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Abstract
Diabetes, one of the top 10 causes of death worldwide, is associated with the interaction between lifestyle, psychosocial, medical 
conditions, demographic, and genetic risk factors. Predicting type 2 diabetes is important for providing prognosis or diagnosis 
support to allied health professionals, and aiding in the development of an efficient and effective prevention plan. Several works 
proposed machine-learning algorithms to predict type 2 diabetes. However, each work uses different datasets and evaluation met-
rics for algorithms’ evaluation, making it difficult to compare among them. In this paper, we provide a taxonomy of diabetes risk 
factors and evaluate 35 different machine learning algorithms (with and without features selection) for diabetes type 2 prediction 
using a unified setup, to achieve an objective comparison. We use 3 real-life diabetes datasets and 9 feature selection algorithms 
for the evaluation. We compare the accuracy, F-measure, and execution time for model building and validation of the algorithms 
under study on diabetic and non-diabetic individuals. The performance analysis of the models is elaborated in the article.
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1  Introduction

Diabetes Mellitus, commonly referred to as diabetes, is a 
chronic disease that affects how the body turns food into 
energy [1]. It is one of the top 10 causes of death worldwide 
with 4.2 million deaths in 2019 [2]. There are three main 
types of diabetes: type 1, type 2, and gestational diabetes [1]. 
Type 1 diabetes is thought to be caused by an autoimmune 
reaction where the body’s immune system affects the insulin-
producing beta-cells. Type 2 diabetes is caused by inadequate 
production of insulin and the inability of the body cells to 
respond to insulin properly. Gestational diabetes affecting 

pregnant women mostly during 6 and 9 months of pregnancy 
is caused by the hormone produced by the placenta leading 
to insulin resistance. The proportion of people with type 2 
diabetes are increasing compared to ones with type 1 and ges-
tational diabetes [2]. In 2019, more than 1.1 million children 
and adolescents were suffering from type 1 diabetes, while 
374 million people were at increased risk of type 2 diabetes. 
Consequently, in this paper, we focus on type 2 diabetes.

The prevalence of type 2 diabetes in an individual is found 
to be associated with the interactions of several risk factors 
that are related to lifestyle, psychosocial, medical conditions, 
demographic, and genetic (Hereditary) [3–5]. Diagnosis of 
type 2 diabetes if not performed at an early stage can lead 
to several serious life-threatening complications [6]. Machine 
learning-based decision support systems for the prediction 
of chronic diseases [7–12] have thus gained a lot of attention 
for better prognosis/diagnosis support to health professionals 
and public health [13]. Several research efforts have been pro-
posed in the literature for using machine learning classification 
algorithms to predict the prevalence of type 2 diabetes based 
on different risk factors [14–45]. These algorithms are either 
tree-based [46, 47] that construct a classification tree with the 
dataset features as the nodes and the class labels as the leaves, 
probability-based [48] that make use of a probability distribu-
tion function over the class labels for a given observation, lazy 
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approach-based [49, 50] that store the dataset in the memory 
without developing a model and use the dataset to classify 
a new observation using a distance function, function-based 
[51–53] that use a regularization function that aims to mini-
mize the model prediction error, rule-based [54–57] that use 
IF–THEN statements extracted from decision trees, classifier 
ensemble-based [58–60] that use a set of classifiers whose indi-
vidual decisions are combined by using a voting mechanism, 
clustering and classifier ensemble-based [61] that first perform 
clustering on the dataset to remove outliers and then apply a 
classification algorithm, or meta heuristic-based [62–64] that 
combine the output of different classification algorithms with 
each modelled using a random sample of the dataset. The work 
in the literature evaluates and compares different classification 
algorithms using heterogeneous datasets and evaluation met-
rics. However, we are unaware of any objective comparison of 
these algorithms using unified datasets and evaluation metrics. 
This paper aims to address this void.

The key research contributions are as follows.

•	 We classify type 2 diabetes risk factors based on their 
common characteristics to analyze which categories are 
more significant than others in predicting type 2 diabetes.

•	 We evaluate the performance of 35 different algorithms 
in terms of accuracy, F-measure, and execution time in a 
unified setup using 3 real-life diabetes datasets with and 
without feature selection.

