 2D 
image processing later; various researchers use it to denoise 
biomedical signals like ECG and EEG [24, 81]. Tracey and 
Miller first used the non-local mean denoising technique 
[46] for ECG signal denoising.

The non-local mean filtering is a patch-based method 
that calculates the weighted sum of a patch. NLM filter uses 
neighboring and non-neighboring patches for weight calcu-
lation. Based on this weighted sum, the noise is filtered out. 
Although the NLM filtering provides good denoising results 
and preserves the edges of an ECG signal, computational 
complexity increases the computational cost [46]. Lee and 
Hwang [24] adapted pNLM filtering with HPF and LPF to 
denoise selected ECG records from the MIT-BIH database 
and achieved an average SNR improvement of 7.67 dB.

The filtering techniques mentioned above are off-line 
methods where the ECG signals are recorded first and then 
denoised to improve the quality of the signal. However, in 
real-time applications, where the ECG data are provided by 
wearable sensors and transmitted to mobile devices, these 
methods show inefficacy. A real-time ECG signal process-
ing requires computationally efficient filtering schemes. A 
recursive filter (RF) provides computational efficiency in 
computing time and memory usage [27]. A recursive filter 
is an infinite impulse response (IIR) filter whose output is 
a linear combination of present input and previous inputs 

and outputs. Recursive filtering provides low computational 
cost, fast operation, steeper selectivity, large gain with fewer 
sections. The main drawback of this method is its practical 
implementation due to the nonconvex optimization prob-
lem [82]. Cuomo et al. [27, 29] used recursive filtering for 
denoising the ECG signal.

Another edge-preserving denoising method is the Kalman 
filter (KF). It is a powerful tool to estimate the hidden state 
of a system with the help of a dynamic model of the system 
and measured data. KF deals effectively with noisy data and 
with random external factors. It assumes a linear relationship 
between the system dynamics and measured data. As most 
of the systems are non-linear, variants of KF are used to ana-
lyze non-linear systems. The popular variants of extended 
Kalman filter (EKF) are unscented Kalman filter (UKF) and 
extended Kalman smoother (EKS). EKF is an extension of 
KF for a non-linear system that assumes a non-linear rela-
tionship between measured data and the system. The pur-
pose of EKF is the linearization of the non-linear system 
model close to the previously estimated points. EKF is not 
an optimal filter like KF. UKF method uses an unscented 
transform (UT) to denoise an ECG signal. The estimated 
covariance and sensitive matrices using UT are semidefinite. 
Hence it is difficult to realize a numerically stable UKF sys-
tem to cancel noise in an ECG signal.

The EKS denoising method is a non-causal approach as 
it utilizes future observations to estimate the present state. 
EKS consists of two stages: the forward EKF stage and the 
backward recursive smoothing stage. The non-causal nature 
of EKS provides better performance as compared to EKF 
[83]. Denoising techniques based on EKF, UKF, and EKS 
provide better denoising results. However, sometimes these 
methods require operator interaction to initialize parameters 
such as amplitude, phase, and width to estimate an ECG 
signal [30]. EKS, along with differential evolution (DE), 
is proposed by Panigrahy and Sahu [30] for denoising, but 
this approach may provide a lower performance at a low 
sampling rate of ECG signal. As mentioned above, the 
researchers used various filtering techniques and achieved 
ECG detection accuracy greater than 99%.

Generally, Butterworth filters are preferred for medical 
applications due to their maximally flat magnitude response, 
less computational cost, and accuracy. IIR Butterworth filter 
has a better frequency than finite impulse (FIR) filter [84]. 
The filtering techniques suffer from many drawbacks, such 
as the ringing effect and lack of information on the signal's 
frequency content. The filtering technique also affects the 
waveform of the ECG signal. Frequency-domain techniques 
remove some of these drawbacks. Popular frequency-domain 
techniques are discrete Fourier transform (DFT), fast Fourier 
transform (FFT), discrete cosine transform (DCT). These 
techniques provide the frequency content of the signal. The 
earliest technique is DFT, which converts the time-domain 
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samples into the frequency domain. DFT is not a function 
of any variable, but it is a sequence. DFT decomposes the 
signal in terms of orthogonal sine and cosine functions of 
different frequencies. These individual components of the 
signal can be easily analyzed and processed compared to 
the original signal [85]. For N samples, namely x(0), x(1), 
x(2) … x(k) … x(N-1) of a signal x(n), the N-point DFT of 
the signal is given by (1).

Here WN = e
−j2�

N  is known as the twiddle factor.
DFT is a powerful tool for providing spectral information 

of the signal. DFT deals with finite data points; it is easy to 
implement DFT in computers with numerical algorithms. 
DFT involves many calculations, so a fast-computational 
algorithm, called fast Fourier transform (FFT), is developed. 
FFT is a tool to perform DFT efficiently [86]. DFT requires 
N2 multiplications and N(N-1) additions for a data sequence 
of N-points, whereas FFT requires N

2

(

log2 N
)

 multiplications 
and Nlog2(N) additions [29, 87, 88]. By using the FFT algo-
rithm, Kumar et al. [88] achieved a sensitivity of 99.65%. 
Noor et al. [89] achieved low energy consumption by using 
FFT.

Figure 10 shows a frequency-domain based method to 
analyze ECG signals, where an analysis filter bank is used to 
pre-processing the signal. When operated on non-stationary 
signals, DFT/FFT fails to provide information about instan-
taneous frequency. Further, one cannot apply DFT/FFT to 
a multichannel signal. Other frequency-domain techniques 
like discrete cosine transform (DCT) can express a discrete-
time-domain signal into a sum of cosine functions having 
different frequencies. Due to the energy compaction prop-
erty, DCT is used for ECG compression [90–92]. The major 
disadvantage of DCT is the requirement of the quantization 
step to get an integer-valued output [93].

