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Abstract
As an interdisciplinary between quantum computing and image processing, quantum image processing provides more pos-
sibilities for image processing due to the powerful parallel computing capabilities of quantum computers. In recent years, 
quantum image processing attracts more and more researcher’s attention. In order to allow researchers to better understand 
quantum image processing technology, we have reviewed relevant literature in recent years in the paper. First, the background 
and mathematical concepts of quantum computing are introduced. Then, the research progress of quantum image processing 
is sorted out and summarized in the fileds of quantum image representation, geometric transformation, image encryption, 
edge detection, image segmentation, filtering and compression. Finally, we have discussed the advantages and disadvantages 
of quantum image processing, and pointed out the potential future research.

1  Introduction

In the past few decades, the computing power of electronic 
computers has increased exponentially in accordance with 
Moore’s Law [1]. However, due to the limitations of many 
objective factors, the computing power of single-core CPUs 
has not increased significantly in recent years. Therefore, 
it is necessary to explore other ways to increase comput-
ing power. In 1982, Feynman proposed a new computing 
model, named quantum computer, which is based on quan-
tum mechanics and can use the superposition and entangle-
ment characteristics of quantum mechanics to store, process 
and transmit information, and its computing power is much 
higher than classical computer [2]. In 1994, Shor proposed 
a quantum algorithm for prime factor decomposition [3], 
and in 1996, after Grover proposed a quantum search algo-
rithm [4], the computing power of quantum computers was 
proved, and quantum computing began to be paid more and 

more attention, and appeared in various fields of computer 
science.

In order to solve the problem of image processing on 
quantum computers, classical image processing algorithms 
are accelerated by quantum computing, and quantum image 
processing algorithms are gradually emerging.

Digital image processing is an important part of infor-
mation science and the core program of many applications. 
Image processing algorithms have the characteristics of 
many parallel operations. In classical algorithms, a large 
number of operations are required. In recent years, with the 
rapid development of pattern recognition, image understand-
ing, and image sensors, the number of images has become 
more and more, and the size of images has increased, the 
algorithms become more and more complex. It makes clas-
sical image processing algorithms often require a lot of 
time, and the hardware requirements of image processing 
algorithms are gradually increasing. Therefore, it is neces-
sary to find high-performance methods to store and process 
these images. Unlike classical image processing, quantum 
computers store images in qubits. Utilizing the superposition 
state and entangled state of quantum, quantum computers 
have good parallel processing capabilities. The complex-
ity of storing n-bit long sequences on a classical computer 
requires O(n × 2n) , but only O(n) on a quantum computer. 
When performing operations on sequences, such as bitwise 
inversion, classical computers need to calculate sequentially, 
with a complexity of O(2n) , or a large number of repeated 
arithmetic circuits, and quantum computers can operate 
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on each bit at the same time. Only O(1) is needed, which 
is helping to speed up image processing algorithms with 
many parallel calculations. The space required to store the 
image and the circuit scale required to process the image are 
greatly reduced, so the efficiency of the algorithm is greatly 
improved.

Quantum image processing roughly requires three parts. 
The digital image is represented on a quantum computer, 
and then the image is processed on the quantum computer 
using a quantum algorithm, and finally the processed quan-
tum image is converted into a classical image. To process 
images on a quantum computer, the images need to be stored 
in a quantum system. In order to solve such problems, many 
quantum image representation methods have been proposed. 
First of all, in 2003, the Qubit Lattice representation method 
was proposed [5], which is similar to the classical method 
that treats the image as a matrix, and each qubit stores only 
one pixel. It is the first attempt at quantum image representa-
tion, which is closer to the classical way, but it does not use 
quantum superposition and is more complex. In 2005, Real 
Ket’s representation method was proposed [6], which used 
quantum superposition state for the first time.

The entangled image model proposed in 2010 uses the 
entangled state [7]. In the same year, a flexible represen-
tation of quantum images (FRQI) was proposed [8], which 
represented grayscale information as an angle, stored in the 
probability amplitude of a qubit, used n qubits to represent 
the pixel number of a square image, and represented the gray-
scale qubits are entangled with them so that the coordinates 
correspond to the grayscale. The multi-channel representa-
tion for quantum images (MCRQI), which extends it to RGB, 
was proposed the following year [9]. This method makes full 
use of quantum superposition and entanglement, and can 
perform the same operation on all pixels at the same time, 
thereby solving the real-time calculation problem in image 
processing applications. Since then, many image processing 
algorithms have also been proposed based on it. However, 
FRQI only uses one qubit to store the grayscale information 
of each pixel in the image, so some complex color operations 
are not easy to perform on the basis of FRQI. The novel 
enhanced quantum representation (NEQR) [10], which was 
proposed in 2013, uses eight qubits to represent grayscale 
information. It stores the grayscale information in an eight-
bit binary format in the qubit sequence. Although the use 
of qubits is increased, it solves the disadvantage that FRQI 
grayscale information cannot be accurately measured within 
a limited number of times, and facilitates color operations. 
It has also become a more widely used image representa-
tion model in quantum image processing. Since then, more 
improvements have also been proposed. On the basis of these 
image representation methods, many quantum image pro-
cessing algorithms have been proposed. Quantum versions 
of some classical image algorithms are proposed. Compared 

with their classical versions, they have an exponential reduc-
tion in complexity. Many algorithms have been proposed for 
image translation, image scaling, morphological transforma-
tion, edge detection, image encryption, watermarking, filter-
ing, compression, and more complex image matching and 
quantum machine learning.

Quantum computing can bring huge space savings and 
speed improvements to digital image processing. Quantum 
image processing is an emerging field that still needs to be 
developed and supplemented. With the gradual advancement 
of quantum computers, the need for quantum image process-
ing is becoming more and more urgent. With the efforts of 
researchers, it is believed that more representation methods 
and processing algorithms will be proposed.

The remaining part of the paper proceeds as follows. A 
brief introduction to basic concepts is provided in Sect. 2. 
And the survey will review the methods related to quantum 
image representation in Sect. 3; geometric transformation 
and morphological transformation in Sect. 4; quantum image 
protection in Sect. 5; edge detection and image segmentation 
in Sect. 6; similarity analyses and image matching in Sect. 7; 
quantum image filtering and compression in Sect. 8; quan-
tum machine learning in Sect. 9. And other algorithms will 
be reviewed in Sect. 10. An analysis of possible future work 
is presented in Sect. 11. Finally, we conclude in Sect. 12.

2 � Basic Concepts

2.1 � Vector

In quantum computing, we pay attention to the state of quan-
tum. A quantum state can be represented by a vector in Hil-
bert space. The standard quantum mechanical notation for a 
vector in Hilbert space is as follows:

where the symbol �⋅⟩ is called Dirac symbol, which is a 
standard symbol of state in quantum mechanics, used to 
indicate that an object is a vector. � is the label of the vec-
tor. ��⟩ is called ket, and the corresponding bra is ⟨�� , which 
is the conjugate transpose of the ket.

2.2 � Tensor Product

The tensor product is a way to put vector spaces together to 
form a larger vector space. It satisfies the following basic 
properties: 

(1)��⟩ =
⎡⎢⎢⎢⎣

�1
�2
⋮

�n

⎤⎥⎥⎥⎦
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(1)	 For any scalar z, any element �v⟩ in V space, any element 
�w⟩ in W space 

(2)	 For any �v1⟩ and �v2⟩ in V space, any �w⟩ in W space 

(3)	 For any �v⟩ in V space, any �w1⟩ and �w2⟩ in W space 

Assuming that A is a m × n matrix and B is a p × q matrix, 
then A⊗ B is shown in Eq.5

In addition, A⊗k means that matrix A has done k tensor prod-
uct operations on itself.

2.3 � Qubit

Bit is the basic concept of classical computing. Quantum com-
puting is based on a similar concept, namely qubit. In most 
cases, qubits are treated as abstract mathematical objects. In 
this way, the theory of quantum computing can be constructed 
freely, without relying on specific systems for implementation.

A classical bit has two states, 0 and 1. The two possible 
states of a qubit are �0⟩ and �1⟩ , which correspond to states 0 
and 1 of the classical bit. The difference between a bit and a 
qubit is that a qubit can be in a state other than �0⟩ or �1⟩ . It 
can exist in the continuous state between �0⟩ and �1⟩ . Called 
superposition state:

where, � and � are called probability amplitudes. The state 
of a qubit is a vector in a two-dimensional complex vector 
space. The states �0⟩ and �1⟩ are called calculation base states, 
and constitute a set of orthonormal basis of this vector space.

When measuring the superposition state ��⟩ , only one 
component state can be gotten and other states disappear. The 
probability of �0⟩ being measured is |�|2 , the probability of �1⟩ 
being measured is |�|2 . And:

In quantum computing, �0⟩ and �1⟩ are usually expressed as:

(2)z(�v⟩⊗ �v⟩) = (z�v⟩)⊗ �w⟩ = �v⟩⊗ (z�w⟩)

(3)(�v1⟩ + �v2⟩)⊗ �w⟩ = �v1⟩⊗ �w⟩ + �v2⟩⊗ �w⟩

(4)�v⟩⊗ (�w1⟩ + �w2⟩) = �v⟩⊗ �w1⟩ + �v⟩⊗ �w2⟩)

(5)A⊗ B ≡

⎡⎢⎢⎢⎣

A11B A12B … A1nB

A21B A22B … A2nB

⋮ ⋮ ⋱ ⋮

Am1B Am2B … AmnB

⎤⎥⎥⎥⎦

(6)��⟩ = ��0⟩ + ��1⟩

(7)|�|2 + |�|2 = 1

(8)�0⟩ =
�
1

0

�
, �1⟩ =

�
0

1

�

Suppose there are two qubits. A two-qubit system has four 
calculation ground states, which are �00⟩ , �01⟩ , �10⟩ , and �11⟩ . 
A pair of qubits can exist in the superposition of these four 
states, so the state vector describing the two qubits is

where �x is the probability amplitude corresponding to state 
�x⟩ and satisfies:

Similar to the case for a single qubit, for a two qubit system:

There is a special case called entanglement. For example, 
two two-quantum states ��1⟩ and ��2⟩ are shown below.

