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Abstract

Photoplethysmography (PPG) sensor-enabled wearable health monitoring devices can monitor realtime health status. PPG
technology is a low-cost, noninvasive optical method used to measure a volumetric change in blood during a cardiac cycle.
Continues analysis of change in light signal due to change in the blood helps medical professionals to extract valuable
information regarding the cardiovascular system. Traditionally, an electrocardiogram (ECG) has been used as a dominant
monitoring technique to detect irregularities in the cardiovascular system. However, in ECG for monitoring cardiac status,
several electrodes have to be placed at different body locations, limiting its uses under medical assistantship and in a station-
ary position. Therefore, to fulfill the market demand for wearable and portable health monitoring devices, researchers are
now showing interest in the PPG sensor enable wearable devices. However, the robustness of PPG sensor-enabled wearable
devices is highly deviating due to motion artifacts. Therefore before extracting vital sign information like heart rate with
PPG sensor, efficient removal of motion artifact is very important. This review orients the research survey on the principles
and methods proposed for denoising and heart rate peak detection with PPG. The efficacy of each method related to heart
rate peak detection with PPG technologies was compared in terms of mean absolute error, error percentage, and correlation
coefficient. A comparative analysis is formulated to estimate heart rate based on the literature survey from the last ten years on
PPG technology. This review article aims to explore different methods and challenges mentioned in state-of-the-art research
related to motion artifacts removal and heart rate estimation from PPG-enabled wearable devices.

1 Introduction

In today’s world, monitoring cardiovascular health status
for early diagnosis is one of the leading research areas. The
heart rate study is a prominent approach to analyze cardio-
vascular health status during daily routine [1]. Due to its
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simplicity, accuracy, and low cost, Photoplethysmography
(PPG) is gaining importance and becoming an alternative
approach to monitoring and studying vital body signs. PPG
technology uses optical sensors and is popular due to its
lightweight, fashionable, simplicity, and more importantly,
it can be used as wearable devices like the smart fitness band
[2]. Generally, abnormalities in the functionality of the heart
are identified using heart rate and percentage of oxygen.
Initially, PPG technology is used in pulse oximetry to moni-
tor oxygen levels in the blood. Due to PPG’s noninvasive
nature, it has now become a standard of care in the operat-
ing theatre, intensive care unit [3]. Pulse oximetry has the
flexibility to observe the body vitals both qualitatively and
quantitatively. PPG is a noninvasive tool that can continu-
ously monitor heart rate, respiratory rate, cardiac outputs,
and blood pressure.

Even though PPG technology has many advantages, the
major drawback is erroneous data in certain circumstances,
mainly due to noise from motion artifacts. Hence the accu-
racy of PPG technology depends upon the suppression of
noises [4].
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1.1 Principle of PPG

PPG technology measures the change in blood volume in
the tissue during a heart cycle using a light source. This
volumetric measurement provides important information
regarding the cardiovascular system. A PPG sensor mainly
consists of two electronic components, a light emitter and a
light intensity sensing component. Typically, LED is used
as a light emitter and a photodetector to detect (sense) the
change in light intensity [5]. A PPG pulse corresponding
to one heartbeat includes the systolic and diastolic phases.
During the systolic phase, the volume of blood in arteries is
more; this is because during this phase heart contracts and
pushes oxygen-rich blood to all the tissues and organs. The
systolic phase causes more light is absorbed by the blood
cells. Therefore the amount of light detected by the photode-
tector during the systolic phase is low. During the diastolic
phase, the blood has flown back into the heart. Therefore,
during the diastole phase, the light detected by the photo-
detector increases due to a decrease in the blood volume.
Depending upon application and sensor placement, PPG can
be used either in transmissive mode or in reflection mode,
as shown in Fig. 1 [6].

When a photodetector and LED are placed on parallel
sides of a finger to detect the transmitted light, this mode
is known as a transmissive mode. In transmissive mode,
the probe is in a projection that the photodetector and LED
face each other with a layer of tissues between them [7].
Detection in transmissive mode depends upon transmission
of light from body parts, so thin structures like the earlobe
and finger are preferred in this mode. When both photode-
tector and LED are placed on the same side of a finger to
detect the reflected light, it is a reflective mode. In reflection
mode, both the sensors are placed next to each other with
an approximate spacing of 3 cm. Therefore reflection mode
can use anybody site like the forehead and wrist. Choice of
the site to place PPG sensors depends on the patient’s blood
perfusion, comfortability of the subject, and application [8].

The role of the photodetector is to detect and quantify
the light absorbed during pulsatile and non-pulsatile flow
[9]. During pulsatile flow, light is absorbed by the change in
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blood flow inside the arteries, which is synchronous with a
heartbeat. During the non-pulsatile flow, light is absorbed by
background tissues. Therefore, a photodetector detects the
volumetric change in blood flow in arteries by detecting the
light intensity difference [10]. Measurement of this change
in light intensity thus helps to analyze the functionality of
the heart.

A PPG signal mainly consists of AC and DC components.
AC component in the PPG output waveform indicates the
change in light intensity during the systolic and diastolic
phase due to the blood in arteries [11]. The steady DC part
of the PPG waveform indicates the light absorbed by tis-
sues, skin, and bone, as shown in Fig. 2. Analysis of the DC
component provides valuable information regarding venous
blood flow, respiration, and thermoregulation. Variation in
light intensity detected due to arterial blood flow is around
1% only, which provides information on the heart’s func-
tionality [12].

1.2 PPG Analysis Using Multiple Wavelengths

Light absorption during systolic and diastolic phases of a
heart cycle follows Beer’s law and Lambert’s law, jointly
known as Beer—Lambert’s law. According to Beer’s law,
light absorbed by the blood is proportional to the concen-
tration of oxygenated hemoglobin and deoxygenated hemo-
globin. As per Lambert’s law, light absorption is propor-
tional to light penetration in the skin [13].

Therefore according to Beer—Lambert law, the amount of
light absorption (A,) through a substance, given by Eq. (1)
is directly proportional to the light absorber concentration
(C), optical path length traversed by the light signal (L), and
light absorptivity at a particular wavelength (g,)

A, =¢,CL (1)

Body skin mainly consists of three layers, as shown in
Fig. 3. Due to absorption, only light waves with a larger
wavelength can penetrate through all three layers.

