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Abstract
Accurate prediction and control of diesel engine-out emissions are vital areas of interest for automotive manufacturers and 
researchers. This article presents an investigative review of performance and emission control improvements in diesel engines 
over the past few decades. A brief background of environmental organizations like the Environmental Protection Agency 
has been included because they initiated stringent emission norms. These requirements caused diesel engine development 
to be a more tedious task and also triggered various technologies employed by engine manufacturers to meet the new norms. 
This review focuses on various diesel engine modeling methods that have evolved during the last few decades and have 
contributed to the technological advancement in modern diesel engines. Three types of modeling methods and their applica-
tions are discussed in detail along with a few controlling methods using different control theories. A detailed emphasis on 
recent engine control strategies reviews controlling gridlocks and viable solutions in diesel engines. Significant challenges 
such as model fitness, accuracy, robustness, and precise predictions that provide extensive scope for researchers working in 
diesel engine out emission control are addressed. Various advancements in optimized engine model development for further 
performance enhancement are also reported.

Abbreviations
0-D  0 Dimensional
AHRR  Apparent Heat Release Rate
ANN  Artificial Neural Network
BSFC   Brake Specific Fuel Consumption
BTS  Bureau of Transportation Statistics
CAA   Clean Air Act
CAD   Crank Angle Degrees
CI  Compression-Ignition
CMAC  Cerebellar Model Articulation Controller
CN  Cyanide
CO   Carbon Monoxide
DOF  Degree of Freedom
DPF  Diesel Particulate Filter
ECM  Electronic Control Module

ECU  Engine Control Unit
EGR  Exhaust Gas Recirculation
EO  Engine Out
EOI  End of Injection
EPA  Environmental Protection Agency
ETA  Electric Turbo Assist
FB  Feedback
FEL  Feedback Error Learning
FF  Feedforward
FHWA  Federal Highway Administration
FMI  Functional Mockup Interface
GT Suite  Gamma Technologies Suite
HCCI  Homogenous Charged Compression Ignition
HCN  Hydrogen Cyanide
HDE  Heavy-Duty Engines
HDV  Heavy-Duty Vehicle
HiL  Hardware in Loop
HRR  Heat Release Rate
IC   Internal Combustion
LL  Liquid Length
LOL  Lift-Off Length
LQG    Linear Quadrature Gaussian
MiL  Model in Loop
MPC  Model Predictive Control
N2   Nitrogen molecule
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N2O  Nitrous Oxide
NH2  Azanide
NH3  Ammonia
NOE  Nonlinear Output Error
NOx  Nitrogen Oxides
OBD  On-Board Diagnosis
OICA  Organisation Internationale des Constructeurs 

d’Automobiles
OLL  Optimization layer-by-layer
PCCI  Premixed Charge Compression Ignition
PI  Proportional Integral
PID  Proportional Integral and Derivative Controller
RNN  Recurrent Neural Network
SCR  Selective Catalytic Reduction
SiL  Software in Loop
SOC  Start of Combustion
SOI  Start of Injection
TDE  Turbocharged Diesel Engine
UHC  Unburnt Hydrocarbon
VGT  Variable Geometry Turbine
VMT   Vehicle Miles Traveled
VNT  Variable Nozzle Turbine
VOCs  Volatile Organic Compounds
VVA  Variable Valve Actuation
VVT  Variable Valve Turbine

1 Introduction

The number of United States-registered on-road vehicles 
has increased from 8000 to 268 million during the last few 
decades (Bureau of Transportation Statistics [BTS] 2016; 
Federal Highway Administration [FHWA] 1997) [1]. As 
a result, vehicle miles traveled (VMT) have increased by 
almost 690% while there has been only a 25% increase in 
road miles constructed in the United States (U.S.) from 
1950 to 2016 [2]. Although the increase in road miles has 
been minimal, during the last few decades, technological 
development in fuel economy has contributed to the sig-
nificant increase in the number of global on-road opera-
tional vehicles to nearly 1.3 billion even though in 2015, 
the U.S. reported 821 motor vehicles per 1000 people 
(International Organization of Motor Vehicle Manufactur-
ers- [OICA] 2015) [3]. The increase in the number of on-
road vehicles is proportional to the number of hazardous 
by-products emitted by internal combustion (IC) engine 
vehicles: This negatively impacted air quality, gave birth 
to several respiratory diseases, and even cause premature 
deaths. By 1970, U.S. national emissions were largely 
produced by on-road vehicles consisting of 35% nitrogen 

oxides  (NOx), 68% carbon monoxide (CO), and 42% vola-
tile organic compounds (VOCs) [4].