Although these frequency-domain techniques provide 
spectral information of an ECG signal, they do not provide 

(1)X(k) =

N−1
∑

n=0

x(n)WKn
N
, 0 ≤ k ≤ N − 1

temporal information. ECG signal, being non-stationary, 
possesses highly complex time–frequency characteristics, 
and they cannot be analyzed only using time or frequency-
domain techniques. Short-time Fourier transform (STFT), 
introduced by Gabor in 1946, is a technique that combines 
both the time and frequency component analysis, which 
enables a comprehensive analysis of an ECG signal [94]. 
STFT provides time localized frequency information for 
a situation in which the frequency component of a signal 
varies with time [94, 95]. In STFT, with the help of a mov-
ing, fixed-width time window, multiple frames of the signal 
are extracted, and after then, Fourier transform is applied 
to get the frequency information of these multiple frames. 
The size of the window is narrow so that the frame would 
appear stationary. Thus, STFT eliminates the limitation of 
the Fourier transform by providing both time and frequency 
information. Xie et al. [96] achieved a classification accu-
racy of 98.4% using STFT. The main limitation of STFT is 
a trade-off between time and frequency resolution. Selecting 
a narrow time window provides a good time resolution but 
degrades the frequency resolution.

Similarly, a broader time window degrades the time 
resolution but improves the frequency resolution. Further, 
a fixed window length imposes a limit on non-stationary 
information extracted from the signal. A wavelet transform 
reduces the limitations imposed by STFT. Wavelet transform 
improves the time–frequency resolution by varying the win-
dow length. The flexible window length of wavelet transform 
helps obtain long, low-frequency, and small, high-frequency 
information simultaneously. In wavelet transform, a set of 
basis functions known as a wavelet represent the signal. A 
wavelet is a waveform with a limited duration and zero aver-
age value. A function with the following criteria can be used 
as a wavelet [97].

 (i) It must have finite energy.
 (ii) A function with a no zero-frequency component, or 

it must have zero mean.

Fig. 10  ECG signal analysis 
using filter bank method
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 (iii) Fourier transform of a complex function must be real 
and zero for negative frequencies.

Various researchers used different wavelets like Daubechies 
wavelets, Symlet wavelets, Haar wavelet, Biorthogonal 
wavelet, Coiflet wavelets, Meyer wavelet to decompose an 
ECG signal. The type of wavelet to be used is determined 
by the application [40]. Wavelet transform can be classi-
fied into discrete wavelet transform (DWT) and continuous 
wavelet transform (CWT). DWT decomposes the signal into 
a set of functions that are orthogonal to its translation and 
scaling coefficient. On the other hand, CWT provides an 
output vector larger by one dimension than the input signal. 
CWT uses non-orthogonal wavelets, which provide highly 
correlated output vector values. The use of non-orthogonal 
wavelets in CWT improves the visualization of signals in 
higher dimensions, but it is not very useful for classifica-
tion. Sabherwal et al. [98], Sahoo et al. [99], and Banerjee 
et al. [100] used Daubechies-6 (dB6), Rakshit and Das [101] 
used dB10 wavelet, Park et al. [102] used Symlets wavelet 
(sym5). Li et al. [103] used a quadratic spline wavelet as a 
mother wavelet for ECG signal denoising. Sabherwal et al. 
[98], Sahoo et al. [99], Banerjee et al. [100], and Li et al. 
[104] achieved a sensitivity greater than 99.5% using wavelet 
transform. Rakshit and Das [101], Park et al. [102], Yochum 
et al. [105], and Sabherwal et al. [106] have gained a sensi-
tivity of 99.93%, 99.93%, 99.87%, and 99.99%, respectively.

The principle of the wavelet transform for ECG signal 
analysis is represented in Fig. 11. The wavelet decomposer 
decomposes the ECG signal into wavelet coefficients. With 
the help of these wavelet coefficients, the denoised ECG sig-
nal is generated for further analysis of heart rate variability. 

The effect of the wavelet transform on a typical MIT-BIH 
record 109 is shown in Fig. 12. Figure 12 demonstrates that 
the wavelet transform has successfully removed the baseline 
wander noise, EMG, and others. Although wavelet transform 
has many advantages over other techniques like filtering, 
Fourier transforms, there are still some drawbacks. First, it 
is not able to capture the edges adequately. Second, a trade-
off exists between accuracy and computational time. A sig-
nificant drawback of wavelet transform is low directional 
selectivity. The selection of the basis function in the wavelet 
transform is also a rigorous task. Some drawbacks of wavelet 
transform are removed by empirical mode decomposition 
(EMD) by decomposing the signal into intrinsic mode func-
tions (IMF) [49–51, 107]. The basic concept of EMD is to 
identify proper time scales that reveals the physical char-
acteristic of the signal and then decompose the signal into 
modes intrinsic to the function, referred to as IMF. IMFs are 
signals that satisfy the following criteria:

 (i) In the whole data set, the difference between the 
number of extrema and zero-crossing count must be 
either equal to zero or differ by one.

 (ii) At any point, the mean value of the envelope defined 
by local maxima and envelope defined by local min-
ima is zero.