Therefore the measurement mode and the body vitals
that need to monitor, determine the selection of LED. Oxy-
genated hemoglobin absorbs light at near infra-red (NIR)
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PPG Sensor
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LED Photo Detector

Fig. 1 Placement of sensor in transmissive mode PPG (left) and reflection mode PPG (right)
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Fig.3 A schematic representation of the penetration of light through
the skin at different wavelengths

wavelength, while deoxygenated hemoglobin absorbs light
at red wavelength. Hence, PPG employing NIR and red light
wavelength LEDs and photodetectors is generally used for a
clinical checkup to calculate the hemoglobin concentration.
The effect of motion artifact on the PPG signal also depends
on the wavelength of the light used. Longer wavelength light
like infra-red light gets affected more due to motion artifact
as it penetrates deep inside the tissue.

On the other hand, the light of a shorter wavelength
(green light) is generally free from motion artifacts. Light
at a shorter wavelength penetrates less inside the body tis-
sue. Thus, to mitigate the effect of motion artifacts and the
absorption of light by body tissues, PPG based on multi-
wavelength optical sensors has been proposed to detect
blood flow variations at different skin depths [14].

The light emitted by the diode is absorbed by tissues, and
the amount of absorption in terms of detected light intensity
is determined by photodetector [15]. When used as a pulse

oximeter, PPG uses two LEDs of a different wavelength.
One LED emits light in the red spectrum around 660 nm, at
which light absorption due to deoxyhemoglobin is greater
than that of oxyhemoglobin. Another LED emits light in
the infrared spectrum at a wavelength of 940 nm, at which
oxyhemoglobin absorbs more light than deoxyhemoglobin.
Accurate information on the blood circulation during a heart
cycle is obtained by fixing the wavelength of LEDs between
660 and 940 nm.[16]. Finally, a Microprocessor unit ana-
lyzes the light absorption at each wavelength to determine
the concentration of oxyhemoglobin and deoxyhemoglobin.

The rest of the paper is organized as follows: Estima-
tion of heart rate from PPG is outlined in Sect. 2; Sect. 3
describes different methodologies proposed to date to
remove motion artifacts. Section 4 highlights different
datasets available for heart rate estimation using PPG. A
literature survey based on different algorithms and methods
proposed for heart rate identification is presented in Sect. 5.
Challenges, and Discussion are drawn in Sects. 6, and 7
summarizes the work.

2 Heart Rate Estimation Using PPG

Realtime estimation of heart rate using a wearable device is
one of the demanding applications in the health care system
for the early diagnosis of cardiovascular diseases. Heart rate
is the average number of times a heart beats per minute.
Fluctuation in the time interval between subsequent heart-
beats in milliseconds is called heart rate variability (HRV).
Heart rate and HRV are standard markers for detecting
health status. In a human body, the behavior of sympathetic
and the parasympathetic branches of the autonomic nervous
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system (ANS) indicate the status of HRV [17]. The sympa-
thetic branch is related to the acting condition of the body,
and the parasympathetic branches are related to the resting
and digesting phase of the body. Depending upon day-to-day
activities, the brain processing signal through ANS to the
other parts of the body, through which the body can either
react or stay relaxed. The human body tackles all kinds of
signals received through the ANS system in a balanced way
[18]. However, if a body persistently involves an unhealthy
diet, irregular sleep, stress, and laziness, the balance between
the ANS system’s branches may be disturbed.

A subject with a high HRV means that the ANS system
is in balance and responding to both sympathetic and para-
sympathetic inputs. Low HRV indicates that the subject is
working under stress or fatigue and sympathetic branches
dominate parasympathetic branches. A body with high
HRYV has a healthy status, but a low HRV indicates more
stress, due to which the risk of cardiovascular disease may
increase. Therefore from the last few years, HRV analysis
has become a valuable tool for the early diagnosis of car-
diovascular disease. Therefore both heart rate and HRV are
used to measure cardiovascular health status. Heart rate and
HRV are determined by measuring the volumetric change
in blood during a heart cycle by passing the light through
the skin. The PPG output waveform shown in Fig. 4 depicts
the fluctuation in light absorption during a systolic and dias-
tolic phase of a heart. When the heart contracts, the volume
of blood flow increases, which increases the hemoglobin;
therefore, the light absorption due to increased hemoglobin
also increases—the amount of light detected by the detec-
tor decreases. In the dilation phase, when the blood volume
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Fig. 4 Different feature points related to the PPG waveform
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reduces, the hemoglobin decreases. Therefore, the amount
of absorbed light decreases, hence the light detected by the
photodetector increases. As a result, a pulsatile waveform in
response to a cardiac cycle is observed as a PPG waveform
[19].

The volumetric change of blood in tissue is synchronous
to the heartbeat, which is used to estimate the heart rate. A
PPG waveform mainly consists of four points O—S—N-D.
As shown in Fig. 4, the S-point (Systolic Peak) represents
the peak value in a PPG signal. The calculation of the Peak-
to-Peak interval of consecutive PPG signals (S—S) provides
information on the heart rate. The Peak-to-Peak interval cor-
relates closely with the R-R interval in an ECG waveform.
Analysis of pulse interval (O—O) provides information about
HRV.

For the estimation of heart rate and HRV using PPG,
it is necessary to analyze different properties of pulsatile
PPG waveform like time interval between two consecutive
systolic peaks (tg_g), systolic peak amplitude (P,), and the
amplitude of diastolic Peak (P,) [20]. After calculating the
accurate value tg_g, the instantaneous heart rate due to a sin-
gle heartbeat is calculated using Eq. (2).

60

Is_s

HR; =

i @
For a time window H, the heart rate is calculated by using
Eq. (3).

3

PPG waveform recorded from a healthy subject consists
of three feature points, systolic Peak (S), diastolic Peak (D),
and dicrotic notch (N). However, some of the feature points
may be missing in some PPG waveforms. As the morphol-
ogy of a PPG wave depends on age, gender, and health sta-
tus, some of the feature points may miss the recoded PPG
signal. The accuracy of cardiovascular functionality estima-
tion depends on the accurate analysis of these features. The
first derivative and second derivative of a PPG signal help
identifying the PPG feature points [21]. By analyzing the
features extracted from these three waveforms, namely the
PPG signal, the 1st derivative of the PPG waveform, and the
2nd derivate of the PPG waveform, adequate information
related to cardiac function can be processed [7]. A schematic
representation of these three waveforms is shown in Fig. 5.
It is mandatory to detect feature Point S in PPG signals to
detect the heart rate accurately. It is important to note that
reliable estimation of the heart rate and HRV is only possible
if the Point-S in the PPG signal is detected.

In a healthy subject, the subsequent cardiac cycle’s
morphological structure possesses almost similar proper-
ties as its predecessor. A missing feature point indicates
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Fig.5 Schematic representation of a PPG waveform, its First Deriva-
tive PPG (FDPPG) and Second Derivative PPG (SDPPG)

a sign of abnormality in cardiac function. To accurately
locate feature points in a PPG signal, the derivatives of a
PPG signal are used.