As a response, the Environmental Protection Agency 
(EPA) mandated the first national vehicle emissions stand-
ards in the 1970 Clean Air Act (CAA). The EPA has con-
tinued to issue stringent laws regarding tail-pipe emissions 
from both gasoline and diesel engine vehicles from 1990 
to 2017 [5]. Figure 1 shows the evolution of the U.S. vehi-
cle emission compliance and control program [6].

This review is limited to diesel engine technologies 
since these vehicles contribute to more vehicle miles 
traveled (VMT) than gasoline vehicles as shown in Fig. 2. 
The diesel engine VMT number illustrates the need for 
their development in terms of fuel economy and emissions. 
As a result, automotive manufacturers are endeavoring to 
meet the EPA emission regulations by introducing new 
emission control strategies that enhance the fuel economy 
at the same time. Some of the technologies—electroni-
cally-controlled fuel injection, exhaust gas recirculation 
(EGR), catalytic converters, particle filters, etc. have been 
introduced by vehicle manufacturers [7]. Later, on-board 
diagnosis (OBD) devices/systems were mandated to ensure 
the emission control devices and to monitor faults if any.

Diesel engine vehicles are mostly long-haul, medium-
duty to heavy-duty vehicles/trucks/buses (HDV) with 
heavy-duty engines (HDE), and their total fuel consump-
tion is greater than gasoline vehicle consumption, ulti-
mately resulting in more emissions than gasoline vehi-
cles [8]. This article discusses various control strategies 
to reduce EO emissions and the different methodologies 
involved. The first section enumerates the need for numeri-
cal investigation of diesel engine combustion followed by 
the state of the art of diesel engine combustion modeling. 
Furthermore, controller development methods are dis-
cussed to facilitate an understanding of each controlling 
approach. The last section focuses on the recent strategies 
applied in both modeling and controller design and optimi-
zation. In the end, a detailed summary is given to highlight 
the research gaps and the future scope for researchers.

While a few reviews which have recently been pub-
lished focus on alternative fuel blend strategies to reduce 
emissions with the optimum performance [9–11] and a 
few cover cylinder states estimation methods, empirical 
methods based on experimental data, and hybrid diesel 
engine control techniques [12, 13], all of these articles 
lack in reviewing the controlling strategies that are needed 
to address bridging the microscopic gap between state of 
the art and future emission goals. This work focuses on a 
discussion that covers work related to accurate combustion 
modeling and effective control strategies. Specifically, it 
covers recent strategies that are needed for precise com-
bustion control to achieve the EPA Tier 3 emission stand-
ards without changing existing engine architectures.
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2  Numerical Investigation of Diesel Engine 
Combustion and EO Emissions

This section provides a detailed discussion of Combus-
tion Modeling. Detailed combustion modeling helps in 
understanding the different degrees of freedom involved 
in modern engines due to advanced technologies. Different 

methods are based on approaches derived for various 
applications as explained in further sections.

