
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2022) 29:1713–1726 
https://doi.org/10.1007/s11831-021-09636-0

SURVEY ARTICLE

Julia Language in Computational Mechanics: A New Competitor

Lei Xiao1 · Gang Mei1   · Ning Xi1 · Francesco Piccialli2

Received: 26 March 2021 / Accepted: 1 August 2021 / Published online: 13 August 2021 
© CIMNE, Barcelona, Spain 2021

Abstract
Numerical methods are the most popular tools in computational mechanics and have been used to tackle various practical 
engineering problems. However, the most common programming languages used for implementing numerical methods do 
not effectively balance the demands of productivity and efficiency. To address the most computationally intensive areas of 
numerical computing with the increased abstraction and productivity provided by a high-level language, the Julia language 
was released by the Massachusetts Institute of Technology (MIT) in 2012. The Julia language is an open-source program-
ming language that presents simple syntax and satisfactory performance; this is particularly useful for scientific computing. 
In this paper, we present a comprehensive survey on the use of the Julia language in computational mechanics. First, we 
introduce the existing numerical computing packages developed in the Julia language and their relevant applications. Second, 
we analyze the capabilities of the Julia language in the development of software packages for computational mechanics. 
Finally, we discuss the open issues regarding the Julia language and the challenges faced when using the Julia language in 
computational mechanics.

Abbreviations
BEM	� Boundary element method
COO	� COOrdinate
CPU	� Central processing unit
CSC	� Compressed sparse column
CSR	� Compressed sparse row
DDA	� Discontinuous deformation analysis
DEM	� Discrete element method
DG-FEM	� Discontinuous Galerkin finite element method
EFG	� Element Free Galerkin
FLAC	� Fast Lagrangian analysis of continua
FDM	� Finite difference method
FEM	� Finite element method
FVM	� Finite volume method
GNN	� Graph neural networks
GPU	� Graphics processing unit
GUI	� Graphical user interface
IDE	� Integrated development environment
JIT	� Just-in-time

LLVM	� Low-level virtual machine
LOC	� Lines-of-code
MKL	� Math Kernel Library
MLPG	� Meshfree local Petrov Galerkin
MPI	� Massage passing interface
MPM	� Material point method
PDE	� Partial differential equation
PyPI	� Python package index
RPIM	� Radial point interpolation method
S-FEM	� Smoothed finite element method
XFEM	� eXtended finite element method

1  Introduction

With the development and improvement of traditional theo-
ries and basic equations, many common mechanical prob-
lems have been solved. However, for practical engineering, 
accurate analytical solutions are still intractable due to com-
plex conditions and enormous computations. To address this 
situation, the field of computational mechanics, powered by 
traditional mechanics, mathematics, and computer science, 
has emerged. Fueled by the maturity of modern comput-
ers and related numerical methods, various computational 
mechanics methods have attained superiority in terms of 
obtaining numerical results that are close to experimental 
or monitoring results [1].

 *	 Gang Mei 
	 gang.mei@cugb.edu.cn

1	 School of Engineering and Technolgy, China University 
of Geosciences, Beijing, China

2	 Department of Mathematics and Applications 
“R. Caccioppoli”, University of Naples Federico II, Naples, 
Italy

http://orcid.org/0000-0003-0026-5423
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-021-09636-0&domain=pdf


1714	 L. Xiao et al.

1 3

Typically, a complete computational mechanics procedure 
involves three components: a computational model that can 
reflect the essence of the given problem; a numerical algo-
rithm considering applicability, accuracy, and efficiency; and 
an appropriate programming language for implementation. 
There is usually a best choice for the model and algorithm 
applied to a specific mechanical problem, while different 
programming languages lead to different implementations 
of the same computational methods.

Existing computational mechanical software packages are 
written primarily in C/C++, Fortran, MATLAB, or Python. 
Static languages such as C/C++ and Fortran run quickly; 
however, they are relatively difficult to use, and a long learn-
ing time is needed, which is not conducive to their use by 
nonprofessional developers. High-level dynamic languages, 
such as Python and MATLAB, have more advantages in 
terms of low learning costs, strong visualizations and inter-
actions, which have led to their prevalent use in modern 
scientific computing. However, they are usually inefficient 
when handling computationally intensive problems [2, 3]. 
Moreover, as commercial software, MATLAB is often too 
expensive to purchase and is more likely to be used by large 
research institutions or enterprises. It is not realistic for 
individuals to spend large sums of money on programming 
languages. The merits and shortcomings of these languages 
are shown in Fig. 1.

As described above, there are several drawbacks pre-
sented by the commonly used programming languages for 
computational mechanics. None of these languages can bal-
ance productivity and performance. An alternative approach 
is to combine static and dynamic languages (i.e., by using 
fast languages to achieve the efficiency needed for the 

underlying code and productive languages for the remaining 
parts). However, unexpected errors during porting and high 
demands for developers can make this solution infeasible.

To overcome this “two-language problem”, the open-
source Julia language was developed by the MIT. The origi-
nal intention of the Julia language was to combine produc-
tivity and efficiency [3]. Julia integrates the advantages of 
other languages and focuses on scientific computing and data 
analysis. Julia is syntactically similar to dynamic languages, 
such as MATLAB and Python, which makes it relatively 
easy to learn. In terms of efficiency, Julia matches the perfor-
mance of C/C++ and FORTRAN, and it is much faster than 
MATLAB and Python [4, 5], as shown in Fig. 2. Moreover, 
Julia can directly call C++ and Python with interfaces or 
specific packages. For high-performance computing, Julia 
provides parallel computing solutions, including distributed 
computing. In summary, Julia is a competitive programming 
language for scientific computing and has wide application 
prospects in computational mechanics.

In this paper, we present a systematic survey of the devel-
opment of the Julia language in computational mechanics 
that focuses on the following issues: 

1.	 Numerical computing packages developed in the Julia 
language,

2.	 The applications of some computational mechanics 
methods using Julia,

3.	 Some common problems in computational mechanics 
software development and feasible solutions in the Julia 
language, and

4.	 Open issues and future challenges regarding the imple-
mentation of Julia in computational mechanics.

The rest of the paper is organized as follows. A brief intro-
duction to the Julia language is given in Sect. 2. Then, the 
implementations of various computational mechanics meth-
ods and relevant applications are investigated in Sect. 3. In 
Sect. 4, the advantages and capabilities of the Julia language 
with respect to the development of computational mechan-
ics software packages are discussed. Open issues and future 
challenges involving the use of Julia in computational 
mechanics are outlined in Sect. 5. Finally, this survey is 
concluded.

2 � Background: Brief Introduction 
to the Julia Language

Work on the Julia language was initiated in 2009, and after 
three years of development and optimization, it was officially 
released in 2012 [6]. The motivation for its development was 
the use of modern technologies to run dynamic languages 
efficiently. High-level dynamic scripting languages, such as 

Fig. 1   Advantages and shortcomings of the common programming 
language in computational mechanics



1715Julia Language in Computational Mechanics: A New Competitor﻿	

1 3

Python and JavaScript, use interpreters, which take a high-
level program and translate it into machine-readable code. 
The implementation of partial changes does not require 
the recompilation of all the code, although the code can-
not run separately from the interpreter. The corresponding 
static languages need special compilers (such as gcc, g++, 
and gfortran) to compile the source code into machine code 
immediately, that is, to compile the code before executing 
it. This requirement indicates that the whole code must be 
recompiled when any changes are made. In contrast, in 
dynamic languages, the code can be run independently of 
the compiler. That is, dynamic languages are easy to use 
and more human-friendly, while static languages are more 
machine-friendly, which makes static languages the domi-
nant choice for use in computationally intensive problems 
[7], as shown in Fig. 1.

Julia possesses the advantages of both types of languages. 
Its syntax is simple, easy, and expressive, similar to that of 
high-level languages. In addition, the Julia language also 
simplifies some tedious syntax. Using a flight simulation 
program, Sells [4] compared the amount of code used by 
Julia with that of other languages, and the results showed 

that the Lines-Of-Code (LOC) of C++, Java, and Python 
were 2.5, 2, and 1.5 times greater respectively, than that of 
Julia for the same model. Moreover, because of the Just-In-
Time (JIT) compilation approach based on a Low-Level Vir-
tual Machine (LLVM) [8], Julia is slightly slower than static 
languages but much faster than other dynamic languages [9]. 
The related benchmarks are shown in Fig. 2.