Between the first and second derivatives of a PPG sig-
nal, the second derivative is widely-used to locate the
missing feature points. A PPG waveform, along with its
first derivative and second derivative, is shown in Fig. 5.
Normalized amplitude values, namely b/a,c/a,d/a,e/a,
can be used to detect arterial stiffness [22].

In elderly subjects, the normalized amplitude b/a
increases and other normalized amplitudes decrease.
Analysis of change in amplitude value is used to measure
the subject’s cardiovascular age index, studied by aging
index (AGI) as in eq. (4) [23].

AGI = b—c-d-e 4)
a

Moreover, different intervals between different peaks
from the second derivative of the PPG signal are used to
identifying a subject with abnormalities [24].

Using the correlation between consecutive heartbeats
within a time window, pulse transit time (PTT) and pulse
wave velocity (PWV) provide vital information about heart
rate and HRV. PTT is defined as the time required by an
arterial pulse wave to travel from an aortic valve to a body
site perfuse by optical light [20]. In reference to the ECG
waveform, PTT is the time interval between the R-wave peak
and any feature point on the PPG signal. PWV is used to
measure the heart rate and heart rate variability. PWV is the
velocity of a pressure wave when the blood flows through
arteries. PWV has an inverse relation with PTT as given
by Eq. (5). Therefore, PTT and PWV form a noninvasive
method to analyze cardiac functionality.

D
PWV = o= ®)

Here D is the vessel length through traversed by a pres-
sure pulse.

The PPG signal analysis is also affected by various noises
like motion artifacts, variation due to baseline drift, and
ambient light noise due to sensor position variation. Out
of these noises, motion artifact has a significant effect on
heart rate analysis as the frequency of the motion artifact lies
inside the required heart rate information band. Hence, accu-
rate heart rate peak identification when the PPG sensor is in
motion is challenging. For accurate heart rate estimation, the
effect of motion artifact in the PPG signal must be removed.
The following section describes the motion artifacts reduc-
tion techniques and their properties proposed to date.

3 Motion Artifacts Removal Techniques

Accurate and reliable peak detection with wearable PPG
sensors for heart rate estimation has become a demanding
application in the health care industry. Physical motion dur-
ing daily activities drastically reduces the accuracy of heart
rate identification using a PPG sensor. In this section, several
approaches proposed to date to mitigate the effect of motion
artifacts from raw PPG signals are summarized.

Due to physical movement, sensor light passes from the
body tissue deviates from its path, which provides erro-
neous data. The frequency spectrum of motion artifact is
greater than 0.1 Hz and usually lies inside the heart signal’s
desired spectrum [25]. Hence, motion artifact is a leading
noise source that influences various factors in the PPG sig-
nal analysis, potentially limiting the PPG sensor’s usage to
study and monitor the cardiac system information for health
monitoring. Thus, the suppression of the noise spectrum
from PPG signals is one of the leading research topics in
the healthcare industry.

In [26], decomposition-based independent component
analysis (ICA) is proposed to suppress the motion artifacts
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components from a PPG spectrum. Moreover, the ICA-based
approach provides reliable output only if noise and informa-
tion signal possesses a mutually exclusive spectrum. In the
realtime analysis of cardiac health monitoring, independent
spectral conditions are not met. Thus, the efficiency of the
ICA approach becomes suboptimal. Another widely used
approach to suppress motion artifacts is adaptive filtering.
As motion artifact behavior is random, a fixed coefficient
filtering process is not suitable. Therefore adaptive filtering
based motion artifact removal was proposed in [25]. How-
ever, the adaptive filtering performance depends upon the
nature of the reference noise signal [27]. Therefore, adap-
tive filters can only provide reliable noise suppression when
the correlation between the reference accelerometer signal
and the motion spectrum is high, which is not possible in
realtime.

Moreover, the high computational complexity of the
adaptive filter limits their usage in wearable PPG. To make
the system computationally efficient and to reduce the
requirement of an additional accelerometer, deep learning
convolutional neural network (CNN) is proposed to detect
the noise in a PPG signal. The proposed CNN-based PPG
signal classification in [25] uses a 1-D CNN network and
provides the flexibility to the user to select any PPG segment
of 5-s duration to detect motion artifacts [28]. CNN network
can automatically extract the features by classification, thus
reduces the need for threshold setting and segmentation. The
correlation feature between both left and right hands was
used to detect motion artifacts without an additional accel-
erometer sensor [29]. Since the nature of the PPG signal is
nonlinear and varies between subjects, the proposed work in
[28] uses the artificial neural network approach to analyze
PPG signal characteristics to detect motion artifacts, and
by using ANFIS based algorithm, the lost part of the PPG
signal due to noise is retrieved. In [30], a method based on
neural-network-based classification was proposed to detect
the PPG signal accurately.

Based on the penetration depth of different light wave-
lengths, one more approach to removing motion artifacts
without using accelerometer sensors was proposed [31]. A
shorter wavelength green light source to estimate heart rate
and a longer-wavelength infrared light source to provide a
reference noise signal is used. Moreover, light sources with
different wavelengths also detect noise that arises due to
micro motions. In [29], to reduce the computational com-
plexity, a multi-sensor method with multiple wavelengths is
proposed to study the infected frame instead of analyzing the
whole PPG signal. As a PPG signal is of pulsating nature,
the most pulsating signal is used to extract a clean PPG sig-
nal. Multi-wavelength (Red, Green, Infrared) have differ-
ent penetration depths. ICA approach is used to extract the
pulsatile component. A method based on the fusion of sig-
nals from multiple sensors was proposed in [32] to remove

@ Springer

motion artifacts from the PPG signal. The method in [33]
extracts the reference signal through the PPG signal, thus
reducing the hardware cost.

Most of the proposed methods related to motion artifact
removal deal with simple exercise or limited physical move-
ment. Therefore, to remove strong-motion artifacts, dis-
crete wavelet signal decomposition and thresholding-based
approaches are proposed to remove the noise spectrum from
the PPG signal [34]. A decomposition-based empirical mode
decomposition (EMD) approach was implemented to extract
the correct PPG segment from the corrupted PPG signal.
A modified nonlinear approach named ensemble empiri-
cal mode decomposition (EEMD) was proposed in [35] to
reduce motion artifacts from the PPG signal to resolve the
mode mixing problems that arise during time—frequency
distribution. In the EEMD method, reference noise is added
to decompose the given PPG signal into IMF, without any
prerequisite selection criterion on window width.