2.1  Need for Combustion Modeling

Diesel combustion is a heterogeneous chemical process dur-
ing which the liquid fuel consisting of hundreds of hydrocar-
bon species interacts with gaseous in-cylinder charge (air) 

Fig. 1  History of the U.S. emissions compliance and control programs

Fig. 2  Annual vehicle registered and distance traveled in miles and related data—2016 FHWA
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leading to heat release and emission formation. These ther-
mal reactions are influenced by several parameters such as 
engine geometry, state of the charge mixing with fuel, and 
residuals from combustion. Based on this combustion princi-
ple, engine manufacturers have developed such technologies 
such as Variable Valve Technology (VVT), Electronics Fuel 
Injection Systems, Turbochargers, Superchargers, EGR, and 
After Treatment Systems. These techniques aim for optimal 
fuel consumption and emission reduction in both the tailpipe 
and the cylinder causing engine control to be a complex 
task. As a result, developers have a new task: the need to 
understand this complex phenomenon. Combustion models 
are valuable tools to aid in the understanding of the combus-
tion process and have led to new technological insights that 
have yielded better fuel efficiency and reduced emissions. 
Figure 3 shows added technologies with multiple degrees of 
freedom to meet both driver and legislative demands over 
the past few decades [14].

The complexity of engine control strategies has dramati-
cally increased due to multiple degrees of freedom and the 
inevitable time and cost constraints for controller design 
and development cycles. Engine Models accelerate the 
engine development cycles since components or systems 
can be modeled in early phases and can then be optimized 
by testing these virtual engines without costly test cells [14]. 

‘Model-Based Control’ saves calibration and testing time 
by using real-time combustion models in transient engine 
control [15, 16]. Isermann et al. described a systematic pro-
cedure for model-based design of the multi-variable control 
function of IC engines, which considers both steady-state 
and transient behaviors yielding optimal control of fuel con-
sumption and emissions. The models are verified with the 
model uncertainty optimization using the Global Optimiza-
tion method and smoothing the local optimal setpoints [17].

Isermann and his colleagues divided the engine control 
system into function development and function calibration. 
Based on the functional requirements, systems are modeled 
using different approaches as discussed in later sections of 
this review. These models are tested in the loop (model in 
loop—MiL) with the actual system testing the preliminary 
fitness. Developed functions provide a baseline for the con-
troller development and simulation, which can then be cali-
brated. Successfully calibrated models provide the source 
codes for engine control unit (ECU) that are implemented 
in real-time simulations for a final check before deploying to 
the system. The workflow of model-based design is formu-
lated in Fig. 4 and indicates that the system modeling is the 
first milestone in engine development and testing [17]. An 
important component of function development requires the 
fundamental understanding of diesel engine combustion that 

Fig. 3  Overview of demands placed on the compression Ignition (CI) engine and added new technologies
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involves various systems depending on the type and applica-
tion. To understand the diesel engine combustion, one needs 
to understand different methods of modeling the combustion 
phenomena, engine operations considering both inputs and 
outputs, and complexity based on the advancement through 
past decades. The next section gives an overview of engine 
modeling techniques for better understanding.

2.2  Combustion Models

One of the major challenges in Diesel Engine Combustion is 
estimation and control of combustion characteristics which 
are affected by multiple factors: fuel–air properties, crank 
angle based events like intake valve closing (IVC), intake 
valve opening (IVO), start of injection (SOI), end of injec-
tion (EOI), start of combustion (SOC), etc., and additional 
engine-dependent parameters such as geometry and speci-
fication [18, 19]. The complexity and computational efforts 
are based on the number of these parameters involved in the 
modeling. Hence detailed and accurate diesel engine mod-
eling is at utmost priority. These models are categorized 
into three types:

1. Empirical models.
2. Phenomenological models.
3. Physics-based models.

2.2.1  Empirical Combustion Models

This method considers combustion as a “Black Box” and 
is based on the input and output data taken from experi-
ments for defined operating conditions. Neural networks, 
correlations, and look-up tables are the hallmarks of the 
Empirical Model. Watson et al. 2010, performed several 
experiments on three different engines to establish the 
relationship between engine operating parameters and 
the apparent heat release rate (AHRR) [20]. The study 
included finding a correlation between engine operating 
parameters and respective heat release rates that are effec-
tive only for coarser crank angle (CAD) intervals. These 
models were adaptive for parametric changes in perfor-
mance parameters like compression ratio, valve timing, 
valve areas, injection timing, aftercooling, ambient condi-
tions, etc. but could not be used to predict the effect of the 
combustion chamber design changes. Weibe, Wolfer, and 
Woschni et al. all derived the correlations between ignition 
delay and pressure, temperature, SOI and EOI which help 
to calculate the heat release rated based on experimental 
measurements [21–23]. This approach includes the cal-
culation of mass burned fractions, which leads to the pre-
diction of emissions. They derived the shape factors and 
empirical constants for their correlations based on spe-
cific operating conditions. For the last couple of decades, 
look-up tables have been widely used in the industry for 
engine calibration and control and are proven to be effec-
tive calibration models, but they are not accurate in terms 
of handling uncertainties in real-operating conditions. 