The number of IMF depends on the length of the ECG 
segment. A long ECG segment produces a large number 
of IMF. EMD is an iterative process. The iterations can be 
converged by imposing conditions like standard deviation, 
the amplitude of the remaining signal, mean value of the 

Fig. 11  ECG signal analysis using the wavelet transform
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envelope, cross-correlation coefficient between the origi-
nal signal and the remaining signal. EMD is a model-free, 
entirely data-driven method that naturally copes with non-
stationarities and non-linearities. EMD based algorithms 
are helpful for the removal of baseline wander and high-
frequency noise. A typical EMD algorithm is a multi-step 
process and is simple to implement. EMD uses several equa-
tions to extract various features of an ECG signal. EMD is 
one of the most relevant techniques to remove respiratory 
signals from the single-channel ECG recording [108, 109]. 
Rakshit and Das [51], Kabir and Shahnaz [52] utilized EMD 
for denoising the ECG signal and achieved an SNR improve-
ment of 9.29 dB and greater than 6 dB, respectively. The 
drawbacks of the EMD technique are a deficiency of theo-
retical background and mode mixing.

The block diagram of the EMD based ECG signal denois-
ing system is shown in Fig. 13. The EMD method decom-
poses the ECG signal into many IMFs. The IMF correspond-
ing to various noises is discarded to obtain the clean ECG 
signal. Denoised ECG signal is then used to detect various 
events like P-wave, QRS complex, R peak, T wave. A typi-
cal ECG record taken from MIT-BIH and its IMFs obtained 
from EMD operation are presented in Fig. 14. The ECG 
signal is decomposed into eight IMFs and a residue signal. 
From IMF1 to the residue signal, the oscillatory behavior is 
decreasing continuously. The lower order IMFs represent the 
high-frequency components of the signal, and noise is spread 
over these IMFs. EMD suffers from a significant drawback, 
known as mode mixing. In mode mixing, oscillations from 
different time scales appear in a given IMF, or oscillations 
from the same scale appear in different IMFs [110]. Like 
the wavelet transform, EMD is also not able to preserve the 
edges. Also, the lack of a theoretical framework is another 
major problem of EMD. Wu and Huang [111] introduced a 

new technique known as ensemble empirical mode decom-
position (EEMD) to eliminate the mode mixing problem of 
EMD. EEMD is a noise-assisted EMD algorithm. In EEMD, 
different series of white noise are added to the original signal 

Fig. 12  a Input ECG signal b 
denoised ECG signal

Fig. 13  ECG signal analysis with the help of the EMD method
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in many trials. Since the noise is different in each trial, the 
resulting IMFs differ from each trial, which does not exhibit 
any correlation. If the number of trials is adequate, the added 
noise can be eliminated from the ensembles by averaging 
the IMFs from different trials [112, 113]. The number of 
ensembles and the noise amplitude are required to define 
an EEMD. Jain et al. [54] achieved an SNR improvement 
of 10.08 dB for MIT-BIH record number 115. Chang [110], 
Rajesh and Dhuli [114], Jebaraj and Arumugam [115] dem-
onstrated EEMD as a powerful tool to denoise an ECG sig-
nal. Although EEMD provides a significant improvement 
over EMD, it still suffers from some problems [111]. (i) In 
EEMD, each trail produces a set of IMFs. The addition of 
these IMFs does not need to be a true IMF. (ii) IMFs do not 
provide any information on handling the multi-mode distri-
bution (iii) higher computational complexity.

Variational mode decomposition (VMD) is an enhanced 
version of EMD used to analyze the non-stationary and non-
linear signals. Like EMD, VMD also decomposes the signal 
into a set of bandlimited amplitude and frequency modulated 
oscillations known as modes. All the modes have specific 
sparsity properties to reproduce the signal. The bandwidth 
of all the modes in the spectral domain is regarded as spar-
sity. The high operational efficiency of VMD is based on 
its robust mathematical theory. VMD avoids information 
loss because it reconstructs a good signal from decomposed 

signals. Maji et al. [116] used VMD for QRS detection and 
achieved a sensitivity of 99.46% with the MIT-BIH data-
base. VMD has some superiority over EMD because the 
EMD algorithm includes extrema finding, interpolation, 
and stopping criterion. Any false maxima detection may 
generate a wrong decomposition, but in VMD, the signal is 
decomposed around the center frequency of modes. EMD 
may decompose the ECG signal into unnecessary modes 
because the decomposition level is independent of the user, 
but VMD has a controlled decomposition.

The most advantageous feature of VMD is the center 
frequency of the mode that helps in the characterization of 
the modes. VMD also provides features like phase angle, 
which helps categorize the heart rhythm with abnormali-
ties [116, 117]. Various researchers use statistical tech-
niques like principal component analysis (PCA) and inde-
pendent component analysis (ICA) to denoise the ECG 
signal. PCA and ICA remove the in-band noise of the ECG 
signal by removing the dimensions which correspond to 
noise [118]. They (PCA, ICA) do not show good results 
with single-lead ECG recordings because these techniques 
are based on correlation and uncorrelation concepts [119]. 
Although the techniques mentioned above provide excel-
lent results, the reliability of these techniques for real-time 
applications requires extensive validation.

Fig. 14  Input ECG signal and 
the eight IMFs after EMD 
decomposition
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1 3

4  Detection Techniques

In ECG, a complete heart cycle comprises three main 
events: P-wave, QRS complex, and T wave. Each event has 
its characteristic peak amplitude, duration, and frequency. 
It is necessary to detect the events mentioned above prop-
erly and accurately to diagnose CVDs and arrhythmias. 
After detecting any event, the corresponding signal can be 
analyzed for the peak amplitude, QRS complex width, fre-
quency content, energy, and the interval between events. 
Accurate detection of a P-wave, QRS complex, and T wave 
enables accurate analysis of the ECG signal. Over several 
years, various researchers have focused their investigations 
on the QRS complex detection as detecting the P-wave and 
the T wave is quite difficult compared to QRS complex 
detection. The accurate detection of the P-wave and the T 
wave is difficult because of their low amplitude, morphol-
ogy and amplitude variability, low SNR, and sometimes 
an overlapping between the P-wave and the T wave. Also, 
from the clinical point of view, detecting the QRS complex 
is crucial because the multiple premature QRS complexes 
indicate cardiac dysfunction. Various researchers proposed 
different methods to detect QRS complex detection [88, 
120–132]. However, to date, none of the algorithms can 
detect all possible variations in a QRS complex due to its 
complex morphology and noisy ECG signal.