The potential of the principal component analysis (PCA)
approach was combined with the EEMD method for accurate
extraction of vital sign information from the PPG signal.
Generally, motion artifact removal techniques are either
based on time analysis or frequency analysis, which possess
their inherent limitations. Therefore time—frequency based
approach was proposed in [35]. However, time—frequency
based approaches failed to provide reliable results when the
nature of motion noise is periodic and strong. In that case,
the extraction of a clean PPG signal becomes very difficult.
Therefore the demand for accurate and reliable motion arti-
fact removal methods for analyzing accurate vital signs is
still an important research topic.

4 PPG Database

There are several data sets publicly available to test proposed
algorithms. Table 1 highlights all the publicly available data-
bases recorded with PPG-enabled wrist-worn devices. One of
the most standard datasets is IEEE signal processing compe-
tition (SPC) 2015. IEEE SPC 2015 dataset was first used in
[36]. IEEE SPC 2015 dataset consists of recordings from 23
subjects, in which the first 12 subjects have undergone simple
physical exercises like walking IEEE SPC-12 Training). The
subjects numbered 13-23 performed arm exercises to intro-
duce some motion noise (IEEE SPC-11 Testing). Two PPG
signals and three-axis accelerometers are used on the wrist
while recording the PPG. To test the efficacy of the work,
the IEEE SPC dataset also recorded ECG signals while the
subject is at rest. One more publicly available recent dataset
is named PPG dataset for heart rate estimation in daily life
activities (PPG DaLiA) [37], which is introduced to overcome
the limitation on low physical activity used while recording
the IEEE SPC dataset. In PPG DaLiA, fifteen subjects have
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Table 1 Summary of publically available PPG databases

Database

Wristband embedding sensor

Description

IEEE Signal Processing Competition (IEEE
SPC-12) —Training [36]

IEEE Signal Processing Competition (IEEE
SPC-11) —Testing [36]

IEEE Signal Processing Competition (IEEE
SPC-23) —Testing + Training [38]

IEEE Signal Processing Competition (IEEE
SPC-22) —Testing + Training [38]
Wrist PPG during exercise [39]

Wrist PPG during walking/running [40]

2-Channel PPG (green LEDs wavelength:
609 nm), 3-axis accelerometer

2-Channel PPG (green LEDs, wavelength:
609 nm), 3-axis accelerometer

2-Channel PPG (green LEDs, wavelength:
609 nm), 3-axis accelerometer

2-Channel PPG (green LEDs, wavelength:
609 nm), 3-axis accelerometer

1-Channel PPG (green LEDs, wavelength:
510 nm)

A low noise 3-axis accelerometer

A wide-range 3-axis accelerometer

3-axis gyroscope for orientation

3-Channel PPG (green LEDs, wavelength:
525 nm), 3-axis accelerometer, 3-axis

Twelve male subjects aged 18-35 years

ECG ( HRreference) recorded simultaneously
from the chest

Sampling frequency: 125 Hz

Eleven subjects aged 19-58 years

ECG (HRreference) recorded simultaneously
from the chest

The sampling frequency is 125 Hz

IEEE SPC-23 dataset includes both IEEE SPC
Training and Testing dataset

IEEE SPC-22 dataset does not consider subject
number 13 from the IEEE SPC-23 dataset

Out of nine subjects, only one subject partici-
pated in all exercise

ECG (HRreference) is recorded simultaneously
from the chest

24 subject with an average age of
26.9+4.8 year

gyroscope

PPG dataset for heart rate estimation in daily

life activities (PPG DaLiA) [37] accelerometer

4 LEDs (two green and two red) three-axis

ECG signal captured using Holter device
The sampling frequency is 50 Hz

15 subjects aged 21-55 years

The sampling frequency of 64 Hz

undergone physical activities that are similar to daily activi-
ties. PPG DaLLiA dataset is specially designed to identify heart
rate under a motion noise environment. Besides this real-life
exercise feature, the PPG DalL.ia dataset has limited informa-
tion on the age group.

The limitations posed by the accelerometer during record-
ing on the accuracy of the PPG data set are improved by intro-
ducing a gyroscope along with accelerometers in the PPG
signal recorder. During the signal recordings, the subjects
underwent physical exercise activities like walking, running
on a treadmill [39].

5 Literature Survey Based on Heart Rate
Estimation

Accurate estimation of heart rate is essential to detect any
abnormalities in body function. The reliability of heart rate
estimation is always affected due to the presence of motion
artifacts. Therefore denoising motion artifacts and correct
heart rate estimation in realtime are current research areas
while designing smart wearable healthcare devices. This

Pre-Processing De-Noising

Fig.6 Flowchart indicating the four main stages in heart rate estimation

motivates researchers to develop and implement a faster and
reliable way to identify the correct heart rate during physical
activities. The majority of the proposed work to date related
to heart rate detection follows a four-step approach, as shown
in Fig. 6.

Input to the preprocessing stage consists of sensor infor-
mation like accelerometer, PPG, and gyroscope [39]. The
role of the preprocessing stage is to filter out undesired
frequency spectrum (out of the desired window) by using
bandpass filters. For reliable and correct estimation of heart
rate, the role of the denoising stage is crucial. Using a ref-
erence noise signal (output of the accelerometer sensor)
while recording a PPG signal helps the denoising algorithm
remove the noise spectrum from the information signal.
After removing motion artifacts, by identifying the correct
peak, the heart rate is estimated in stage-3. A post-process-
ing stage known as the heart rate tracking stage is used to
provide exact information. The algorithms proposed to date
showed a tradeoff between complexity and accuracy.

This literature review summarizes the research
articles related to heart rate estimation using the

—

Heart Rate
Tracking

Heart Rate
Estimation
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Photoplethysmography (PPG) method. The heart rate esti-
mation performance is studied in the literature by evaluat-
ing average absolute error (AAE), absolute error percent-
age (AEP), and Pearson correlation coefficient. AAE and
AEP are computed using a reference ground truth heart rate
value, estimated using ECG. The performance of the heart
rate algorithm is estimated using the following indexing.
HR,,,.(i) represents the ground truth ECG heart rate in the
i"" time window, and HR,(i) is the estimated heart rate value
using the proposed method. The output of each proposed
work was analyzed and compared in terms of mean absolute
error, error percentage, and Pearson correlation coefficient.

The average absolute error is calculated by using Eq. (6).

1

w
W » -
AAE = o > ; HR, (i) — HR,,,(i) (6)

For a total number of windows W, the average absolute
error percentage (AEP) is calculated using Eq. (7).

w . .
1 |HRest(l) - HRtrue(l)|
AEP = — x 100

w ; HRture(i) @

The other set of parameters used in some works in the
literature include accuracy (ACC), sensitivity (SCC), and
specificity, given by Egs. (8)—(10), respectively.