In addition, to solve intensive computing problems, par-
allel computing is essential in scientific computing. Julia 
provides efficient built-in features to help developers write 
high-performance parallel code. Currently, there are three 
Central Processing Unit (CPU)-based parallel strategies in 
Julia: asynchronous routines or coroutines, multithreading 
[10, 11], and distributed computing [12]. Developers can 
reasonably choose different solutions according to their 
own requirements. Through the use of specific packages, 
such as GPUArrays.jl and CUDA.jl, kernel functions 
and parallel arrays are conveniently supported in the Julia 
language for Graphics Processing Unit (GPU)-level parallel 
computing [13, 14].

After the stable version v1.0 was released at the end of 
2018, Julia became a competitive programming language 

Fig. 2   Julia micro-benchmarks for performance test on a range of common code patterns, available from https://​julia​lang.​org/​bench​marks/

https://julialang.org/benchmarks/


1716	 L. Xiao et al.

1 3

that is productive, efficient, easy-to-use, and open-source. 
Julia has broad application prospects in the field of high-
performance scientific computing.

3 � Julia Language in Computational 
Mechanics: Current Packages 
and Applications

Generally, numerical computing methods can be divided into 
two categories: (1) mesh-based methods and (2) meshfree/
me-shless methods [15], as shown in Fig. 3. The former is 
represented by the Finite Element Method (FEM) and Finite 
Difference Method (FDM), which use meshes to discretize 
the study domain. Mesh-based methods usually obtain 
accurate descriptions of the desired physical and structural 
responses with high efficiency in continuity problems and 
small-scale deformation problems [16]. Meshfree methods 
use discrete field nodes instead of strictly-defined compu-
tational meshes to construct approximations to overcome 
the limitations of mesh-based methods in solving problems 
related to remeshing, mesh discontinuities, large deforma-
tions, and large displacements, such as the crack propagation 
and rock slope failure [17].

There are also other ways to classify the available 
approaches, such as the continuum-based methods and the 
corresponding discontinuum-based methods. However, this 
paper bases the discussion predominantly on the classifica-
tion types discussed above. Because of the development of 
computer technology, these methods have been programmed 
into a variety of software packages for numerical computing. 
This section mainly introduces the computational mechanics 
packages developed in the Julia language.

3.1 � Mesh‑Based Methods

3.1.1 � Finite Element Method

The FEM is a popular and widely developed method in 
computational mechanics. The FEM is used to construct 
approximations of Partial Differential Equations (PDEs) 
via discretization [18–20]. As one of the most successful 
numerical methods, the FEM has been used for many engi-
neering problems [21–23].

The efficiency of Julia-based FEM software packages 
is satisfactory. For example, Ramabathiran [24] compared 
Julia’s performance with that of competing languages using 
an FEM code for a simple 2D Poisson equation. The experi-
mental results showed that the Julia code could match the 
performance of two mature open-source packages: FEn-
iCS and FreeFEM++ (these packages are mainly written 
in C++). Notably, this implementation was performed with 
an earlier version of the Julia language. Frontelius et al. 
[25] developed an open-source FEM package, JuliaFEM. 
JuliaFEM makes full use of the powerful Massage Passing 
Interface (MPI) programming in Julia to achieve efficient 
parallel computing. In addition, Rapo et al. [26] showed that 
the natural frequencies of JuliaFEM are not significantly 
different from those of commercial FEM software packages, 
which indicates that the performance of JuliaFEM is sat-
isfactory. JuliaFEM supports ABAQUS-format inputs, 
showing good compatibility.

Furthermore, JuAFEM.jl is another FEM package 
based on Julia. It is simple and practical with fast updates 
and development. The developer of the popular PDE plat-
form FEniCS [27, 28] also noticed the great potential of 
Julia and developed a corresponding wrapper in Julia 

Fig. 3   Common mesh-based 
methods and meshfree methods Computational Mechanics

Mesh-Based Method Meshfree/Meshless Method
Finite Element Method (FEM)

eXtended Finite Element Method (XFEM)

Smoothed Finite Element Method (SFEM)

Finite Difference Method (FDM)

Finite Volume Method (FVM)

Boundary Element Method (BEM)
Discontinuous Deformation Analysis (DDA)

Discrete Element Method (DEM)

Peridynamics (PD)

Smoothed Particle Hydrodynamics (SPH)

Material Point Method (MPM)



1717Julia Language in Computational Mechanics: A New Competitor﻿	

1 3

called FEniCS.jl. FEniCS.jl provides open-source 
finite element development tools such as high-performance 
differential equation solvers for researchers. Moreover, 
there are also helpful packages, including FEMQuad.
jl, FEMSparse.jl, and FinEto-ols.jl, for finite 
element programming. An auxiliary package for tensor 
computation was presented in [29]. Tens-ors.jl pro-
vides automatic differentiation and computation for both 
symmetric and nonsymmetric common tensors.

As an improvement of the FEM, the eXtended Finite 
Element Method (XFEM) reflects the discontinuities of 
elements by extending the shape function to enable solu-
tions to be obtained for strongly discontinuous problems, 
such as crack expansions [30, 31]. The XFEM not only 
takes advantage of the FEM in handling various elas-
tic-plastic problems but can also handle discontinuous 
problems that cause difficulties when the FEM is used. 
The XFEM has been widely used in the field of fracture 
mechanics, such as for crack propagation in metal or rock 
[32–34]. However, there is no current mature Julia pack-
age for the XFEM.

The Smoothed Finite Element Method (S-FEM) is 
another improvement of the FEM proposed by Liu [35]. 
The S-FEM draws on the strain smoothing techniques of 
meshfree methods. The compatible strain field is modified 
by different types of smoothing domains to improve upon 
the drawbacks of the traditional FEM [36–38]. Specifically, 
(1) S-FEM models are softer than FEM models in terms of 
enabling solutions to be obtained for nearly incompressible 
material problems; (2) the S-FEM considers the discontinu-
ity of the strain field at the junctions of elements, enabling 
the attainment of more accurate solutions; and (3) the FEM 
demands a high-quality mesh. However, when large defor-
mations or failures occur, elements are seriously distorted, 
resulting in a poor Jacobian matrix. There is no mapping 
process in the S-FEM; combined with the poor condition of 
the Jacobian matrix, the S-FEM therefore exhibits no dif-
ficulties when handling large deformations [39, 40]. The 
S-FEM has been widely used in limit analysis [41, 42] and 
problems with large deformations [43–45].

Quite recently, Huo et al. developed juSFEM.jl, a par-
allel S-FEM package for elastic problems based on Julia 
[11]. More specifically, compared with ABAQUS, the most 
commonly used commercial FEM software today, the serial 
juSFEM is 10–15% faster. The speedup of the parallel ver-
sion is also satisfactory. The experimental results indicated 
the following: (1) juSFEM surpasses commercial FEM 
software in performance (due to the advantages of both the 
S-FEM and Julia language), and (2) juSFEM uses a mul-
ticore strategy for parallel computing, and the maximum 
speedup is 20.8 with a 24-core CPU. The core usage of mul-
ticore parallel computing is greater than 80%, which repre-
sents very high performance.

As the most popular computational mechanics method, 
the standard FEM is widely implemented in the Julia lan-
guage; however, there are few packages for the XFEM and 
S-FEM. Moreover, most packages are more efficient than the 
commonly used FEM software.

3.1.2 � Finite Difference Method

The FDM also incorporates the idea of discrete approxima-
tion, but it uses nodes instead of elements [46, 47]. The 
FDM is simple for solving PDEs with rapid convergence 
speed. In addition, the FDM has great flexibility in terms 
of handling complex initial or boundary conditions, which 
are quite common in real engineering situations. Therefore, 
FDM-based software is used extensively in different fields, 
such as the Fast Lagrangian Analysis of Continua (FLAC) 
in rock engineering [48].