In ��1⟩ , if the first quantum is in state �0⟩ , the second quan-
tum also is in state �0⟩ ; if the first quantum is in state �1⟩ , the 
second quantum also is in state �1⟩ . They entangle togther. 
But in ��2⟩ , the first quantum is in state �1⟩ , the second quan-
tum also is in state (�2�0⟩ + �2�1⟩).

(9)��⟩ =��0⟩ + ��1⟩ =
�
�

�

�

(10)��⟩ = �00�00⟩ + �01�01⟩�10�10⟩�11�11⟩

(11)|�00|2 + |�01|2 + |�10|2 + |�11|2 = 1

(12)�00⟩ =�0⟩⊗ �0⟩ =
�
1

0

�
⊗

�
1

0

�
=

⎡⎢⎢⎢⎣

1 ×

�
1

0

�

0 ×

�
1

0

�
⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1

0

0

0

⎤⎥⎥⎥⎦

(13)�01⟩ =�0⟩⊗ �1⟩ =
�
1

0

�
⊗

�
0

1

�
=

⎡⎢⎢⎢⎣

1 ×

�
0

1

�

0 ×

�
0

1

�
⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

0

1

0

0

⎤⎥⎥⎥⎦

(14)�10⟩ =�1⟩⊗ �0⟩ =
�
0

1

�
⊗

�
1

0

�
=

⎡⎢⎢⎢⎣

0 ×

�
1

0

�

1 ×

�
1

0

�
⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

0

0

1

0

⎤⎥⎥⎥⎦

(15)�11⟩ =�1⟩⊗ �1⟩ =
�
0

1

�
⊗

�
0

1

�
=

⎡⎢⎢⎢⎣

0 ×

�
0

1

�

1 ×

�
0

1

�
⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎦

(16)��1⟩ = �1�00⟩ + �1�11⟩

(17)|�1|2 + |�1|2 = 1

(18)�𝜓2⟩ = 𝛼2�10⟩ + 𝛽2�11⟩ = �1⟩⊗ (𝛼2�0⟩ + 𝛽2�1⟩)

(19)|�2|2 + |�2|2 = 1
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2.4 � Gate and Circuit

Similar to logic gates in classical digital circuits, logic 
gates are also used in quantum circuits to manipulate 
information, and logical transformations are achieved by 
unitary transformations of quantum states. The quantum 
gate can be represented in matrix form.

A quantum logic gate that only requires one qubit to 
participate is called a single quantum gate. As shown in 
the Fig. 1, the horizontal line represents a wire, which 
represents a qubit, and U represents a single quantum gate. 
Input a qubit ��⟩ and output U��⟩.

Expressed in matrix form:

Table 1 shows the commonly used single quantum gates. 
Hadamard gate:

If applying it to �0⟩ or �1⟩:

Therefore, the H gate has the ability to convert �0⟩ into a 
superposition state with equal probability of �0⟩ and �1⟩.

Pauli-X:

It can flip the state of a single qubit, so it is also called a 
NOT gate:

Corresponding to a single quantum gate, there are also gates 
that require multiple qubits to participate. As shown in the 

(20)��⟩ =
�
�

�

�
,U =

�
a b

c d

�

(21)U��⟩ =
�
a b

c d

� �
�

�

�
=

�
a� + b�

c� + d�

�

(22)H =
1√
2

�
1 1

1 −1

�

(23)

H�0⟩ = 1√
2

�
1 1

1 −1

� �
1

0

�
=

1√
2

�
1

1

�
=

1√
2
�0⟩ + 1√

2
�1⟩

(24)

H�1⟩ = 1√
2

�
1 1

1 −1

� �
0

1

�
=

1√
2

�
1

−1

�
=

1√
2
�0⟩ − 1√

2
�1⟩

(25)X =

[
0 1

1 0

]

(26)NOT =

[
0 1

1 0

]

Table 2, there are commonly used multiple quantum gates. 
When multiple qubits participate, there is a relationship 
between control and being controlled, such as CNOT gate.

(27)CNOT =

⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦

Fig. 1   Single quantum gate |ψ〉 U U |ψ〉

Table 1   Commonly used single quantum gates

Gate type Circuit Matrix

Hadamard  H  H =
1√
2

�
1 1

1 −1

�

Pauli-X  X  X =

[
0 1

1 0

]

NOT   
NOT =

[
0 1

1 0

]

Pauli-Y  Y  Y =

[
0 −i

i 0

]

Pauli-Z  Z  Z =

[
1 0

0 −1

]

Phase  S  S =

[
1 0

0 i

]

Identity  I  I =

[
1 0

0 1

]

Table 2   Commonly used multiple quantum gates

Gate type Circuit Matrix

CNOT
 

•
 CNOT =

⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦
0CNOT

  
0CNOT =

⎡⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
Swap

 
×
×

 swap =

⎡⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦
Toffoli

 

•
•

 

Toffoli =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦



741Review of Quantum Image Processing﻿	

1 3

The first qubit is a control qubit, and the second qubit is 
controlled by the first qubit and is called a target qubit. When 
the first qubit is �1⟩ , the second qubit is reversed. As shown 
in Eqs.(28-31):

Such properties can be used to implement XOR operations.
On the contrary, there are also 0CNOT gates:

If the control qubits of the CNOT gate are increased to two, 
this kind of gate is called Toffoli gate. If the number of con-
trol qubits continues to increase to n, it is called an n-CNOT 
gate.

In addition, there is a swap gate that can exchange the states 
of two qubits:

2.5 � Quantum Fourier Transform

The quantum Fourier transform is defined as a linear transfor-
mation on n qubits [11], and its mapping is as follows

(28)CNOT�00⟩ =
⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

1

0

0

0

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1

0

0

0

⎤⎥⎥⎥⎦
= �00⟩

(29)CNOT�01⟩ =
⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

0

1

0

0

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

0

1

0

0

⎤⎥⎥⎥⎦
= �01⟩

(30)CNOT�10⟩ =
⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

0

0

1

0

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎦
= �11⟩

(31)CNOT�11⟩ =
⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

0

0

1

0

⎤⎥⎥⎥⎦
= �10⟩

(32)0CNOT =

⎡⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

(33)swap =

⎡⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦

(34)�F⟩ ⟶ 1√
2n

2n−1�
f=0

e2�jfF∕2
n �f ⟩, j =

√
−1

The inverse transformation mapping relationship is

Express F = F12
n−1 + F22

n−2 +⋯ + Fn2
0 as F = F1F2 ⋯Fn , 

a n d  ex p r e s s  F�∕2 + F�+1∕2
2 +⋯ + Fm∕2

m−�+1 a s 
0.F�F�+1 ⋯Fm , then the quantum Fourier transform of 
�F⟩ = �F1F2 ⋯Fn⟩ is expressed as:

3 � Quantum Image Representations

To process images on quantum computers, the images need 
to be stored in a quantum system. For this reason, various 
quantum image representations have been proposed. First 
in 2003, Qubit Lattice was proposed [5], similar to the 
classical approach, the image is stored as a matrix, each 
qubit stores only one pixel. It is the first attempt at quan-
tum image representations. In 2005, Real Ket was pro-
posed [6], which used quantum superposition for the first 
time. Entangled image proposed in 2010 uses quantum 
entanglement [7]. In the same year, FRQI was proposed by 
Le et al. [8], it stores the color information as an angle, and 
stores the coordinate information in an n-qubit sequence. 
This model represents the image as follows:

where �i⟩(i = 0, 1,⋯ , 22n − 1) are 22n computational basis 
quantum states, and � = (�0, �1,⋯ , �22n−1) is the vector of 
angles encoding colors. Gray scale information is encoded 
with cos �i�0⟩ + sin �i�1⟩ , and coordinate information is 
expressed with �i⟩ . This allows the grayscale information 
and coordinate information to correspond accurately. The 
superposition of each pixel information reduces the use of 
storage space.

The following year, Sun et al. [9] extended it to the 
RGB space and MCRQI was proposed. Three qubits are 
used to store RGB color information and opacity informa-
tion. Represent the image as:

(35)�f ⟩ ⟶ 1√
2n

2n−1�
F=0

e−2�jfF∕2
n �F⟩

(36)

�F1F2 ⋯Fn⟩ → 1

2n∕2

��0⟩ + e2�j0.Fn �1⟩�

⋅
��0⟩ + e2�j0.Fn−1Fn �1⟩�⋯

⋅
��0⟩ + e2�j0.F1F2⋯Fn �1⟩�

(37)�I(𝜃)⟩ = 1

2n

22n−1�
i=0

�
cos 𝜃i�0⟩ + sin 𝜃i�1⟩

�
⊗ �i⟩

(38)�i ∈ [0,
�

2
], i = 0, 1,⋯ , 22n − 1
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where �Ri, �Gi, �Bi, ��i are the vectors encoding the colors of 
the R,G,B and � channels respectively. In a 2n × 2n image, 
the color information is encoded with the probability ampli-
tude of three qubits, and the coordinate information is rep-
resented with 2n qubits.