(TP + TN)

A ACC) =
ccuracy(ACC) (TP + TN) + (FP + FN) ®
. . . TP
Sensitivity(SCC) = ———
ensitivity(SCC) = 5 ©
o TN
Specificity = ———
peciicity FP + TN (10)

In Egs. (8)—(10) true positive (TP) is the number of seg-
ments that are classified correctly. NP is the true negative,
which shows the number of segments affected due to motion
artifacts. False-positive (FP) indicates the segment which
is affected but also classified incorrectly. FN false negative
shows segment, which is artifact affected. Table 2 summa-
rized all the techniques proposed, along with their evaluation
results.

An algorithm to minimize the motion artifact effect on
heart rate estimation is proposed in [69]. Due to lower com-
plexity and normalization features, the Normalized Least
Mean Square (NLMS) adaptive filter is used to remove
motion artifacts. After removing the motion artifact, the
heart rate is calculated from the autocorrelation-based fun-
damental period extraction unit. A threshold-based approach
is used as a post-processing step to extract heart rate infor-
mation. The proposed algorithm extracts heart rate with a

@ Springer

correlation of more than 0.98. The accuracy of denoising
using an adaptive filter always depends on the accuracy of
the reference noise signal recorded using the accelerometer.
An algorithm named signal decomposition for denoising,
sparse signal reconstruction for high-resolution spectrum
estimation, and spectral peak tracking (TROIKA) [36] is
proposed in a wearable PPG device that does not require a
reference signal to estimate heart rate. TROIKA technique
for heart rate estimation consists of a three-step process. Step
1 consists of the signal decomposition method to denoise the
motion artifacts components. Step 2 used the sparsity-based
spectrum estimation approach to estimate heart rate. Step 3
is a post-processing step to track and verify the desired peak
related to heart rate. An AAE of 2.34 +0.82 BPM and AEP
of 1.80% was calculated with IEEE SPC 12 candidate data-
set. TROIKA approach has shown good results during physi-
cal activities also. To further improve the performance [41],
proposed an approach named joint sparse spectrum recon-
struction (JOSS), which follows a modified procedure to
improve the accuracy of previous work TROIKA. It utilizes
the PPG signals and acceleration signals jointly for heart rate
spectrum estimation under the multiple measurement vectors
model. Noise due to motion from PPG signal is removed by
spectral subtraction instead of signal decomposition. Selec-
tion and verification of peak were used as a post-processing
step to track heart rate. The authors calculated an AAE of
1.28 +£2.61 BPM and an AEP of 1.01% +2.29% with the
proposed technique. JOSS provides a reduction in the error
compared to TROIKA implemented on the IEEE SPC 12
candidates’ dataset. Despite the improvement in the result
recorded with [36, 41], both approaches faced a limitation in
terms of computational complexity. A novel method called
spectrum subtraction, peak fracking, and post-processing
(SPECTRAP) is proposed to reduce the computational com-
plexity [43]. Asymmetric least squares spectrum subtraction
approach is used to denoise the PPG signal. Instead of using
heuristic rules based spectral peak tracking, a Bayesian deci-
sion theory was used for reliable estimation of heart rate. An
AAE of 1.50+1.95 BPM and AEP of 1.12 +1.47% were
calculated with IEEE SPC 12 candidate dataset. SPECTRAP
showcased the reduction in computation complexity at the
expense of an increase in the AEP. Using random forest-
based spectral peak tracking algorithm, a method to reduce
computational complexity by reducing AAE is proposed in
[46]. The power spectral density of the PPG data segment
and the accelerometer are compared to remove motion arti-
facts. Using the method in [46], an AAE of 1.23+0.80 BPM
with IEEE SPC 12 candidate dataset and 1.65 +1.56 BPM
with IEEE SPC 22 candidates’ dataset were showcased with
areduced computational complexity with and reduced APE.

Like TROIKA, a method to estimate the heart rate by
using spectral peak tracking is proposed [42]. The spectral
tracking method involves multiple heart rate trajectories,
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E while TROIKA uses a single heart rate trajectory. Using an
§ adaptive noise cancellation (ANC) filter for denoising, this
E N ?ﬁ work calculated an AAE of 1.11 +2.33 BPM with the same
2 § = PPG dataset used in [37]. TROIKA’s major disadvantage is
S ﬁl’ N that it uses SSA for signal decomposition, which partially
% . & 2 removes the motion artifacts from raw a PPG signal. An
E :E < E algorithm based on EEMD to minimize the motion artifact
£ from the PPG signal, which occurs due to strong physical
é ol ; exercise, is proposed [44]. In [44], EEMD is used for signal
E % % '% decomposition to remove the motion artifacts from a raw
£ 5 E = PPG signal partially. After signal denoising, the spectrum
g ‘Q;)D & & subtraction approach is used to find the correlation between
= E E motions affected PPG signal and reference noise signal to
g g remove the remaining motion artifact from the spectrum.
Z % o k= This approach resulted in better noise performance than
% g g . é TROIKA in terms of AAE and AEP, which are 1.83 +1.21
g £ B S g BPM and 1.40%, respectively.
225 e Instead of signal decomposition, an adaptive motion arti-
é fact reduction approach to suppress motion was proposed in
< E o = [45] using an NLMS adaptive filter to reduce motion artifact.
i é % .§ A time-varying bandpass filter is used for accurate heart rate
;% = § 5 g estimation. Filter updates its coefficient at constant intervals
% % % g = E so that it can efficiently track the frequency component. In
/E | § this method, AAE and AEP have calculated as 1.71 +0.49
o _g 5 BPM and 1.41%, respectively, resulting in a 27% reduction
éb s P in AAE. This approach works well when the motion artifact
g Bl § & o is weak. To improve the performance of the adaptive filter to
% E :rr 5 = _% E suppress the strong motion artifact from the PPG signal, in
£ é €34 & & [47] singular value decomposition (SVD) stage is introduced
= § before the adaptive filter to decompose the three-axis accel-
q @ § é erometer signal having different periodic components. SVD
L|) Z 5 & eases the convergence of the adaptive filters. The decom-
8 & g T_ § 3 posed output and reference noise signal used by the adaptive
g E g g § : filter to suppress the motion artifact from the PPG signal.
= o 2 % An AAE and AEP of 1.25+0.6 BPM and 0.99% calculated
o - § g respectively.
g & 22 2 z One major issue faced by benchmark techniques like
= |2 % 5 = 8 é TROIKA and JOSS was the runaway error problem. A
E j:" E 8 5 58 hybrid approach that abolishes the dependency of heart rate
& 8 Lo Z 2 estimation over the previous window is proposed [33] to
23 g % overcome the runaway error problem. In this method, a two-
3 5, o 5 % é . § z channel PPG signal is used to estimate heart rate. EEMD
E 2 g 3 = E 2 % 2| 3 8 approach is used to obtain a noise-free PPG signal, and the
2 e g5 E g éoé %g RLS adaptive filter is used to remove motion artifacts and
gé PEE8=8z8| S8 identify the heart rate peak. An AAE of 1.15+2.37 BPM
R éﬁ Eu using a single channel and 1.02 + 1.79 BPM with two chan-
E § % r,‘:; nels are reported.
3 g 3 Apart from various advantages, the proposed in [33] does
E % c:: 2 not denoise the signal effectively when the motion artifact
g ; 8 5 frame exists close to the heart rate frame. A method named
. s ER precise heart rate tracking(PREHEAT) is proposed in [57]
% £ g’ . g by introducing a dynamic order correlation-based recursive
e |2 5 %3 least-squares (cRLS) adaptive filter to minimize the effect
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of motion artifact effectively. After denoising, Wavelets are
used in addition to Fourier transform to detect the correct
heart rate peak. PREHEAT calculates an improved AAE
of 0.83+0.96 BPM. PPG time—frequency features based
motion artifact removal approach was proposed in 2016 [51],
named fime—frequency spectra of PPG signal (TifMA) for
realtime heart signal analysis. Compared to published work
related to motion artifact removal and heart rate detection,
TifMA also tests the noise frame usability for heart rate peak
detection instead of deleting them. Using frequency modu-
lated and amplitude modulated data from the usable sig-
nal, the proposed algorithm accurately estimates heart rate
value using a subsequent window approach. The affectivity
of TifMA was tested in terms of specificity and selectivity.