QRS complex detection is a two-step process that 
includes the pre-processing and decision stage. The pre-
processing stage, as mentioned above in Sect. 3, is used 
for noise removal. After noise removal, the denoised signal 
is subjected to the decision stage. As shown in Table 3, 
many detection techniques are proposed in the literature to 
detect QRS complex and R-peak. These techniques include 
thresholding, zero-crossing detection (ZCD), syntactic 
methods, matched filter, mathematical morphology, hid-
den Markov process, and singularity techniques. Also, to 
reduce false-positive detection, almost all algorithms use 
the addition decision rule. Two essential criteria, com-
plexity and performance, are used in the selection of a 
detection technique. Relatively simple algorithms are used 
in practice. The performance criterion was used to reject 
those detection techniques, which gave a large number of 
false-positive at low noises levels [14].

The simple and widely used detection method is a 
thresholding technique in which a feature of the pre-pro-
cessed signal is compared with a fixed or adaptive thresh-
old to detect the QRS complex. The thresholding tech-
nique can be applied in time as well as the time–frequency 
domain. Fixed thresholding is simple and provides a good 
result for stationary ECG signals, where beat-to-beat mor-
phology does not change.

However, due to noise and baseline wander, ECG sig-
nal beat-to-beat morphology changes, and the probability 
of accurate detection of QRS complex decreases with fixed 
thresholding. The adaptive threshold [94, 123, 134–136, 
145] increases the probability of accurate detection of QRS 
complexes.

Various researchers [13, 133–136] have used filtering 
before thresholding to attenuate various noises like PLI, 
baseline wander, MA, and other signal components like 
P-wave and T wave. Usually, a band-pass filter is used in the 
pre-processing stage, but other filters like low-pass [94, 144], 
high-pass, median, and moving average [122, 146] are used. 
In [123], a high-pass filter called the MaMeMi filter removes 
noise from the ECG signal. Using the MaMeMi filter and 
adaptive threshold, Rufas and Carrabina [123] have obtained 
a sensitivity of 99.43%. Christov [122] employed a moving 
average filter and combined threshold (adaptive steep-slope 
threshold + adaptive integrating threshold + adaptive beat 
expectation thresholds) for QRS complex detection. Bajaj 
and Kumar [162] proposed a QRS detection algorithm that 
uses the concept of Stockwell transform (ST) and fractional 
Fourier transform along with thresholding. Although the 
thresholding technique is simple but setting multiple empiri-
cal thresholds is the main drawback of this technique. When 
a beat does not appear for a long time in a threshold-based 
detection method, the search back mechanism is activated, 
producing many false beats.

In the wavelet-based detection method used by various 
researchers [103, 105, 154], the raw ECG signal is decom-
posed into many coefficients. Only those coefficients that 
coincide with the QRS complex are selected. The wavelet-
based detection method has two limitations: (a) unavail-
ability of a universal rule for selecting mother wavelet (b) 
effectiveness of the method depends on the level of decom-
position. A wavelet-based algorithm can be realized by using 
an integrated circuit with a detection accuracy of 99%. In 
[167], Coast et al. proposed a hidden Markov model for 
QRS complex detection. In hidden Markov modeling, the 
observed data sequence is characterized by a probability 
density function that varies with the state of the underlying 
Markov chain. The Markov chain in hidden Markov mod-
eling models the observed sequence, waveform duration, 
and intervals within each beat. The Markov chain preserves 
the structural properties of the underlying process, and state 
parameters represent the probabilistic nature of the observed 
data. Hidden Markov modeling offers excellent flexibility 
in the selection of observation sequences. The problems 
associated with hidden Markov modeling are computational 
complexity; many parameters need to be set and manual seg-
mentation for training before analyzing a record [168].

Artificial neural networks (ANN) are useful for the detec-
tion and classification of the QRS complexes. As the name 
suggests, ANN is a computational algorithm based on the 
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biological neural network. The virtues of ANNs, like learn-
ing complex, non-linear surfaces among different classes, 
make them suitable for ECG beat detection and classification 
[169]. Multilayer perceptron, self-organizing feature map 
(SOFM) learning vector quantization, and radial basis func-
tion networks are used to process an ECG signal. Xie et al. 
[96] proposed a convolution neural network (CNN) for the 
classification and achieved a detection accuracy of 98.4%. 
Kohler et al. [170] proposed zero-crossing detection of QRS 
complexes. In zero-crossing detection, a feature is obtained 
by counting the number of zero crossings per segment. The 
zero-crossing feature primarily does affect the sudden ampli-
tude changes in the ECG signal, thus providing robustness to 
noise. The amplitude fluctuations in the problematic sections 
of an ECG signal do not affect the count of zero-crossing, 
which significantly improves detection performance. The 
zero-crossing detection method has the advantage of sim-
plicity and low computational costs.