2 � Taxonomy of Type 2 Diabetes Risk Factors

In this section, we present a taxonomy of type 2 diabetes risk 
factors (Fig. 1). We classify them into five categories: (1) life-
style, (2) medical condition, (3) hereditary, (4) psychosocial, 
and (5) demographic. The purpose of this classification is to 
analyze which category of the risk factors significantly contrib-
utes to the prediction of type 2 diabetes. Lifestyle factors refer to 
the ones that are highly influenced by the lifestyle and environ-
ment of an individual. The medical condition-based factors are 
related to the presence of certain diseases in an individual such 
as serum uric acid, obesity, hypertension, cardiovascular disease. 
A serum uric acid level of more than 370 μmol/l is considered 
high in an individual and associated with the prevalence of type 
2 diabetes [65]. Obesity is defined as the excessive amount of 
fat accumulation in an individual and characterized by a Body 
Mass Index (BMI) higher than 30 [66]. High blood pressure is 
the medical condition in which the blood pressure in the arteries 
remains persistently elevated and characterized by systolic pres-
sure 140–159 mmHg or diastolic pressure 90–99 mmHg [66]. 
Cardiovascular disease refers to the conditions affecting heart or 
blood vessels such as abnormal heart rhythms, heart attack, heart 
failure, and stroke [67]. The risk factors that are passed on from 
one generation to another fall under the hereditary category. The 

psychosocial factors include illness related to the mental health 
of an individual, and the demographic risk factor refers to the 
characteristics of an individual.

3 � Machine Learning Classification 
Algorithms

In this section, we describe the implementation of the 
machine learning algorithms under study for the prediction 
of type 2 diabetes.

3.1 � Decision Tree (DT)

It constructs a tree structure to define the sequences of deci-
sions and outcomes [46] and to use it for prediction. At each 
node of the tree, the algorithm selects the branch having the 
maximum information gain (Eq. 1).

where R is the risk factor, Hdiabetes represents the base 
entropy (Eq. 2), and Hdiabetes|R represents the conditional 
entropy (Eq. 3).

(1)InfoGainR = Hdiabetes − Hdiabetes|R

(2)

Hdiabetes =
∑

∀diabetes�{diabetes,non−diabetes)

P(diabetes) log2 P(diabetes)

Fig. 1   Taxonomy of risk factors for type 2 diabetes
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where P(diabetes) is the probability of the number of obser-
vations in the diabetes class compared to the total number 
of observations.

where R is a risk factor and r is the set of its values from all 
the observations in the dataset.

A one-level Decision tree, i.e., a tree where the root is 
immediately connected to the leaf nodes, is known as Deci-
sion Stump (DS) [47] that makes the prediction based only 
on the risk factor with the highest information gain.

3.2 � Bayesian Network (BN)

It is a graphical representation of probabilistic relationships 
among a set of risk factors and diabetes prevalence [48]. BN 
is a set of edges (E) and risk factors (R = {R1, R2, …, Rn}), 
which forms a directed acyclic graph (DAG) G=(R, E) that 
encodes a joint probability distribution over R. Each node 
is represented using a conditional probability distribution 
(CPD) as stated in Eq. (4).

where Pa(Ri) indicates the parent of Ri in G.
In a Bayesian network, a joint distribution of risk factors 

is obtained by multiplying the CPD for each risk factor as 
stated in Eq. (5).

3.3 � Naïve Bayes (NB)

It is primarily based on Bayes’ theorem that gives the rela-
tionship between the probabilities of two risk factors and 
their conditional probabilities [46]. Given that a risk factor 
A already exists in an individual, the conditional probability 
of a risk a factor C occurring is given by Eq. (6).

For a record with a set of risk factors (R1, R2, …, Rn), 
the goal is to predict diabetes/non-diabetes class Ci from 
the set of classes, C = {Cdiabetes, Cnon-diabetes} that maximizes 
the conditional probability P(Ci|R1, R2, …, Rn). The gen-
eral form of Bayes’ theorem for assigning diabetes or non-
diabetes class to observation with multiple risk factors is 
given by Eq. (7).

(3)Hdiabetes|R =
∑

r

P(r)H(diabetes|R = r) =
∑

∀r�R

P(r)
∑

∀diabetes�{diabetes,non−diabetes}

P(diabetes|r) log2 P(diabetes|r)

(4)CPD = P(Ri|Pa
(
Ri

)
)

(5)P
(
R1,R2,… ,Rn

)
=

n∏

i=1

CPD
(
Ri

)

(6)P(C|A) = P(A ∩ C)

P(A)
=

P(A|C) ⋅ P(C)
P(A)

The NB algorithm extends the Bayes’ theorem mentioned 
in Eq. (7) using two assumptions: 1) each risk factor is con-
ditionally independent of every other factor given a class Ci 
as shown in Eq. (8), and 2) ignoring the term P(R1, R2, …, 
Rn) in Eq. (7). Consequently, the probability of Ci given the 
probabilities of all the risk factors, P(Ci|R1, R2, …, Rn) can 
be calculated using Eq. (9).

3.4 � K Nearest Neighbors (K‑NN)

It stores the dataset and classifies a new observation based 
on how likely it is to be a member of diabetes or non-diabe-
tes class [49]. The algorithm calculates the distance of the 
new observation from all the existing ones in the dataset. It 
then assigns the new observation to a class that appears the 
maximum number of times in a group of k (positive integer 
parameter) neighbors.