Various methods proposed in the literature to denoise a
PPG signal are based on signal decomposition or adaptive
filtering that failed to provide reliable results in realtime
applications. An approach based on cascaded RLS adap-
tive filter and EEMD is proposed in [35] to overcome the
limitations posed by realtime PPG applications. The author
computed an AAE of 1.16+2.23 BPM and AEP of 0.93%
with the IEEE SPC 12 candidate’s dataset.

In particle filter-based algorithm for heart rate estimation
using photoplethysmographic signals (PARHELIA) [48], a
method based on particle filter for heart rate estimation is
proposed with tracking multiple candidates. A particle filter
can help recover an incorrect track to the correct track. PAR-
HELIA uses the acceleration signals to update the weight of
particles in the particle filter to reduce the effects of motion
artifacts. Updating weight depends on three steps, namely
prediction, weight calculation, and resampling. An AAE of
1.17 BPM was calculated with PARHELIA, which showed
an improvement of 8.6% compared to the TROIKA. Another
work based on particle filter proposed in [59] the heart peak
by focusing on those consistent with time. Instead of three
axes reference noise signal, a single reference noise signal
was used to reduce computational complexity having the
highest peak frequency. Instead of relying on any reference
characteristics points for measurement, the proposed filter
considers noisy signals as input and modifies the weight
of selected particles to analyze heart information. Heart
rate was estimated by detecting the highest weight particle
assigned to each window. To further refine the heart rate
estimation, a fusion method was used, in which an AAE of
1.4+ 1.55 BPM is calculated [59].

An algorithm named multiple reference adaptive noise
cancellation technique (MURAD) is proposed in [49] to
improve the effectiveness of adaptive filters for accurate
heart rate estimation. In this method, the three-axis accel-
erometer reference noise signal and the difference between
two PPG signals are used as the reference noise signal.
Instead of using a fixed reference noise signal for each
window, the proposed work provides flexibility to select a

realtime reference noise signal for accurate and reliable heart
rate estimation. An AAE of 0.97+1.83 BPM and AEP of
0.76 +1.5% were calculated with MURAD algorithm. In
[50], a different approach to separate motion artifacts spec-
trum and PPG spectrum from raw PPG data is proposed. The
harmonic sum model retrieves the fundamental frequency
component of the reference noise acceleration signal within
a short window range to estimate the heart rate spectrum
from raw a PPG signal. An AAE of 0.73 +0.83 BPM was
calculated, which showed improved error performance over
methods already reported.

As observed from the literature, the frequency-domain
approach, like EMD [33, 44], increases the computational
complexity. In [70], a modified EMD approach with vari-
ance characterization to identify motion-affect periods in
the whole PPG signal from a predefined time window is
proposed to overcome the computation complexity issue.
An AEP is calculated as 1.03%, which demonstrated the
use of a modified EMD approach introduced in wearable
devices [70]. A method that uniquely detects heart rate peak
frequency under the realtime environment with reduced sys-
tem complexity is proposed in [53] to reduce computational
complexity. A unique property of this work was that it does
not rely on heart rate information recorded in the previous
window for heart rate detection. To avoid large-amplitude
reference noise signal detection in detecting heart rate, a
spectral division approach is used to extract the reference
accelerometer spectra from the PPG signal. A composition
of all frequency components is used to measure the highest
peak frequency under the desired range. Finally, a constant
value based jump procedure was introduced to track the
heart rate in the noisy spectrum.

Wiener filter and phase vocoder based new approach
named WFPV is proposed in [53] to overcome the limita-
tions of computational complexity faced by methods based
on heuristic rules or thresholds detection for heart rate esti-
mation. A Wiener filter is used to attenuate the effect of
strong motion artifacts. A phase vocoder was used, which
allows the user to estimate heart rate for a short period. Com-
pared with previously presented methods, WFPV improved
AAE to 1.02 BPM and AEP to 0.81%. The Wiener filter used
reference noise signals from accelerometers from all three
axes to filter motion artifacts. In [64], a modified method to
remove motion artifacts by using a three-axis acceleration
reference noise signal is proposed.

Some zeros were added at the end of the signal to make
heart rate resolution less than 1 BPM to identify heart rate
peak frequency. The heart rate is further tracked by com-
paring the estimated result with a predefined threshold. An
AAE of 1.02+0.44 BPM was calculated, which is better
than most of the proposed work. Conceptually similar work
was also presented in [56] to estimate the correct heart rate
peak. A one-variable Kalman filter was employed to refine
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the heart rate value. To reduce the effect of the motion noise
SVD technique filters out a subset matrix of noise-free PPG
signal. To assess the present work compared with [53], the
authors calculated two more parameters for maximum abso-
lute deviation and standard deviation. Maximum absolute
deviation provides the capability to assess the algorithm’s
accuracy at each point in a window and a standard deviation
computed over the whole window.