In [144], mathematical morphology (MM) is proposed 
to extract the QRS fiducial point. MM is used to extract the 
topological information from the analysis of the geometrical 
structure. MM operator non-linearly transforms the signal 
into another signal called the structuring element (SE). SE is 
used to detect QRS complexes. The R peak detection using 
zero-crossing detection concepts was reported in [138, 139, 
142]. In [138, 139, 142], the properties of Hilbert transform 
and zero-crossing locations are used to detect an R peak. 
The odd symmetry property of an HT provides a zero at 
each maximum, thus providing a zero whenever the input 
signal crosses the zero axes. These zero crossing locations 
are used to locate the true position of an R peak. Li et al. 
[161] proposed a QRS complex detection method by coordi-
nate mapping based on the phase space reconstruction. Tang 
et al. [160] employed a delta modulator along with local 
maximum point (LMaP) and local minimum point (LMiP) 
algorithm to detect QRS complex, P, and T wave. Different 
researchers have proposed various QRS and R peak detec-
tion techniques, but no technique has provided 100% accu-
racy with all the standard datasets with all records. Also, 
their clinical implementation is doubtful.

Another important parameter, which affects the perfor-
mance of the available QRS complex detection algorithms, 
is the sampling rate and sampling resolution of the selected 
ECG data. Sampling is a process of converting a contin-
uous-time signal into a discrete-time signal. According to 
the Nyquist theorem [171], the sampling frequency must 
be greater than or equal to twice the signal's maximum fre-
quency to be digitized. If the sampling rate is low, the high-
frequency components superimpose low-frequency com-
ponents, introducing an error into the reconstructed signal. 
It is required to choose proper sampling frequency so that 
the accuracy of the QRS complex detection algorithms is 
not affected [172]. The maximum heartbeat is at most 220 

beats per minute (bpm), corresponding to a frequency of less 
than 4 Hz. In an ECG signal, the spectrum of heartbeat sig-
nals extends up to 15 Hz, and some features extend beyond 
25 Hz. Hence as per the Nyquist criterion, a minimum sam-
pling frequency of 50 Hz is required. However, in real ECG 
recorders, the sampling frequencies range from 100–500 Hz, 
whereas in a lab environment, the sampling frequencies go 
up to 1000 Hz [172]. In 1975, a minimum sampling rate of 
500 Hz, with uniform sampling, generally two or three times 
of theoretical minimum sampling rate, is recommended by 
the American Heart Association (AHA) [173]. According 
to the AHA task force [174], a low sampling rate may yield 
a jitter in R peak detection, significantly altering the spec-
trum. The optimal range of sampling frequency for R peak 
detection is 250–500 Hz or more. The sampling resolution 
(or bit depth) is another factor that affects the accuracy of 
heartbeat detection [172]. Sampling resolution produces a 
signal to quantization noise ratio, which results in an error 
in the beat detection. Ajdaraga et al. [172] showed that 8-
bit or lower sampling resolution is unacceptable for QRS 
complex detection, especially at high sampling frequencies. 
The frequency resolution of 10-bit shows acceptable results, 
but an accurate analysis requires a 12-bit resolution [172].

5  Databases

The ECG databases play a significant role in the develop-
ment of any algorithm related to ECG signal analytics. 
These databases provide a wide range of annotated ECG 
signals recorded under different conditions. Depending on 
the application, various researchers use various databases 
to evaluate the performance of the proposed ECG signal 
analysis algorithms. Details on some important databases 
are available in [175]. Table 4 summarizes these databases, 
along with their salient features.

(a) Massachusetts Institute of Technology-Beth Israel Hos-
pital Arrhythmia database (MIT-BIH) is a popular data-
base that consists of 48 half-hour ECG recordings from 
two channels. The ECG signals are from 47 subjects 
recorded at Boston’s Beth Israel Hospital between 1975 
to 1979. Of 47 subjects, 25 subjects were men, aged 32 
to 89, and 22 subjects were women, aged 23 to 89. Of 
these recordings, 60% of records are from inpatients, 
and 40% are from outpatients. The sampling frequency 
is 360 samples per second, facilitating 60 Hz notch fil-
ters [24–26, 138].

(b) The American Heart Association database (AHA)- The 
American heart association, along with funding agency 
National Heart, Lung, and Blood Institute (NHLBI), 
motivated the development of a new ECG database at 
Washington University, which is known as the AHA 
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database. This database includes 80 two-channel 
recordings. A sampling frequency of 250 Hz per chan-
nel over the ten mV range with the 12-bit resolution 
is used for digitalization. This database is available in 
two versions: a short version and a long version. The 
short version consists of an unannotated recording of 
5 min before 30 min annotated ECG recording. In the 
long version, 2.5 h of unannotated recording is present 
before each annotated part [118, 134, 176, 177].

(c) Creighton University (CU) Ventricular Tachyarrhyth-
mia database consists of 35 eight-minute ECG record-
ings of subjects suffering from Ventricular tachycar-
dia, ventricular flutter, and Ventricular fibrillation. All 

records are digitized at a sampling rate of 250 Hz with 
a 12-bit resolution over the ten mV range [176, 177].

(d) BIDMC Congestive Heart failure database—It includes 
long-term ECG records from 15 subjects. Out of 15, 
11 are men aged between 22 and 71 years, and the 
remaining are women aged between 54 and 63 years. 
All records are digitized at a sampling rate of 250 Hz 
with a 12-bit resolution over the ± 10 mV range [40, 
149].

(e) QT database—This database is a collection of various 
ECG recordings collected from existing databases. 
The QT database consists of thirteen records from 
the MIT-BIH Supraventricular Arrhythmia database, 
fifteen records from the MIT-BIH Arrhythmia data-

Table 4  Overview of various databases used in ECG signal processing

Sr. 
no.

