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Abstract
The past few decades have seen a significant spurt in developing lower-order, parsimonious models of large-scale dynamical 
systems used for design and control. These surrogate models effectively capture the most interesting dynamic features of 
the full-order models (FOMs) while preserving the input–output relation. Model order reduction (MOR) techniques have 
intensively been further developed to treat increasingly complex, multi-resolution models spanning a thousand degrees of 
freedom. This manuscript presents a state-of-the-art review of the moment-matching based order reduction methods for linear 
and nonlinear dynamical systems. We track the progress of moment-matching methods from their inception to how they have 
emerged as the most commonly adopted platform for reducing systems in large-scale settings. We discuss the frequency and 
time-domain notions of moment-matching between the original and reduced models. Moreover, we also provide some new 
results highlighting the extensive applications of this technique in reducing micro-electro-mechanical systems.

1  Introduction

Large-scale models often emerge from all the branches of 
engineering and sciences. For instance, spatial discretiza-
tion of partial differential equations (PDEs) using the finite 
volume [127, 178] or finite elements [57, 59], modeling 
complex fluid dynamics [40, 129, 170], VLSI systems [125, 
173], disease modeling [147], micro or nano-electro-mag-
netic systems [113, 142], represent systems of scientific 
interest and are large-scale in nature. The need for higher 
accuracy necessitates enhanced details in these models, 
which inevitably increases the computational complexity. 
Furthermore, it is often desired to repeatedly simulate such 
systems for optimization and control, thus making untenable 
burdens on computational resources. Model order reduction 
intends to replace such high-fidelity systems with much 
cheaper models that can accurately replicate the input–out-
put behavior as that of the original system while preserving 
some dominant properties such as stability and passivity [1, 
10, 49, 119]. Such surrogate models are then reliably used 

to carry intense simulations to develop faster controllers for 
real-time applications [5, 61, 107, 131, 135, 146, 155].

One of the most successful MOR methods for reducing 
large-scale systems is the interpolatory method, also known 
as the moment-matching method [7, 9, 10, 12]. These meth-
ods produce a reduced-order model that interpolates the full-
order system’s response at some predefined interpolation 
points. The main reason these methods are so successful 
is their numerical stability and that these methods involve 
less dense matrix transformations. These methods are also 
closely related to rational Krylov subspace methods. Some 
excellent reviews can be found in Refs. [21, 28, 65, 68, 69, 
72].

This review aims to provide a complete understanding 
of moment-matching based model reduction methods and 
presents the most significant developments in this direc-
tion. To introduce the problem to first-time readers, we 
begin with the moment-matching methods in linear sys-
tems in Sect. 2. There, we discuss the moment-matching 
techniques in the frequency and time domain. We also 
explain the tangential interpolation problem for the mul-
tiple-input multiple-output systems and the notion of 
moments in second-order dynamical systems. Then, we 
point-out some open issues in these methods and provide 
some recent advancements in this direction. In Sect. 3, we 
present a comprehensive moment-matching based model 
reduction technique in nonlinear systems, based on the 
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recently developed notion of steady-state interpolation. To 
illustrate the idea, we present numerical results for captur-
ing highly oscillatory dynamics of MEMS switch through 
reduced modeling technique. We also discuss some of 
the prominent nonlinear MOR techniques based on Kry-
lov subspace methods and present some open problems. 
Finally, we provide some concluding remarks in the end.

Throughout this manuscript, we study of MOR via 
moment-matching for a general class of continuous systems 
described in state-space representation given as: 

 where x(t) ∈ ℝ
n is known as the state-vector in control 

system parlance. This represents the vector of unknowns 
whose entries are called internal variables or state variables. 
Matrices B ∈ ℝ

n×m and C ∈ ℝ
n×p are the input and output 

matrices respectively, whereas f , h ∶ ℝ
n
→ ℝ

n are the two 
nonlinear mappings. Vectors u(t) ∈ ℝ

m and y(t) ∈ ℝ
p are 

the inputs and outputs of the system. System (1) represents 
a multiple-input multiple-output (MIMO) system with 
m, p << n . However, for single-input single-output (SISO) 
systems, m = p = 1 , and the matrices B , C become vectors 
b and cT whereas vectors u and y become scalars u and y 
respectively. Furthermore, if f (.) and h(.) are linear map-
pings, then system (1) is called a linear dynamical system 
otherwise a nonlinear (control-affine) system. Thus, system 
(1) essentially represents a large-scale, initial value problem 
that we are interested in solving for some predefined time-
span, in the presence of some excitation function u(t).

The most common approach to obtain a reduced-order 
model of system (1) is via projection [39, 104, 171, 180], 
i.e., by projecting the dynamics of full-order model on a 
lower-dimensional manifold, spanning lesser degrees of free-
dom (r << n) . This is followed by re-projecting the reduced 
dynamics onto the original space to obtain the approxima-
tion. The approximation ansatz is given as x(t) = Vxr(t) with 
xr(t) ∈ ℝ

r and where the columns of V ∈ ℝ
n×r represent the 

basis for the reduced subspace. Substituting this approxima-
tion in Eq. (1) yields an over-determined systems of equa-
tions given as: 

 where r(t) is the residual vector due to the subspace approx-
imation. In order to make this a well-posed problem, the 
Petrov-Galerkin condition is then imposed, i.e., WTr(t) = 0 . 
This gives: 

(1a)
d

dt
h(x(t)) = f (x(t)) + Bu(t) x(0) = x0

(1b)y(t) = Cx(t)

(2a)
d

dt
h(Vxr(t)) = f (Vxr(t)) + Bu(t) + r(t)

(2b)y(t) = CVxr(t)

 where, it is usually required that WTV = I , such that VWT 
is a projector onto an r-dimensional subspace. The various 
reduction methods vary in the choice of the projection matri-
ces V and W . However, one common aim is that the response 
of the reduced model Eq. (3) is “close” to the high-fidelity 
model Eq. (1).

In what follows, we discuss the moment-matching tech-
nique in linear time-invariant systems followed by nonlinear 
systems.

2 � Moment Matching for Linear‑Time 
Invariant Systems

Many mathematical and physical systems can be modeled as 
linear time-invariant (LTI) systems. To introduce the idea of 
MOR via moment-matching, consider a large-scale system 
of autonomous differential equations resulting from the spa-
tial discretization of PDE’s represented in a continuous-time, 
state-space model as given below:

where n is the order of the state-space model ( �L ) i.e., the 
states x(t) ∈ ℝ

n span an n-dimensional space, E ∈ ℝ
n×n is 

the (non-singular) descriptor matrix, A ∈ ℝ
n×n is the system 

matrix, B ∈ ℝ
n×m is the input matrix and C ∈ ℝ

n×p is the 
output matrix. The LTI system in Eq. (4) is called regular if 
the matrix E is nonsingular or descriptor system otherwise. 
In case of singular E , Eq. (4) represents a system of differ-
ential-algebraic equations (DAEs) rather than ordinary dif-
ferential equations (ODEs) which are more difficult to solve.

For LTI systems considered here, the impulse response 
is given as:

and the frequency domain transfer function, which is a p × m 
matrix-valued rational function, is obtained by taking the 
Laplace transform of the impulse response given as:

which can also be written as

(3a)
d

dt
WTh(Vxr(t)) = WTf (Vxr(t)) +WTBu(t)

(3b)y(t) = CVxr(t)

(4)𝛴L ∶

{
Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(5)ℏ(t) = Ce(E
−1A)tE−1B

(6)
H(s) = L(ℏ(t)) = ∫

∞

0

ℏ(t)e−stdt

= C(sE − A)−1B

(7)H(s) = −C(I − sA−1E)−1A−1B



1465Model Order Reduction via Moment‑Matching: A State of the Art Review﻿	

1 3

Using the Neumann expansion, we can rewrite the above 
expression as:

which can be further expanded via Taylor series as

Definition 1  [7] The moments of the LTI system Eq. (4) 
about the expansion point s = 0 are the negative coefficients 
of the Taylor series expression Eq. (9) expanded about s = 0 
and are given as

The moments of system (4) at the point s = 0 , are also the 
successive derivatives of the transfer function H(s) i.e.,

If the expansion is performed at some other point than s = 0 
e.g. at s = � , then the moments of (4) about s = � are com-
puted by replacing the matrix A with (A − �E) in Eq. (10) 
i.e.,

for i = 0, 1,… and where it is assumed that the matrix pencil 
(A − �E) is nonsingular.