FRQI uses a normalized superposition to store all the 
pixels in an image, the same operations can be performed 
simultaneously on all pixels, and therefore FRQI can resolve 
the real-time computation problem of image-processing 
applications. Since then, many image processing algorithms 
have been proposed based on it. However, because FRQI 
uses only a single qubit to store the gray-scale information 
for each pixel in an image, some complex color operations 
cannot be done easily on the basis of FRQI. The NEQR pro-
posed in 2013 uses two entangled qubit sequences to store 
the grayscale and position information, and stores the whole 
image in the superposition of the two qubit sequences. It 
stores the grayscale information in binary form in q qubits 
[10]. Because it binary encodes grayscale, this model is more 
convenient to use. The range 2q binary grayscale information 
is stored in a q-qubit sequence, and the coordinate informa-
tion of the 2n × 2n image is stored in a 2n-qubit sequence. 
The expression for a quantum image can be written as:

In the preparation procedure for NEQR, the first step is to 
prepare q + 2n qubits in �0⟩ , and apply I-gates and H-gates to 
the initial state. Then, set the gray-scale value for all pixels 
by 2n-CNOT gates. For example, when preparing a gray-
scale image with a size of 2 × 2 as shown in Fig. 2 into 
NEQR model. First apply the H-gate to two of the ten �0⟩ 
qubits to store the coordinate information, and then use the 
2-CNOT gate to set the grayscale information in turn. The 
circuit is shown in Fig. 3.

Although more qubits are used, NEQR solves the problem 
that the FRQI grayscale information cannot be accurately 
measured within a limited number of times, and it facili-
tates color operations. It has also become a more commonly 
used model in quantum image processing. Unfortunately, 
these models have a disadvantage that they can only store 
square images. To solve this problem, The improved novel 
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enhanced quantum representation (INEQR) changed the 
horizontal and vertical coordinates to unequal lengths [12]. 
The generalized quantum image representation (GQIR) uses 
logarithmic coordinates to the point of being able to repre-
sent rectangular images of arbitrary size [13], but this inevi-
tably leads to redundancy. In addition, The novel quantum 
representation for log-polar images (QUALPI) realizes the 
representation of polar coordinates [14]. In 2014, Li et al. 
proposed a new representation method for multidimensional 
color images, called n-qubit normal arbitrary superposition 
state (NASS). They store grayscale in angles and use states 
to represent multiple dimensions. For the first time on a 
quantum computer to achieve a multi-dimensional color 
image compression [15]. In 2016, Li et al. [16] improved 
the FRQI, a flexible representation for quantum color image 
(FRQCI) is proposed. This model uses probabilistic ampli-
tude (Eqs. 42–45) or phase (Eqs. 46–47) to store the RGB 
information of the pixels.

In the same year, Sang et al. [17] improved MCRQI and 
NEQR and proposed a novel quantum representation of 
color digital images (NCQI). This model changes the q 
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Fig. 2   The original image
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qubits representing gray scale to 3q on the basis of NEQR, 
which is used to represent the three channels of RGB. The 
time complexity of preparing the NCQI quantum image 
experiences an approximately quadratic decrease compared 
to MCRQI, and many color operations can be executed con-
veniently based on NCQI, especially some complex color 
transformation. But this model has the disadvantage of using 
too many qubits. In order to solve this drawback, in 2018, 
Liu et al proposed an optimized quantum representation for 
color digital images (OCQR) [18]. Compared with NCQI, 
OCQR uses nearly one-third times the qubits to store the 
pixel value. The time complexity of preparing these two 
models are almost the same. Not only does OCQR use fewer 
qubits to save computing resources, but it also allows some 
color transformations to be performed more efficiently. In 
2017 Abdolmaleky et al. [19] expanded NEQR to RGB, a 
new quantum multi-channel Red–Green–Blue (RGB) repre-
sentation (QMCR) is proposed. This model uses more qubits 
than MCRQI, but reduces the complexity of preparation 
procedure and can accurately retrieve images. Jiang et al. 
[20] proposed a three-dimensional quantum representation 
for digital images, named quantum point cloud. This model 
stores 3D images as:

where, i is the counting number, xi, yi, zi are the three dimen-
sional coordinates.
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In 2018, Li et al. [21] proposed a bitplane representation 
of quantum images (BRQI), and based on BRQI proposed 
complement of colors, reverse of bitplanes, and translation 
of bitplanes based on BRQI. This model improves NEQR, 
divides the gray value into 8 binary bits, decompose the 
grayscale image into 8 binary images. Three qubits are used 
to represent the number of the bitplanes, n qubits are used to 
represent the coordinate information, and one qubit is used 
to store the binary grayscale information of each bitplane.

When representing grayscale images:

where �x⟩ and �y⟩ represent coordinates, �l⟩ represents the 
number of the bitplanes, �g(x, y)⟩ represents the gray level at 
this coordinate of the bitplane.

When representing RGB images:

(50)�� 8
B
⟩ = 1√

2n+3

23−1�
l=0

2n−k−1�
x=0

2k−1�
y=0

�g(x, y)⟩�x⟩�y⟩�l⟩

(51)��R
B
⟩ = 1√

2n+3

23−1�
l=0

2n−k−1�
x=0

2k−1�
y=0

�gR(x, y)⟩�x⟩�y⟩�l⟩

(52)��G
B
⟩ = 1√

2n+3

23−1�
l=0

2n−k−1�
x=0

2k−1�
y=0

�gG(x, y)⟩�x⟩�y⟩�l⟩

(53)��B
B
⟩ = 1√

2n+3

23−1�
l=0

2n−k−1�
x=0

2k−1�
y=0

�gB(x, y)⟩�x⟩�y⟩�l⟩

Fig. 3   Quantum circuit for 
NEQR preparation [10]
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The preparation procedure for BRQI is similar to the NEQR. 
BRQI requires n + 4 qubits with a state of �0⟩ . First apply 
Hadamard gates to �x⟩ , �y⟩ and �l⟩ , then use (n + 3)−CNOT 
gates to operate on each pixel.

When preparing RGB images, as shown in Fig. 4. Two 
qubits are added to distinguish the three planes of R, G, 
and B, �01⟩ represents R, �10⟩ represents G, and �11⟩ rep-
resents B. The Rx[arctan(

√
2)] gate and the 0CNOT gate 

and the controlled H gate set the probabilities of the three 
states of �01⟩ and �10⟩ and �11⟩ to be equal. URUGUB is com-
posed of (n + 3)−CNOT gates, which are used to operate 
the color information of the RGB plane. Compared with 
NEQR and NCQI, this model can reduce the qubits of stored 
images. When performing some special image processing 
algorithms, such as inverting and operating on the entire 
bitplane, it can greatly reduce the complexity. Compared 
with NEQR and INEQR, the storage capacity of BRQI 
improves 16 times. For color images, compared with NCQI, 
it omproves 218 times.

Coincidentally, Wang et al. [22] also utilized a bitplane in 
the quantum representation model of color digital images in 
2019, called QRCI, where the color information is encoded 
by the basis states of qubit sequences.

QRCI model utilizes 2n + 6 qubits to store a color digi-
tal image with size 2n × 2n . Compared with the existing 
NCQI representation model, the storage capacity of QRCI 
improves 218 times. Compared with the way of storing RGB 
separately in BRQI, fewer qubits are used and the prepara-
tion procedure is more concise. In 2018, in order to solve 
the storage of multi-spectral images on quantum computers, 
Sahin et al. [23] proposed quantum representation of multi-
wavelength images (QRMW). This model uses a quantum 
sequence to specifically store the channel number.
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The number of qubits used in MCQI model is less than 
in the QRMW model for fewer channels. However, as the 
number of channels increases, the number of qubits used in 
the QRMW model is less than in the MCQI models, more 
suitable for multi-spectral images with a large number of 
channels. Li et al. [24] proposed an improved FRQI model 
called the improved FRQI model of representing the color 
image (FRQCI), and provided several simple image process-
ing operators for color and pixel position.

In 2019, after analyzing FRQI and NEQR, Khan pro-
posed an improved flexible representation of quantum 
images (IFRQI) [25], which expressed each two bits as an 
angle in the probability amplitude, and successfully used 
a qubit to encode 2-bit grayscale information. It assists in 
accurate retrieval of original image information. In the 
same year, Wang et al. [26] proposed a quantum indexed 
image representation method (QIIR). A quantum indexed 
image consists of a quantum data matrix and a quantum 
palette matrix. Each data structure is based on the basic 
states of qubit sequence to represent information, includ-
ing pixel positions and pixel values in the data matrix, and 
indexes and color values in the palette matrix. Indexed 
images are usually used to store images with simple color 
requirements, and images with complex colors require true 
colors. Xu et al. [27] proposed order-encoded quantum 
image model (OQIM). Li et al. [28] proposed four models 
of quantum signal representation (QSR) for integer, real, 
and complex signals. These models provided the founda-
tion of more complex applications in quantum signal pro-
cessing. In 2020, Grigoryan et al. [29] proposed an Fourier 
transform representation (FTQR), which stored images in 
a new way. Wang et al. [30] proposed a double quantum 
color images representation model (DQRCI) which can 
store two color digital images simultaneously into a quan-
tum superposition state.
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Fig. 4   The implementation 
circuit of BRQI for RGB color 
images [21]
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4 � Geometric Transformation 
and Morphological Transformation

Geometric transformation and morphological transformation 
are relatively mature operations in classical image process-
ing, and almost all image processing software has these fea-
tures. For example, image translation, image scaling. Many 
image processing also use two basic morphological trans-
formations, erosion and dilation.