Considering the advantages of time—frequency
approaches simultaneously, a time—frequency based short-
time Fourier spectral fracking (SFST) approach was pro-
posed to estimate heart rate in a short period. As FFT pro-
vides limited resolution to study heart rate, [54] replaced
FFT with STFT for realtime heart rate estimation. After the
preprocessing step, the signal is divided in a short time win-
dow using the STFT approach to reduce motion artifacts. A
cyclic moving average filter is used to filter out unexpected
variance values in heart rate due to complex motion arti-
facts. Using IEEE SPC 12 candidates’ dataset, calculated
results showed improved AAE results of 1.06 +0.69 BPM
and AEP of 0.94% +0.53%. In [55], a new method to utilize
the potential of a time—frequency based approach for heart
rate estimation is proposed. A combination of RLS adaptive
filter (a time-domain approach) output and SSA (frequency
domain approach) output was used to minimize the motion
artifacts in [58]. By considering the previous heart rate time
window, a conditional sum approach was used to avoid false
estimation of heart rate. For reliable heart rate peak detec-
tion, tracking of heart rate within a search range is imple-
mented as a post-processing step, which resulted in an AAE
of 1.16 +1.74 BPM.

Researchers have devoted many efforts to provide low
computational complexity approaches to estimate heart rate
for wearable devices accurately in recent years. In [58],
an approach based on the random forest binary decision
algorithm for accurate heart rate estimation is proposed. A
binary decision algorithm helps in deciding between two
algorithms used for motion artifacts removal. For feature
extraction, wavelet-based techniques were used. Compared
with the result of a similar approach, this work calculated
an AAE of 1.23 BPM with low computational complexity.

Another concern in developing wearable devices is the
accurate estimation of heart rate during intensive physical
activity. In [60], an algorithm to identify heart rate in a real-
time environment is proposed. The main objective of this
work is to remove the motion artifacts spectrum that occurs
due to physical movement across the sensor. For denois-
ing, the Wiener filtering approach was used. To solve the
difficulties faced in heart rate estimation during intensive
exercise, the finite state machine (FSM) based algorithm
was used under the post-processing step, ignoring inaccu-
rate estimations. Compared with the previously reported
method, an improved result in terms of AAE 0.79+0.6
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BPM was calculated with IEEE SPC 23 candidate dataset.
Even though the accelerometer signals cancel out the motion
artifact, they introduce gravitational acceleration error. To
solve the problem of gravitational acceleration, a gyroscope
is used to record the reference noise signal [40].

For heart rate estimation using wearable devices, prop-
erties like tracking ability, robustness, and computational
cost are considered important design parameters and can be
realized by a combination of adaptive filters [71]. By assign-
ing different weights to the combined layers of an adaptive
filter, the adaptive filter’s denoising performance can be
improved [61]. The output of two parallel cascaded networks
was combined using a convex combination to improve the
output efficiency, which depends on the choice of filters and
adaptive filter parameters. A three-stage cascaded network
model was proposed to filter out motion artifacts in three
directions. The output from the cascaded RLS and cascaded
LMS stage were combined using the convex combination.
An AAE of 1.12 BPM was calculated on the same dataset
used in [36]. Using the LMS filter properties, a method to
minimize motion artifacts was also introduced to estimate
heart rate accurately. A notch filter was used to reproduce the
PPG signal from the detected heart rate peak [63]. An AAE
of 0.92 BPM was calculated, which showed an improved
result compared to the state-of-the-art techniques.

Despite this improvement in error performance, the per-
formance of the LMS filter depends upon an adjustment of
tap weight, which is directly related to the input vector. If
the input vector is not bounded, then the LMS filter may face
gradient noise amplification due to the incorrect selection
of step size. To avoid the gradient noise amplification and
step size issues, a three-stage cascaded adaptive filter RLS,
NLMS, LMS based approach is proposed in [72]. In [72],
two different pairs of adaptive filters are combined using a
convex combination to effectively denoise the PPG signal.
Sigmoid function based parameters are assigned to each pair
of adaptive filters were updated at each iteration to improve
the filtering performance. The FFT-based approach is used
to estimate the heart rate. Convex combination assigns con-
stant value at each combinational layer consists of differ-
ent output combinations of the adaptive filter. It provides
maximum value to those layers that perform well in that
iteration. Using IEEE SPC 12 candidates’ data set, an AAE
of 0.92 BPM is calculated. For reliable denoising and heart
rate, in [73], three stages of cascaded adaptive filters output
are combined using the softmax normalized function. The
FFT approach estimates the heart rate value by using a phase
vocoder. An AAE of 1.86 BPM was calculated on large data-
sets, which showed less error than other techniques that used
the same data set to test the algorithms. By combining the
output of adaptive filters, estimation of heart rate becomes
more accurate, but computational time increases. In [68], a
new denoising algorithm named combination of adaptive
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filters using single noise reference signal (CASINOR) is
proposed to reduce computational time and error values.
Only RLS and NLMS adaptive filters are used to denoise
the signal. A sigmoid function was also used to combine the
output of both filters. The main feature of CASINOR was
that it requires only a single reference acceleration noise
signal instead of a three-direction reference noise signal.
The accelerometer signal with maximum power is chosen as
a reference noise signal. After spectral estimation, a phase
vocoder is used to refine the heart rate peak values. Using
CASINOR, an AAE of 1.92 BPM is calculated with IEEE
SPC 23 candidates’ dataset.

Following the decomposition approach for denoising in
[73], a method based on VMD is introduced to study the
PPG signal in small data length to improve heart rate esti-
mation accuracy. Further to the identified heart rate peak,
the PCA approach was used to select the more heart rate
relevant mode. With shorter length data, the proposed [73]
decompose method identified heart rate peak with less error.
Further, to identified accurate heart rate spectrum peak dur-
ing physical exercise, in [74], a personalized deep learning
approach was introduced. For accurate estimation, the algo-
rithm was trained according to the realtime situation. An
AAE of 1.47 +3.37 BPM was calculated with IEEE SPC 23
candidate’s dataset. In realtime, the nature of noise cannot
be predicted. A fixed reference noise model may not work
effectively to analyze the signal in a realtime environment.
In [75], a neural network-based classification approach to
separate clean segments without reference noise accelera-
tion signals is proposed for realtime applications. The main
feature of this work was that instead of assessing the com-
plete PPG frame, it access individual pulse behavior. The
efficacy of the work depends upon the accuracy of the ref-
erence template. In [66], a hybrid approach comprised of
VMD and neural network classification to estimate heart rate
in a realtime environment is proposed. This work identifies
the beat morphological structure of beat besides heart rate
estimation using a neural network model-based template
matching feature. An AAE of 0.53 BPM was calculated on
IEEE SPC 23 candidate’s dataset, which showed improved
performance over the state-of-the-art techniques. In [76],
a hybrid approach to jointly estimate heart and respiratory
information from the IMF spectrum is proposed. In this
method, the EEMD approach is used to generate the desired
frequency window’s IMF function. PCA technique was used
to extract the most relevant feature for heart rate estimation.
The method showed similar results on IEEE SPC 23 candi-
date’s dataset obtained, but the accuracy and reliability of
this work are far greater than the EEMD approach. Effec-
tiveness of work is calculated in terms of mean and variance
with a value of 99.95% and 0.0010% respectively.