Definition 2  [7] The coefficients of the Taylor series of 
transfer function H(s) about s = � for � → ∞ , are defined 
as the Markov parameters of the LTI system (4) and are 
given as:

Furthermore, the ith Markov parameter is equal to ith deriva-
tive of the impulse response of system (4) at t = 0 i.e,

This implies that the first Markov parameter M0 is the sys-
tem’s impulse response at t = 0.

2.1 � Moment Matching in Frequency Domain

Model reduction via moment matching implies that a 
reduced-order model is to be obtained whose moments 

(8)(I − sA−1E)−1 =

∞∑
i=0

(A−1Es)i

(9)
H(s) = −CA−1B − CA−1EA−1Bs −⋯

− C(A−1E)iA−1Bsi −⋯

(10)�i = C(A−1E)iA−1B i = 0, 1,…

(11)�0
i
= −

1

i

diH(s)

dsi

||||s=0

(12)��
i
= C((A − �E)−1E)i(A − �E)−1B

(13)Mi = C(E−1A)iE−1B i = 0, 1,…

(14)Mi =
diℏ(t)

dti

||||t=0

match the the full-order model moments at certain frequen-
cies of interest. If the moments are matched about s = 0 , the 
reduced-order model is called the Padé approximant, and the 
problem is known as Padé’s approximation. If the moments 
are matched at some other point s = � , the problem is known 
as shifted Padé’s approximation, and when the Markov 
parameters are matched, the problem is termed as Partial 
realization. It is often desired to match moments at more 
than one expansion point i.e., at specific frequency inter-
vals, then we talk about the multipoint Padé or the rational 
interpolation problem. Thus, model reduction via moment 
matching is to construct a reduced order model (ROM) given 
as:

where xr(t) ∈ ℝ
r(r << n) , and where the reduced system 

matrices are calculated using the projector VWT given as:

such that the moments of H(s) match the reduced system’s 
moments having transfer function Hr(s) where

Now, this begs the questions on how to select the expansion 
points and, as such, obtain the projection matrices V and W. 
This is explained next.

2.1.1 � SISO Case

For SISO systems, Eq. (4) simplifies to

and its ROM via Eq. (16) is given as:

where WTb ∈ ℝ
r and cTV ∈ ℝ

r.

Theorem 1  [7, 71, 84] In order to match r moments between 
the full-order system (18) and reduced model (19) at the 
expansion point s = 0 , it is required that the columns of 
projection matrix V used in Eq. (16) form a basis for the 
Krylov subspace Kr(A

−1E,A−1b) . Furthermore the matrix 
W is selected such that the matrix Ar is nonsingular.

(15)𝛴LR ∶

{
Erẋr(t) = Arxr(t) + Bru(t)

yr(t) = Crxr(t)

(16)
Er = WTEV, Ar = WTAV

Br = WTB, Cr = CV

(17)Hr(s) = −Cr(I − sAr
−1Er)

−1Ar
−1Br

(18)𝛴SISO ∶

{
Eẋ(t) = Ax(t) + bu(t)

y(t) = cTx(t)

(19)
WTEVẋr(t) = WTAVxr(t) +WTbu(t)

yr(t) = cTVxr(t)
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Remark 1  The subspace Kr(A
−1E,A−1b) is known as input 

Krylov subspace and the reduced scheme is known as the 
one-sided Krylov subspace method.

A typical choice of one-sided Krylov subspace method 
is W = V . This has an advantage of preserving stability and 
passivity of reduced model for some specific large-scale 
models

Theorem  2  [7, 71, 84] In order to match 2r moments 
between the full-order system (18) and reduced model (19) 
at the expansion point s = 0 , it is required that the columns 
of projection matrices Vand W used in Eq. (16) form the 
basis for the Krylov subspaces given as Kr(A

−1E,A−1b) and 
Kr(A

−TET ,A−Tc) respectively, where A and Ar are assumed 
to be invertible.

This reduction scheme is known as two-sided Krylov sub-
space method, and this corresponds to matching double the 
number of moments than the one-sided method.

Theorem 3  [7, 71, 84] In order to match 2r moments between 
the full-order system (18) and reduced model (19) at the 
expansion point s = � , it is required that the columns of pro-
jection matrices Vand W used in Eq. (16) form the basis for 
the Krylov subspaces given as Kr((A − �E)−1E, (A − �E)−1b) 
and Kr((A − �E)−TET , (A − �E)−Tc) respectively, where A 
and Ar are assumed to be invertible.

Remark 2  This is achieved by substituting the matrix A by 
(A − �E) in the respective Krylov subspaces as explained 
earlier.

Sometimes, one is interested in capturing the high-speed 
dynamics of the system at hand, which is achieved by match-
ing moments at higher frequencies ( s → ∞ ) i.e, matching 
some of the Markov parameters.

Theorem 4  Let m1 ∈ ℤ and 0 ≤ m1 ≤ r , then by selecting 
the matrix V used in Eq. (16) as a basis for Krylov sub-
space given as Kr(A

−1E, (E−1A)m1A−1b) matches the first m1 
Markov parameters and the first r − m1 moments of system 
(18) and (19) resp.

Similarly, the matrix W is chosen such that Ar and Er 
are non-singular. This immediately follows the number of 
moments, in this case, can be doubled by selecting the suit-
able input and output Krylov subspaces.

Theorem 5  Let m1,m2 ∈ ℤ where 0 ≤ m1,m2 ≤ r , then by 
selecting the matrices V and W , used in Eq. (16), as the basis 
for Krylov subspaces given as Kr(A

−1E, (E−1A)m1A−1b) 
and Kr(A

−TET , (E−TA)m2A−Tc) respectively, matches the 
first m1 + m2 Markov parameters and the first 2r − m1 − m2 
moments of system (18) and (19) respectively.

Now, if the aim is to match moments at multiple expan-
sion points: �1, �2,… , �k , then k different Krylov subspaces 
are to be constructed. In this case, the projection matrix is 
obtained by the union of all the respective Krylov subspaces 
such that a universal basis is found.

Theorem  6  The first ri moments about �i are matched 
between systems (18) and (19) respectively, by selecting the 
matrix V , used in Eq. (16), as follows:

where its assumed that ( A − �iE ) and ( Ar − �iEr ) are both 
nonsingular and W is an arbitrary full rank matrix.

(20)
k⋃

i=1

Kri
((A − 𝜎iE)

−1E, (A − 𝜎iE)
−1b) ⊆ colspan(V)

Table 1   Various examples of MOR by moment matching in SISO systems

Name of reduced order system Expansion point used Type of projection Choice of Krylov subspace Moments matched

Padé [7, 71, 84] s = 0 One-sided K
r
(A−1

E,A
−1
b) r

Two-sided K
r
(A−1

E,A
−1
b),K

r
(A−T

E
T
,A

−T
c) 2r

Partial realization/ Padé at ∞/Markov s = ∞ One-sided K
r
(E−1

A,E
−1
b) r

Two-sided K
r
(E−1

A,E
−1
b) , K

r
(AT

E
−T
, cT ) 2r

Shifted Padé [7, 84] s = � One-sided K
r
((A − �E)−1E, (A − �E)−1b) r

Two-sided K
r
((A − �E)−1E, (A − �E)−1b)

,K
r
((A − �E)−TET

, (A − �E)−Tc)

2r

Padé and Markov s = 0 and s = ∞ One-sided K
r
(A−1

E, (E−1
A)m1A

−1
b) m1 at ∞ , r − m1 at 0

Two-sided K
r
(A−1

E, (E−1
A)m1A

−1
b) , 

K
r
(A−T

E
T
, (E−T

A)m2A
−T
c)

m1 + m2 at ∞ , 
2r − m1 − m2 at 0

Rational/multipoint Padé s
i
= �1, �2,… , �

k
One-sided ⋃k

i=1
K

r
i
((A − �

i
E)−1E, (A − �

i
E)−1b) r

i
 about �

i

Two-sided ⋃k

i=1
K

r
i
((A − �

i
E)−1E, (A − �

i
E)−1b) , ⋃k

i=1
K

r
i
((A − �

i
E)−TET

, (A − �
i
E)−Tc)

2r
i
 about �

i
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Similar to previous cases, a two-sided method can provide 
double the number of moments about each point �i . All the 
theorems mentioned above are summed up in Table 1.