3.5 � K Star

It uses an entropic measure based on the probability of trans-
forming one observation into another by randomly choosing 
between all possible transformations [50]. A new observa-
tion is assigned to the same diabetes or non-diabetes class as 
that of one in the dataset having the shortest distance from 
the new observation. The distance between observations in 
K star is indicated by the complexity of transforming one 
observation into another. Let I be a set of observations and 
T a finite set of transformations on I. Let P be the set of 
all prefix codes from T* which are terminated by � . � is a 
member of T which maps observations to themselves, i.e., 
( �(a) = a). Members of T* define a transformation on I as 
shown in Eq. (10).

A probability function p is defined on T* that satisfies the 
conditions stated in Eq. (11).

(7)P
(
Ci|R1,R2,… ,Rn

)
=

P
(
R1,R2,… ,Rn|Ci

)
⋅ P

(
Ci

)

P
(
R1,R2,… ,Rn

)

(8)
P
(
R1,R2,… ,Rn|Ci

)
= P

(
R1|Ci

)
⋅ P

(
R2|Ci

)
.…P

(
Rn|Ci

)
=

n∏

j=1

P
(
Rj|Ci

)

(9)P
(
Ci|R1,R2,… ,Rn

)
= P

(
Ci

)
⋅

n∏

j=1

P
(
Rj|Ci

)

(10)t(a) = tn
(
tn−1

(
… t1(a)…

))
,where t = t1,… , tn
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The function P* is defined as the probability of all paths 
from observation a to observation b (Eq. 12).

The K star function is defined using Eq. (13).

3.6 � Logistic Regression (LR)

It predicts the probability that a given observation belongs 
to diabetes or non-diabetes class using a sigmoid function 
[51] as stated in Eq. (14).

where p(diabetes) represents the probability of having diabe-
tes, R is the set of risk factors, and β0 and βi are the regres-
sion coefficients representing the intercept and the slope 
respectively. The values of regression coefficients are cal-
culated using maximum likelihood estimation such that the 
value of Eq. (15) is the maximum.

3.7 � Support Vector Machine (SVM)

It aims to create a decision boundary known as a hyperplane 
that can separate n-dimensional instance space into diabe-
tes and non-diabetes classes [52]. The hyperplane is created 
using the extreme points (support vectors) of the dataset. 
The generation of hyperplane is an iterative process to find 
the maximum possible margin between the support vectors 
of the opposite classes. Let ri and yi represent the risk fac-
tors and classes in the dataset and there exists a hyperplane 
that separates diabetes and non-diabetes classes as stated in 
Eq. (16).

where w is the normal of the hyperplane and b is the bias.
The minimization problem to obtain the optimal hyper-

plane that maximizes the margin can be formulated using 
Eq. (17).

(11)0 ≤
p
(
tu
)

p
(
t
) ≤ 1,

∑

u

p
(
tu
)
= p

(
t
)
, and p(Λ) = 1

(12)P∗(b|a) =
∑

t�P∶t(a)=b

p
(
t
)

(13)K∗(b|a) = − log2 P
∗(b|a)

(14)p(diabetes) =
e�0+

∑n

i=1
�iRi

1 + e�0+
∑n

i=1
�iRi

(15)

l
(
�0,… , �i

)
=

∏

i∶yi=1

P
(
diabetesi

) ∏

i�∶y
�

i
=0

(1 − p
(
non−diabetesi

)

(16)

wTr + b = 0

s.t., wTr(i) + b > 0, if y(i) = +1 and wTr(i) + b < 0, if y(i) = −1

In the case of a non-linear dataset, SVM uses a kernel 
trick to transform the input space to a higher dimensional 
space to generate a hyperplane. SVM uses different kernel 
functions such as linear, polynomial, Radial Basis Function 
(RBF), and sigmoid.

3.8 � Artificial Neural Networks (ANN)

It is an iterative process that consists of networks of neu-
rons based on the neural structure of the human brain [53]. 
In this paper, we use Multilayer Perceptron (MLP) which 
is a feedforward neural network that utilizes backpropaga-
tion for training. An MLP consists of three layers: risk fac-
tors (input), hidden, and diabetes-and-non-diabetes classes 
(output). Except for the risk factors nodes, each node in the 
network is a neuron that uses a non-linear activation func-
tion. In this paper, we use the sigmoid activation function 
to develop a non-linear relationship between the risk factors 
and the diabetes-and-non-diabetes classes. MLP is an itera-
tive process and after each iteration, the algorithm compares 
the result of the output layer with actual diabetes or non-dia-
betes class labels and calculates an error term for each node. 
These error terms are then used to adjust the weights in the 
hidden layers such that the prediction accuracy increases in 
the next iteration. The output of each hidden layer is calcu-
lated using Eq. (18).

where W is the weight matrix for each risk factor, i is the 
input vector consisting of the risk factors, b is the bias vec-
tor, Ø(.) is the sigmoid activation function and a is the vector 
output consisting of diabetes and non-diabetes class labels.