Ranocha developed SummationByPartsOpera-
tors.jl [49]. This package is used to obtain stable dis-
cretized PDEs for finite differences. DiffEqOperators.
jl and the relative DifferentialEquations.jl are 
packages provided by SciML to solve differential equations 
using numerical methods [50]. The former constructs a 
finite difference operator and discretizes the given PDEs and 
boundary conditions; the latter is used to solve discrete ordi-
nary differential equations. The package supports various 
forms of inputs and implements GPU-based parallel comput-
ing to ensure the efficiency of solving large-scale problems. 
Another package for solving PDEs using the FDM is called 
Partial-Diffe-rential-Equations.

The implementation of the FDM in the Julia language is 
mostly aimed at some processes or steps, and currently, there 
is no mature package for real analysis.

3.1.3 � Finite Volume Method

Whereas the FDM is based on nodal relations for differen-
tial equations, the Finite Volume Method (FVM) balances 
the forces acting on control volumes by directly discretizing 
the integral forms of conservation laws. The FVM has good 
compatibility with irregular meshes and is suitable for com-
plex practical engineering problems [51]. Moreover, com-
pared with other computational mechanics methods based on 
differential equations, the integral-based FVM has a better 
conservation effect for achieving higher accuracy and has 
been applied to fluid mechanics [52, 53].

In contrast to C/C++, MATLAB, and Python, there are 
few implementations of the FVM in Julia. FiniteVol-
ume.jl is a simple FVM package in the Julia language. 
It focuses on subsurface hydrology problems and provides 
an example of a box model. VoronoiFVM.jl is more 
mature, and it uses the Voronoi-based FVM to solve cou-
pled nonlinear PDEs. This package has been very frequently 



1718	 L. Xiao et al.

1 3

updated in the past year. It is vital for a package to provide 
a large number of operational and computational demon-
strations for beginners. Wang et al. [54] implemented the 
Discontinuous Galerkin Finite Element Method (DG-FEM), 
a method based on a combination of the FEM and FVM, 
to overcome the difficulties in obtaining stable schemes for 
high-order elements using the Julia language. Experimen-
tal results proved that the Julia implementation was more 
accurate and less efficient than the same method used in 
MATLAB.

3.1.4 � Boundary Element Method

The Boundary Element Method (BEM) transforms a PDE 
boundary value problem into a corresponding boundary inte-
gral equation. The BEM reduces the dimensionality of the 
obtained solution and thus simplifies the mesh construction 
process. Compared with domain-based methods, the BEM 
discretizes only the boundary and not the interior of the 
physical domain. Most importantly, the BEM shows natural 
advantages in solving open boundary problems [55]. The 
BEM has been utilized in several fields, including acoustics 
[56, 57] and fracture mechanics [58].

Krcools developed CompScienceMeshes.jl [59]. 
The CompScienceMeshes.jl provides mesh con-
struction and parameter queries for FEM/BEM calcula-
tions. Another mature package for the BEM is BEAST.jl. 
BEAST.jl includes common basis functions and assembly 
routines and supports the space-time Galerkin method for 
solving time-domain integral equations. A research team at 
the University of Brasília developed BEM_base using dif-
ferent Lagrangian elements. The repository is still in devel-
opment and provides solutions for simple Helmholtz and 
Laplace equations. Gonzalez et al. [60] used the Julia-based 
BEM to compute acoustic scattering with swim bladder fish. 
In addition to these BEM packages, JuliaBEM-old.jl 
simply implements a direct BEM.

3.2 � Meshfree Methods

3.2.1 � Discrete Element Method

The Discrete Element Method (DEM) is a numerical method 
that considers the interactions between particles according 
to Newton’s second law, and it has been one of the most 
popular meshfree methods [61]. Compared with the FEM, 
the DEM can handle the deformation and failure of granu-
lar objects and discontinuous materials without an element 
mesh. DEMs are usually divided into two categories: (1) the 
particle flow-based DEM and (2) the block DEM. The parti-
cle flow method is suitable for fluid flow problems and rock 
mass failure mechanisms [62, 63], while the block DEM 

has been used with some success in soil mechanics and rock 
mechanics [64, 65].

Currently, there is little research work on developing 
DEM software packages in the Julia language. Xiong et al. 
[66] proposed a new micromechanical model based on the 
kinematic hypothesis programmed it with Julia. Experi-
mental results showed that the proposed model could save 
considerable computational resources compared with the 
DEM model. Compared with mesh-based algorithms such 
as the FEM, the DEM calculates a large number of particle 
velocities and displacements, which demands high computer 
memory and computational efficiency; thus, the DEM offers 
complex implementations, and the applicability for large-
scale engineering is limited. Julia is easy to use, efficient, 
and powerful for parallel computing, which is an appropriate 
development environment for DEMs.

3.2.2 � Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) represent the state 
in a continuous fluid or solid according to interacting parti-
cles [67, 68]. To observe the mechanical behavior of a given 
system, governing equations are discretized in SPH such 
that particle motions can be calculated [69]. As a meshfree 
method, SPH reduces the requirements for particle arrange-
ment and is easy to implement using numerical models. In 
addition, SPH is also a pure Lagrangian method, which is 
more suitable for discontinuous problems than the Euler-
based meshfree method [70].

SPH demands the computation of the motions of many 
particles. Therefore, efficiency is an important issue regard-
ing its implementation. Eschnett and Rjkat developed two 
packages called SPH.jl [71, 72]. Juss is an SPH frame-
work written using Julia. Juss draws on PySPH [73], a 
popular and mature SPH framework in Python. The relative 
development of the approach for system analysis code cou-
pling is still in progress.

3.2.3 � Material Point Method

As another commonly used meshfree method, the Material 
Point Method (MPM) possesses the advantages of both the 
Lagrangian and Euler methods. The MPM uses Lagrangian 
material points for description, while nodal momentum 
equations are solved with an Eulerian background grid [74, 
75]. This method alleviates the difficulty of the boundary 
conditions of SPH and avoids the mesh distortion induced 
by the FEM [76]. Similar to other meshfree methods, the 
MPM is widely applied to high-speed collision [77], mate-
rial deformation [78], and large deformation problems in 
geotechnics [79].
MPM-Julia is an MPM package written in the Julia 

language by Sinaie [80]. To test the efficiency of the 



1719Julia Language in Computational Mechanics: A New Competitor﻿	

1 3

Julia language, the same MPM code was implemented in 
MATLAB. The experimental results of three typical solid 
mechanics examples proved that the Julia code was more 
efficient than the corresponding MATLAB code in all cases, 
and the highest speedup achieved was 8.5. Notably, this 
library was written in Julia version v0.4.5, which is not a 
stable version. However, the author did not conduct mainte-
nance. Additional modification is required for this library to 
be used in a new version of the language. The MPM package 
applies the MPM to fluid and hyperelastic materials. In con-
trast to MPM-Julia, this package was developed recently 
and is supported only by Julia version 1.5 or later.

3.2.4 � Discontinuous Deformation Analysis

The Discontinuous Deformation Analysis (DDA) method 
was first proposed by Shi in 1988 [81, 82]. It combines the 
advantages of the FEM and DEM to avoid the decreased 
accuracy caused by mesh distortion and is successfully 
applied to large deformations and displacements of discon-
tinuous rock-soil masses [83–85]. Rock masses are divided 
into different blocks according to their structural planes in 
DDA. In addition, the displacement problem is solved by 
the principle of minimum potential energy. DDA is more 
flexible and simpler to use for obtaining satisfactory results 
in rock analysis than the FEM and DEM, which makes DDA 
very suitable for related research.

However, to the best of the authors’ knowledge, there 
is no current implementation of computational mechanics 
analysis using DDA in the Julia language. Further research 
work is expected.

3.2.5 � Peridynamics

Peridynamics, which aims to address complicated discontin-
uous problems, was proposed by Silling [86]. Peridynamics 
is based on integral equations instead of the derivatives of 
displacement components; therefore, the governing equa-
tions are not affected by discontinuities [87, 88]. Peridy-
namics plays significant roles in discontinuity problems, 
including fatigue analysis and crack propagation problems 
[89–91].