Database Subjects Num-
ber of 
records

Length of record 
(minutes)

Number of lead Sampling fre-
quency

Bit 
Resolu-
tion
(bits per 
sample)

References Availability

1 The American 
Heart Associa-
tion (AHA)

N/A 80 35 2 250 Hz 12 [178] Open access

2 Creighton Uni-
versity (CU) 
Ventricular 
Tachyarrhyth-
mia

N/A 35 8 1 250 Hz 12 [179] Open access

3 QT database N/A 105 15 2 250 Hz N/A [180] Open access
4 Non-Invasive 

Fetal ECG
1 55 Variable duration multiple 1 kHz 16 [181] Open access

5 Apnea-ECG NA 70 401–578 100 Hz 16 [182] Open access
6 Fetal ECG Syn-

thetic
10 1750 5 34 250 Hz 16 [183] Open access

7 St Petersburg 
INCART 
12-lead 
Arrhythmia

32 75 30 12 257 Hz NA Open access

8 Fantasia 40 40 120 NA 250 Hz NA [184] Open access
9 BIDMC Conges-

tive Heart 
Failure

15 15 1200 12 250 Hz NA [185] Open access

10 MIT-BIH ST 
Change

28 28 13–67 1–2 360 Hz NA [186] Open access

11 MIT-BIH 
Normal Sinus 
Rhythm

18 (5 
Men + 13 
Women

18 1440 2 128 Hz NA Open access

12 MIT-BIH 
Arrhythmia

47 48 30 2 360 Hz 11 [187] Open access

13 MIT-BIH Atrial 
Fibrillation

25 25 600 2 250 Hz 12 [188] Open access

14 European ST-T 79 90 120 2 250 Hz 12 [189] Open access
15 PTB 290 549 N/A 12 (conven-

tional) + 
3 (Frank)

1000 Hz 16 [190] Open access



1905A Review on Computational Methods for Denoising and Detecting ECG Signals to Detect…

1 3

base, thirty-three from the European ST-T database, 
six records from the MIT-BIH ST change database, 
ten records from the MIT-BIH normal sinus rhythm 
arrhythmia database, four from MIT-BIH long term 
database and twenty-four records were from sudden 
death patients at Boston’s Beth Israel Deaconess Medi-
cal center. In total, the database covers 105 records, 
two-channel recordings to avoid baseline fluctuations 
or other artifacts [135, 141, 147, 156, 158, 160, 163].

(f) European ST-T Database—Ninety annotated ECG 
records from seventy-seven subjects are present in this 
database. Seventy subjects were men of age group 30 
to 84 years, and eight subjects are women age 55 to 71. 
Each record consists of two signals of 2 h duration. A 
sampling frequency of 250 samples per second with a 
12-bit resolution over the input range of 20 mV [120, 
135] is used for digitizing the signals.

(g) Fantasia Database consists of forty ECG recordings, 
twenty records from the young population age 21 to 
34 years, and twenty from the elderly aged popula-
tion aged 68 to 85 years. All the recording is 120 min 
duration long. The ECG signals are recorded when the 
subjects are at rest and watching a Fantasia movie. The 
sampling rate for digitalization is 250 Hz [41, 120, 121, 
135].

(h) PTB Diagnostic Database—This database is a collec-
tion of 549 ECG records from 290 subjects. The data-
base contains ECG recordings of 209 men with a mean 
age of 55.5 years and 81 women with a mean age of 
61.6 years. Signals are sampled with a sampling fre-
quency of 1000 Hz. Resolution is 16 bits over a range 
of ± 16.384 mV [40, 43, 45].

(i) Long Term ST Database—This database includes 86 
long-term ECG records from 80 subjects. The records 
are 21 to 24 h long, containing two to three ECG sig-
nals. The sampling frequency is 250 samples per sec-
ond over the ± 10 mV range with 12-bit resolution [47, 
161].

(j) Non-Invasive Fetal ECG Arrhythmia Database (NIFEA 
DB) consists of 55 recordings taken from a single preg-
nant subject recorded over twenty weeks.

(k) ECG ID Database—It includes 310 recordings taken 
from 90 subjects. Forty-four men and 46 women from 
different fields (students, colleagues, and friends of the 
author) are taken for the recording. The ECG signal 
sampling frequency is 500 Hz with a 12-bit resolution 
over ± 10 mV [37].

(l) St Petersburg Institute of Cardiological Technics 
(INCART) Database includes 75 annotated recordings. 
The duration of each record is 30 min long and covers 
12 standard leads. Seventeen men and 15 women aged 
between 18 to 80 years are selected for recording. The 
sampling rate for each ECG record is 257 Hz [146].

(m) Apnea-ECG database—It is a dataset of 70 records. 
The length of these records may vary from less than 
7 h to 10 h. Each recording includes three facts: a con-
tinuous digitized ECG signal, apnea annotation, and 
machine-generated QRS annotation. These seventy 
recordings are divided into a learning set and a test set 
of 35 recordings [39, 121].

6  Parameters to Evaluate the Performance 
of an ECG Algorithm

Various parameters are used in the literature to evaluate the 
ECG algorithms proposed by various researchers. These suc-
cess measures are an integral part of ECG signal analysis. 
Evaluation parameters not only evaluate the algorithms but 
also provides a medium for comparison of various proposed 
algorithms. Different evaluation parameters are presented 
in this section. In the following equations, S(n), X(n), X’(n), 
and Y(n) represents a corrupted signal, original signal, pre-
processed signal, and denoised signal, respectively. N is the 
length of the ECG signal.