In 2011, Le et al. [31] proposed three design strategies 
for constructing new geometric transformations on quan-
tum images from other transformations. The strategies focus 
on the affected areas in the images, the separability, and 
smoothness of the transformations by exploiting a repre-
sentation of images on quantum computers extensively. 
Image translation, which maps the position of each image 
element into a new position, is a basic image transformation. 
Although it has been deeply researched and widely used in 
classical image processing, its quantum version is a vacancy. 
In 2015, Wang et al. studies the quantum image translation 
for the first time. Two types of quantum image translation 
entire translation and cyclic translation based on NEQR was 
proposed [32]. In 2016, Fan et al. [33] proposed a quantum 
algorithm for geometric transformation based on NASS 
(two-point switchings, symmetric flip, local flip, orthogonal 
rotation and translation). They provide global operators and 
local operators respectively, and prove that, contrary to clas-
sical images, global operators are faster than local operators 
in quantum image processing. In 2017, Zhou et al. designed 
two kinds of quantum image translation based on FRQI, 

including global translation and local translation. Global 
translation is implemented by adder modulo N, and Gray 
code is employed in local tranlstion [34], global translation 
is presented in Fig. 5, local translation is presented in Fig. 6.

Image scaling is one of the most frequently used and basic 
operations in image processing, can adjust the size of digital 
images. In image scaling, it is necessary to use interpola-
tion methods to create new pixels when the image is scaled 
up, or to delete redundant pixels when the image is scaled 
down. The commonly used interpolation methods include 
nearest-neighbor interpolation, bilinear interpolation and 
bicubic interpolation [35]. Scaling up the image can make 
the details clearer, and scaling down the image can save 
image storage space.

In 2017, Zhou et al. [36] proposed quantum multidimen-
sional color image scaling based on nearest-neighbor inter-
polation and the bilinear interpolation method for NEQR 
[37], which extended FRQI to multi-dimensional color 
model. Expressed as

Zhou et al. [35] proposed a quantum algorithm to scale 
up and scale down quantum images based on bilinear 
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Fig. 5   Global translation [34]

Fig. 6   Local translation [34]
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interpolation with integer scaling ratio based on GQIR. 
Quantum images with arbitrary size h × w can be scaled 
to h�

× w
� . Compared with nearest-neighbor interpolation, 

bilinear interpolation and bicubic interpolation have better 
effect on target image. In 2019, Zhou et al. improved their 
algorithm. A quantum algorithm based on bilinear interpola-
tion with arbitrary scaling ratio is proposed to resize quan-
tum images [38]. Firstly, a quantum image with arbitrary 
size h × w is described by GQIR. Then, utilizing bilinear 
interpolation, new pixels are created when scaling up, or 
redundant pixels are deleted when scaling down as shown 
in Figs. 7 and 8.
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This algorithm breaks the previous situation where 
quantum image scaling ratio was just an integer. Change 
the Eq.62 in the previous algorithm to Eq.63.

In 2018, Li et al. designed a new method based on quantum 
Fourier transform for bilinear interpolation of images. It uses 
QFT to implement addition and multiplication operations 
[39]. In the same year, Zhou also proposed the nearest neigh-
bor value (NNV) interpolation algorithm for INEQR [40].

The current image scaling research mainly focuses on 
nearest neighbor interpolation and bilinear interpolation, 
and there is a lack of related research on bicubic interpo-
lation. The bilinear interpolation method of FRQI and its 
related research are also lacking.

Morphological image processing is a relatively mature 
image processing method in classical image processing, 
dilation and erosion operations are fundamental to mor-
phological operations. Commonly used in gradient calcu-
lations, edge detection and other algorithms. But in quan-
tum image processing, there are relatively few studies on 
morphology. In 2016, Yuan et al. [41] proposed two kinds 
of improved quantum dilation and erosion operations to 
reduce the time complexity of quantum morphology opera-
tions. Utilizing quantum position shifting transformation, 
and make the neighborhood information store in a quan-
tum image set. The time complexity is greatly reduced 
compared with the previous quantum dilation and ero-
sion operations as show in Fig. 9. In 2019, Li et al. [42] 
designed the quantum circuits of the two basic operations 
of dilation and erosion for binary images and grayscale 
images. On this basis, three morphological algorithms 
for quantum circuits are proposed for binary images. The 
noise removal, boundary extraction and skeleton extrac-
tion are designed in detail. In the same year, Fan et al. 
proposed the flat grayscale dilation and erosion operations 
are proposed for NEQR. Furthermore, through combining 
these two morphology operations, they further realize the 
morphological gradient operation [43].
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Fig. 7   Scaling up [38]: a Original image ( 90 × 80 ); b The image after 
Scaling up ( 192 × 224)

Fig. 8   Scaling down [38]: a Original image ( 256 × 256 ); b The image 
after Scaling down ( 60 × 100)
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5 � Quantum Image Protection

In classical image processing, image protection has been 
very mature. It is to protect image information from theft 
or unauthorized use. Similar to classical image process-
ing, quantum images may also be attacked in many ways, 
so image protection is also essential for quantum images. 
Image protection is divided in two categories. One is image 
encryption, and the other is quantum data hiding including 
quantum watermarking and quantum steganography. Image 
encryption is to transform the images into meaningless form, 
and the watermark is to hide image information by embed-
ding it into the carrier images. In addition, there is an image 
encryption technology similar to watermark, called steg-
anography, whose purpose is to communicate secretly. In the 
quantum image steganography process, the original secret 
quantum image is first encrypted, and then the encrypted 
image is embedded into the quantum cover image. In this 
section, quantum image encryption, quantum watermark-
ing and quantum steganography are introduced respectively.

5.1 � Quantum Data Hiding

Quantum watermarking is a technique which embeds the 
invisible quantum signal such as the owners identification 
into quantum multimedia data (such as audio, video and 
image) for copyright protection [44].

In recent years, many watermarking strategies have been 
proposed. In 2015, Yan et al. [45] utilizing a stockpile of effi-
cient transformations consisting of channel of interest, chan-
nel swapping, and quantum Fourier transforms, proposed 
a duple watermarking strategy onmulti-channel quantum 
images. The objective in most of watermarking strategy is 
accomplished by embedding some secret messages, and this 

(64)

MF = (F ⊕ B)(s, t) − (F ⊖ B)(s, t)

= [maxF(s + x, t + y) −minF(s − x, t − y)], (x, y)∈ DB

strategy can embed the watermarked image into both spatial 
and frequency domains. When preprocessing the watermark, 
two keys are generated utilizing quantum measurements and 
owner assignation respectively. They are used for scrambling 
the watermark in the embedding procedure and descram-
bling in the extraction procedure.

In 2016, Miyake et al. [46] proposed a new quantum 
gray-scale image watermarking scheme by using simple and 
small-scale quantum circuit. First, expand the watermark 
of n × n size 8-bit grayscale to 2n × 2n size 2-bit grayscale 
image. Then, the expanded image is scrambled by the SWAP 
gate controlled by the keys. The scrambled image is embed-
ded into the carrier image by the XOR operation. In 2016, 
Heidari et al. [44] proposed a new quantum watermarking 
protocol including quantum image scrambling based on 
Least Significant Bit (LSB).

In 2017, in order to solve the problem of embedding the 
watermark into the quantum color image, Li et al. [47] pro-
posed an improved scheme of using small-scale quantum 
circuits and color scrambling. First, utilize a controlled 
rotation gates to scramble the color of pixels in the water-
mark image, and then expand the scrambled watermark with 
2n × 2n image size and 24-qubit grayscale to an image with 
2n+1 × 2n+2 image size and 3-qubit gray scale. Finally, the 
expanded watermark image is embedded into the carrier 
image by the CNOT gate. In 2017, Naseri et al. proposed a 
new watermark strategy for quantum images. In this scheme 
and with the aim of data hiding, in addition to using the least 
significant bit (LSB), the most significant bit (MSB) is also 
employed [48]. Compared with the previous protocol,this 
scheme indicates not only the better resistance against 
attacks and noises, but also less resources and complexity, 
because it exhibits a better PSNR, and it is more secure.

In the same year, Qu et al. [49] proposed a new quantum 
watermark algorithm based on quantum log-polar image 
(QUALPI). This algorithm utilized LSB modification tech-
nique for embedding. The least significant bit (LSB) replace-
ment method provides an easy way to hide secret data in the 
cover image. In order to realize quantum watermark embed-
ding, the LSB of the quantum carrier image is replaced by 

Fig. 9   Morphological transformation [41]: a The original image; b The flat structuring element for dilation and erosion; c Image after dilation 
operation; d Image after erosion operation
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the quantum watermark image. Compared with other quan-
tum watermarking algorithms, this algorithm effectively 
utilizes two important properties of log-polar sampling, 
i.e., rotation and scale invariances. By combining QUALPI 
representation with the LSB modification technique, the new 
algorithm make quantum watermark image extracted have a 
good robustness when it was subjected to geometric attacks.

Unfortunately, this algorithm does not consider more 
complex attacks such as filtering and compression. In 2018, 
Luo et al. [50] proposed an enhanced quantum watermarking 
scheme on the basis of INEQR. In contrast to previous quan-
tum watermarking scheme, this scheme utilizes the edge pix-
els of a carrier image, which cannot be noticed visually as 
the embedding region. This watermarking scheme is keyless 
and blind, with higher visual quality and better robustness. 
As human vision is insensitive to the edge regions of an 
image, the watermark is embedded into the edge region of a 
carrier image by LSB modification technique. This quantum 
watermarking scheme has high visual effects. However, the 
payload for this scheme is very low, which only has 1/16 
bits per pixel, and the watermark image is not scrambled, 
which is not conducive to enhancing the robustness of the 
watermarked images.

To improve the payload and the robustness of the quan-
tum watermarked image, in the same year Hu et al. proposed 
a LSBs-based quantum color images watermarking algo-
rithm in edge region. First, utilize the nearest neighbor inter-
polation method to resize the original quantum watermark 
image to an appropriate size and then implement Gray code 
transformation to scramble the resized watermark image. In 
order to scatter the watermark image qubits embedded into 
the edge regions of the quantum color image LSB and sec-
ond LSB, two quantum embedded key images are generated.