Compared with other numerical methods, peridynamic 
methods are relatively new. Currently, the peridynamics 
developed by Annereinarz and Peridynamics.jl devel-
oped by Johntfoster are two of the few packages available.

3.2.6 � Other Meshfree Methods

Other meshfree methods, such as the weak-form based 
meshfree methods including the Element Free Galerkin 
(EFG) method [92], the Meshfree Local Petrov Galerkin 
(MLPG) method [93, 94], and the Radial Point Interpolation 

Method (RPIM) [95, 96], solve PDEs by reducing the orders 
of derivatives; in contrast, the strong form methods apply an 
approximate strategy to partial differential operators. These 
meshfree methods are more flexible in complex model simu-
lations than mesh-based methods since predefined meshes 
are discarded. In conclusion, weak-form-based meshfree 
methods are used predominantly in applications with large 
deformations, fracture mechanisms, and hydrodynamics [15, 
17].

Currently, there is no mature Julia-based package for 
weak-form-based meshfree methods, and related works are 
mostly developed in C/C++ or MATLAB.

4 � Julia Language in Computational 
Mechanics: Capabilities and Advantages 
in Software Development

Computational mechanics involves several aspects and faces 
many problems in terms of software development. Some 
common problems (shown in Fig. 4) are described in this 
section, which shows examples to introduce how Julia, as 
a language for scientific computing, has advantages when 
used for the development of computational mechanics-based 
software packages.

4.1 � Solving Large Linear Systems

Solving systems of linear equations is critical in most 
numerical methods and is usually the most time-consuming 
sub-procedure [11, 97, 98]. Therefore, efficient solutions 
for large-scale linear equations are important. The Julia lan-
guage provides a variety of ways to solve equations. 

1.	 Julia integrates a series of simple and practical linear 
algebra operations in the LinearAlgebra module, 
including many matrix factorizations. With the appropri-
ate factorizations, a linear solution can be calculated by 
using the “ ∖ ” operation, which is fast and simple. More 
details can be found in the linear algebra section of the 
Julia language documentation [99].

2.	 When a certain computational efficiency requirement is 
imposed, Julia can call the PARDISO Library derived 
from the Intel math kernel library (MKL) 
[100] using the Pardiso.jl package [101]. Based 
on CPU parallelism, PARDISO provides users with a 
high-performance solver with low memory usage.

3.	 If the CPU-based parallel solver is still unsatisfactory, 
CUDA.jl of NVIDIA can be an optimal choice [13, 
14]. The package contains the efficient linear equation 
solvers cuSparse and cuSolver, which solve large-
scale equations using the power of high-performance 
GPU-based massive parallelism.



1720	 L. Xiao et al.

1 3

4.	 DifferentialEquations.jl [102] is suitable for 
general PDEs, and DiffEqGPU.jl provides a parallel 
solution for PDEs with a single GPU or multiple GPUs.

4.2 � Addressing Memory Bottlenecks

Large-scale matrix operations lead to insufficient memory 
in computational mechanics programs [97, 103]. Thus, a 
sparse matrix is required to reduce the corresponding mem-
ory usage [15]. Julia, which is simple but powerful, is very 
similar to MATLAB in terms of matrix operations. Develop-
ers can choose the COOrdinate (COO), Compressed Sparse 
Column (CSC), and Compressed Sparse Row (CSR) formats 
to store large matrices. MKLSparse.jl [104] provides 
powerful and efficient sparse matrix operations. cuSparse 
[105] provides a GPU-based sparse matrix function. Matri-
ces are stored in Julia as columns first, which is different 
from those in C/C++ and Python. Therefore, choosing the 

CSC format instead of the CSR format is more conducive to 
memory access and improves performance. In addition, Julia 
has garbage collectors similar to those in Python and Java 
that reduce the extra workload required by the developer.

4.3 � Optimizing Loops

Loops are usually the most time-consuming procedures 
of computer program development due to the lack of type 
information [3, 106]. Julia incorporates a special loop opti-
mization process using transparent data and performance 
models. Sinaie compared the performance of “for loops” 
and “vectorization” in large arrays and matrices [80]. The 
experimental results showed that the “j-i loops” are twice as 
fast as “vectorization”, while the “i-j” form without aligned 
memory access reduced the performance, which was only 
1/6 of that achieved with aligned memory access in the worst 
case. Therefore, the appropriate use of “for loops” instead 

Fig. 4   Common problems in computational mechanics software development



1721Julia Language in Computational Mechanics: A New Competitor﻿	

1 3

of “vectorization” significantly improves efficiency. Parallel 
computing can also be used to optimize loops when there 
is no data dependency. GPUifyLoops.jl can be used 
to write loop code in heterogeneous computing to improve 
performance. Currently, it is integrated into KernelAb-
straction-s.jl [107], a package for GPU kernel 
writing.

4.4 � Use of Parallel Computing

Parallel computing is very important when developing com-
putational mechanics packages [108]. There are powerful 
and mature parallel CPU capabilities in Julia that provide 
asynchronous routines or coroutines, multithreading, and 
distributed computing. Multithreading allows tasks to run 
simultaneously on a CPU using shared memory. Julia pro-
vides two different parallel primitives, the @threads and 
@splash, to implement static and dynamic scheduling 
mechanisms, which are similar to the “static” and “dynamic” 
mechanisms of C++ OpenMP, respectively. Because of its 
powerful compiler, Julia can yield a high speedup that is 
usually 50–80% as fast as the theoretical maximum. In par-
allel GPU programming, Julia supports mainstream GPU 
platforms, including NVIDIA, Intel, and AMD, as shown 
in Table 1. Among these platforms, NVIDIA’s CUDA is the 
most mature, and developers generally choose it. CUDA.jl 
integrates a common toolkit for GPU programming accord-
ing to different needs, such as CuArray for users with no 
experience and the CUDA kernel for special requirements.

4.5 � Profiling

The Julia profile module applies the sampling and backtrack-
ing mechanisms to measure the relative running time of a 
particular line of code. The sampling mechanism enables the 
program to perform analysis with little performance loss. In 
addition, the memory allocation of each line of code can also 
be queried by the built-in @time and @allocated primi-
tives to reduce unnecessary expenses. Through profiling, it 
is easier for developers to find the bottleneck of a program, 
which is very important in efficiency-driven computational 
mechanics.

4.6 � Visualization

Visualizations, such as stress-strain cloud maps, are nec-
essary for further analysis after preliminary computing is 
conducted using various computational mechanics methods 
[109]. Julia provides manifold packages for plotting, includ-
ing PyPlot, GR, PlotlyJS, and others. ParaView is an 
open-source visualization software. Taking the commonly 
used vtu format as an example, ParaView requires only 
the displacement, stress, strain, and model mesh exported 
from the VTK package for visualization.

4.7 � Package

Julia provides the Pkg module, a built-in package manager. 
As with Python pips, developers can enjoy complete instal-
lations, updates, and deletions by simply adding a package 
name. The package manager can prevent various errors in 
early configuration phase. Compared with other languages, 
Julia is still in the early stage of development. Thus, the 
quantity of available packages is insufficient. In addition, 
many high-quality, mature numerical computing libraries 
are written in static languages such as C and Fortran. The 
aforementioned facts result in a higher demand for power-
ful interfaces. Fortunately, Julia developers are well aware 
of this, and several interface packages have been developed 
to achieve a certain balance due to the lack of third-party 
libraries. Currently, Julia can directly invoke existing librar-
ies from popular languages without many glue codes, which 
is very beneficial for software package development in the 
field of computational mechanics.

4.8 � Graphical User Interface

Graphical User Interfaces (GUIs), which are directly related 
to user experience and determine popularization, have 
always been an important aspect of software development 
[110]. QML.jl and Gtk.jl are two main GUI packages 
in Julia. The former allows for calling Qt in Julia using an 
interface. Qt was developed in C++, which has good cross-
platform support for users to design beautiful UIs, and it 
is one of the most popular GUI development frameworks. 
Gtk.jl, which has strong portability and rich content, pro-
vides an interface to the GTK library. GTK has a mature 

Table 1   Different packages 
for GPU computing in Julia 
language

Platform

NVIDIA AMD Intel Other

Integrated Package CUDA.jl AMDGPU.jl oneAPI.jl OpenCL.jl ArrayFire.jl
Abstraction Level Array CuArray ROCArrays.jl oneArray N/A N/A

Kernel CUDA Kernel AMDGPUnative.jl oneapi N/A N/A



1722	 L. Xiao et al.

1 3

community that ensures certain updates and is also a com-
monly used GUI library.