3.9 � Zero Rule (ZeroR)

It is a frequency-based algorithm [54]. It labels all obser-
vations based on the majority (diabetes or non-diabetes). 
It does not require a model development for diabetes 
prediction.

3.10 � One Rule (OneR)

It is a frequency-based algorithm that generates one rule for 
each risk factor in the dataset to predict diabetes and then 
selects the rule with the smallest error [55]. The algorithm 
first constructs a frequency table for each risk factor against 
diabetes and non-diabetes classes to create the rules for the 
risk factors. The error for each rule is then calculated by 
dividing the number of the observations in the minority class 

(17)
Minimize �(W) =

1

2
||W||2, such that yi

(
W ⋅ ri + b

)
≥ 1

(18)a = �(Wi + b)
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(diabetes or non-diabetes) by the total number of observa-
tions as stated in Eq. (19).

3.11 � JRip

It is based on association rules with reduced error pruning 
by implementing Repeated Incremental Pruning to Produce 
Error Reduction (RIPPER) [56]. An initial set of rules is 

(19)Error =
Number of observations in theminority class

(Total number of observations)

generated for the risk factors that cover all the observations 
in the diabetes class. This overlarge set of rules is then itera-
tively simplified by performing pruning operations. At each 
stage of simplification, a rule is removed such that there is 
the highest error reduction. The iteration stops when further 
pruning operations would increase the error.

3.12 � Decision Table (DTable)

It is a set of If-Then rules that are formulated in terms of a 
candidate decision table [57]. A set of rules for the associa-
tion of risk factors and prevalence of diabetes are stored in a 

Table 1   Advantages and disadvantages of classification algorithms

Algorithm Advantages Disadvantages

DT [46] Suitable for datasets having missing values and data scaling and normali-
zation is not required

Easy to implement and interpret

Sensitive to change
The probability of overfitting is high

BN [48] Suitable for datasets having missing values Not suitable with small datasets
Computationally expensive

NB [46] Suitable for datasets with missing values and is scalable
Easy to implement

Suffers from the issue of zero frequency

K-NN [49] Suitable for datasets having outliers
Easy to implement

Determining the value of k is challenging
High computation cost

K star [50] Suitable for datasets having outliers
Easy to implement

Not suitable for large datasets
High computation cost

LR [51] Suitable for large datasets
Easy to interpret

Not suitable for linear data and datasets having a 
smaller number of observations than features

SVM [52] Suitable for high dimensional and non-linear datasets Feature scaling is required
The output is difficult to interpret
Selection of kernel is difficult

ANN [53] Suitable for high dimensional datasets having a greater number of obser-
vations and can handle missing values

High computational cost
Complex process

ZeroR [54] Easy to understand
Used as a baseline benchmark

No prediction involved

OneR [55] Easy to understand
Used as a baseline benchmark

Only suitable for datasets having categorical features
Not suitable for linear data

JRip [56] Suitable for non-linear data
Easy to implement and interpret

Only suitable for datasets having categorical features
Suffers from overfitting

DTable [57] Suitable for dynamic datasets
Easy to implement and interpret

Prone to overfitting
Complex for high dimensional datasets

RT [58] Suitable for datasets having missing values and data scaling and normali-
zation is not required

Easy to implement and interpret

Sensitive to changes in the dataset
The probability of overfitting is high

RF [59] Suitable for high dimensional datasets and can handle missing values Difficult to implement
Complex algorithm

REPTree [60] Suitable for large datasets
Easy to interpret compared to a decision tree

Sensitive to changes in the dataset
Prone to overfitting

K-means [61] Suitable for large datasets
Simple to implement and interpret

Difficult to predict the value of k
Sensitive to outliers

Bagging [62] Suitable for high dimensional datasets and can handle missing values
Reduces data overfitting

Model is biased
Computationally expensive

Boosting [63] Reduces data overfitting
Easy to interpret

Not suitable for large datasets
Sensitive to outliers

Stacking [64] Reduces overfitting Memory intensive
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candidate decision table. The table is then pruned by remov-
ing redundant rules and the rules having a confidence value 
less than 1. The confidence for a risk factor rule is calculated 
as stated in Eq. (20).

3.13 � Random Tree (RT)

It is similar to a decision tree where the algorithm gener-
ates a decision tree by selecting the risk factors with high 
information gain. However, instead of considering all the 
risk factors for selection, RT uses a set of randomly selected 
factors [58].

3.14 � Random Forest (RF)

It is a set of decision trees constructed using randomly 
selected samples of the dataset [59]. It performs voting on 
the output of each decision tree and classifies an observation 
into diabetes or non-diabetes depending on the majority of 
the decision trees’ output.