Fig. 4  The workflow of model-based design
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The development time for the look-up tables is too long 
to develop rapid solutions. Some applications of look-up 
tables in controller development along with new strategies 
to overcome these disadvantages are discussed in Sect. 4.

Artificial Neural Networks (ANN) are the latest tools 
being used to predict the cylinder states and emissions based 
on correlations derived from specific operating conditions. 
The ANN learning rule is classified as either supervised or 
unsupervised. Supervised learning rules adapt the weights 
of the network to reduce the error between the network out-
put and measured output. Krijnsen et al. 1999 evaluated 
the application of a neural network to predict NOx from 
a transient diesel engine cycle to control NOx in catalytic 
reduction devices [24]. They compared their work with the 
traditional linear fit and engine map models and achieved 
accuracy up to 93.4% against linear fit (~ 83.8%) and engine 
map (~ 82.5%) with a short calculation time of 0.2 ms. Dan-
iel Lee et al. developed a model that aids in simulating the 
combustion procedure of diesel engines using probability 
density function [25]. This model could predict some of the 
major features of diesel engine combustion, but simulated 
pressure traces for a few conditions produced hyperbolic 
results. Parlak et al. investigated how accurately the artificial 
neural network model can predict the exhaust temperature 
as well as the specific fuel consumption of a diesel engine 
when the injection duration is changed [26]. However, the 
ANN method is developed for specific engines; therefore, 

relationships derived from this method cannot be used 
for generic operating conditions and are prone to errors if 
extrapolated outside of the given experimental conditions. 
There are, however, some applications in feedforward (FF) 
and supervised controller for engine control that are dis-
cussed later in Sect. 4.

2.2.2  Phenomenological Combustion Models

In this model type, combustion variables are predicted 
using simple, physical models that replicate the physical 
and chemical phenomena occurring during the combustion 
process. Phenomenological models can be categorized into 
zero-dimensional and quasi-dimensional models. In the 
case of fuel spray phenomena, the model is subdivided into 
“packages” or “zones” which have no actual spatial coordi-
nates, hence the name “quasi-dimensional” [27–31]. Heat 
release and emission formation are predicted for each pack-
age or zone. The number of packages or zones depends on 
the chosen model approach and can range from as few as 
two to as many as several hundred. The computational effort 
and time increase with the applied number of zones. The 
zero-dimensional models are generally only able to predict 
the heat release rate [32, 33]. For emission formation pre-
diction, at least two zones are required. Several attempts are 
made to capture the actual phenomenology for the flame 
formation and different emission formation. The fuel flame 

Fig. 5  Schematic representation of quasi-steady burning fuel spray
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processing of high-pressure diesel jets is represented by nor-
malized laser-induced imaging, which helps to analyze the 
different zones in a combustion process [34]. Figure 5 shows 
the representation of a burning fuel spray showing different 
regions. It represents the different regions like lift of length 
(LOL), liquid length (LL) followed by various regions that 
indicate nitric oxide (NO) and Soot formation based on the 
fuel spray phenomenology [35]. Before such advancement 
in imaging technology, only a few people whose work is cat-
egorized into three types studied the chemical phenomenon 
for NO and Soot Formation:

(1) Thermal NO proposed by Zeldovich Y [36] was later 
extended by Lavoie [37] and is now referred to as the 
extended “Zeldovich mechanism”.

(2) NO formation via the prompt-NO mechanism also 
referred to as the Fenimore mechanism after Fenimore 
C [38], occurs when fuel-rich flames in the presence of 
hydrocarbon radicals react with nitrogen  (N2) to form 
hydrocyanic acid (HCN).