5 � Julia Language in Computational 
Mechanics: Open Issues and Challenges

In contrast to previous programming languages, Julia bal-
ances efficiency and simplicity. Increasingly many devel-
opers are choosing Julia, and more projects are based on 
Julia. Certainly, Julia is not stagnant: it has been updated 
every four months on average since the release of the stable 
version.

In addition, with continuous developments in the Julia 
language, there are still some open issues to be resolved. 
Moreover, the future development of computational mechan-
ics also presents new challenges and opportunities for the 
Julia language. The aforementioned issues and challenges 
are discussed in the following sections.

5.1 � Open Issues for the Julia Language

5.1.1 � Immature Development of the Programming 
Environment

Although it has been nine years since Julia was officially 
released, this is a small developmental period for a pro-
gramming language. In contrast, Python was first developed 
in 1989 and is currently in version 3.9.1; MATLAB was 
developed in 1984 and has maintained its biannual update 
frequency in recent years; Java was developed in 1995, and 
JDK16 was recently released; and C/C++ and Fortran were 
developed even earlier. Julia is in its infancy; its grammar is 
still being updated and optimized, and some old functions 
are removed or rendered invalid in a new version, which 
also causes difficulties when performing updates. In addi-
tion, Julia lacks a specialized integrated development envi-
ronment (IDE) [111]. Third-party platform editors and IDEs 
are not appropriate choices for users wanting a convenient 
programming experience.

5.1.2 � Lack of Third‑Party Packages

The number of available packages largely reflects the popu-
larity of a programming language. The higher the quality 
and the wider the scope of a language’s libraries, the more 
a language can attract developers to use it. This is simi-
lar to the sustainable development of a programming lan-
guage. As the most commonly used language (according to 
the PopularitY of Programming Languages [112]), Python 
has 279634 projects on the Python Package Index (PyPI) 
(as of December 30, 2020) and 3341337 related projects on 
GitHub, while Julia has only 15643 projects on GitHub. As 

shown by this huge gap, Julia developers still need time to 
improve its ecosystem. Due to the strong compatibility of 
Julia, packages such as PyCall.jl and Cxx.jl provide 
efficient and convenient interfaces with other languages. 
Notably, certain efficiency losses may be caused by inter-
facing. The Julia language still has a long way to go to catch 
up with other mature languages.

5.1.3 � Requirements for an Intelligence Compiler

Julia is specifically developed for high-performance scien-
tific computing. Compared with those of other languages, 
a Julia developer is more likely to be a scientific researcher 
than a professional computer software programmer [13]. 
For these researchers, it is not a reasonable choice to spend 
much time away from scientific research to learn how to 
write efficient code; thus, a smart and convenient compiler 
is required. In addition, high-performance compilers are also 
conducive to the real-time compilation and rewriting of pro-
ductivity language code with high efficiency [113]. More 
intelligent and efficient compilers will attract more research-
ers and promote the development of the Julia ecosystem.

5.2 � Challenges for the Julia Language

The Julia language provides concise syntax with expressive 
features, enabling the required codes to be much smaller 
than those written in C/C++ for the same implementation. 
In addition, some numerical computing packages in Julia are 
similar to commercial software in terms of efficiency. With 
increasingly many computational mechanics implementa-
tions emerging, Julia shows exciting potential in this field. 
However, challenges remain.

5.2.1 � Challenges Regarding Imbalanced Implementation

Although the mesh-based method is mature, the require-
ment of high-quality meshes for complex models and its 
poor performance on large deformations and extremely dis-
continuous problems limit its applications in engineering. 
The meshfree method appears to overcome these drawbacks. 
Nevertheless, few meshfree packages use the Julia language, 
and the existing packages are mostly in the early stages of 
development. In general, the meshfree method requires large 
amounts of computations and a complicated program design 
[15, 114], and using Julia for meshfree software package 
development is a relative challenge for researchers.

5.2.2 � Challenge Regarding Parallel Computing

Currently, computational models tend to be large and com-
plicated, especially for real engineering, which presents a 
challenge to mechanics researchers. To reduce the required 



1723Julia Language in Computational Mechanics: A New Competitor﻿	

1 3

computation time, some trade-offs must be made with 
respect to the quality of the models and the accuracy of the 
results. Parallel computing can alleviate the aforementioned 
problems to a certain extent [108, 115]. Julia provides pow-
erful and multifold parallel computing routines. However, 
only a few studies use these strategies.

5.2.3 � Challenge Regarding Legacy Code

Due to the earlier development of computational mechan-
ics, legacy code, which is usually too old to be maintained 
or ported, still widely exists. Therefore, it takes consider-
able effort for researchers to switch programming languages, 
which is the main obstacle for the development of the Julia 
language in computational mechanics. An ideal opportunity 
awaits in terms of the use of new technology, for which tradi-
tional language is rarely involved; thus, the impact of legacy 
code will be minimized, and the unique advantages of Julia 
can be maximized.

5.2.4 � Challenge Regarding Deep Learning

In recent years, with the development of deep learning, 
especially the Graph Neural Networks (GNNs), some com-
plex physical processes have been simulated [116, 117]. For 
example, Pestourie et al. [118] proposed an active learning 
algorithm for composite materials. Deep learning methods 
provide at least a two orders of magnitude speedup over the 
numerical PDE approach. Ye et al. [119] used a convolu-
tional neural network for flow analysis, and their experiment 
showed that the proposed method could achieve results with 
similar precision to that of the results of computational fluid 
dynamics. More complex mechanical processes might be 
realized by deep learning in the future [120]. If the mechani-
cal mechanism of a small model obtained by deep learning 
can be extended to the simulation of a larger model, even 
until practical engineering can be achieved, a more efficient 
and explanatory computational mechanics analysis pro-
cess will be established. It will be important to be an early 
bird when developing deep learning-based computational 
mechanics.

6 � Conclusion

In this paper, we have presented a comprehensive survey on 
the development of the Julia programming language in com-
putational mechanics. There are multiple contributions made 
in this article. (1) Existing Julia packages, in which various 
popular computational mechanics methods have been imple-
mented for related applications, have been investigated. (2) 
Feasible solutions to common problems that have been gen-
erated while developing computational mechanics programs 

in the Julia language have been presented. (3) Several open 
issues and potential opportunities for both the Julia language 
and its applications in computational mechanics have been 
discussed.

This survey shows that the Julia language is very com-
petitive for use in scientific computing. The JIT compilation 
based on LLVM and the special type system allow Julia to 
handle computationally intensive problems similar to tradi-
tional static languages. Moreover, standard Julia packages 
can surpass some commercial software in terms of effi-
ciency, which is an extraordinary advantage for computa-
tional mechanics programming. In addition, Julia is succinct 
and easy to use, similar to other modern high-level dynamic 
languages. The Julia language certainly balances the trade-
off between productivity and efficiency. However, the appli-
cations of Julia to computational mechanics are insufficient 
in depth, and most existing works have implemented only a 
few algorithms. In addition, FEM packages constitute a large 
portion of these outputs, and there are few meshfree pack-
ages. Moreover, in parallel computing, the CPU-based Julia 
implementation is more dominant. The Julia language is in 
the early stage, and both the language itself and the com-
munity are developing continuously, while computational 
mechanics tends to be mature field with respect to theories 
and applications, even after decades. In this combination of 
a new language and a mature subject, frontier technologies 
such as deep learning-based simulation may be the most 
potent aspects.

In summary, for researchers who are new to compu-
tational mechanics or exploring new directions, the Julia 
language is highly recommended. Researchers who have 
engaged in related research for years will have difficulty 
rewriting or porting all the legacy code; therefore, they will 
not readily change their programming language. However, 
applying Julia for some simple implementations can give 
these researchers possible solutions to overcoming future 
obstacles.