(20)Confidence =
Total number of observations having same risk factors for the diabetes class

Total number of observations having same risk factors

3.15 � Reduced Error Pruning Tree (REPTree)

It builds several decision trees iteratively using different risk 
factors and selects the tree with the least prediction error. It 

builds a tree for the risk factors with the risk factor having 
the highest information gain as the root similar to DT. The 
algorithm then prunes the tree using reduced error pruning. 
This is by removing the subtree rooted at each risk factor 
and making that risk factor as a leaf node by assigning the 
majority diabetes or non-diabetes class. If the error rate of 
the new tree is less than or equal to the original tree, then 
pruning is done [60]. The algorithm iterates until further 
pruning reduces the classification performance.

3.16 � K‑means

It is a clustering technique rather than a classification [61]. 
It is an iterative algorithm that divides the given dataset into 
diabetes and non-diabetes clusters. The observations hav-
ing similar risk factors values are placed in the same clus-
ter. K-means is used along with a classification algorithm 

Table 2   List of feature selection algorithms used in the experiments

Feature selection algorithm Description

Correlation-based Feature Selection (CFS) Subset Evalua-
tor (CSE) [71]

Evaluates the rank of a subset of features by considering the features that are highly 
correlated with the class labels and less correlated with other features

Classifier Attribute Evaluator (CAE) [72] Evaluates the rank of a feature using a user-specified classifier. The weight of each 
feature is determined by the performance degradation of the classifier when evalu-
ated without that feature

Correlation Attribute Evaluator (CAE) [54] Evaluates Pearson’s correlation of each feature and the class labels and select the 
features that have a moderate positive correlation or negative correlation

Gain Ratio Attribute Evaluator (GRAE) [73] Evaluates the weight of each feature by calculating its gain ratio for each class. The 
ratio is calculated by dividing the difference between the class entropies over the 
entropy of the feature

OneR Attribute Evaluator (OAE) [73] Evaluates the weight of a feature by using the OneR classifier. The classifier is 
applied to each feature and the ones having the best classification performance are 
selected

Principal Component (PC) [73] Combines the subset of features such that the removed features have less variance 
on the performance of the classifier

Relief Attribute Evaluator (ReAE) [73] Evaluates the weight of a feature by iteratively sampling an observation and con-
sidering the value of the given feature for the nearest observation of the same and 
different class

Symmetrical Uncertainty Attribute Evaluator (SUAE) [73] Evaluates the weight of each feature by measuring the symmetrical uncertainty 
of the feature. The symmetrical uncertainty is calculated as: 2*(the difference 
between the entropy of the class and that related to the feature) divided by the sum 
of the entropies of the class and the feature

Information Gain Attribute Evaluator (IGAE) [73] Evaluates the weight of each feature by calculating the information gain as the dif-
ference between the entropy of the class and that related to the feature
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to increase the classification performance. The algorithm 
performs K-means and removes the incorrectly clustered 
observations, i.e., individuals with diabetes classified as 
non-diabetes and vice-versa. The dataset having correctly 
clustered observations is then used by a classifier to build a 
classification model.

3.17 � Bagging

It is an ensemble meta-estimator that uses another classifica-
tion algorithm as a parameter [62]. It first randomly gener-
ates multiple samples of the observations from the dataset 
with replacement. The base classifier is then applied to each 
random subset of the dataset for the diabetes prediction. The 
algorithm then aggregates the classifier outputs for each sub-
set and selects the final output based on voting.

3.18 � Boosting

It is an ensemble meta-estimator that aims to boost the clas-
sification performance for diabetes prediction by creating a 
strong classifier from several weak classifiers [63]. It builds 
a model from the dataset to predict diabetes and then cre-
ates a second model that attempts to correct the errors from 
the first model. Models are added until the training set is 
predicted as expected or the maximum number of models 
are added. The models when added to the other models are 
weighted based on their weakness. The weakness is identi-
fied by the classifier’s error rate as stated in Eq. (21). After 
each model is added, the data weights are readjusted, known 
as re-weighting.

(21)

Error =

∑n

j=1
WjI

�
C
�
Rj

�
≠ Yj

�

∑n

j=1
Wj

, I(x) =

�
1, if r is true

0, if r is false

where C is the classifier, R is the matrix containing the risk 
factors, Y is a vector containing diabetes and non-diabetes 
class labels and W is the assigned weight.

3.19 � Stacking

It is an ensemble meta-estimator in which a classification 
model is developed using the observations to predict diabe-
tes or non-diabetes classes. The output of this classifier is 
then used as an input to develop another classification model 
for diabetes prediction [64].

Table 1 shows the advantages and disadvantages of the 
classification algorithms used in the literature for the predic-
tion of type 2 diabetes. It shows which algorithm is suitable 
for which dataset type.