So far, it is not clear how to numerically obtain the pro-
jection matrices V and W . An early attempt at this was the 
Asymptotic Waveform Evaluation (AWE) method [145] in 
which the moments were explicitly calculated rather than 
computing the matrices V and W . The method became prom-
inent due to its capability to reduce RC interconnect models 
containing thousands of variables. Later-on, a multi-point 
version of the method was proposed also in Ref. [53]. AWE 
based methods, however, had a numerical instability, that is, 
the vectors become linearly dependent and converge to an 
eigenvector of A . This shortcoming was first pointed-out by 
Gallivan et al. [76] and later by Feldman and Freund [62]. 
Consequently, this led to the development of implicit based 
moment-matching methods, and the first significant contri-
bution came via the Arnoldi method [13, 69]. This method 
employs a one-sided projection to iteratively construct a set 
of normalized vectors satisfying VTV = I . Within every 
iteration, a new vector is generated, which is orthogonal to 
all the previous ones. This results in an upper Hessenberg 
structure of the matrix Ar and the vector br becomes a mul-
tiple of the first unit vector. However, this algorithm also 
generates a linearly dependent set of basis vectors for a rela-
tively large value of r. This is normally avoided by deflating 
the redundant columns of V to retain reduced models with a 
certain degree of accuracy [54]. This has been demonstrated 
by B. Salimbahrami [156] where a modified Gram-Schmidt 
orthogonalization scheme is employed.

Another key contribution towards implicit moment 
matching was the two-sided Lanczos method [62, 117], also 
known as the Padé via Lanczos (PVL) method. This method 
constructs two sequences of basis vectors which span the 
respective input and output Krylov subspaces satisfying 
WTV = I , resulting in an upper triangular structure of the 
matrix Ar . Apart from matching moments, this method was 
initially proposed for obtaining reduced models based on the 
computation of eigenvalues [136]. Further work in this direc-
tion led to the development of partial realization via Lanczos 
method by Gragg and Lindquist [81]. The method was also 
extended to MIMO systems by Aliaga et al. [4] (also see 
Refs . [108, 109]). Boley [41] addressed the issue regarding 
the loss of biorthogonalization in classical Lanczos method. 
Later-on, new results also appeared in the areas of stability 
retention [85], error analysis [101] and in control literature 
[41, 174]. However, these studies didn’t present any new 
structure in projection technique for rational interpolation.

To retain passivity among the reduced models, the pas-
sive reduced-order interconnect macromodelling algorithm 
(PRIMA) was proposed by Odabasioglu et al. [137]. The 
idea was demonstrated in linear RLC systems. In order to 
match moments at multiple expansion points, the rational 

Lanczos method and the dual Arnoldi method were pro-
posed by Grimme et al. [84]. Furthermore, the issue of 
unstable partial realizations in classical Krylov methods 
was addressed by the restarting techniques proposed in Ref. 
[85] and the implicitly restarted dual Arnoldi method by 
Jaimoukha and Kasemally [102].

2.1.2 � MIMO Case

For the case of MIMO systems, (given in Eq. (4)), the block 
Krylov subspaces are defined as:

The block subspace for m starting vectors/columns of B can 
be considered as a union of m Krylov subspaces for each 
starting vector [156]. Thus, by using the block Krylov sub-
spaces, all the above mentioned theorems for matching the 
moments/Markov parameters can be generalized for MIMO 
systems. For instance, one has to use the block versions, i.e, 
Kr(A

−1E,A−1B) and Kr(A
−TET ,A−TCT ) that generalizes 

Theorem 2. Consequently, r
m

 moments are matched in one-
sided method and r

m
+

r

p
 in the two-sided method.

2.1.3 � Tangential Interpolation Problem

The notion of “interpolation” for MIMO systems implies 
that the interpolating matrix-valued rational function Hr(s) 
matches the origin function H(s) with respect to some pre-
defined error. This would, in effect, require p × m interpo-
lation conditions for each interpolation point. As such, this 
will result in large size of reduced-order model r for even 
a moderate size of input and output dimensions m and p. 
Thus, for MIMO systems, it’s desired that the interpolating 
function matches the original function along certain specific 
directions or tangent directions. Consequently, this involves 
selecting interpolation points as well as the interpolation 
directions.

Tangential interpolation based moment matching for 
MIMO systems was presented in many studies such as 
in Refs. [7, 11, 21, 62, 71, 76, 139]. It is the extension of 
rational Krylov methods to MIMO systems when all tangent 
directions are the same. The tangential interpolation prob-
lem for descriptor systems was also proposed by Gugercin 
et al. [91] and for index one descriptor system by Antoulas 
et al. [11].

Definition 3  Let wi ∈ ℂ
m be the (non-trivial) right tangent 

direction, we define Hr(s) to be the right tangent interpolant 
of H(s) at s = �i along wi if

(21)Kr(A,B) = span(B,AB,… ,Ar−1B)
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Similarly, the left tangential interpolant is defined as:

Definition 4  Let vi ∈ ℂ
p be the (non-trivial) left tangent 

direction, then we define Hr(s) to be the left tangent inter-
polant of H(s) at s = �i along vi if

Remark 3  Given a set of r left interpolation points {�i}
r
i=1

 , r 
left tangential directions {vi}ri=1 , r right interpolation points 
{�i}

r
i=1

 , and r right tangential directions {wi}
r
i=1

 , we can for-
mulate the model reduction problem via tangential interpo-
lation as finding a degree-r reduced transfer function Hr(s) 
such that Eqs. (22) and (23) hold for i = 1, 2, .., r.

Definition 5  Given a set of r left and r right tangential direc-
tions as vi and wi respectively, we define Hr(s) to be a bitan-
gential Hermite interpolant of H(s) , if Hr(s) satisfies both 
Eqs. (22) and (23). In addition to this, it is required that

holds for i = 1, 2,… , r.

Theorem 7  [77] If the columns of matrices V and W used in 
Eq. (16) are selected as:

then the following tangential interpolation conditions are 
satisfied

with the assumption that (�E − A) and (�E − A) are invert-
ible. Furthermore, if Eq.   (25) hold with � = � then the 
bitangential Hermite condition, i.e,

is satisfied as well.

Remark 4  Theorem 7 demonstrates a left or right interpola-
tion condition without the need to explicitly calculate the 
values that are interpolated.

The idea can be easily extended to the case of r interpo-
lation points i.e., given a set of r left interpolation points 

(22)H(�i)wi = Hr(�i)wi

(23)vT
i
H(�i) = vT

i
Hr(�i)

(24)vT
i

dH(s)

ds

||||s=�i
wi = vT

i

dHr(s)

ds

||||s=�i
wi

(25a)(�E − A)−1Bw ∈ Ran(V)

(25b)(vTC(�E − A)−1)T ∈ Ran(W)

(26a)H(�)w = Hr(�)w

(26b)vTH(�) = vTHr(�)

(27)vT
dH(s)

ds

||||s=�w = vT
dHr(s)

ds

||||s=�w

{�i}
r
i=1

 , r right interpolation points {�i}ri=1 , r left tangent 
directions {vi}ri=1 and r right tangent directions {vi}ri=1 
respectively, we can construct the matrices V and W , that 
satisfy the Lagrange tangential interpolation conditions in 
Eqs. (22,23) and also the bitangential Hermite interpolation 
condition in Eq. (24) for �i = �i , given as follows:

and

The scheme can also be used for higher-order Hermite 
interpolation given as follows:

Theorem 8  Given the interpolation points �,� ∈ ℂ and the 
(nontrivial) tangent directions v ∈ ℂ

p and w ∈ ℂ
m . Let the 

matrix pencils (�E − A) and (�E − A) be invertible, then if 
the columns of matrix V used in Eq. (16) are constructed as

for k = 1, ..,N , then

and if the columns of matrix W used in Eq. (16) are con-
structed as

for k = 1, ..,M , then

and if both Eqs. (31) and (32) hold with � = � then

for j = 0,… ,N +M − 1

The main benefit of interpolatory model reduction meth-
ods is that it avoids solving large-scale Lyapunov or Riccati 
equations, making it a convenient reduction platform for 
large-scale systems. However, the main cost among these 
methods is solving the shifted linear systems that are sparse 
in most cases and can be solved using direct methods (e.g., 
Gaussian elimination). Also, one can prefer iterative solution 
methods for obtaining the reduction basis V and W when 
dealing with systems with millions of degrees of freedom.