(3) Wolfrum, postulated the nitrous oxide  (N2O) interme-
diate pathway [39]. This describes NO formation via 
nitrous oxide  N2O as an intermediate species formed 
when nitrogen is attacked by atomic oxygen and a third-
body molecule.

The NO formation from fuel-bound nitrogen occurs when 
fuels containing significant amounts of nitrogen combust, 
resulting in significant NO formation when thermal decom-
position causes the large fuel molecule to break into smaller 
fragments like ammonia  (NH3), azanide  (NH2), imidogen 
(NH), HCN, and cyanide (CN) [40]. For coal combustion, 
experimental models have shown that fuel-Nitrogen is con-
verted to the intermediate species HCN and  NH3, which 
leads to further NO or  N2 formation by branching reac-
tions using free radicals; this conversion is dependent on 
local combustion conditions [40]. Flynn et al. utilized laser 
diagnosis techniques both to observe soot formation and to 
validate the empirical work based on chemical kinetics [35]. 
This study encouraged more people to research the piece-
wise modeling of a combustion flame. Tree et al. [41], stud-
ied the soot formation process and discussed the effects of 
fundamental properties like temperature, pressure, stoichi-
ometry, and fuel consumption. They revealed the complexity 
of the phenomenological models regarding the number of 
formation zones; this is a vital criterion for the accuracy of 
prediction algorithms. These models generally can predict 
heat release rates [33, 41].

In contrast to the (semi-)empirical models, the phe-
nomenological models allow (to a certain extent) extrap-
olation outside of the operating range for which they are 
originally developed. They have clear predictive capabili-
ties regarding both heat release rate and emission formation. 

Understanding the combustion phenomena is key when 
using this type of modeling approach. For emissions, more 
detailed data—a combination of both phenomenology and 
empirical—is required which limits the use of these zero-
dimensional (0-D) models. Moreover, the prediction of a 
certain phenomenon depends on various driving inputs that 
are required to be modeled if the physical measurement is 
not possible because of the sensing limitations. For instance, 
the  NOx model is based on the in-cylinder pressure and tem-
perature traces. Understanding the chemical kinetics inside 
the cylinder plays a vital role in predicting the heat release 
rates that drive combustion states in a cylinder. With the lat-
est technologies involved in the diesel engine control, it is 
essential to model these complex systems for better predic-
tion results. The next section focuses on such Physics-Based 
models for the different systems in modern diesel engines.

2.2.3  Physics‑Based Combustion Models

Physics-based models illustrate the physical and chemical 
processes that occur during combustion with the highest 
level of detail. The physical model is on the microscopic 
level of detailing and combustion events are discrete. The 
combustion chamber is divided into numerous local systems, 
which have their dimensions and degrees of freedom. For 
every local system, full conservation equations for mass, 
energy, and momentum are solved. As a result, these models 
have the greatest predictive qualities: emission formation 
and heat release rate prediction are possible, and models are 
generic. In 1998, Guzzella, L. et al. [42], devised a detailed 
model for a diesel engine considering the fuel injection sys-
tem, EGR, and turbochargers. They were able to model the 
fuel–air path and EGR path with a turbocharger effect to 
evaluate the performance and fuel efficiencies taking emis-
sions in the loop. Figure 6 shows the various systems (cells) 
taken in the gas exchange model considering the EGR frac-
tion effect [42]. This diagram depicts the detailed factors 
considered as gas mixes in a running engine equipped with 
EGR.

The system is divided into the intake manifold (fresh gas 
mass), exhaust manifold (exhaust mass), fuel injection sys-
tem (injected and burnt fuel mass), combustion chamber (gas 
exchange inside the combustion chamber) and EGR system 
which are integrated to account for the re-circulated masses 
in the cylinder. These local systems can be cycle-to-cycle 
based or CAD-based depending on the phenomena and its 
occurrence range. For instance, gas exchange processes are 
based on the combustion cycle, and the heat release rate is 
obtained based on CAD for the respective combustion cycle.