And in the same year, in order to break through the limi-
tations of quantum encryption algorithms based on square 
images, Zhou et al. [51] presented a watermarking scheme 
based on INEQR, and a quantum color image watermarking 
scheme based on the improved novel quantum representation 

of color digital images model (INCQI) [52]. This algorithm 
employs a fast bitplane scrambling method, which can trans-
form the secret image into a disordered form. Both the car-
rier image and the watermark image are non-square color 
images, the embedding procedure adopts dual embedding 
algorithm.

In 2019, Luo et al. [53] proposed a adaptive LSB quantum 
watermarking method using tri-way pixel value differenc-
ing. First, the quantum cover image is partitioned into 2 × 2 
blocks with four non-overlapping pixels. In order to classify 
the block as a smooth area or an edge area, the tri-way pixel 
value differences are calculated and compared with a prede-
fined threshold. Then, according to the level k of each block, 
the expanded and encrypted quantum watermark image is 
embedded into the quantum cover image by the k-bit LSB 
replacement method. In addition, the algorithm utilizes the 
pixel value difference (PVD), therefore, the method embeds 
more secret data inedge areas to acquire more payload, and 
embeds less data in the smooth area to preserve visual qual-
ity. And in order to enhance the robustness and security of 
the method, parity bits are utilized in the embedding process. 
As show in Fig. 10, they do not show any visible marks to 
be suspected.

Steganography is the study and application of techniques 
to hide messages within carriers, so that people cannot per-
ceive their existence. one may pass the message unnoticed 
to everyone except for the receiver. Thus, the information 
is protected and the existence of the communication itself 
is concealed [54]. Steganography is similar to watermark-
ing but has a different purpose. Quantum image watermark-
ing aims to use the signal embedded in the cover image to 
protect the copyright of the image. In the case of quantum 
steganography, its objective is to securely communicate the 
secret data by embedding the secret data in the quantum 
cover image without triggering any suspicions from the 
unauthorized third parties [55]. Moreover, steganography 
is a mode of communication, so large amounts of data needs 
to be embedded. And it is important to make sure the image 

Fig. 10   Watermarking [53]: a Watermark image; b Original image; c The image with embedded watermark; d The extracted watermark image
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does not exhibit any traces of hidden data. On the contrary, 
the watermark has no limitation on the amount of embed-
ded data. And the watermark only embeds the copyright 
information of the image.

In 2016 Laurel et al. [54] proposed a steganography on 
quantum pixel images using shannon entropy. They embed 
secret information in the least significant bit (LSB) from the 
code of the most significant bit information (MSBI). The 
Shannon entropy is used to determine the optimal LSB from 
the MSBI, which improves the hiding security of the system. 
Images altered in the LSB from the MSBI, display a better 
performance than simply altering the LSB. Jiang et al. [56] 
proposed two blind LSB steganography algorithms in the 
form of quantum circuits based on the novel enhanced quan-
tum representation (NEQR). One algorithm is plain LSB 
which uses the message bits to substitute for the pixels’ LSB 
directly. The other is block LSB which embeds a message bit 
into a number of pixels that belong to one image block. The 
algorithm has good invisibility, and the balance between the 
capacity and the robustness can be adjusted according to the 
needs of applications.

In 2017, Heidari et al. [57] suggested three quantum steg-
anography procedures which utilize all RGB channels in the 
cover image. The first algorithm employs only one channel 
to cover secret data. The second algorithm is based on LSB 
XORing technique, and the last algorithm utilizes two chan-
nels to cover the color image to hide secret quantum data.

In 2018, El-latif et al. [58] proposed a highly secure quan-
tum image steganography scheme based on the logistic cha-
otic map. The quantum secret image is encrypted using a 
CNOT gate. Then the encrypted secret image is embedded 
into the quantum cover image utilizing the two most and 
least significant qubits. In addition, they presented a quan-
tum image watermarking approach. The quantum watermark 
image is scrambled by utilizing Arnold’s cat map, is then 
embedded into the quantum carrier image using the two 
least and most significant qubits. Sahin et al. [59] proposed 
a novel quantum steganography algorithm based on LSBq 
for multiwavelength quantum images. Compared with other 
methods, this method does not need to use the quantum 
comparator operations. Thus, this allows us to reduce time 
complexity. And they proposed that both position and chan-
nel qubits are considered as a position and the pixels in this 
new position are used for embedding by a certain modulo 
value, not in order.

Li et al. [60] proposed a novel quantum steganography 
scheme using color images as cover images. First, the secret 
information is divided into 3-bit segments, and then each 
3-bit segment is embedded into the LSB of one color pixel 
in the cover image according to its own value and using Gray 
code mapping rules. In the same year, in order to improve 
the embedding capacity of quantum image steganography, 
they proposed a novel LSB-based steganography using 

reflected Gray code for colored quantum images, and the 
embedding capacity of this scheme is up to 4 bits per pixel 
[61].

In 2018, Zhou et  al. [62] proposed a novel quantum 
image steganography scheme based on the NEQR and LSB 
scheme. This model uses bit-plane scrambling method to 
scramble the original secret image, expands the scrambled 
image and then scrambling with the Arnold scrambling. In 
2019, Qu et al. proposed a novel quantum image steganogra-
phy algorithm based on an efficient embedding technique of 
exploiting modification direction. This embedding technique 
is referred to the exploiting modification direction (EMD) 
embedding [63]. The merit of the EMD embedding is that it 
provides good image quality. However, the EMD embedding 
has room for further improvement of its embedding capacity.

Luo et  al. [55] proposed an quantum steganography 
scheme using inverted pattern approach. Before embedding 
the secret image, each pixel of the quantum secret image will 
be inverted or not. The decisions are recorded by a quantum 
key image. Then, the quantum secret image is embedded in 
the k least significant bits of the quantum cover image. The 
computational complexity of this scheme is lower than its 
classical counterpart and other quantum shorthand schemes. 
And this scheme has outperformed other methods in terms 
of the visual quality and embedding capacity. In the same 
year, they proposed two-level information hiding for quan-
tum images using optimal LSB. The first level is to hide 
the encrypted quantum secret image into a quantum water-
mark image, and the second level is to embed the quantum 
watermark image into a quantum cover image. Using the 
optimal LSB-based algorithm, the double embedding can 
make the position of embedding have a certain randomness, 
thus increasing security [64]. Under the same embedding 
capability, it can provide better visual effects than existing 
quantum steganography solutions, as show in Fig. 11. In 
2020, Su et al. [65] proposed a novel information hiding 
method based on the NEQR quantum image and Bell states.

5.2 � Quantum Image Encryption

Image encryption can transform the image into a meaning-
less form according to the key by a variety of encryption 
models, so that third parties cannot obtain the image content.

The bitplane consists of 8 binary images formed by 
separating the grayscale information, and the image can be 
scrambled by operating on the bitplane. In 2018, Heidari 
et al. [66] proposed a quantum representation of a digital 
scrambling algorithm for quantum NCQI color images. This 
method is divided into two sub-algorithms. First, algorithm 
manipulates qubits of the RGB channels by XOR and XNOR 
operations for bitplane scrambling. Then, the pixel-plane is 
scrambled to disorder pixels of the image. Zhou et al. used 
the quantum channel swapping operation and hyper-chaotic 
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system at the same time to enhance the scrambling effect. A 
bit-level quantum color image encryption scheme by exploit-
ing quantum cross-exchange operation and a 5D hyper-cha-
otic system is proposed [67]. First, the algorithm exchanges 
the bitplanes and RGB channels, and then uses 5D hyper-
chaotic system and XOR operation to encrypt. El-Latif et al. 
[68] proposed a novel approach for the efficient quantum 
image encryption of healthcare media. The quantum image 
is scrambled by bitplane and Gray code. Then, the scrambled 
quantum image is encrypted by a XOR operation based on 
a key generated by the logistic-sine map. In 2019, Heidari 
et al. [69] proposed a novel quantum selective encryption 
method for medical images based on BRQI images. Region 
of interest of the medical image can be effectively encrypted 
by operating on the bitplane, as show in Fig. 12. Liu et al. 
[70] proposed a quantum image encryption schemeby using 

the inter–intra bit-level permutation strategy. This method 
utilizes both intra and inter bit permutation to scramble 
pixels, and chaotic diffusion with logistic map is also per-
formed. Li et al. [71] proposes a block-based image scram-
bling scheme for the generalized model of novel enhanced 
quantum representation (GNEQR). This scheme employs 
geometric transformations and an operation of bitplane 
scrambling to perform position and pixel scrambling, respec-
tively. And it suit for rectangular images, so this scrambling 
scheme is more general.

The quantum rotation gate can rotate the qubit on the 
Bloch sphere at any angle, it can be used in image encryp-
tion. In 2017, Li et al. [72] proposed a simple encryption 
scheme for quantum color image. Qubits are respectively 
transformed from a basic state into a balanced superposi-
tion state according to the key by employed the controlled 
rotation gates. In 2018, Liu et al. [73] proposed a novel color 
image encryption/decryption method based on random rota-
tion of qubit and quantum Fourier transform (QFT). Qubit 
rotation operates once in spatial and frequency domains 
respectively, with the help of quantum Fourier transform. 
The encryption effect is shown in Fig. 13. In the same year, 
a novel double quantum image encryption approach based 
on quantum Arnold transform (QAT) and qubit random rota-
tion is proposed [74]. The algorithm is extended to double 
quantum on the basis of the previous. And before the qubit 
rotation operates in spatial and frequency domains, QAT 
operations would be performed in the spatial domain. In 
2018, Khan et al. [75] proposed an innovative encryption 

Fig. 11   Steganography [64]: 
a The image that needs to be 
hidden; b Watermark image; 
c Cover image; d The image 
embedded with hidden informa-
tion; e The extracted results

Fig. 12   Encrypting the region of Interest of the medical image by 
operating on the bitplane [64]
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scheme for digital data based on quantum spinning and rota-
tion operators.