(28)[(�1E − A)−1Bw1,… , (�rE − A)−1Bwr] = V

(29)[(�1E − A)−TCTv1,… , (�rE − A)−TCTvr] = W

(30)((�E − A)−1E)k−1(�E − A)−1Bw ∈ Ran(V)

(31)
djH(s)

dsj

||||s=�w =
djHr(s)

dsj

||||s=�w for j = 0, ..,N − 1

(32)((�E − A)−TET )k−1(�E − A)−TCTv ∈ Ran(W)

(33)vT
djH(s)

dsj

||||s=� = vT
djHr(s)

dsj

||||s=�;j = 0, ..,M − 1

(34)vT
djH(s)

dsj

||||s=�w = vT
djHr(s)

dsj

||||s=�w
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2.1.4 � Second‑Order Systems

While modeling certain electrical or mechanical systems, 
one has to deal with models in second-order form. The 
model reduction techniques for such systems aim to con-
struct reduced models that preserve the second-order struc-
ture [27, 123, 124, 158, 169]. To define the generalized 
notion of moments, consider a large-scale, MIMO, second-
order, state-space model given as: 

 where the matrices F,D and G represent the mass, damping 
and stiffness matrices. The overall dimension of the systems 
is 2n with m inputs and p outputs. Since the mass, stiffness, 
and damping matrices in most of the practical systems are 
symmetric and positive definite, it is often recommended to 
represent the system (35) as a transformed state-space model 
given as follows: 

 As a result the symmetry and definiteness of matrix E are 
taken care of by matrices F and G and the symmetry of 
matrix A is maintained by matrices G and D respectively.

Definition 6  The ith moment of system (35) around expan-
sion point s = 0 is defined as :

It is hereby assumed that matrix G is invertible so as to 
ensure that the matrix A remains nonsingular. The Markov 
parameter of system (35) is defined as:

with the condition that matrix F is invertible.

In order to evaluate the projection basis and hence the 
reduced second-order model, we first define the second-
order Krylov subspace as follows:

(35a)Fẍ(t) + Dẋ(t) + Gx(t) = Zu(t)

(35b)y(t) = Lx(t)

(36a)

[
− G 0

0 F

]

�����������
E

[
ẋ(t)

ẍ(t)

]

���
𝐱̇

=

[
0 − G

− G − D

]

�������������
A

[
x(t)

ẋ(t)

]

���
𝐱

+

[
0

Z

]

���
B

u(t)

(36b)
y(t) =

[
L 0

]
���

C

[
x(t)

ẋ(t)

]

���
�

(37)�0
i
=
[
0 − LG−1

] [ 0 − FG−1

I − DG−1

]i [
0

Z

]

(38)Mi =
[
0 LF−1

] [ − DF−1 I

− GF−1
0

]i [
Z

0

]

Definition 7  [157] Given two matrices X1 and X2 ∈ ℝ
n×n 

and another matrix H1 ∈ ℝ
n×m whose columns represent 

the starting vectors, the second-order Krylov subspace is 
defined as:

where

Definition 8  The second-order input Krylov subspace is then 
defined as:

and the second-order output Krylov subspace is defined as:

Similar to first-order systems, the reduction techniques 
using only one second-order Krylov subspace are known 
as the one-sided Krylov subspace method, and the reduc-
tion techniques involving both the second-order Krylov 
subspaces are known as the two-sided Krylov subspace 
methods. Now consider the approximation ansatz given as 
x(t) = Vxr(t),V ∈ ℝ

n×r . Substituting this approximation in 
Eq. (35) and pre-multiplying by WT ∈ ℝ

n×r yields a second-
order reduced model of dimension 2r given as: 

 where

Using the formulation in Eq. (36), the second-order reduced 
model (43) is expressed in a transformed state-space given 
as:

(39)Kr(X1,X2,H1) = colspan{Q0,Q1,… ,Qr−1}

(40)
{

Q0 = H1, Q1 = X1Q0

Qi = X1Qi−1 + X2Qi−2, i = 2, 3, ..

(41)Kr1
(−G−1D,−G−1F,−G−1Z)

(42)Kr2
(−G−TDT ,−G−TFT ,−G−TLT )

(43a)Frẍr(t) + Drẋr(t) + Grxr(t) = Zru(t)

(43b)yr(t) = Lrxr(t)

(44)
Fr = WTFV, Dr = WTDV,Gr = WTGV,

Zr = WTZ,Lr = LV.

(45)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
−WTGV 0

0 WTFV

�

���������������������������
Er

�
ẋr(t)

ẍr(t)

�

���
𝐱̇𝐫

=

�
0 −WTGV

−WTGV −WTDV

�

���������������������������������
Ar

�
xr(t)

ẋr(t)

�

���
𝐱𝐫

+

�
0

WTZ

�

���
Br

u(t)

yr(t) =
�
LV 0

�
�����

Cr

�
xr(t)

ẋr(t)

�

���
𝐱𝐫
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where the projection matrices are defined as:

This formulation preserves the structure of the full-model. 
Now in order to obtain the projection basis to match any 
desired moments, all the previously mentioned theorems 
can be generalized for the second-order system in a similar 
fashion.

Theorem 9  [157, 158] In order to match the first r1 + r2 
moments between the original second-order model Eq. (35) 
and the reduced second-order model Eq. (43), it is required 
that the columns of projection matrices V and W used in Eq.  
(44) form the basis for the input and output second-order 
Krylov subspaces Eqs. (41) and (42) respectively. Also, it is 
assumed that the matrices G and Gr are invertible.

And similarly the rational interpolation can achieved as 
follows:

Theorem 10  [157, 158] In order to match first ri moments 
about �i, i = 1, .., k2 of the original and reduced models, it 
is assumed that matrices V and W are chosen as follows:

and

The first successful attempt in reducing second-order 
models came from Meyer, and Srinivasan [130] which 
involved the evaluation of the free-velocity and the zero-
velocity gramians. This was followed by the much improved 
second-order balancing truncation method by Chahlaoui 
et al. [48]. However, balancing for second-order systems is 
not recommended from a numerical perspective. Instead, 
faster iterative schemes based on Arnoldi or Lanczos are 
more suitable for reducing systems in the second-order 
structure. An early attempt in this direction came from Su 
and Craig [169] and later by Bastian and Haase [27] in which 
Krylov subspace methods were employed. However, these 
methods could not match nonzero moments, and the num-
ber of moments matched was less than the classical Krylov 

(46)Ṽ =

[
V 0

0 V

]
, W̃ =

[
W 0

0 W

]

span(V) =

k1⋃
i=1

Kri
(−(G + siD + s2

i
F)−1(D + 2siF),

− (G + siD + s2
i
F)−1F,−(G + siD + s2

i
F)−1Z)

span(W) =

k2⋃
i=k1+1

Kri
(−(G + siD + s2

i
F)−T (D + 2siF)

T ,

− (G + siD + s2
i
F)−TFT ,−(G + siD + s2

i
F)−TLT )

subspace methods. Consequently, several papers appeared 
based on similar ideas [72, 120]. These methods obtained 
reduced models by applying different projection mappings to 
an equivalent state-space model while preserving its struc-
ture. Behnam et al. proposed two-different techniques in 
Ref. [158] for reducing second-order system by first reduc-
ing an equivalent state-space model followed by back con-
version of the reduced model to second-order form. This 
resulted in matching double the number of moments than 
the second-order Krylov methods proposed in Refs. [23, 
124, 157].