The creation of parametric and non-parametric models 
to control fuel-injection timings for both steady-state and 
transient operation by Guzella and his colleagues set an 
engine control research baseline for future researchers [42]. 
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As innovative as Guzella’s work was, it did have limitations 
due to technological deficits. Several factors like detailed 
 NOx modeling based on recently extended techniques, robust 
controllers, and multipoint electronic fuel injection technol-
ogy were not included by Guzzella’s work. Figure 7 gives 
an example of speed and start of fuel injection control as a 
part of an engine control model. This illustration describes 
the factors affecting the different control parts like speed, 
torque, emissions, and drivability. The model presented is a 
Mean Value Engine Model that includes averaged states esti-
mated during each combustion cycle. These models are tran-
sient in macroscopic effects and more simplified to reduce 

complexity. Such models are convenient to apply in the 
online control of diesel engines because of their simplicity.

Gas exchange models are an effective tool to control the 
effective air–fuel ratio (lambda) by modeling both intake and 
exhaust manifolds including both EGR and Turbo effects. 
A realistic online Engine Model as a function of CAD 
(Crank Angle Degrees) was developed by a few research-
ers and includes both combustion and gas (air–fuel mix-
ture) exchange models. This model uses 0.1 CAD resolution 
with 90% less computational time, which was accurate up 
to 10.4% mean relative error in NO formation [43]. Oxygen 
sensors (Lambda Sensor) are used to measure the oxygen 

Fig. 6  Basic engine model including EGR
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fraction in both intake and exhaust manifolds while control-
lers are developed for the optimal fuel injection to maintain 
the pressure, temperature, and emissions [44]. This mode-
ling approach gives flexibility in modifying the local models 
to troubleshoot when it is applied online in the electronic 
controller that directs the engine. This allows researchers 
to explore local systems in more detail. Guardiola et al. fol-
lowed a similar approach and developed a cycle by cycle 
 NOx prediction model. They focused on the  NOx formation 
that includes various events that depict the formation of 
thermochemistry and phenomena. This detailed approach 
focused on the only local models that could make their algo-
rithm 25% more precise than the previous one [45].

Compatibility with different modeling approaches depicts 
the versatility of the physics-based models. As mentioned 

above, physics-based mean value engine models are at a 
significant level of integration compatibility with other mod-
els such as empirical, phenomenological, and real-time data 
acquisition systems. With this advantage, Atkinson et al., 
applied the dynamic model-based hybrid equations along 
with neural networks to calibrate the engine for perfor-
mance and emissions examination. They used virtual sens-
ing methods to map the engine’s simulation-based calibra-
tion optimization, which can be directly used in the ECU 
[46]. Because of the complexity of the entire engine model 
including all new technologies, some authors preferred to 
work on the actual system and then optimize it for real-time 
engine control. Data acquisition and post-processing tools 
like Matlab & Simulink, gamma technologies’ GT Suite, 
Labview, dSPACE, etc., give the freedom to calibrate and 

Fig. 7  Control scheme for speed and start of fuel injection control
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optimize the models developed in a more detailed approach 
[47]. When employing the transient calibration process, the 
transient models should be trained with the training dataset 
to achieve accurate model predictions to overcome the effect 
of the transient operation of engine components [48].

Each model type has drawbacks, be it in accuracy, run-
time (speed), operating range, or unprecedented operation 
disturbances. Therefore, while integrating these models in 
a real-time complete engine model, numerical optimization 
of such hybrid models is required to compensate for the 
drawbacks. Guzzella et al. [49], in their recent work, suc-
cessfully attempted to simplify the complex engine models 
into a simple structure. They extracted the most relevant 
phenomenological elements and extended them into simple 
empirical elements. Only significant elements were devel-
oped into a set point formulator based on the application 
and reduced the model dimensions significantly. They could 
reduce the model to a single map (empirical model) and 
ten scalar parameters only. A significant increase in model 
speeds – up to 500 times faster than the real-time throughout 
the engine operating range – had relative errors below 10%. 