Most of the techniques presented were tested with the
common dataset IEEE SPC 2015. However, this dataset was

recorded with little physical exercise, and each dataset has
a duration of less than one hour. In [75], to design a more
robust system, a new dataset PPG DaLiA is introduced,
which contains recording with some real-life daily activities
with a duration of more than 36 h. Two-channel PPG signal
and three-axis accelerometer signal are firstly separated in a
short window duration of eight seconds. Then Fast Fourier
approach was implemented on each window for heart rate
estimation. The tracking step is introduced in the CNN layer
to improve accuracy and reliability, which relies heavily on
the correlation property of the subsequent window of the
heart cycle.

In [62], to reduce the computation complexity problem
faced by benchmark techniques [44], an SVD based algo-
rithm to estimate heart rate from motion corrupted raw
PPG signal is introduced. A genetic algorithm was used to
optimize the value of parameters used under the heart rate
tracking step to deal with the different motion artifacts cases.
From the acceleration signal, the KNN classifier is used to
detect the intensity of physical activities. The proposed [62]
approach produced comparable results but required less
complex processing stages. An AAE of 2.17 BPM was cal-
culated on the same dataset [42]. One more technique based
on neural networks for heart rate estimation is introduced in
[38], which uses an eight-layer filter model to track the heart
rate. The Gaussian distribution function is used to improve
the accuracy of the estimation signal. Complex mathemati-
cal calculations limit the application of the eight filter model
to use in the realtime analysis of heart rate.

To improve mean absolute error performance, A method
based on the power spectrum of the desired signal to improve
mean absolute error performance is proposed in [65]. This
approach deal with the signal’s power for measuring accu-
rate heart rate peak during body movement. Estimating the
true heart rate of the present window depends on the accu-
racy of the previous window; hence the crest factor property
of FSM is used to check the response of heart rate in the.

subsequent window. The mean value of the previous heart
rate window in terms of the Gaussian kernel function is mul-
tiplied by the current time window to improve the SNR value.
Improved results in terms of AAE of 1.20 BPM and AEP of
1.05% were calculated with IEEE SPC 23 candidates’ dataset.
After considering problems faced in time and frequency-based
approaches, in [67], a modified approach simultaneously uses
both the PPG modes to reduce the effect of noise. The effect
of noise imposes on the PPG signal depends on the penetra-
tion depth of light used to capture the signal. A total of six
sensors of different wavelengths were used to illuminate the
skin. Out of six sensors, four sensors were used for reflection
mode and two for transmissive mode. Separate LEDs were
used because the transmissive mode needs a light source that
penetrates deeper into the skin. Blue, green, and infrared light
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show superior results compared to other light sources for esti-
mating heart signals.

6 Challenges and Discussion

In the last decade, monitoring cardiovascular health has
become an essential feature for the early diagnosis and pre-
vention of cardiovascular diseases. Due to a lack of efficient
monitoring tools, the mortality rate due to cardiovascular
diseases increases year by year. To prevent any accidents
related to cardiovascular disease, personal health monitoring
devices are gaining importance. Therefore the demand for
battery-operated wearable sensing devices is ever increas-
ing. Wearable devices with PPG sensor technology will give
people the flexibility to measure their health status at any
time and any place.

Based on the literature review, PPG technology can moni-
tor heart rate in wearable devices like bands and watches.
The accuracy of wearable PPG-based monitoring tools suf-
fers from effects related to motion artifacts. Researchers
devoted a lot of effort to design an accurate and reliable
monitoring tool in the healthcare system to tackle motion
artifacts. We have also highlighted the algorithm proposed to
reduce the effect of motion artifacts from the PPG signal. In
the literature, time-domain approaches like adaptive filtering
and frequency domain approach like signal decomposition
are used to denoise. Later on, some of the methods combined
the positive feature of both techniques to provide accurate
results. Signal-based techniques can give noise-free signals,
but they faced computational complexity problems.

On the other hand, adaptive noise cancellation showed
reliable results only when reference noise signals correlate
highly with the motion spectrum, which is not possible in
realtime. In addition to this work, proposed related to heart
rate estimation using PPG provide inaccurate results if the
noise spectrum lies close to the heart rate peak. Moreover,
due to the non-stationary nature of the biological signal,
Fourier-based heart rate estimation also not provides reli-
able results.

Despite the outstanding progress in the past few years
related to motion artifact removal from PPG signal discussed
in section (III), an effective and computational efficient
motion artifact removal algorithm is still in great demand.
Therefore there are still many issues to be resolved to imple-
ment a realtime continuous method using PPG to monitor
cardiovascular behavior during physical activities.

7 Conclusion
This paper presents a review of the potential of Photop-

lethysmography technology in the field of biomedical signal
processing. This paper presented a comprehensive review
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of state-of-the-art research on suppressing motion artifacts
and heart rate estimation using a PPG-enabled wearable
device. In the last decade, the ratio of death worldwide due
to cardiovascular diseases increases day by day. This hike
is due to faster changing lifestyle, stress level, and people’s
food habits across the world. To reduce the risk of cardio-
vascular diseases, a frequent medical checkup is needed for
continuous assessment. So regular monitoring of cardio-
vascular health status is important for early diagnosis and
timely treatment of cardiovascular disease. Therefore the
need for a portable and wearable device for early diagnosis
is growing day by day. Due to their small size and low cost,
PPG sensor-based wearable devices showed their potential to
use as a health monitoring device in the future. This review
paper summarized different techniques proposed in the last
ten years for noise suppression and heart rate estimation with
PPG technology. Some of the methods were computationally
inefficient, and others were inefficient under realtime moni-
toring. Despite many advantages of the Photoplethysmogra-
phy sensor, it can produce erroneous data in certain circum-
stances. One of the main reasons for error is the occurrence
of motion artifacts. Therefore the role of the PPG sensor for
extracting vital information is limited due to motion artifact.
A reliable health monitoring device in a realtime environ-
ment requires signal processing algorithms that effectively
remove motion artifacts and are computationally efficient.
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