2.2 � Moment Matching in Time‑Domain

So far, we have discussed the frequency domain notion 
of moment matching for LTI systems for both SISO and 
MIMO systems. We saw that the reduced model obtained 
using Krylov subspaces results in a local approximation of 
frequency response. However, this cannot guarantee a good 
overall approximation of impulse response. Gunupudi and 
Nakhla [92], were among the first to present a scheme to 
match the first derivatives of time-response of full order 
model with that of the reduced one. Later-on Wang et al. 
[179] presented a passive model order reduction method 
based on Chebyshev expansion of the impulse response so 
as to match the transient responses of the full model and 
the reduced-order model. The Laguerre polynomial expan-
sion based reduction framework was presented in Ref. [52]. 
This was later extended and further developed by Rudy [58]. 
However, the major contribution in this direction came from 
Astolfi [15] who also extended the idea further to nonlinear 
systems [16–18]. In the following, we describe the time-
domain notion of moment matching based on Refs. [15–17].

Definition 9  The moments 𝜼i(�) of the impulse response ℏ(t) 
around a point s = � is given by the weighted integrals over 
the time function and satisfy 

Remark 5  Thus, the time-domain moments 𝜼i(�) and the 
frequency-domain moments �i(�) only differ by a factor:

(47a)𝜼i(�) = ∫
∞

0

� ie−��ℏ(t)d�

(47b)= ∫
∞

0

� iCe(E
−1A−�I)�E−1Bd�

(47c)= i! C((�E − A)−1E)i(�E − A)−1B

(48)𝜼i(�) =
(−1)i

i!
𝜼i(�)
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This result is used to develop the notion of moments in terms 
of steady-state response of system (4) interconnected with a 
linear signal generator.

Definition 10  [14] The 0-moment of system (4) at s = � can 
also be defined as

where V ∈ ℝ
n×r uniquely solves the linear Sylvester equa-

tion given as:

Proposition 1  [16]  The moments of system (4), 
�0(�), �1(�),… , �k(�) can be uniquely determined by the 
elements of matrix CV i.e., there exists a one-to-one rela-
tion between the moments of system (4) and the elements of 
matrix CV , with V being a unique solution of the following 
Sylvester equation

where � ∈ ℝ
r×r is any non-derogatory matrix and it is 

assumed that the pair ( �,� ) is observable. Now, consider 
the following exogenous linear system (also known as signal 
generator):

with �(t) ∈ ℝ
r  ,  �(E−1A) ∩ �(�) = � and the triple 

(�,�, �(0)) to be minimal i.e., the pair (�,�) is observable 
and (�, �(0)) is controllable such that the generated input 
signal u(t) is persistently exciting [20, 122].

Theorem 11  [16, 17] Consider system (4), � ∈ ℂ . Assume 
�(E−1A) ∩ �(𝚵) = � . Let V satisfies the Sylvester equation 
(51) and W such that det(WTEV ≠ 0 ). Consider the inter-
connection of exogenous system (52) with system (4) as 
follows:

where the pair ( �,� ) is observable. Then, the (well-
defined) steady-state of the output of the said interconnec-
tion can be uniquely determined by the respective moments 
�0(�), �1(�),… , �k(�).

Remark 6  Connecting a linear signal generator with the full 
order system (4) is similar to providing exponential inputs 

(49)�0(�) = CV

(50)AV + B = �EV

(51)EV� − AV = B�

(52a)�̇(t) = ��(t) �(0) ≠ 0

(52b)u(t) = ��(t)

(53a)Eẋ(t) = Ax(t) + B𝚿(e𝚵t�(0))

(53b)y(t) = Cx(t)

to the system given as u(t) = 𝚿(e𝚵t�(0)) . The (well-defined 
)steady-state of interconnected system is given as:

where yh(t) represents the steady-state response of the sys-
tem and for an asymptotically stable system, considered 
here, the transient response, represented by yp(t) decays to 
zero at t → ∞.

Using Theorem 11, the reduced-order model via moment-
matching can be obtained as follows:

Proposition 2  [17] Consider the full-order model (4) and the 
system described in Eq. (15). Fix � and � such that the pair 
( �,� ) is observable. Also assume that �(E−1A) ∩ �(𝚵) = � . 
Then, the reduced model (15) matches moments with system 
(4) at (�,�, �(0)) if

where Vr uniquely solves the following Sylvester equation

Thus, moment-matching in the time-domain implies ma- 
tching the full order model’s steady-state response with 
the reduced model when both are excited by appropriate 
inputs from the signal generator. However, the steady-state 
response is interpolated for inputs other than those gener-
ated from the signal generator.

The time-domain illustration of moment-matching in 
terms of interpolation of steady-state response is depicted 
in Fig. 1. This kind of notion of moment-matching in terms of 
steady-state response is particularly useful in the sense that 
as it permits one to define moments even for those systems 
which don’t have a transfer function representation, such as 
the time-varying systems.

2.3 � Issues and Recent Advancements in Linear 
Moment Matching

Model order reduction using Krylov subspace methods 
provides an indispensable platform for reducing large-scale 
problems; however, there are many issues related to the auto-
matic generation of the reduced model. Although various 
algorithms have been developed in the past, these apply only 
to some specific class of problems or under some specific 
conditions. Next, we highlight some major relevant problems 
and provide an overview of some of the significant achieve-
ments in this direction.

(54)
y(t) = CeE

−1A(t)(x(0) − V�(0))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

yp(t)

+CV�(t)
⏟⏟⏟

yh(t)

(55)CV = CrVr

(56)ErVr� − ArVr = Br�
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2.3.1 � Choice of Expansion Point(s)

The choice and number of interpolation points or shifts in 
Krylov subspace methods is an important factor in dictating 
the quality of the approximation. To address this issue, a lot 
of work has been carried out over the past years. In order for 
the reduced system to minimize the H2-norm error, various 
optimality conditions have been formulated either in terms 
of rational interpolation conditions [29–31, 45, 88, 90, 111, 
128, 175] or in terms of Sylvester and Lyapunov equations 
[38, 93, 168, 183, 186]. For SISO systems, the interpola-
tion conditions were first proposed by Meier and Luenberger 
[128]. Gugercin et al. proposed the iterative rational Kry-
lov alogorithm (IRKA) [88, 89], which produces reduced 
models satisfying the first-order necessary conditions for 
H2 optimality by selecting the interpolation points as the 
mirror images of the poles of reduced system. The idea was 
later extended to MIMO systems in Refs. [45, 90, 175]. Van 
Dooren et al. derived the optimality conditions for the case 
of repeated poles of Hr(s) [175]. Generally speaking, IRKA 
has been a significant success in obtaining optimal reduced 
models and as such finds applications in psychophysiology 
[105], optimal cooling of steel profiles [90] and many others. 
Recently, this method was also extended for the reduction 
of bilinear systems by Benner and Breiten [34]. The conver-
gence of IRKA is guaranteed a priori in some situations [67], 
albeit fails in some cases [67, 90]. However, the choice of 
initial starting values remains an open question.

Druskin and Simoncini [56] proposed an adaptive com-
putation of interpolation points for the rational Kry- lov 

methods. Though this method is less accurate than IRKA, 
it has a low computational cost. This was later followed 
by the SPARK algorithm by Panzer et al. [140] in which 
the choice of interpolation point(s), as well as the order of 
reduced model, is adaptively selected. Similar work was 
also presented in Ref. [66]. Based on the binary search 
principle, Bollhöfer and Bodendiek [42] presented adap-
tive rules for selecting the shifts. They showed a general 
scheme for selecting both the shifts and the moments by 
combining the adaptive shift selection scheme with the 
adaptive moment selecting method as presented earlier in 
Ref. [118]. However, the choice of selecting the reduced-
order dimension remains unknown.

Besides the appropriate choice of interpolation point, it 
is often required in certain applications that the interpola-
tion is carried out in certain frequency regions of interest. 
This requires weighting certain frequencies more than oth-
ers. To allow frequency weighting, the weighted H2 model 
reduction was first proposed by Halevi [93, 168] as the 
solution of Riccati and Lyapunov equations. However, a 
more efficient version of this scheme was introduced in 
SISO systems by Anić et al. [6] and for MIMO systems 
by Breiten et al. [44].