4 � Performance Analysis

In this section, we analyze and compare the performance of 
the studied algorithms in terms of accuracy, F-measure, and 
execution time.

4.1 � Datasets

We use Weka 3.8 [54] for the implementation and evaluation 
of the studied algorithms. We evaluate the performance of 
the algorithms with and without feature selection using three 
datasets, i.e., PIMA Indian [68], UCI [69], and MIMIC III 
[70]. PIMA Indian dataset is from the National Institute of 
Diabetes and Digestive and Kidney Diseases and is used to 
predict whether or not a patient has diabetes, based on diag-
nostic measurements. UCI dataset includes patient and hos-
pital outcomes from 130 US hospitals between 1999–2008. 
MIMIC III contains information of over 40,000 patients who 

Table 3   Specification of pre-processed datasets used in the experiments

Dataset #features Features #observations #positive 
diabetes 
class

#negative 
diabetes 
class

PIMA Indian 9 Numerical—pregnancies, glucose, blood pressure, skin thickness, insulin, 
BMI, diabetes pedigree function, age

Binary—diabetes prevalence

537 179 358

UCI 12 Categorical—race, gender
Numerical—age
Binary—Alcohol, blood pressure, cholesterol, heart disease, obesity, preg-

nancy, uric acid, blurred vision, diabetes prevalence

65,840 51,034 14,806

MIMIC III 4 Categorical—ethnicity, gender
Numerical—age
Binary—diabetes prevalence

39,698 1,242 38,456
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stayed in critical care units of the Berth Israel Deaconess 
Medical Center between 2001 and 2012.

4.2 � Feature Selection Algorithms

Table 2 shows the feature selection algorithms used.

4.3 � Experiments

The UCI dataset includes race, gender, age, diagnosis 1, 
diagnosis 2, diagnosis 3, and diabetes medication columns. 
Diagnosis 1, 2, and 3 represent the results of primary, sec-
ondary, and additional secondary diagnoses respectively. 
We create a class label for diabetes based on the diabetes 
medication column. For diagnosis 1, 2, and 3 columns, we 
extract the values of diseases that are risk factors for type 2 
diabetes such as obesity, hypertension, and cardiovascular 
disease, and use them as binary features in the dataset. For 
the MIMIC III dataset, we consider the available diabetes 
risk factor features that are ethnicity, gender, age, and diabe-
tes. Table 3 shows the total number of features, observations, 
positive and negative diabetes classes for each dataset. It 
shows that the number of observations in the positive class 
(negative class) for the UCI (MIMIC III) dataset is very high 
compared to that in the negative (positive) class, leading to 
imbalanced datasets [74].

We evaluate the algorithms under study with and without 
features selection using the tenfold cross-validation method 
[75] where the dataset is divided into k partitions. One par-
tition is for testing data and k-1 partitions for training with 
replacement. This is repeated until each partition is used for 
training and testing. The resultant model is then obtained by 

averaging the result of each iteration. For K-NN, we run the 
algorithm for different values of ‘k’ from 1 to square root of 
the number of observations and select the value of ‘k’ that 
gives the highest accuracy. For SVM, we use the polynomial 
and RBF kernels. Each algorithm is executed 3 times on 
each dataset (we call it a run) and the average for accuracy, 
F-measure, and execution time is calculated over each run. 
For the feature selection, we execute the selection algorithms 
(Table 2) on each dataset. We calculate the frequency of the 
features selected by each algorithm and select the features 
which appear in more than 50% of the algorithms. The accu-
racy and the F-measure are calculated using Eq. (22) and 
Eq. (23) respectively. The execution time is calculated by 
adding the model building and validation times.

where TP is True Positive, TN is True Negative, FP is False 
Positive, and FN is False Negative. TP (TN) represents the 
number of observations in the positive (negative) class that 
are classified as positive (negative), and FP (FN) represents 
the number of observations in the negative (positive) class 
that are classified as positive (negative).

where recall and precision for the positive (negative) class 
are calculated using Eqs. (24) and (25) respectively.

4.4 � Experimental Results Analysis

In this section, we analyze our experimental results and give 
insights and conclusions. In particular, we reveal the reasons 
behind the performance of these algorithms.