Acknowledgements  This research was jointly supported by the Natu-
ral Science Foundation of China (Grant No. 11602235), the Funda-
mental Research Funds for China Central Universities (2652018091), 
and Major Program of Science and Technology of Xinjiang Production 
and Construction Corps (2020AA002). The authors would like to thank 
the editor and the reviewers for their comments.

References

	 1.	 Liu GR (2016) An overview on meshfree methods: for compu-
tational solid mechanics. Int J Comput Methods 13(5):1630001

	 2.	 Lubin M, Dunning I (2015) Computing in operations research 
using Julia. INFORMS J Comput 27(2):238–248

	 3.	 Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a 
fresh approach to numerical computing. SIAM Rev 59(1):65–98



1724	 L. Xiao et al.

1 3

	 4.	 Sells R (2020) Julia programming language benchmark using a 
flight simulation. In: 2020 IEEE aerospace conference, IEEE, 
pp 1–8

	 5.	 Dogaru I, Dogaru R (2015) Using python and Julia for efficient 
implementation of natural computing and complexity related 
algorithms, pp 599–604

	 6.	 Bezanson J, Karpinski S, Shah VB (2012) A fast dynamic lan-
guage for technical computing, Julia

	 7.	 Perkel JM (2019) Julia: come for the syntax, stay for the speed. 
Nature 572(7767):141–142

	 8.	 Lattner C, Adve V (2004) LLVM: a compilation framework for 
lifelong program analysis and transformation, pp 75–86

	 9.	 Moura RAR, Schroeder MAO, Silva SJS, Nepomuceno EG, 
Vieira PHN, Lima ACS (2019) The usage of Julia program-
ming in grounding grids simulations: an alternative to MAT-
LAB and Python

	 10.	 Barros DA, Bentes C (2020) Analyzing the loop scheduling 
mechanisms on Julia multithreading, pp 257–264

	 11.	 Huo Z, Mei G, Xu N (2021) juSFEM: a Julia-based open-
source package of parallel smoothed finite element method 
(S-FEM) for elastic problems. Comput Math Appl 81:459–477

	 12.	 Kratochvíl M, Hunewald O, Heirendt L, Verissimo V, 
Vondrášek J, Satagopam VP, Schneider R, Trefois C, Ollert M 
(2020) GigaSOM.jl: high-performance clustering and visuali-
zation of huge cytometry datasets. GigaScience 9(11):1–8

	 13.	 Besard T, Churavy V, Edelman A, Sutter BD (2019) Rapid soft-
ware prototyping for heterogeneous and distributed platforms. 
Adv Eng Softw 132:29–46

	 14.	 Besard T, Foket C, De Sutter B (2019) Effective extensible 
programming: unleashing Julia on GPUs. IEEE Trans Parallel 
Distrib Syst 30(4):827–841

	 15.	 Xu N, Mei G, Qin J, Li Y, Xu L (2021) GeoMFree3D: a pack-
age of meshfree local radial point interpolation method (RPIM) 
for geomechanics. Comput Math Appl 81:113–132

	 16.	 Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element 
mesh generator with built-in pre- and post-processing facilities. 
Int J Numer Methods Eng 79(11):1309–1331

	 17.	 Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: pro-
gress made after 20 years. J Eng Mech 143(4):04017001

	 18.	 Munjiza A (2004) The combined finite-discrete element 
method, vol 12

	 19.	 Liu GR, Quek SS (2013) The finite element method: a practical 
course, 2nd edn

	 20.	 Hughes TMD, Thomasj R (2000) The finite element method: 
linear static and dynamic finite element analysis

	 21.	 Klaus-Jürgen B (2006) Finite element procedures. Klaus-Jur-
gen Bathe, Berlin

	 22.	 Belytschko T, Liu WK, Moran B, Elkhodary K (2000) Non-
linear finite elements for continua and structures. Wiley, New 
York

	 23.	 Li ZC, Cui XY, Cai Y (2018) Analysis of heat transfer problems 
using a novel low-order FEM based on gradient weighted opera-
tion. Int J Therm Sci 132:52–64

	 24.	 (2013) Ramabathiran AA (2013) Finite Element programming in 
Julia. https://​www.​codep​roject.​com/​artic​les/​579983/​finite-​eleme​
nt-​progr​amming-​in-​julia

	 25.	 Frondelius T, Aho J (2017) JuliaFEM-open source solver for both 
industrial and academia usage. Rakenteiden Mekaniikka 50:229

	 26.	 Rapo M, Aho J, Frondelius T (2017) Natural frequency calcula-
tions with JuliaFEM. Rakenteiden Mekaniikka 50:300

	 27.	 Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, 
Richardson C, Ring J, Rognes M, Wells G (2015) The FEniCS 
project version 1.5. 3

	 28.	 Anders L, Garth W, Kent-Andre M (2011) Automated solution 
of differential equations by the finite element method. FEniCS 
Book 84:04

	 29.	 Carlsson K, Ekre F (2019) Tensors.jl- tensor computations in 
Julia. J Open Res Softw 7(1)

	 30.	 Belytschko T, Black T (1999) Elastic crack growth in finite 
elements with minimal remeshing. Int J Numer Meth Eng 
45(5):601–620

	 31.	 Nicolas M, Ted B (2002) Extended finite element method 
for cohesive crack growth. Comput Methods Appl Mech Eng 
69:01

	 32.	 Obara Y, Nakamura K, Yoshioka S, Sainoki A, Kasai A (2020) 
Crack front geometry and stress intensity factor of semi-circu-
lar bend specimens with straight through and chevron notches. 
Rock Mech Rock Eng 53(2):723–738

	 33.	 Xiaoping Z, Junwei C (2019) Extended finite element simula-
tion of step-path brittle failure in rock slopes with non-persis-
tent en-echelon joints. Eng Geol 250:02

	 34.	 Qinglei Z, Zhanli L, Tao W, Yue G, Zhuo Z (2018) Fully cou-
pled simulation of multiple hydraulic fractures to propagate 
simultaneously from a perforated horizontal wellbore. Comput 
Mech 61:02

	 35.	 Liu GR, Dai KY (2007) A smoothed finite element method for 
mechanics problems. Comput Mech 39:859–877

	 36.	 Liu GR (2019) The smoothed finite element method (S-FEM): 
a framework for the design of numerical models for desired 
solutions. Front Struct Civ Eng 13:01

	 37.	 Zeng W, Liu GR (2018) Smoothed finite element methods 
(S-FEM): an overview and recent developments. Arch Comput 
Methods Eng 25:397–435

	 38.	 Gang W, Xiang-Yang C, Hui F, Li GY (2015) A stable node-
based smoothed finite element method for acoustic problems. 
Comput Methods Appl Mech Eng 297:09

	 39.	 Liu GR (2010) Element smoothed finite methods
	 40.	 Cui XY, Chang S (2015) Edge-based smoothed finite element 

method using two-step Taylor Galerkin algorithm for lagran-
gian dynamic problems. Int J Comput Methods 12:1550028

	 41.	 Thien V-M (2020) A stable node-based smoothed finite ele-
ment method for stability analysis of two circular tunnels at 
different depths in cohesive-frictional soils. Comput Geotech 
129:11

	 42.	 Nguyen-Xuan H, Rabczuk T (2015) Adaptive selective ES-FEM 
limit analysis of cracked plane-strain structures. Front Struct Civ 
Eng 9:478–490

	 43.	 Tian F, Tang X, Xu T, Li L (2020) An adaptive edge-based 
smoothed finite element method (ES-FEM) for phase-field mod-
eling of fractures at large deformations. Comput Methods Appl 
Mech Eng 372

	 44.	 FanP HuangW, Zhang ZQ, Guo T, Ma YE (2020) Phase field 
simulation for fracture behavior of hyperelastic material at 
large deformation based on edge-based smoothed finite element 
method. Eng Fracture Mech 238:107233

	 45.	 Jiang C, Han GR, Xu L, Zhi-Qian Z, Wei Z (2015) A smoothed 
finite element method for analysis of anisotropic large deforma-
tion of passive rabbit ventricles in diastole. Int J Numer Methods 
Biomed Eng 31:n/a-:01