 (i) 

 (ii) 

 (iii) 

 (iv) 

 (v) 

(2)

the Input signal to noise ratio, SNRinput

= 10 log10

�

∑N

n=1

�

X�[n]
�2

∑N

n=1
(S[n])2

�

(3)

Output signal to noise ratio, SNR
out

= 10 log10

�

∑N

n=1
Y
2[n]

∑N

n=1
(X[n] − Y[n])

2

�

(4)

Improvement in signal to noise ratio, SNRimp

= SNRout − SNRinput

= 10 log10

�

∑N

n=1
(S[n] − X[n])2

∑N

n=1
(Y[n] − X[n])2

�

(5)

Mean square error = MSE =
1

N

N
∑

n=1

(X[n] − Y[n])2

(6)

Percentage root mean square difference

= PRD =

�

�

�

�

∑N

n=1
(X[n] − Y[n])

2

∑N

n=1
X2[n]
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 (vi) 

 (vii) 

 (viii) 
 (ix) 

 (x) 

 (xi) 

 (xii) 

 (xiii) 

 (xiv) 
True positive represents the number of true QRS com-

plexes that are correctly detected. False-negative is the num-
ber of QRS complexes that are not detected as a QRS com-
plex. False-positive is the number of non QRS complexes 
that are detected as QRS complexes. Sensitivity represents 
the percentage of true beats that an algorithm can correctly 
detect. Positive predictivity is the percentage of detected 
beats that were true beats. Accuracy represents the ratio of 
correctly detected beats to the total number of beats. QRS 
detection rate is defined as sensitivity or positive predictiv-
ity, whichever is minimum.

7  Discussion and Challenges

Detection of cardiovascular diseases requires the accurate 
and precise detection of QRS complex detection. As the 
ECG signals suffer from various noises and artifacts, the 
pre-processing of the ECG signal is very necessary. The 
pre-processing step, which removes the noises and arti-
facts in the ECG signal analysis, directly influences the 

(7)

Sensitivity (Se) =
(True Positive)

(True Positive + TrueNegative)

(8)

Specificity (Sp) =
(True negative)

(True Positive + False Positive)

(9)
Positive predictivity(+P)

=
(True positive)

(True Positive + False Positive)

(10)
Accuracy(Ac) =

(True Positive + True negative)

(True Positive + True negative + False Positive + False Negative)

(11)
Detection Accuracy(Da) =

(True Positive)

(True Positive + False Positive + False Negative)

(12)

Error Rate(Er) =
(False Positive + False Negative)

Total beat

(13)
QRSDetection Rate(QDR)

= Min(sensitivity, positive predictivity)

(14)

F − score(Fs) =
(2x Sensitivity x positive predictivity)

(Sensitivity + positive predictivity)

(15)Youden index
(

YW
)

= Se + Sp − 1

outcome. This paper presents almost all of the existing 
ECG signal pre-processing techniques and QRS complexes 
detection techniques. The pre-processing methods, like fil-
tering, transform, empirical, are used by different research-
ers. The study showed that a single technique is not enough 
to remove different kinds of artifacts and noises.

Moreover, each denoising technique produces some 
impact on the ECG signal. It is essential to identify the 
nature of noise first; after then, a denoising scheme should 

be selected for those noises and artifacts [177]. In litera-
ture, hybrid techniques are used to improve the overall 
performance of the ECG detection algorithms. Hybrid 
techniques combine two techniques resulting in good 
denoising results at the cost of increased computation 
complexity and processing delay.

The presence of noises and artifacts in the ECG sig-
nal produces errors in QRS and R peak detection. Hence 
denoising step is a very crucial part of cardiovascular dis-
ease detection. Our survey showed that many proposed 
algorithms achieved good denoising results but with few 
ECG records. No single denoising scheme is validated 
with all the records of all the standard datasets. Among 
the various denoising techniques, the filtering technique is 
quite useful when the noise occurs in a known frequency 
range beyond the frequency range of the ECG signal. 
When the noise lies within the ECG signal's frequency 
range, the transform techniques such as DFT and DCT 
have shown good denoising performance without distort-
ing the signal. Line fitting techniques such as Savitzky-
Golay filtering may appear as a powerful tool when the 
frequency range of noise is unpredicted and widespread. 
Savitzky-Golay filtering can smooth the signal without 
destroying the original property of the ECG signal. Other 
transform techniques such as STFT, wavelet have also been 
used for denoising, but they are not suitable for long-term 
ECG signals.

Some decomposition techniques such as EMD, EEMD, 
VMD, Fourier decomposition methods are useful for spe-
cific noises such as baseline wander, power line interfer-
ence, and electromyographic noise. These techniques 
are capable of removing some of the noises and artifacts 
present in the ECG signal. Further, the performance of 
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the algorithm is evaluated using few ECG records. Most 
of the denoising techniques have successfully overcome 
the BW and PLI noise, but removing other noises is still 
a challenging task. In several studies, beat averaging is 
used to remove noise, but its usefulness and effect on the 
specificity and sensitivity of detection algorithms require 
further studies.

Detection of the QRS complex or R peak depends on the 
quality of the ECG signal. In the presence of artifacts and 
noises, the detection accuracy may decrease, and the wrong 
identification of CVDs is possible. Hence, before detection, 
denoising is essential. Various methods are available in the 
literature for the detection of QRS complexes and R peak 
detection. Almost all the techniques utilize the pre-process-
ing or denoising step before detection to improve the detec-
tion accuracy. Recent studies reported excellent detection 
accuracies by excluding the noisy record of the standard 
dataset. The detection accuracies of some of the proposed 
ECG detectors are very high when applied on a limited data-
set and under specific conditions, and the algorithms are not 
validated over all the datasets. Further, very few proposed 
algorithms implemented in a real-time system suffered from 
low detection accuracies.