Fourier transform is a commonly used operation in signal 
processing, and QFT can also be applied in quantum image 
encryption. The algorithm proposed by Liu et al. [74] in 
2018 uses QFT . In 2013, Yang et al. [76] proposed a novel 
gray-level image encryption/decryption scheme which is 
based on quantum Fourier transform and double random-
phase encoding technique. This algorithm applies two phase 
codings in spatial and frequency domains to perform dou-
ble quantum image encryption, and the two random-phase 
encodings are used as the keys. They generalized the double 
random-phase encoding technique to quantum scenarios for 
the first time.

In 2014, Yang et al. [77] expanded the algorithm to RGB 
on this basis, and proposed a quantum cryptographic algo-
rithm for color images using quantum Fourier transform and 
double random-phase encoding. El-Latif et al. proposed a 
new color image encryption scheme based on quantum cha-
otic system is proposed. Firstly, scramble only the Y (Lumi-
nance) component of low frequency subband. Then mix the 
features of horizontally and vertically adjacent pixels with 
the help of adopted quantum chaotic map. Finally, generate 
an intermediate chaotic key stream image with the help of 
quantum chaotic system [78]. In 2016, Tan et al. [79] pro-
posed a quantum color image encryption algorithm based 
on a hyper-chaotic system and quantum Fourier transform. 
A sequence is generated using the Chen’s hyper-chaotic 
system, which is scrambled and diffused with the original 
image, and use quantum Fourier transform to complete 
encryption, the encryption effect is shown in Fig. 14. In 

2018, Gong et al. [80] proposed a new single channel quan-
tum color image encryption algorithm based on HSI model 
and QFT, where the color components are converted to HSI 
and the logistic map is employed to diffuse the relationship 
of pixels in color components and use quantum Fourier 
transform to complete encryption.

Arnold transform can effectively scramble the image, 
expand the key space, and is widely used in image encryp-
tion. In 2015, Zhou et al. [81] proposed a novel quantum 
image encryption algorithm based on generalized Arnold 
transform and double random-phase encoding. The image 
is scrambled by the generalized Arnold transform, and the 
gray level information is encoded by the double random-
phase operations.

In 2017, Hu et al. proposed a novel quantum multi-image 
encryption algorithm based on iteration Arnold transform 
with parameters and image correlation decomposition [82]. 
Perform 2-D discrete wavelet transform on each image 
respectively, randomly splice the corresponding low-fre-
quency image to one image. scramble the new image by the 
iteration Arnold transform with parameters, and then use the 
quantum image correlation decomposition to encode. Zhou 
ey al. suggested a new quantum image encryption scheme 
by using the iterative generalized Arnold transforms and the 
quantum image cycle shift operations [83]. The image pix-
els are scrambled by the iterative generalized Arnold trans-
form, and the quantum image cycle shift operations is used 
to altere the values of the pixels, where the times of shift 
operations are controlled by a new 4D hyperchaotic system.

In 2018, Zhou et al. [84] devised a novel quantum multi-
image encryption scheme by combining quantum 3D Arnold 
transform and quantum XOR operations with scaled Zhong-
tang chaotic system. This encryption scheme could encrypt 
multiple images simultaneously. In 2019, Luo et al. [85] 
propose a novel quantum secret image-sharing scheme. The 
images are scrambled through the Arnold transform, and 
then the quantum shared images are constructed by the swap 
operations and the CNOT gates. Liu et al. [86] proposed a 
quantum block image encryption scheme based on quantum 

Fig. 13   Encryption algorithm employing rotation gate [73]: a, b 
Original images; c, d Encrypted images

Fig. 14   Encryption algorithm utilizing QFT [79]
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Arnold transform. First, a quantum block image represen-
tation (QBIR) model for block image is proposed. Then, 
QAT is applied to scramble the position of image blocks. 
Finally, the pseudo-random sequence is generated by SCM, 
and the encrypted image is obtained through quantum XOR 
operations.

In addition, there are many other encryption algorithms, 
which use various chaotic systems to help encryption. The 
behavior of chaotic systems is very complex and highly sen-
sitive to initial conditions, making it difficult to predict. In 
2019, Abd-El-Atty et al. proposed a encryption and decryp-
tion algorithms for NEQR images based on discrete quantum 
walks on a circle. Discrete quantum walk can be regarded 
as a nonlinear mapping between quantum state and position 
probability distribution, so it can be used to generate encryp-
tion keys [88]. The algorithm uses the key image generated 
by QWs to XOR the original image. In 2020, EL-Latif et al. 
[87] presented a method to build pseudorandom number 
generators based on quantum walks and used this result to 
encrypt quantum color images. This algorithm utilize con-
trolled alternate quantum walk to create PRNG. The image 
is encrypted by the CNOT gate based on the key sequence 
generated by the pseudo random number generator (PRNG). 
The encryption effect is shown in Fig. 15.

In 2017, Kadir et al. [89] proposes a color image encryp-
tion scheme based on coupled hyper chaotic Lorenz systems. 
This algorithm randomly inject impulse signals into coupled 
Lorenz system during iterations to enhance the complexity 
of trajectory. In 2018, Ran et al. [90] proposed a quantum 
color image encryption scheme based on coupled hypercha-
otic Lorenz system with three impulse injections. In order to 
prevent the behavior of the short-period chaotic system after 
too many iterations from causing degeneration of dynamics, 
three impulse signals values are injected into coupled hyper-
chaotic Lorenz system during iterations.

In 2012, Akhshani et al. [92] proposed an implementation 
of image encryption scheme based on the quantum logistic 
map, it is the first attempt to apply quantum map in the con-
struction of chaotic cryptographic systems. In 2014, Cao 
et al. [93] designed a new image encryption scheme based 
on quantum chaos. An disturbing mechanism is introduced 

to realize a one-time running-key stream, and reduce the 
dynamical degradation of digital chaos. In 2016, Liang et al. 
[94] devised a novel quantum image encryption algorithm 
combining the generalized affine transform with logistic 
map. The key is generated by the logistic map, and the gray 
level information is encrypted by XOR operation, while 
the position information is encoded by generalized affine 
transform.

Gong et  al. [91] proposed a novel encryption algo-
rithm for quantum images based on quantum image XOR 
operations. The hyper-chaotic sequences generated with 
the Chen’s hyper-chaotic system is utilized to control the 
CNOT gate to encode gray-level information, the encryp-
tion effect is shown in Fig. 16. Yang et al. proposed a novel 
quantum gray-scale image encryption algorithm based on 
one-dimensional quantum cellular automata. The quantum 
image encryption algorithm is realized by subtly construct-
ing the evolution rules of one-dimensional quantum cellular 
automata [95]. In 2018, Naseri et al. [96] proposed a new 
bi-step quantum image cryptography algorithm. The scheme 
is consisted of four different coding algorithms. According 
to the pixels and key, select the algorithm.

In 2019, Li et al. [97] proposed an algorithm of quantum 
image encryption based on NASS by using quantum geo-
metric transform, phase-shift transform, and quantum Haar 
wavelet packet transform. Firstly, pixels are exchanged along 

Fig. 15   The effect of QWs 
encryption scheme [87]: a 
The original image lena; b 
The encrypted image c The 
decrypted image

Fig. 16   The original image is encrypted by Chen’s hyper-chaotic sys-
tem [91]
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diagonal lines. Next, keys randomly distributed are encoded 
by using phase-shift transform. Then, image information is 
stored in low frequency using quantum Haar wavelet packet 
transform (QHWPT). Liu et al. [98] proposed a new algo-
rithm of image encryption based on random selection of 
crossover operation and mutation operation. In order to 
obtain the high complexity and unpredictability further, 
quantum chaotic map is coupled with nearest-neighboring 
coupledmap lattices (NCML). After performing XOR opera-
tion, adjacent pixels are carried out bit-level crossover oper-
ation. Then two different bits of each pixel are employed to 
perform mutation.

Xu et al. [99] proposed a novel encryption algorithm 
based on quantum chaotic map and four-wing complex sys-
tem. Firstly, quantum logistic map and Arnold transform is 
utilized to disrupt position information. Then, a complex 
hyperchaotic system is used to diffuse the value of each 
pixel. Wang et al. [100] proposed a improved QISS scheme, 
which is implemented on both quantum gray image and 
quantum color image. Wang et al. [101] presented a novel 
quantum image encryption algorithm based on quantum key 
image. The secret image does the XOR operations with a 
quantum key image bit by bit, which is generated by a cryp-
tographic algorithm. Liu et al. [102] proposed a novel n out 
of n quantum visual secret sharing (QVSS) scheme. Jiang 
et al. [103] proposed a quantum image encryption based on 
Henon mapping. In 2020, Luo et al. [104] proposed an image 
encryption scheme that is based on hyper-chaos and quan-
tum coding. First, perform the bit-level adjacent-exchange 
operation. Then, the image is diffused by the quantified 
sequences where the self-adapting parameters are applied to 
quantify the sequences that are generated by Chen’s hyper-
chaotic system. Finally obtain the final cipher-image by a 
novel scrambling method that is based on quantum location 
coding.

6 � Edge Detection and Image Segmentation

6.1 � Edge Detection

Edge detection is an important part of image processing. 
It refers to sharp discontinuity localization process in an 
image, the classical edge detection algorithms are mostly 
based on the numerical derivative near the pixel of the image 
[105]. Edge detection can extract most of the important fea-
tures of the image, which is very useful on image segmenta-
tion and object identification.