	 46.	 Mohammadnejad M, LiuH, Chan A, Dehkhoda S, Fukuda D 
(2018) An overview on advances in computational fracture 
mechanics of rock. Geosyst Eng 1–24

	 47.	 Elmo D (2006) Evaluation of a hybrid FEM/DEM approach 
for determination of rock mass strength using a combination of 
discontinuity mapping and fracture mechanics modelling, with 
particular emphasis on modelling of jointed pillars, vol 01, Uni-
versity of Exeter, UK

	 48.	 Hossein H (2001) Rock characterisation facility (rcf) shaft sink-
ing-numerical computations using flac. Int J Rock Mech Min Sci 
38:59–65

	 49.	 Ranocha P. SummationByPartsOperators.jl. https://​github.​com/​
ranoc​ha/​Summa​tionB​yPart​sOper​ators.​jl

https://www.codeproject.com/articles/579983/finite-element-programming-in-julia
https://www.codeproject.com/articles/579983/finite-element-programming-in-julia
https://github.com/ranocha/SummationByPartsOperators.jl
https://github.com/ranocha/SummationByPartsOperators.jl


1725Julia Language in Computational Mechanics: A New Competitor﻿	

1 3

	 50.	 Rackauckas C, Nie Q (2017) Differential equations.jl: a perfor-
mant and feature-rich ecosystem for solving differential equations 
in Julia. J Open Res Softw 5:05

	 51.	 Cardiff P, Demirdžić I (2021) Thirty years of the finite volume 
method for solid mechanics. Arch Comput Methods Eng

	 52.	 Hashemi-Tilehnoee M, Dogonchi AS, Seyyedi SM, Sharifpur M 
(2020) Magneto-fluid dynamic and second law analysis in a hot 
porous cavity filled by nanofluid and nano-encapsulated phase 
change material suspension with different layout of cooling chan-
nels. J Energy Storage 31:101720

	 53.	 Matsunaga T, Yuhashi N, Shibata K, Koshizuka S (2020) A wall 
boundary treatment using analytical volume integrations in a par-
ticle method. Int J Numer Meth Eng 121:05

	 54.	 Wang Y, Liu M, Li H, Liang S, Cao Q (2015) Implementation of 
DG-fem with dynamic Julia language for accurate EM simula-
tion, pp 1850–1851

	 55.	 Liu Y, Mukherjee S, Nishimura N, Schanz M, Ye W, Sutradhar 
A, Pan E, Dumont N, Sáez A (2011) Recent advances and emerg-
ing applications of the boundary element method. Appl Mech 
Rev 64:1001

	 56.	 Citarella R, Federico L, Cicatiello A (2007) Modal acoustic 
transfer vector approach in a FEM-BEM vibro-acoustic analysis. 
Eng Anal Bound Elem 31:248–258

	 57.	 Li H, Zixiao M, Ke Y, Tian Y, Luo W (2019) A fast optimization 
algorithm of FEM/BEM simulation for periodic surface acoustic 
wave structures. Information 10:90

	 58.	 García-Sánchez F, Zhang C (2007) A comparative study of three 
BEM for transient dynamic crack analysis of 2-D anisotropic 
solids. Comput Mech 40:753–769

	 59.	 Krcools. CompScienceMeshes.jl. https://​github.​com/​krcoo​ls/​
CompS​cienc​eMesh​es.​jl

	 60.	 Gonzalez J, Lavia E, Blanc S, Maas M, Madirolas A (2020) 
Boundary element method to analyze acoustic scattering from 
a coupled swimbladder-fish body configuration. J Sound Vib 
486:115609

	 61.	 Weerasekara N, Powell M, Cleary P, Tavares L, Evertsson M, 
Morrison R, Quist J, Carvalho R (2013) The contribution of 
DEM to the science of comminution. Powder Technol 248:3–24

	 62.	 Zhao L, Zhang S, Huang D, Wang X, Zhang Y (2020) 3D shape 
quantification and random packing simulation of rock aggregates 
using photogrammetry-based reconstruction and discrete element 
method. Construct Build Mater 262:119986

	 63.	 Bahaaddini M, Sharrock G, Hebblewhite B (2013) Numerical 
investigation of the effect of joint geometrical parameters on 
the mechanical properties of a non-persistent jointed rock mass 
under uniaxial compression. Comput Geotech 49:206–225

	 64.	 Hanbin W, Bin Z, Gang M, Nengxiong X (2019) A statistics-
based discrete element modeling method coupled with the 
strength reduction method for the stability analysis of jointed 
rock slopes. Eng Geol 264:08

	 65.	 Xifei D, Jianbo Z, Shougen C, Jian Z (2012) Some fundamental 
issues and verification of 3DEC in modeling wave propagation 
in jointed rock masses. Rock Mech Rock Eng 45:09

	 66.	 Xiong H, Yin ZY, Nicot F (2020) Programming a micro-
mechanical model of granular materials in Julia. Adv Eng Softw 
145:102816

	 67.	 Liu M, Liu GR (2010) Smoothed particle hydrodynamics (SPH): 
an overview and recent developments. Arch Comput Methods 
Eng 17:25–76

	 68.	 Monaghan J (1992) Smoothed particle hydrodynamics. Annu 
Rev Astron Astrophys 30:543–574

	 69.	 Angelos M, Nikolaos K, Emmanouil-Lazaros P (2019) Meshless 
methods for the simulation of machining and micro-machining: 
a review. Arch Comput Methods Eng 27:03

	 70.	 Xinyan P, Pengcheng Yu, Guangqi C, Mingyao X, Yingbin Z 
(2020) Development of a coupled DDA-SPH method and its 

application to dynamic simulation of landslides involving solid-
fluid interaction. Rock Mech Rock Eng 53:01

	 71.	 eschnett. SPH.jl. https://​github.​com/​eschn​ett/​SPH.​jl
	 72.	 archermarx. SPH.jl. https://​github.​com/​rjkat/​SPH.​jl
	 73.	 Ramachandran P, Bhosale A, Puri K et al (2020) A python-based 

framework for smoothed particle hydrodynamics
	 74.	 Zhang X, Chen Z, Liu Y (2017) The material point method, pp 

37–101
	 75.	 Rodríguez PJ, Josep C, Jonsén P (2018) Numerical methods for 

the modelling of chip formation. Arch Comput Methods Eng 
27:12

	 76.	 Shyamini K, Kenichi S (2016) Implicit formulation of material 
point method for analysis of incompressible materials. Comput 
Methods Appl Mech Eng 313:10

	 77.	 Ravindra A, Xiaofei P, Huang Y, Xiong Z (2012) Application of 
material point methods for cutting process simulations. Comput 
Mater Sci 57:05

	 78.	 Duan Z, Tilak D (2017) Shock waves simulated using the dual 
domain material point method combined with molecular dynam-
ics. J Comput Phys 334:01

	 79.	 Sołowski W, Sloan S (2015) Evaluation of material point method 
for use in geotechnics. Int J Numer Anal Methods Geomech 
39:685–701

	 80.	 Sinaie S, Nguyen VP, Nguyen CT, Bordas S (2017) Programming 
the material point method in Julia. Adv Eng Softw 105:01

	 81.	 Shi GH (1992) Discontinuous deformation analysis: a new 
numerical model for the statics and dynamics of deformable 
block structures. Eng Comput 9:157–168

	 82.	 Shi GH, Goodman R (1985) Two dimensional discontinuous 
deformation analysis. Int J Numer Anal Methods Geomech 
9:541–556

	 83.	 Tsesarsky M, Hatzor Y, Sitar N (2005) Dynamic displacement of 
a block on an inclined plane: analytical, experimental and DDA 
results. Rock Mech Rock Eng 38:153–167

	 84.	 Guangqi Chen L, Zhang ZY, Jian W (2013) Numerical simulation 
in rockfall analysis: a close comparison of 2-D and 3-D DDA. 
Rock Mech Rock Eng 46:05

	 85.	 David D, Nicholas S (2004) Time integration in discontinuous 
deformation analysis. J Eng Mech-Asce 130:03

	 86.	 Silling SA (2000) Reformulation of elasticity theory for discon-
tinuities and long-range forces. J Mech Phys Solids 48:175–209