All the above methods described demand more or less 
heuristics, as the user has to manually pick and try several 
interpolation points and decide what works satisfactorily 
for his/her application. This is because of the absence of 
global error bounds for Krylov subspace methods, which 
will be discussed next. However, a general scheme that one 
can follow (as given in Ref. [58]) is that by selecting s = 0 , 

CrVrCV

FOM ROM

Exogenous System/ Signal Generator

ζ̇(t) = Ξζ(t)
u(t) = Ψζ(t)

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Erẋr(t) = Arxr(t) +Bru(t)
yr(t) = Crxr(t)

EV Ξ −AV = BΨ ErVrΞ −ArVr = BrΨ

u(t) = Ψ (eΞtζ(0)) u(t) = Ψ (eΞtζ(0))

Moments ⇔ Steady-State Moments ⇔ Steady-State

=

Fig. 1   Time-domain illustration of linear moment-matching in terms of steady-state response matching
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the steady-state accuracy is improved as the DC gain of 
both the full-order and reduced-order model is matched. 
By selecting s → ∞ , the resulting reduced system better 
approximates the transient response of the full-order sys-
tem. Also, selecting multiple interpolation points across 
the frequency spectrum leads to a better approximation on 
a broader frequency band.

2.3.2 � Global Error Indicator

Another major open issue in Krylov-based reduction is the 
lack of a global error bound between the full-order system 
and the reduced one. Earlier results in this direction led to 
the development of local error bounds for the transfer func-
tion only for a certain frequency range [25, 84]. Later, some 
heuristic error indicators were presented in Refs. [32, 84]. It 
was proposed that the error between the full-order model and 
the reduced model is approximately equal to one between 
two successive reduced-order models. However, no proof 
was provided. A deductible error estimator was presented 
first by Konkel et al. [110].

A posterior error indicator was presented by Feng and 
Benner [63], whereby a greedy algorithm determines the 
next interpolation point based on the largest error. However, 
the method is applicable only to some special LTI systems 
where the matrix E in Eq. (4) is symmetric positive definite. 
Similar requirement is mandated in the method presented 
by Panzer et al. [141] whereby global H2 and H∞ error 
bounds are derived. Furthermore, it is also required that 
A + AT > 0 . Another study by Wolf et al. [182] proposed a 
gramian-based output error bound. However, the method is 
not computationally practical for large scale systems because 
it involves the explicit computation of observability gramian.

Thus, we conclude that the calculation of an exact global 
error bound in Krylov based reduction methods requires the 
involvement of the full-order system, and this would become 
practically challenging for large-scale settings. As such, this 
remains an open area of research.

2.3.3 � Preserving Stability and Passivity

One of the most fundamental requirements in any reduc-
tion scheme is that the property of stability and passivity 
remains preserved in the reduced model to make sense of 
surrogate modeling. It is well-known that Krylov subspace-
based reduced-order modeling techniques do not preserve 
stability or passivity in general. However, there are some 
appreciable efforts in this direction. Methods proposed in 
Refs. [70, 106] offer guaranteed stability and passivity of 
the reduced models if the original system is passive. Another 
set of methods were presented in Refs. [24, 85, 102]. These 
methods are based on post-processing schemes, in which 
the unstable poles of the reduced system are removed using 

explicitly restarted Lanczos and Arnoldi methods. Inspired 
by the relation between Löwner and Pick matrices, the inter-
polation-based passivity preserving methods were proposed 
in Refs. [8, 167].

Similar to the previous discussion, these methods are con-
fined to a special class of LTI systems and extend only to 
one-sided Krylov methods. The interpolation-based methods 
are numerically costly than classical Krylov based MOR. As 
far as the restarted algorithms are considered, these apply to 
SISO systems only. Furthermore, after removing the unsta-
ble poles, these methods do not preserve moment matching 
property and, as such, do not always guarantee to obtain a 
stable a reduced model with a finite number of restarts, thus 
making this an open problem to be addressed.

3 � Moment Matching for Nonlinear Systems

Since most of the practical real-life dynamical systems are 
inherently nonlinear in nature, this has led to a lot of research 
efforts from the past decades to reduce large-scale nonlin-
ear systems. Special classes of large-scale systems such as 
bilinear systems, DAE systems and Hamiltonian systems 
have been successfully reduced, see e.g. Lall et al. [116], 
Soberg et al. [166], Al-Baiyat et al. [3] and Fujimoto [73]. 
Polynomial approximation of weakly nonlinear systems has 
been carried by Chen [51] , Rewienski and White [153, 154] 
and Benner [33]. Later-on, the idea of reducing certain non-
linear system by transforming them into quadratic bilinear 
form was proposed by Benner and Breiten [36], Gu [87] and 
Antoulas et al. [9]. Methods based on variational analysis 
were also proposed [35, 87, 144].

The concept of balancing for nonlinear systems was first 
proposed in Scherpen [164]. This further encouraged the 
development of energy-based methods and the notion of 
Hankel operator, see e.g., Gray and Mesko [82], Scherpen 
and Gray [163], Scherpen and Van-der-Schaft [165] and 
Fujimoto and Scherpen [74, 75]. Methods based on proper 
orthogonal decomposition (POD) were proposed by Willcox 
and Peraire [181], Kunisch and Volkwein [114], Hinze and 
Volkwein [94], Kunisch and Volkwein [115], Grepl et al. 
[83] and Astrid et al. [19]. Krylov subspace methods for 
special nonlinear system classes have also been studied in 
Refs. [43, 80].

The relation between moments and Sylvester equation was 
first proposed by Gallivan et al. [78, 79]. Based on this, the 
notion of nonlinear moments was firstly presented in Astolfi 
[14] followed by Ref. [15]. Since then, methods on linear 
moment matching and, especially, nonlinear moment-matching 
(NLMM) have been developed in many publications. A class 
of (nonlinear) parameterized ROMs achieving moment match-
ing was defined in Ref. [96]. A two-sided, nonlinear moment 
matching theory was developed by Ionescu and Astolfi [97, 
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98]. The problem of MOR via moment-matching for linear 
and nonlinear differential time-delay systems with discrete 
and distributed-delays was studied by Scarciotti and Astolfi 
[160]. In addition to this, the online estimation of moments of 
linear and nonlinear systems from input/output measurements 
has been proposed in Ref. [161, 162]. The study presented 
new algorithms to construct ROM’s that asymptotically match 
the moments of an unknown nonlinear system to be reduced 
by solving a recursive, moving window, least-square estima-
tion problem using input/output snapshot measurements. 
In reference to this, Maria et al. [176] developed a practical 
simulation-free, NLMM algorithm in which certain numerical 
simplifications are proposed that avoids the expensive solu-
tion of Sylvester PDE. Recently, Rafiq and Bazaz proposed a 
nonlinear MOR framework based on NLMM with dynamic 
mode decomposition (DMD) [152]. The framework involves 
the computation of the offline projection matrix V by the 
application of NLMM, whereas the underlying nonlinearity 
is approximated via DMD modes. Also, a parametric nonlinear 
MOR method based on NLMM has been proposed in Ref. 
[151](see also [148–150]). Faedo et al. [60] recently extended 
this idea to wave energy systems. Furthermore, an optimal 
H2-norm based MOR method using time-domain moment-
matching was proposed by Ion Necoara and Ionescu [133].

As mentioned before, this manuscript focuses on interpo-
latory/moment-matching-based MOR methods, and as such, 
we will not discuss data-driven/snapshots based methods 
such as POD.

3.1 � Moments of a Nonlinear System

Similar to the notion of moments for linear systems 
described in Sect. 2.2, we revisit the nonlinear enhancement 
of moment-matching for large-scale systems. The idea is 
based on the concepts emerging from output regulation of 
nonlinear systems [112], the center manifold theory [47] and 
the steady-state response of nonlinear-systems [46, 99, 100].

Consider a large-scale, nonlinear, time-invariant, expo-
nentially stable, MIMO state-space model of the form 

 with non-singular descr iptor matr ix E ∈ ℝ
n×n , 

t h e  v e c t o r s  x(t) ∈ ℝ
n, u ∈ ℝ

m, y(t) ∈ ℝ
p  a n d 

f (x, u) ∶ ℝ
n ×ℝ

m
→ ℝ

n, g(x) ∶ ℝ
n
→ ℝ

p are the two 
nonlinear, vector valued functions such that f (0, 0) = 0 
and g(0) = 0 . Also, the zero equilibrium, (calculated from 
0 = f (x, 0) ), is assumed to be locally exponentially stable.