However, this approach had assumptions that are not appli-
cable in modern diesel engines. Factors like multipoint and 
multiple fuel injection or any fundamental changes due to 
combustion characteristics were not predicted.

In 2019, Durjarasan et al. [50], developed a control-ori-
ented physics-based model for  NOx emission prediction for a 
diesel engine equipped with EGR. This work focuses on pre-
dicting cycle averaged  NOx with more emphasis on reaction 
zone modeling and  NOx formation reaction rates. The model 
predicts in-cylinder pressure based on the heat-release rates 
and mass burnt fractions. This work covers the entire engine 
modeling including sub-models (physics-based equations) 
for each system as well as the impact of major engine control 
variables like injection and combustion events. This model 
covers a detailed phenomenon of  NOx formation by includ-
ing the models for gas exchange, heat release rate, chemical 
equilibrium solver for adiabatic temperature, temperature 
compensator for losses, and a detailed  NOx model. These 
integrated accurate and detailed sub-models achieved 93% 
prediction accuracy prediction using generic model-based 
engine control techniques.

Table 1  Empirical combustion 
modeling summary

Ref. No Author Focus Modeling technique

[20] Watson et al. Correlation between engine operating points 
and AHRR

Experimental Correlations

[21] Wiebe Correlation for ignition delay Experimental Correlations
[22] Wolfer
[23] Woschni et al.
[24] Krijnsen et al. ANN to predict NOx Linear fit method
[25] Lee et al. Combustion Simulation Probability density function
[26] Parlek et al. ANN for exhaust temperature and Brake 

Specific Fuel Consumption
Experimental Correlations

Table 2  Phenomenological combustion modeling summary

Ref. No Author Focus Modeling technique

[27] Hiroyasu et al. Fuel Spray Phenomena packages Zero Dimensional relations
[28] Stiesch et al.
[29] Stebler et al. Fuel Spray Phenomena zones
[30] Merker et al.
[31] Andersson et al.
[32] Barba et al. Heat Release Rates Zero Dimensional relations
[33] Chmela et al.
[34] Bruneaux et al. Flame formation and emission formation zones Laser-induced thermal imaging
[35] Flynn et al. Burning fuel spray study and soot formation Laser-induced thermal imaging
[36] Zelovich Zedlovich Mechanism for thermal NOx Chemical Kinetics
[37] Lavoie et al. Extended Zeldovich Mechanism Chemical Kinetics focused on reaction rates
[38] Fenimore et al. NO formation via prompt NO mechanism Chemical Kinetics
[39] Wolfrum NO formation via intermediate pathways Chemical Kinetics
[40] Glarborg et al. NO formation through thermal decomposition of large fuel molecules Chemical Kinetics
[41] Tree et al. Soot formation process with respect to combustion properties Quasi models for combustion zones
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In conclusion, physics-based models have an advantage in 
an accurate prediction of in-cylinder states that are required 
for EO emissions and performance estimation and control. 
Tables 1, 2, and 3 represent a summary of the Empirical 
Combustion, Phenomenological Combustion, and Phys-
ics-Based Combustion modeling techniques, respectively. 
Although model speed is of utmost concern, developing 
such local models and integrating them into the mean value 
engine models provides both high accuracy and faster pre-
diction when embedded with real-time engine controllers. 
A few control strategies are discussed in the next sections.

3  Controller Architectures 
and Implementation

Along with the physical models, prediction models based 
on control theories play an important role in predicting EO 
emissions. Different data analysis and filter techniques help 
train these models to achieve optimal model fitness when 
applied in real-time applications. Guzzella et al. [42], devel-
oped a self-tuning proportional-integral-derivative (PID) 
controller for speed and fuel injection control based on 
engine-tested mapping data which was then filtered with the 
first-order filter. They used the Linear Quadratic Gaussian 
(LQG) controller type to compare the results and included 
the self-gain scheduling techniques for auto-tuning. How-
ever, they needed to introduce a Smith predictor to reduce 
delays in the controller as a part of simple lead-lag con-
trol; this resulted in required performances with minimized 
errors. In 2000, an improved fuzzy logical algorithm was 
proposed which is suitable for self-tuning parameters online 
in the PID controller. The fuzzy inference mechanism was 
carried out by the fuzzy control chip F100, and the load and 
flux of air were treated as controlling parameters in the diesel 
engine fuzzy controller. The simulation results showed that 
the on-line fuzzy logic regulation of PID parameters used in 
the PID controller expanded the range of dynamic response 
of the controller in the case of loads [51]. A comparative 