In 2016, Abdel-Khalek et al. [105] proposed a novel edge 
detection algorithm based on quantum entropy. This algo-
rithm utilizes quantum entropy to take correlations among 
quantum bases into the calculation of entropy and uses the 
quasi-threshold that leads to the maximum quantum entropy 

as the optimal threshold to obtain the maximum amount of 
information. In 2017, Yao et al. proposed a highly efficient 
quantum algorithm for detecting the boundary between 
different regions of a image. It requires one single-qubit 
gate in the processing stage, independent of the size of the 
image [106]. In order to try to resolve the realtime prob-
lem of image edge extraction in practice image processing, 
in 2018 Fan et al. [107] proposed a quantum image edge 
extraction for NEQR based on classical Sobel operator, and 
an enhanced quantum edge detection algorithm based on 
NEQR, which combines the classical Laplacian operator and 
zerocross method [108].

And in 2019, Zhou et al. [109] proposed a quantum image 
edge extraction algorithm based on improved sobel operator 
for the generalized quantum image representation (GQIR). 
This scheme can achieve more accurate edge extraction, 
especially for diagonal edges. In the same year, in order 
to solve the coarse edge detection and false edge detection 
caused by artificial selection of threshold in the traditional 
Prewitt edge detection algorithm, Zhou et al. [110] pro-
posed a quantum image edge extraction for NEQR based 
on improved Prewitt operator, which combines the non-
maximum suppression method and adaptive threshold value 
method. As shown in Fig. 17. However, these algorithms are 
still sensitive to noise.

In 2020, Li et al. [111] proposed a quantum scheme of 
classical Marr–Hildreth edge detection. This scheme is 
insensitive to the noise of mixed images.

6.2 � Image Segmentation

Image segmentation is the process of separating the fore-
ground of one or more objects from the background in a 
digital image [112]. It is a key step in image processing and 
plays an important role in computer vision.

In 2015, Youssry et  al. [112] proposed a novel and 
generic framework based on quantum mechanics for image 
processing and applied it to image segmentation. Caraiman 
et  al. [113] discussed the development of a quantum 

Fig. 17   Edge detection algorithm [110]: a The original image; b The 
result image of this quantum image edge extraction
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version for the image segmentation operation. In 2016, 
Karmakar et al. presented the application of quantum dot 
gate nonvolatile memory (QDNVM) in image segmenta-
tion. Zhao et al. [114] proposed a novel side scan sonar 
image segmentation algorithm integrating neutrosophic set 
(NS) with quantumbehaved particle swarm optimization 
(QPSO). In order to implement image segmentation pre-
cisely and efficiently, Wang et al. [115] present an image 
thresholding method based on the criteria of global quan-
tum entropy maximization (GQEM), and the quantum 
lossy-encoding based entropy maximization (QLEEM) 
approach is used to deal with the time consumption prob-
lem of thresholding. In 2017, in order to get a reasonable 
threshold for threshold segmentation, Huo et al. [116] 
proposed an improved algorithm of Bloch spherical coor-
dinates for quantum artificial bee colony, and applied it to 
image threshold segmentation. In 2020, Huo et al. [117] 
proposed an improved Bloch quantum artificial bee colony 
by combining the Bloch spherical coordinates of qubit 
with artificial bee colony (ABC) algorithm, and applied it 
in multilevel image threshold segmentation.

7 � Similarity Analyses and Image Matching

Image matching is the process of searching for a small 
image in a big image [118]. It is widely used in computer 
vision, face detection, and so on. As the fundamental 
research of quantum image matching, similarity analyses 
between quantum images are so essential. In 2016, Iliyasu 
et al. [119] proposed an enhanced quantum-based image 
fidelity metric, the enhanced quantum-based image fidelity 
metric (QIFM) as a tool to assess the “congruity” between 
two or more quantum images. Jiang et al. [118] provided a 
quantum image matching solution which does not compute 
similarity. This scheme can get answer by being processed 
and measured only once, which helps to drop the scheme’s 
complexity. But the paper only matched one pixel, instead 
of an area. If more than one pixels in the big image are 
the same as the one at the upper left corner of the small 
image, the algorithm will randomly measure one of them. 
In 2017, Dang et al. [120] presented an improved ver-
sion which takes full advantage of the whole matched area 
to locate a small image in a big image. In 2018, Zhou 
et al. [121] proposed a similarity analyses scheme based 
on a novel quantum image representation and quantum 
amplitude amplification algorithm. Quantum amplitude 
amplification algorithm can avoid measuring many times. 
And in order to store two quantum images with internal 
relation more conveniently, two images are stored into a 
novel quantum image representation that shares coordinate 
information.

These schemes only consider exact matching without con-
sidering fuzzy matching of quantum images. Luo et al. [122] 
proposed a fuzzy quantum image matching scheme based on 
gray-scale difference. This scheme evaluate the gray-scale 
difference between two quantum images by thresholding. If 
all of the obtained gray-scale differences are not greater than 
the threshold value, it indicates a successful fuzzy matching 
of quantum images. In 2019, Liu et al. [123] applied quan-
tum counting to five algorithms for assessing the similarity 
of quantum images of binary image gray image and color 
image respectively, brings an advantage to the number of 
quantum measurement.

8 � Quantum Image Filtering 
and Compression

8.1 � Quantum Image Filtering

In classical image processing, image filtering is a common 
preprocessing operation, which is generally achieved by cor-
relating the image with a filter mask. In computer vision, it 
is often used to eliminate noise in images. Although it is dif-
ficult to perform convolution operations in quantum image 
processing and bring difficulties to filtering operations, many 
feasible solutions have been proposed.

In 2017, Yuan et al. [124] proposed a framework of quan-
tum image filtering in the spatial domain. In order to avoid 
the quantum multiplication, they employed quantum addi-
tion operation. But this method is only suitable for integer 
filter coefficients, and before each filtering behavior the 
value of the filter coefficients should be knew exactly. The 
filtering effect of salt and pepper noise is shown in Fig. 18.

In 2018, in order to overcome these shortcomings, Yuan 
et al. [125] proposed an improved version which employs 
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Fig. 18   Quantum image filtering [124]: a Images with salt and pepper 
noise; b Images after filtering
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quantum multiplication. In 2017, Li et al. [126] investi-
gated design method of quantum weighted averaging filter 
and its application in image de-noising. In 2018, Li et al. 
[127] improved this method, investigated the use of quantum 
Fourier transform (QFT) in the field of image processing, 
developed a quantum version for the color image filter-
ing operation. In the same year, they proposed a quantum 
image median filtering method in the spatial domain [128]. 
In this method, the original image is first translated by one 
unit in eight directions, then the median of nine pixels with 
the same position is calculated. In 2019, Jiang et al. [129] 
improved the method, utilizing the extremum detection 
approach to distinguish between noises and normal signal 
points proposed a improved quantum image median filtering 
in the spatial domain. The filtering effect of salt and pepper 
noise is shown in Fig. 19. This scheme stores only the color 
information of the neighborhood pixels entangled with posi-
tion information of the original image.

8.2 � Quantum Image Compression

Image compression algorithm is a widely used algorithm in 
classical image processing. In recent years, several quantum 
image compression methods have been proposed.

In 2018, Jiang et al. [130] proposed a novel quantum 
image compression method based on JPEG. This method 
inputs the quantized JPEG coefficients into qubits and then 
convert them into pixel values. Because the data amount 
of JPEG coefficients are less than the data amount of pixel 
values, the JPEG scheme can reduce the number of quan-
tum gates used in the GQIR model. Li et al. [131] devised a 
quantum gray image encryption-compression scheme based 
on quantum cosine transform and 5-dimensional hypercha-
otic system. Image is compressed by the quantum cosine 
transform and Zigzag scan coding, the compressed image 
is encrypted by the 5-dimensional hyperchaotic system. In 
2019, Pang et al. [132] presented a quantum discrete cosine 
transform algorithm (QDCT), and used it to develop and 
realize a quantum image compression technique.

9 � Quantum Machine Learning

Machine learning is a field with broad applications. It can 
perform some complex tasks that only the human brain can 
do, such as image recognition, language translation, and 
decision making, and it can process tasks faster. With the 
advent of quantum technology, designing quantum neural 
networks for quantum machine learning is a crucial task. 
Quantum machine learning is a very promising emerging 
research field. To form a deep neural network, the selection 
of learning algorithms and its parameters is very important. 
There have been many attempts in this field in recent years.

In 2013, Pudenz et al. [133] developed an approach to 
machine learning and anomaly detection via quantum adi-
abatic evolution. This method uses classical preprocessing. 
In 2016, Dunjko et al. [134] propose an approach for the 
systematic treatment of machine learning, from the per-
spective of quantum information, which covers supervised, 
unsupervised, and reinforcement learning. Konar et al. [135] 
proposed an efficient technique for binary object extrac-
tion in real time from noisy background using quantum 
bi-directional self-organizing neural network (QBDSONN) 
architecture. Lau et al. [136] generalized quantum machine 
learning to infinite-imensional systems, and proposed the 
critical subroutines of quantum machine learning algorithms 
for an all-photonic continuous-variable quantum computer.

In 2017, Montanaro et al. [137] suggested a quantum 
algorithm which achieves a super-polynomial separation 
from classical computation for the basic problem of pattern 
matching on average case inputs. Benedetti et al. [138] pro-
posed the quantum-assisted Helmholtz machine, which is a 
hybrid quantum–classical framework with the potential of 
tackling high-dimensional real-world machine learning data-
sets on continuous variables. This method uses deep learning 
to extract low-dimensional binary representations of data, 
and then uses quantum deep learning to train unsupervised 
generative model.

In 2018, Patel et al. [139] proposed a quantum-inspired 
stacked autoencoder-based deep neural network learning 
algorithm, which uses stacked auto-encoder to form a deep 

Fig. 19   Quantum image median 
filtering [129]: a The original 
image; b Images with salt and 
pepper noise; c Images after 
filtering
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neural network. In order to avoid improper selection of 
learning algorithm parameters, a representation and evalua-
tion function characterized by the representation of popula-
tion dynamic is used. Liu et al. [140] presented a practical 
gradient-based learning scheme to train quantum circuit 
Born machine as a generative model of discrete data.