Consider the following nonlinear exogenous (signal gen-
erator) system: 

(57a)E
dx(t)

dt
= f (x(t), u(t)), x(0) = x0

(57b)y(t) = g(x(t))

 where �(�) ∈ ℝ
r
→ ℝ

r and �(�) ∈ ℝ
r
→ ℝ

m are smooth 
mapping such that �(0) = 0 and �(0) = 0 . It is hereby 
assumed that the exogenous system Eq. (58) is observable 
(�,�, �0) , i.e., the output trajectories corresponding to any 
initial conditions do not coincide. Also, its is assumed that 
the point �0 is a stable equilibrium (in ordinary sense of Lya-
punov) such that inputs generated by such a system remain 
bounded. Furthermore, the input signal u(t) is assumed to 
be persistently exciting in time [99]. This implies that every 
point �o is Poisson stable, such that no trajectory can decay 
to zero as t → ∞ . When both the above conditions are met, 
we define the signal generator to be “neutrally stable” [99] 
i.e., if the output signal of such a signal generator is fed to 
the input of nonlinear system (57), the steady-state of output 
of such an interconnection is guaranteed to be well-defined. 
The signal generator thus essentially captures the require-
ment that one is interested in studying the the behavior of 
Eq. (57) only in specific circumstances. The interconnec-
tion of exogenous system (58) with nonlinear system (57) 
is given as: 

 The steady-state of such an interconnection is given as:

where the mapping v(�) is a local mapping defined in the 
neighborhood of � = 0 . Since the nonlinear system (57) is 
assumed to be exponentially stable, as such the transient 
solution decays exponentially, i.e., lim

t→∞
yh(t) = 0 , and 

yss(t) = g(v(�(t))) is the steady-state response of the inter-
connected system. Interconnecting the nonlinear system (57) 
with the signal generator (58) corresponds to exciting the 
nonlinear system with user-defined inputs.

In order to provide a generalized notion of moments for 
nonlinear systems, the following assumption is required 
(as provided in Ref. [17])

Assumption: The unique mapping v(�) solves the non-
linear Sylvester equation given as:

By the center manifold theory, the interconnected system 
(59) possesses a locally well-defined invariant manifold at 

(58a)�̇(t) = �(�(t)) �(0) = �0 ≠ 0

(58b)u(t) = �(�(t))

(59a)E
dx(t)

dt
= f (x(t),�(�(t))

(59b)y(t) = g(x(t))

(60)
y(t) = g�(x0 − v(�0))

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
yp(t)

+ gv(�(t))
⏟⏟⏟

yh(t)

(61)E
�v(�)

��
�(�) = f (v(�),�(�))
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(xeq, �eq = (0, 0)) , given as M = {(x, �) ∈ ℝ
n+r ∶ x = v(�)} 

where v(�) solves Eq. (61).

Definition 11  [16, 17] The moment of system (57) at �(�) is 
defined by function g(v(�)) under the aforesaid assumptions. 
Furthermore, the 0th nonlinear moment of system (57) at 
(�(�(t))),�(�(t)), �0) is related to the (locally well-defined) 
steady-state response yss(t) = g(v(�(t))) where the mapping 
v(�) solves the nonlinear Sylvester equation (61).

Theorem 12  [16, 17] The moments of the nonlinear sys-
tem (57) at (�(�),�(�), �0) coincide with the (well-defined) 
steady-state response of the output of the interconnected sys-
tem Eq. (59) when the aforesaid assumptions hold.

Thus, similar to linear systems, a nonlinear reduced 
model can be defined that achieves moment-matching with 
original system (57) at (�(�),�(�), �0).

Definition 12  [16, 17] A reduced-order model defined as: 

 of dimension r (r << n) matches moments with the full-
order system (57) at (�(�),�(�), �0) if the reduced nonlinear 
Sylvester equation given as:

(62a)Er

dxr(t)

dt
= fr(xr(t), u(t)), xr(0) = xr0

(62b)yr(t) = gr(xr(t))

is uniquely solved by (gr(�)) such that

Remark 7  Thus, moment-matching for nonlinear systems 
can be interpreted as the exact matching of the steady-state 
response of the FOM and ROM (cf. Fig. 2).

3.1.1 � Illustration of Nonlinear Moment‑Matching on MEMS 
Micro‑Switch Model

In order to illustrate the idea of nonlinear moment-matching 
based MOR, we examine the time-dependent, large-ampli-
tude dynamics of a highly nonlinear squeeze-film damp-
ing problem involving electrostatic, mechanical and fluidic 
components [121, 132, 138, 184]. This nonlinear benchmark 
model is used as a pressure sensor due to its extreme sen-
sitivity to surrounding atmospheric conditions [103, 172, 
185]. A finite-difference discretization scheme with M points 
along the length and N points for the width yields a system 
of nonlinear ODE of the form as Eq.  (57) with dimension 
(2 +M)N  . The test signal (input excitation) is chosen as 
utest = (3 cos(2�t) + 7 cos(0.5�t))2 with � = 2� × 1e4 and 
the output is taken as the center-point deflection of the beam. 
The full-order model of size n = 374 is integrated using an 
implicit Euler’s scheme, which resulted in a simulation 
time of 287.17 s. The reduced-order model of size r = 15 is 

(63)Er

�vr(�)

��
�(�) = fr(vr(�),�(�))

(64)g(v(�)) = gr(vr(�))

gr(vr(ζ))g(v(ζ))

FOM ROM

Exogenous System/ Nonlinear-Signal Generator

ζ̇(t) = �(ζ(t))
u(t) = �(ζ(t))

Eẋ(t) = f(x(t),u(t))
y(t) = g(x(t))

Erẋ(t) = fr(xr(t),u(t))
yr(t) = gr(xr(t))

E
∂v(ζ)
∂ζ

�(ζ) = f(v(ζ),�(ζ)) Er
∂vr(ζ)
∂ζ

�(ζ) = fr(vr(ζ),�(ζ))

Moments ⇔ Steady-State Moments ⇔ Steady-State

=

Fig. 2   Time-domain illustration of nonlinear moment-matching in terms of steady-state response matching between FOM and ROM
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constructed using the scheme proposed in Ref. [176] which 
involves solving a simplified version of Sylvester equation 
(61). The signal generated used in training phase is chosen 
as �̇(t) = 16.5 sin(𝜋t) + 11e3 whereas the test signal is kept 
the same. Figure 3 shows the full-order and the reduced-
order systems’ response along-with the relative error-profile. 
It is seen that the reduced-order model effectively captures 
the oscillatory dynamics of the original system with a simu-
lation time of 8.31 s.

Unlike linear-moment, where the interpolation points 
are implicitly/explicitly defined in the frequency range of 
interest, nonlinear moment-matching involves matching/
interpolating the steady-state of FOM and ROM when both 
are excited by user-defined signal generator(s). For a more 
detailed analysis of choosing the appropriate signal genera-
tor for a system at hand and the numerical aspects involved, 
we refer the reader to Ref. [176].

3.2 � Other Nonlinear MOR Methods

Besides the time-domain moment-matching method for 
nonlinear systems described above, there are other reduc-
tion schemes that use the Krylov subspaces to obtain the 
projection basis. One of the most simplest is the quadratic 
method [51] or the more accurate bilinearazation method 
by Bai et al. [22, 143]. These methods are the extension of 
linear moment-matching methods and fall in the category 
of frequency domain MOR methods. These methods either 
approximate the underlying nonlinearity by a polynomial of 
low degree [22, 51, 64, 143, 144] or transform into quadratic 
bilinear system [35, 86, 87]. Furthermore, there exist cer-
tain methods which involve efficient estimation of nonlinear 
function f (.) such as the empirical interpolation method by 
Barrault et al. [26] or the discrete empirical interpolation 
method by Chaturantabut and Sorensen [50], the best point 
interpolation method by Nguyen et al. [134] and the missing 
point estimate by Astrid et al. [19]. Here we discuss some 
effective methods of practice.

3.2.1 � Quadratic Method

Proposed by Chen [51], this method approximates the non-
linear function f (.) as a kronecker product formulation of x , 
which is given as:

where the matrices Ai ∈ ℝ
n×n denote ith partial derivative of 

f  at x = 0 . The quadratic system thus obtained is given as:

The projection matrix V , in this method, is obtained as the 
basis of the Krylov subspace given as:

and the reduced quadratic model is obtained by using the 
one-sided approximation ansatz x ≈ Vxr in Eq. (66) given 
as:

It is assumed that f (0) = 0 otherwise is taken as a part of 
input signal.