4.4.1 � Classification Algorithms without Feature Selection

Figure 2 shows the accuracy and F-measure of the algo-
rithms for the PIMA Indian dataset without feature selec-
tion. The accuracy of K-means + Logistic Regression 
(LR) algorithm is the highest among all the studied ones. 
This is because the algorithm removes the incorrectly 
clustered observations (outliers) from the dataset using 
K-means clustering (Fig. 3) before developing a classifica-
tion model. The observations with the positive (negative) 
class label placed in the negative (positive) cluster are 

(22)Accuracy =
TP + TN

TP + FP + TN + FN

(23)F−measure =
2(Recall ∗ Precision)

(Recall + Precision)

(24)Recall =
TP(TN)

TP(TN) + FN(FP)

(25)Precision =
TP(TN)

TP(TN) + FP(FN)

Fig. 3   Removal of incorrectly clustered diabetes observations by 
K-means clustering on PIMA Indian Dataset
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known as the outliers. The LR is then applied to the data-
set without outliers resulting in higher accuracy. However, 
the removal of outliers before implementing LR is not 
justified for the diabetes dataset. For instance, if a diabetic 
patient having all the risk factors is clustered in the non-
diabetes cluster, then the patient will be removed by the 
k-means as an outlier. Consequently, the algorithm will 
be trained using the dataset with those patients removed. 
This will classify the potential individual at risk of devel-
oping diabetes as non-diabetic. On the other hand, the LR 
model, when used with the Bagging heuristic (Bagging-
LR), performs better without removing the outliers. This is 
thanks to the logistic function used by the meta-heuristic 
algorithm which can linearly separate diabetes and non-
diabetes binary classes for the interdependent features 
such as cholesterol and obesity. Figure 2 shows that there 
is no F-measure value for SVM with RBF kernel, ZeroR, 
and stacking with DT, NB, RF, and K-NN. This is because 
these algorithms predict the negative (non-diabetes) class 
which is the majority in the dataset and the positive (dia-
betes) class is never predicted. 

Figures 4 and 5 show the accuracy and F-measure of 
the algorithms without feature selection for the UCI and 
MIMIC III datasets respectively. RF has the highest accu-
racy, whereas most of the studied algorithms are unable to 
detect the minority class as the datasets are imbalanced. RF 
performs better with an imbalanced dataset because while 
constructing an individual decision tree, the algorithm boot-
straps a sample from the minority class and the same size of 
the sample with replacement from the majority class. Con-
sequently, each decision tree algorithm in RF is applied to 
a balanced subset of the dataset leading to a highly accurate 
classifier with both classes of diabetes being detected. Most 
of the algorithms in Figs. 4 and 5 have no F-measure value. 
This is because the UCI and MIMIC III datasets are highly 
imbalanced, and the algorithms are not able to predict the 
minority class. 

Table 4 shows the execution times for model building and 
validation of the algorithms under study for each dataset. 
The execution times of the algorithms for the PIMA Indian 

Table 4   Execution time for model building and validation without 
feature selection

Algorithms The execution time of model building and 
validation (min)

PIMA Indian UCI MIMIC III

DT 0 0.267 0.034
NB 0 0.016 0
BN 0 0.05 0
K star 0.016 103.116 1.216
K-NN 0 7.4 1.466
SVM-RBF 0.016 708.85 17.166
ANN 0.05 1454.383 48.5
LR 0 0.166 0.3
SVM-polynomial 0 48.634 2.8
ZeroR 0 0 0
OneR 0 0.2 0
JRip 0 0.1 0.0167
DTable 0 0.5 0.083
RT 0 0.066 0.016
REPTree 0 0.116 0.016
RF 0.016 4.3 0.716
K-means + DT 0 0.016 0
K-means + K-NN 0 1.334 0.284
K-means + LR 0 0.116 0.05
Stacking-DT 0 0.033 0
Stacking-NB 0 0.033 0.016
Stacking-RF 0 0.516 0.25
Stacking-K-NN 0 5.916 2.184
Boosting-DT 0.016 3.25 0.3
Boosting-NB 0 1 0.084
Boosting-ANN 0.5 56.5 108.984
Boosting-DS 0 0.35 0.05
Boosting-LR 0 0.85 0.183
Bagging-NB 0.016 0.183 0.033
Bagging-K-NN 0 66.883 15.816
Bagging-DT 0.016 2.334 0.15
Bagging-REPTree 0 1.167 0.167
Bagging-ANN 0.6 1584.5 478.483
Bagging-RF 0.234 39.933 7.334
Bagging-LR 0.016 1.483 3.55
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dataset are negligible while, for the UCI are the highest. 
This is because time is a function of the number of features 
and observations.

4.4.2 � Classification Algorithms with Feature Selection

Figure 6 shows the results of the feature selection algo-
rithms. The results reveal that the following risk factors have 
a significant impact on the prediction of type 2 diabetes: 
age (demographic category), ethnicity and family history of 
diabetes (hereditary category), hypertension, obesity, and 
cardiovascular disease (medical conditions category), and 
cholesterol (lifestyle category). Figures 7, 8 and 9 show the 
performance of the studied algorithms for each dataset with 
feature selection. The relative performance of the algorithms 
remains the same as that without feature selection. The most 
accurate algorithm for PIMA Indian is Bagging-LR while 
that for UCI and MIMIC III datasets is RF. Table 5 shows 
the execution time for model building and validation of each 
algorithm under study. The relative performance is similar to 
that without feature selection (Table 4). However, the execu-
tion times for algorithms with feature selection are less than 
the ones without feature selection in all the datasets under 
experiment. This is because of the reduced number of fea-
tures. The execution time for PIMA Indian is reduced up to 
2.5 times and for UCI is 1.23 times. There is no significant 
reduction in execution times for the MIMIC III dataset as 
only one feature is removed.