Although different researchers have proposed various 
QRS denoising and detection techniques, many are not tested 
against all standard databases, so it is difficult to compare 
and evaluate their results. Some proposed algorithms in the 
literature achieved high sensitivity and accuracy, but they 
have excluded the noisy record of the database. Therefore, 
these algorithms may not be useful for clinical purposes. 
Most detection techniques have used different pre-processing 
and detection methods, which results in complexity and time 
consumption. Still, no powerful technique is proposed in 
the literature that can be used for denoising and detection 
and provides good performance results. Although wavelet 
transform has been used for denoising and detection both, 
the performance is not very good. Also, the selection of 
mother wavelets in the wavelet transform is a difficult task. 
The practical implementation of the proposed algorithms is 
a big challenge in ECG signal analysis. Recent studies show 
that along with denoising and detection, the lossless data 
compression of the ECG signal is also essential. The lossless 
compression capability is necessary because it minimizes 
storage, transmission, and computational data. In literature, 
very few algorithms have compression capability.

Our studies reveal that the evaluation parameters like 
accuracy, sensitivity represent the overall performance of the 
algorithms. However, the portion of the algorithm account-
able for the improvement in the evaluation parameters is 
not provided. The assessment of the algorithms based on 

features is very important as it would help in the secondary 
analysis and explaining the cause of heart abnormalities. In 
the literature, the outcomes of the proposed algorithms are 
not compared with the ECG recorders' output, which medi-
cal professionals use. This comparison will help validate the 
proposed algorithms and demonstrate the efficacy of the pro-
posed algorithm over the currently used methods by medical 
professionals. Most of the proposed algorithms are based on 
QRS complex detection or R-peak detection while ignoring 
other characteristics like the ST segment and P-wave. Never-
theless, clinically, these characteristics are equally important 
as QRS complex or R peak.

Most of the reviewed papers have been used different 
standard databases such as MIT-BIH, AHA, PTB. Although 
the records have a long duration and enough information 
in these databases, these records are obtained from a small 
number of subjects, which is clinically insignificant. Moreo-
ver, most proposed algorithms are validated over the same 
database, limiting the reliability and research findings. Also, 
labels and annotations of these standard database records are 
too old to define the new definitions of the CVDs with great 
reliability. Hence there is a demand for new databases, which 
are created with modern and precise devices. The annotation 
and label of this new database records must match with the 
recent guidelines for CVDs detection. For the advancement 
in technology, it is required to have an ECG database with 
many records to evaluate the statistical significance.

Another major issue in the analysis of the ECG sig-
nal is ignoring the background of the subject. Apart from 
patient age, no other information is used by the proposed 
algorithms. The subject’s medical history, symptoms, and 
different signs were not included in the literature. However, 
the inclusion of this information in the proposed algorithms 
can significantly improve the performance. Nowadays, the 
wide availability of computing technology offers a signifi-
cant improvement in ECG signal analysis. The increasing 
low-cost, high-performance computing technology can 
provide a reliable and appropriate automatic ECG signal 
diagnosis solution. Various machine learning algorithms 
are proposed in the literature to denoise and classify ECG 
signals. The number of training datasets limits the perfor-
mance of these machine learning algorithms. Many training 
datasets are required to develop an accurate system, which in 
turn increases the system complexity. For early and accurate 
detection of CVDs, developing a technique that can effec-
tively perform both denoising and detection is required. The 
technique must be capable of providing the characteristics 
information of the ECG signal. The technique should be 
practically implementable, cost-effective, non-invasive, and 
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low time-consuming. It must have compression capability to 
be easily used in portable and smart ECG detector devices.

8  Conclusions

CVDs possess a severe health risk worldwide, can be pre-
dicted by accurately analyzing ECG signals. This paper 
aims to consolidate the information on various existing 
algorithms to analyze an ECG signal. The performance of 
an algorithm depends on various other factors like noise 
and database, so a summary of noise and database is also 
discussed.

In literature, the problems associated with the tech-
niques to analyze the ECG signal are discussed. The pri-
mary step in ECG signal analysis is the removal of various 
noises present in the ECG signal. Denoising is the most 
critical step in ECG signal processing because the denois-
ing step directly influences the outcome of the detection 
process. Many researchers suggest various techniques for 
denoising by minimizing or removing the effect of noises. 
The techniques used for denoising are based on time, 
frequency, time–frequency, and sparsity domain. Some 
hybrid techniques, arrived by combining two different 
approaches, are also used to remove noise from an ECG 
signal. Each method has its benefits and drawbacks, which 
are discussed in this paper. These different techniques used 
for denoising are summarised and compiled in this paper. 
The results of these techniques for ECG signal denoising 
on different databases are also presented.

The CVDs can be detected by identifying the ECG sig-
nal's morphological features from a denoised ECG signal. 
In the literature, R peak and QRS complex are used to detect 
ECG signal characteristics. Before detection, almost all algo-
rithms use denoising or noise removal techniques. Different 
techniques have been proposed for the detection of ECG 
characteristics. Various proposed detection techniques have 
achieved commendable ECG peak detection accuracies on 
the standard databases. These various detection techniques, 
along with their performance parameters, are tabulated in 
this paper.

The proposed techniques for denoising and detection are 
validated on the various standard databases by the research-
ers. Most of the standard ECG databases are discussed in 
this paper. Different success parameters to compare the ECG 
signal analysis techniques are discussed in this paper. Some 
of the existing techniques have shown promising results their 
hardware realization is questionable. Studies show that very 
few methods are implemented on the hardware. Also, the 

modern health care system requires wearable devices for 
continuous monitoring of cardiac health. Only a few exist-
ing techniques are implemented in wearable devices with 
limited accuracy. Indeed, a computational technique that can 
be used to analyze the ECG signal with higher accuracy in 
all conditions is still a requirement.
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