In order to optimize the efficiency of image classification, 
Dang et al. proposed an image classification scheme based 
on quantum K Nearest Neighbor algorithm [141]. After 
extracting the feature vectors on a classical computer, the 
feature vectors are input into quantum computer for parallel 
computing of similarity. Piat et al. [142] proposed a frame-
work to accomplish the task of processing large scale data 
on small quantum devices. First, a classical autoencoder is 
trained to compress image to a size that can be loaded on a 
quantum device. Then, use the compressed data to train the 
RBM on the D-Wave device, and then use the weights from 
the restricted Boltzmann machine (RBM) to initialize the 
neural network for image classification.

Potok et al. [143] proposed a new deep learning architec-
ture based on the unique capabilities of the quantum, high 
performance, and neuromorphic approaches. The high per-
formance computer is used to create a well performing CNN 
on image type data. The final layer or two is processed by 
quantum computers using the limited Boltzmann machine 
(LBM) network. Employing the spiking neural network 
(SNN) to model the temporalaspects of the data, then merge 
the ensemble models and produce output. Wiebe et al. [144] 
suggested a number of ways that quantum information can 
be used to help make quantum classifiers more secure or 
private. In 2019, Huggins et al. [145] proposed quantum 
computing approaches to both discriminative and generative 
learning, with circuits based on tree and matrix productstate 
tensor networks.

Because of the intractability of deep quantum circuits, it 
is difficult to simulate classical deep learning models. Thus, 
in 2020, Chen et al. [146] designed a quantum algorithm 
for quantum machine learning for noisy intermediate scale 
quantum (NISQ) devices. This work explores variational 
quantum circuits for deep reinforcement learning. This work 
is the first to prove that the variational quantum circuits to 
approximate the deep q-value function for decision making 
and policy selection reinforcement learning with experi-
ence replay and target network. Yang et al. [147] presented 
a quantum deep learning scheme based on multi-qubit entan-
glement states, including computation and training of neural 
network in full quantum process. The distance between the 
unknown unit vector and the known unit vector is calculated 
by the measurement based on the Greenberger-Horne-Zel-
linger entanglement. It also provided the quantum scheme 
corresponding to the multilayer feedforward neural network.

Li et al. [148] investigated a quantum deep convolutional 
neural network (QDCNN) model based on the quantum 

parameterized circuit for image recognition. Illustrates the 
architecture of a quantum convolutional layers sequence fol-
lowed by a quantum classified layer. Inspired by the varia-
tional quantum algorithms, a quantum classical hybrid train-
ing scheme is proposed for the parameter updating in the 
QDCNN. First, the input image is prepared as the quantum 
state with basis encoding. Then a sequence of parameter-
dependent unitary transformations is employed to realize 
the corresponding quantum evolution, which can be divided 
into quantum convolution layer and quantum classified layer. 
Finally, a quantum measurement is performed on the speci-
fied qubit to obtain the category label.

Kerstin et al. [149] proposed a truly quantum analogue of 
classical neurons, which form quantum feedforward neural 
networks capable of universal quantum computation, and 
describe the efficient training of these networks using the 
fidelity as a cost function. This method allows for fast opti-
misation with reduced memory requirements. They proposed 
a natural quantum perceptron and define it to be a general 
unitary operator acting on the corresponding input and out-
put qubits, and proposed a training algorithm for this quan-
tum neural network. Mixed state �out for the output qubits is:

where U ≡ UoutULUL−1 ⋯U1 is the quantum neural network 
quantum circuit, Ul are the layer unitaries, comprised of a 
product of quantum perceptrons acting on the qubits in lay-
ers l − 1 and l.

10 � Other Algorithms

In addition to the previously introduced algorithms, many 
other excellent algorithms have been proposed.

In order to extend image stabilization to the quantum 
computing domain. In 2016, Yan et al. [150] explored a 
novel quantum video framework and proposed a method 
based on it to perform the image stabilization by utilizing the 
quantum comparator and quantum image translation opera-
tions. This method can estimate the camera motion during 
the exposure process and compensate for the video jitter 
based on it. By Schmidt decomposition and symmetric states 
permutation, Yue et al. [151] proposed a method can got the 
quantum image with high retrieval performance.

For binary images, or bitplanes of non-binary images, 
Chapeau-Blondeau et al. [152] investigated a quantum image 
coding method with a reference frame independent scheme. 
Jiang et al. [153] presented a quantum image location algo-
rithm, which modifies the probability of pixels to make 
the target pixel to be measured with higher probability. In 
order to dealing with the fusion task of infrared and visible 
images, Kong et al. [154] proposed a novel fusion method 

(66)𝜌out ≡ trin,hid
�
U
�
𝜌in ⊗ �0⋯ 0⟩hid,out⟨0⋯ 0��U†

�
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based on improved quantum theory model. Compared with 
quantum theory model (QTM), a new qubit state 0.5 is added 
in improved quantum theory model (IQTM). It’s helpful to 
represent the gray information more accurately. Yang et al. 
discussed the application of quantum Hash function to image 
encryption. It is found that quantum Hash function can act 
as a hash function for the privacy amplification process of 
quantum key distribution systems. And they proposed a 
novel image encryption algorithm [155].

In 2017, Naseri et al. [156] proposed a novel quantum 
version of Hilditch algorithm for quantum image thinning. 
Skeletonization or thinning process is an important step in 
pre-processing phase. This algorithm can be considered 
as the first quantum image thinning algorithm. Liu et al. 
proposed three noise removal algorithms based on NEQR. 
These algorithms are the first attempts to detect and deal 
with noise using quantum image representation model in 
spatial domain [157].

In 2019, Du et al. [158] realized the synthesis of two 
quantum images theoretically by constructing a specific 
phase rotation transform. Xia et al. [159] designed a novel 
multi-bit quantum comparators, and realized quantum image 
binarization based on it. This multi-bit quantum compara-
tors can compare more bits with only one auxiliary bits in a 
less quantum cost. Liu et al. [160] proposed a novel multi-
modality image fusion algorithm based on QWT and quan-
tum version of SML. Quantum images are transformed with 
QWT to capture salient features of source images. Fusing the 
wavelet coefficients by sum-modified-laplacian (SML) rule. 
The final fused image is obtained by using inverse quantum 
wavelet transform. Heidari et al. proposed a new general 
model for quantum image histogram, which is based on 
NEQR and NCQI [161].

11 � Discussion

In recent years, quantum image processing has developed 
rapidly. Many quantum image processing algorithms have 
been proposed. These algorithms make use of the superiority 
of quantum computing to parallel computing, exponentially 
accelerate and simplify the classical image processing algo-
rithms. However, compared with classical image processing, 
quantum image processing is a brand new research field, and 
existing algorithms still urgently need to be improved.

For quantum image representations, the proposed repre-
sentation model stores images whose side length can only 
be an integer power of 2. Otherwise, images of arbitrary size 
can be stored at the cost of added redundancy. Therefore, 
quantum images need to have more efficient representation 
methods. And the image representation models contain-
ing error correction codes can also be proposed to improve 
robustness.

For morphological transformation, erosion and expansion 
operations have been proposed, but quantum implementa-
tions of more complex morphological transformations need 
more research. And more applications can be enriched based 
on these basic operations. In quantum scale operations, algo-
rithms using bilinear interpolation are still relatively rare, 
and algorithms using bicubic interpolation have not yet been 
proposed.

Although image encryption models have been greatly 
developed, most algorithms are for grayscale images. The 
encryption of color images, double-quantum images, and 
multiple images is still relatively rare. In terms of watermark-
ing. The robustness of watermarking under noise needs to be 
improved. And frequency domain watermarking algorithms 
are still relatively few.

In the field of edge detection and image segmentation, rela-
tively few algorithms have been proposed. Although quantum 
algorithms provide lower complexity, there is not enough edge 
continuity in the proposed methods and the algorithms are 
not robust enough to noise. There are also few algorithms for 
image filtering. Since convolution is not easily used for quan-
tum computation, there is a need to find quantum image spatial 
filtering methods that do not depend on convolution. In addi-
tion, in image matching research, some exact matching meth-
ods have been proposed, but fuzzy matching algorithms are 
rare. And algorithms for image classification can be designed 
based on quantum machine learning.

In addition, the research on quantum image processing 
is still in its infancy. Although many quantum image pro-
cessing algorithms have been proposed, it is still not rich 
enough. Relatively complex algorithms such as edge detec-
tion, image segmentation, filtering, frequency domain pro-
cessing, image compression are relatively few. There are 
also few algorithms for image synthesis, binarization, and 
image grayscale histograms. Therefore, more algorithms 
are needed to increase the richness of quantum image pro-
cessing. Moreover, the algorithms that have been proposed 
use auxiliary qubits, and it is always the question that how 
to reduce the use of auxiliary qubits to reduce the com-
plexity. Also, quantum image processing has potential for 
machine learning, pattern recognition, etc. In addition, the 
development of algorithms requires the support of quantum 
computers. As algorithms increase in size and complexity, 
algorithm simulations will be limited by classical computers 
and it will be more efficient to simulate quantum systems on 
quantum computers.

12 � Conclusion

Quantum processing algorithms proposed in recent years 
are sorted and summarized in the paper. On the basis of 
mathematical concepts of quantum computing, we have 
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emphatically reviewed the research progress in the fields 
of quantum image representation, geometric transformation, 
morphological transformation, quantum image protection, 
edge detection and image segmentation, image matching, 
filtering, compression, quantum machine learning. Based 
on the current research progress, we discussc and point out 
several exisitng problems and challenges in the field of quan-
tum image processing, which will also be one of the future 
works.
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