5 � Related Work

In the last decade, there have been many research efforts by 
academic and industrial researchers to predict type 2 diabe-
tes using machine learning algorithms [14–45]. However, 
the algorithms in these works are compared using differ-
ent datasets and evaluation metrics (Table 6), making an 
objective comparison difficult. In this paper, we evaluate and 
compare 35 algorithms in a unified setup.

6 � Conclusions

Urbanization, uneven diet, and changing lifestyles have led 
to the increase in type 2 diabetes globally. Many works in 
the literature have compared several algorithms to accurately 
predict type 2 diabetes. Those algorithms were evaluated 
using different datasets and evaluation metrics, making it 
difficult to compare their relative performance.

In this paper, we evaluate these algorithms using three 
diabetes datasets in a unified setup and compare their per-
formance in terms of accuracy, F-measure, and execution 
time. Our experimental results show that the Bagging-LR 
algorithm is the most accurate for a balanced dataset with 
and without feature selection while, for an imbalanced data-
set, RF is the most accurate. In addition, we classify type 2 
diabetes risk factors to analyze the most significant catego-
ries for diabetes prediction.

Fig. 6   Selected features for each dataset using feature selection algorithms
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When using a classification algorithm for the prediction 
of type 2 diabetes, the following requirements should be 
considered.

1.	 Accuracy vs F-measure: Most of the algorithms give a 
high classification accuracy. However, evaluating the 
classifier performance using only the accuracy can be 
misleading. This is because, in the case of an imbalanced 
dataset, which is very frequent in the health domain, the 
algorithm might have high accuracy but will not be able 
to classify the minority class labels as revealed by the 
F-measure. In such a situation, the prediction results can 
lead to a life-threatening situation, as a diabetic patient 
can be classified as non-diabetic. Consequently, we rec-
ommend the data scientist include F-measure as one of 
the evaluation metrics.

2.	 Data-driven: Our experimental results reveal that the 
performance of the classification algorithms is data-
driven. The random forest algorithm is best suitable for 
prediction in the case of an imbalanced dataset. This is 
because the algorithm takes a sample of minority class 
and a similar size sample from the positive class with 
replacement to form the training dataset for each deci-
sion tree constructed.

3.	 Feature selection: We recommend the data scientist and 
clinicians execute a feature selection algorithm on the 
dataset before training the classification model. This 
reduces the execution time, avoids data overfitting as 
well as will give insights on the most significant fea-
tures for future consideration without accuracy degra-
dation.

4.	 Significant features: We recommend the clinicians use 
age (demographic category), ethnicity and family his-
tory of diabetes (hereditary category), hypertension, 
obesity, and cardiovascular disease (medical conditions 
category), and cholesterol (lifestyle category) for the 
prediction of type 2 diabetes based on our experimental 
results. This is also confirmed by the statistical and clini-
cal studies in the literature [79, 80].

Table 5   Execution time for model building and validation with fea-
ture selection

Algorithms The execution time of model building and 
validation (min)

PIMA Indian UCI MIMIC III

DT 0 0.216 0.016
NB 0 0.016 0
BN 0 0.033 0
K star 0.016 74.667 1.016
K-NN 0 4.65 1.433
SVM-RBF 0.016 574.616 12.51
ANN 0.033 1449.85 46.6
LR 0 0.116 0.234
SVM-polynomial 0 37.216 0.584
ZeroR 0 0 0
OneR 0 0.016 0
JRip 0 0.067 0
DTable 0 0.25 0.05
RT 0 0.034 0.016
REPTree 0 0.05 0.016
RF 0.016 2.116 0.6
K-means + DT 0 0.016 0
K-means + K-NN 0 1.3 0.15
K-means + LR 0 0.067 0.05
Stacking-DT 0 0.033 0
Stacking-NB 0 0.033 0.016
Stacking-RF 0 0.45 0.234
Stacking-K-NN 0 5.567 2.134
Boosting-DT 0 1.167 0.216
Boosting-NB 0 0.483 0.066
Boosting-ANN 0.2 48.05 107.633
Boosting-DS 0 0.1833 0.066
Boosting-LR 0 0.6 0.1216
Bagging-NB 0 0.133 0.033
Bagging-K-NN 0 53.416 14.016
Bagging-DT 0 1.016 0.116
Bagging-REPTree 0 0.55 0.134
Bagging-ANN 0.316 1541.616 470.566
Bagging-RF 0.167 20.766 7.133
Bagging-LR 0 0.983 3.367
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