(65)
f (x(t)) =f (0) + A1x(t) + A2(x(t)⊗ x(t))

+ A3(x(t)⊗ x(t)⊗ x(t)) +⋯

(66)
ẋ(t) = f (0) + A1x(t) + A2(x(t)⊗ x(t)) + Bu(t)

y(t) = Cx(t)

(67)colspan(V) = Kr(A1
−1,A1

−1B)

(68)

ẋr(t) = VTA1Vxr(t) + VTA2(Vxr(t)⊗ Vxr(t))

+ VTBu(t)

y(t) = CVxr(t)

(a)

(b)

Fig. 3   a Comparison of the output responses of FOM and ROM for 
the MEMS model, b error profile of the reduced model
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3.2.2 � Bilinearization Method

Based on Carleman linearization of a nonlinear systems 
[159], the bilinear form was proposed in Refs. [22, 143]. 
This involves the use of first two terms of the series in 
Eq. (65) so as to approximate the nonlinear function as:

As such the bilinear, input-affine system is obtained as 
follows: 

 where x⊗ =

[
x(t)

x(t)⊗ x(t)

]
, A⊗ =

[
A1 A2

0 A1 ⊗ I + I⊗ A1

]
 

N⊗ =

[
0 0

B⊗ I + I⊗ B 0

]
,B⊗ =

[
B

0

]
,CT

⊗ =

[
CT

0

]
 After 

transforming the nonlinear system to bilinear form Eq. (69), 
there are several choices of calculating the projection basis. 
One particular choice was proposed in Ref. [143]. It was 
shown that after constructing a series of Krylov subspaces 
for given r1, r2,… , rK , as follows:

and

for 1 < k < K , the matrix V is calculated by taking the union 
of all the subspaces spanned by columns of Vk , i.e.,

Another choice of transformation matrix V was proposed 
in Ref. [22], which matches as many multimoments as the 
reduced model and is given as:

and for k > 1

and the final transformation matrix V is constructed in a 
similar fashion, i.e.,

f (x(t)) ≈ f (0) + A1x(t) + A2(x(t)⊗ x(t))

(69a)ẋ⊗(t) = A⊗x⊗ + N⊗x⊗u(t) + B⊗u(t)

(69b)y(t) = C⊗x⊗

(70)colspace(V1) = Kr1
(A−1

⊗
,B⊗)

(71)colspace(Vk) = Krk
(A−1

⊗
,N⊗Vk−1)

(72)colspan(V) =

K⋃
k=1

{Vk}

(73)colspace(V1) = Kr1
(A−1

⊗
,A−1

⊗
B⊗)

(74)colspace(Vk) = Krk
(A−1

⊗
,A−1

⊗
N⊗Vk−1)

(75)colspan(V) =

K⋃
k=1

{Vk}

After constructing the matrix V , the reduced bilinear system 
is then obtained by using the approximation x⊗ = Vx̂⊗ in 
system (69) given as: 

 where  x⊗ = Vx̂⊗  ,  Â⊗ = (VTA⊗V), N̂⊗ = VTN⊗V  , 
B̂⊗ = VTB⊗ and Ĉ⊗ = CV⊗.

Another way of reducing bilinear systems is the balanced 
truncation (BT) for bilinear system method originally devel-
oped by Achar and Nakhla [2], later developed by Condon 
and Ivanov [126] and by Benner et al. [37]. This method is 
similar to standard BT method for linear systems. Although, 
this method outperforms moment-matching methods in terms 
of approximating quality, it involves solving the generalized 
Lyapunov equation which is computationally demanding.

3.2.3 � Trajectory Piecewise Linear (TPWL) Method

TPWL method replaces the polynomial approximation of 
the nonlinear system with a piece-wise approximation. This 
method offers more robustness when dealing with strong 
nonlinearities. The idea is to linearize the nonlinear function 
f (.) at a number of linearization points xi(i = 0, 1,… , l) in 
response to some training input. The nonlinear function f (.) is 
then approximated by the weighted sum of these linear models 
i.e., f (x(t)) ≈

∑l

i=0
wi(f (xi) + Ai(x(t) − xi)) and the original 

system is represented as:

where wi, i = 0, 1,… , l is a vector of weights and Ai is the 
Jacobian matrix of f (.) at xi . The projection matrix V , in 
this case, is obtained as orthonormal basis of the following 
Krylov subspace which spans the reduced state-space.

The reduction is then performed by using the approximation 
ansatz x(t) = Vxr(t) in Eq. (77).

(76a)̇̂x⊗(t) = Â⊗x̂⊗ + N̂⊗x̂⊗u(t) + B̂⊗u(t)

(76b)y(t) = Ĉ⊗x̂⊗

(77)

ẋ(t) =

l∑
i=0

wi(x(t))f (xi)

+

l∑
i=0

wi(x(t))Ai(x(t) − xi)) + Bu(t)

y(t) = Cx(t)

(78)colspan(V) = span{A−1
0
B,… ,A

−(r−1)

0
B}
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Here, the weights w̃ depend on xr and can be computed 
using the information about the distances ||xr − xri|| of the 
(projected) linearization points VTxi from the current state 
xr . An error bound for TPWL was proposed in Ref. [154] 
along-with some discussion on stability and passivity pres-
ervation. A down-side of this method, however, is the choice 
of an appropriate training input. The reduced model loses 
accuracy if the training inputs are chosen far away from the 
actual inputs. This happens because the computed trajectory 
departs from the actual behavior of the state vector x(t).

In continuation with this, a polynomial piece-wise 
approximation was proposed by Dong and Roychowdhury 
[55] instead of a linear piece-wise approximation for each 
piece. Similar ideas later emerged in various studies such as 
in Refs. [177]. A more detailed review on piece-wise linear-
zation based reduction methods can be found in Ref. [95].

3.3 � Issues in Nonlinear MOR

Although nonlinear MOR methods have seen a prominent 
success, there are still some unresolved queries/issues, which 
are enlisted as follows: 

1.	 A common issue among all nonlinear reduction meth-
ods is the lack of practical global error bounds for the 
reduced-order model.

2.	 Nonlinear moment-matching based MOR method pre-
sented in Refs. [15–18] involves the a priori solution of 
the nonlinear, state-dependent, Sylvester-like PDE (61) 
which is computationally expensive.

3.	 The choice of the signal generator in NLMM [176] is 
heuristic and requires repeated simulations.

4.	 There is no a priori knowledge of acceptable training 
inputs and linearization points in the TPWL method.

5.	 An optimal choice for the number of multi-moments in 
the bilinearization methods is not known.

4 � Concluding Remarks

The idea of automatically extracting reduced-order models 
from large-scale dynamical systems is a central challenge. 
By and large, reduced-order modeling via moment-matching 
techniques for linear systems is relatively well explored, and 
a suite of efficient algorithms is available at our disposal. 

ẋr(t) =

(
l∑

i=0

VTAiVw̃i(xr(t))

)
xr(t)

+

l∑
i=0

VT (f (xi − Aixi)w̃i(xr(t)) + VTBu(t)

y(t) = CVxr(t)

However, constructing optimal approximations of the large-
scale models while preserving passivity or stability remains 
elusive. Furthermore, the systems arising while modeling 
complex fluids or in the simulation of electronics circuits 
are inherently nonlinear. Thus, employing nonlinear reduc-
tion techniques directly to these systems is desirable. The 
nonlinear model order reduction area though witnessed 
some notable achievements in the past few years, however 
certain issues (as discussed) remain challenging. Moment-
matching-based MOR methods have seen a long history. 
Numerous modifications/advancements have appeared from 
time to time to make this technique a more robust platform 
for treating problems in large-scale settings. Some of these 
modifications are currently a work in progress, whereas oth-
ers are yet to happen.

In this survey, we have reviewed the model order reduc-
tion problem from the moment-matching perspective. Both 
frequency and time-domain notions of the moment-matching 
technique are discussed. We have pointed out the differences 
and similarities among various methods. Several open prob-
lems are also exposed in the case of linear and nonlinear 
reduction methods.
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