	 87.	 Yehui B, Xiang-Yang C, Li ZC (2017) A coupling approach of 
state-based peridynamics with node-based smoothed finite ele-
ment method. Comput Methods Appl Mech Eng 331:12

	 88.	 Yehui B, She L, Xin H, Xiang-Yang C (2019) An implicit dual-
based approach to couple peridynamics with classical continuum 
mechanics. Int J Numer Methods Eng 120:07

	 89.	 Zhou X, Shou Y (2016) Numerical simulation of failure of rock-
like material subjected to compressive loads using improved 
peridynamic method. Int J Geomech 17:04016086

	 90.	 Zhou W, Dahsin L, Ning L (2017) Analyzing dynamic fracture 
process in fiber-reinforced composite materials with a peridy-
namic model. Eng Fract Mech 178:04

	 91.	 Hu YL, Erdogan M (2016) Peridynamics for fatigue life and 
residual strength prediction of composite laminates. Compos 
Struct 160:10

	 92.	 Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin meth-
ods. Int J Numer Methods Eng 37:229–256

	 93.	 Atluri S, Zhu T (1998) A new meshless local Petrov–Galerkin 
(MLPG) approach. Comput Mech 22:117–127

	 94.	 Atluri S, Zhu T (2000) The meshless local Petrov-Galerkin 
(MLPG) approach for solving problems in elasto-statics. Comput 
Mech 25:169–179

	 95.	 Liu GR, Gu YT (2001) A local radial point interpolation method 
(LRPIM) for free vibration analyses of 2-D solids. J Sound Vib 
246:29–46

https://github.com/krcools/CompScienceMeshes.jl
https://github.com/krcools/CompScienceMeshes.jl
https://github.com/eschnett/SPH.jl
https://github.com/rjkat/SPH.jl


1726	 L. Xiao et al.

1 3

	 96.	 Cui XY, Feng H, Li GY, Feng SZ (2015) A cell-based smoothed 
radial point interpolation method (CS-RPIM) for three-dimen-
sional solids. Eng Anal Bound Elem 50:474–485

	 97.	 Harari I, Grosh K, Hughes TJR, Malhotra M, Pinsky PM, Stewart 
JR, Thompson LL (1996) Recent developments in finite element 
methods for structural acoustics. Arch Comput Methods Eng 
3(2–3):131–309

	 98.	 Tchonkova M, Sture S (2001) Classical and recent formulations 
for linear elasticity. Arch Comput Methods Eng 8:41–74

	 99.	 Julia Documentation. https://​docs.​julia​lang.​org/​en/​v1/​stdlib/​
Linea​rAlge​bra/

	100.	 Intel Math kernel library. https://​softw​are.​intel.​com/​en-​us/​mkl
	101.	 JuliaSparse. Pardiso.jl. https://github.com/JuliaSparse/Pardiso.jl
	102.	 SciML. DifferentialEquations.jl. https://​github.​com/​SciML/​Diffe​

renti​alEqu​ations.​jl
	103.	 Serban G, Peter C, Hiroshi O (2013) GPU acceleration for FEM-

based structural analysis. Arch Comput Methods Eng 20:05
	104.	 JuliaSparse. MKLSparse.jl. https://​github.​com/​Julia​Sparse/​

MKLSp​arse.​jl
	105.	 JuliaAttic. CuSparse.jl. https://​github.​com/​Julia​Attic/​CUSPA​

RSE.​jl
	106.	 Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimiz-

ing FPGA-based accelerator design for deep convolutional neural 
networks, pp 161–170

	107.	 JuliaGPU. KernelAbstractions.jl. https://​github.​com/​Julia​GPU/​
Kerne​lAbst​racti​ons.​jl

	108.	 Cai Y, Cui XY, Li G, Liu W (2017) A parallel finite element 
procedure for contact-impact problems using edge-based smooth 
triangular element and GPU. Comput Phys Commun 225:12

	109.	 Trescher D (2008) Development of an efficient 3-D CFD software 
to simulate and visualize the scavenging of a two-stroke engine. 
Arch Comput Methods Eng 15:03

	110.	 Urick B, Sanders T, Hossain S, Zhang Y, Hughes T (2017) 
Review of patient-specific vascular modeling: template-based 
isogeometric framework and the case for CAD. Archiv Comput 
Methods Eng 26:1–24

	111.	 Gao K, Mei G, Piccialli F, Cuomo S, Tu J, Huo Z (2020) Julia 
language in machine learning: algorithms, applications, and open 
issues. Comput Sci Rev 37:100254–100259

	112.	 PYPL. PopularitY of programming language. https://​pypl.​github.​
io/​PYPL.​html

	113.	 Tinnerholm J, Sjölund M, Pop A (2019) Towards introducing 
just-in-time compilation in a Modelica compiler, pp 11–19

	114.	 Yao J (2020) SDOT: an explicit mesh-free detonation tracking 
package in 2D and 3D, vol 2272, p 070056

	115.	 Ullah Z, Coombs W, Augarde C (2016) Parallel computations 
in nonlinear solid mechanics using adaptive finite element and 
meshless methods. Eng Comput 33:1161–1191

	116.	 Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, 
Battaglia PW (2020) Learning to simulate complex physics with 
graph networks

	117.	 Alexiadis A, Simmons M, Stamatopoulos K, Batchelor H, Mou-
litsas I (2020) The duality between particle methods and artificial 
neural networks. Sci Rep 10:10

	118.	 Pestourie R, Mroueh Y, Nguyen TV, Das P, Johnson SG (2020) 
Active learning of deep surrogates for PDES: application to 
metasurface design. NPJ Comput Mater 6(1):1–7

	119.	 Ye S, Zhang Z, Song X, Wang Y, Chen Y, Huang C (2020) A 
flow feature detection method for modeling pressure distribution 
around a cylinder in non-uniform flows by using a convolutional 
neural network. Sci Rep 10:03

	120.	 Liu GR (2019) Two-way deepnets for real-time computations 
for both forward and inverse mechanics problems. Int J Comput 
Methods 16:05

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/
https://software.intel.com/en-us/mkl
https://github.com/SciML/DifferentialEquations.jl
https://github.com/SciML/DifferentialEquations.jl
https://github.com/JuliaSparse/MKLSparse.jl
https://github.com/JuliaSparse/MKLSparse.jl
https://github.com/JuliaAttic/CUSPARSE.jl
https://github.com/JuliaAttic/CUSPARSE.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html

	Julia Language in Computational Mechanics: A New Competitor
	Abstract
	1 Introduction
	2 Background: Brief Introduction to the Julia Language
	3 Julia Language in Computational Mechanics: Current Packages and Applications
	3.1 Mesh-Based Methods
	3.1.1 Finite Element Method
	3.1.2 Finite Difference Method
	3.1.3 Finite Volume Method
	3.1.4 Boundary Element Method

	3.2 Meshfree Methods
	3.2.1 Discrete Element Method
	3.2.2 Smoothed Particle Hydrodynamics
	3.2.3 Material Point Method
	3.2.4 Discontinuous Deformation Analysis
	3.2.5 Peridynamics
	3.2.6 Other Meshfree Methods


	4 Julia Language in Computational Mechanics: Capabilities and Advantages in Software Development
	4.1 Solving Large Linear Systems
	4.2 Addressing Memory Bottlenecks
	4.3 Optimizing Loops
	4.4 Use of Parallel Computing
	4.5 Profiling
	4.6 Visualization
	4.7 Package
	4.8 Graphical User Interface

	5 Julia Language in Computational Mechanics: Open Issues and Challenges
	5.1 Open Issues for the Julia Language
	5.1.1 Immature Development of the Programming Environment
	5.1.2 Lack of Third-Party Packages
	5.1.3 Requirements for an Intelligence Compiler

	5.2 Challenges for the Julia Language
	5.2.1 Challenges Regarding Imbalanced Implementation
	5.2.2 Challenge Regarding Parallel Computing
	5.2.3 Challenge Regarding Legacy Code
	5.2.4 Challenge Regarding Deep Learning


	6 Conclusion
	Acknowledgements 
	References