study of two types of controllers for manipulating EGR and 
variable geometry turbocharger (VGT) actuators to mini-
mize the fuel consumption and pumping losses was done by 
Wahlström et al., 2009 [52]. A first control structure consist-
ing of PID controllers and min/max-selectors was developed 
based on a systematic analysis of the model. This controller 
achieved all control objectives but increased pumping losses 
by 26% because of the sign reversal in direct current (DC) 
gains. Another controller with a non-linear compensator was 
used in the inner loop for handling the non-linear effects 
along with the PID controller and selectors in an outer loop 
like the first one. This second approach reduced the EGR 
errors but increased the pumping losses as compared to the 
first control structure. Based on these results, they recom-
mended the first structure if there is no non-linear behavior 
in system feedback (FB).

A new strategy based on a fuzzy multi-variable controller 
was proposed by Arnold et al. in 2006 to regulate both the 
fresh airflow and the intake manifold pressure. They used 
additional weight functions to compensate for oscillation 
in system input. Additionally, a significant improvement 
in desired setpoint tracking and the in-time response was 
obtained as compared to results gained from an embedded 
PID. This strategy was designed to implement the ECU 
for real-time applications [53]. The air system controller 
required neither an internal model nor a certain feed-forward 
map. This was more robust than previous findings and was 
an improved technique in terms of time response as com-
pared to readymade embedded controllers. For model sim-
plicity, a dynamic feedback linearization technique was used 
for tracking the problem for a turbocharged diesel engine 
(TDE) equipped with an EGR valve and VGT. For enhanced 
simplicity, the third-order mean-value model controller was 
used instead of the eighth order-mean value controller [54].

In 2010, another approach was taken to reduce the mod-
els; a flatness-based feed-forward controller was designed 
for a diesel engine with a turbocharged air system with 
EGR, and model-reduction and model-inversion methods 
were used for simplicity of controller design [55]. More 

Table 3  Physics-based combustion modeling summary

Ref. No Author Focus Modeling technique

[42] Guzzella et al. Detailed model with EGR and Turbo Mean Value Engine Models from sub-models
[43] Ericson et al. Combustion and Gas exchange process CAD-based engine operation
[44] Yildiz et al. Gas Exchange model to control optimal fuel Cycle by Cycle engine operation
[45] Guardiola et al. NOx prediction Cycle by Cycle engine operation with detailed CAD sub-models
[46] Atkinson et al. Virtual sensing method to calibrate engine 

performance and emission control
Mean Value Engine Models from sub-models along with empirical 

networks
[49] Asprion et al. Simplified physics-based model to increase 

the computational speed
Extension of phenomenological, physics-based model to empirical 

mapping to reduce the computational time
[50] Durjarasan et al. Virtual NOx sensor development Mean Value Engine Model with detailed combustion and emission 

formation kinetics
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recently, ANN’s are being developed by several researchers 
to predict the performance and emission for internal com-
bustion engines for specific operating conditions focused on 
the experimentation of different fuel blends [56–58]. ANN’s 
are also being used for onboard diagnosis and for mapping 
the emission- range area based on the traffic situation [59]. 
Because they can be used only for specific operating condi-
tions, ANN is categorized as empirical modeling. However, 
they can assist engine control in various control techniques 
like predictive algorithms, supervisory control, or adaptive 
systems depending on the application.

Different prediction models were evaluated, which 
include multi-order filter techniques to process the data 
acquired. Controller types like Fuzzy, feed-forward, flatness-
based, PID, and the combination of either a few or all of 

these controller types are discussed in detail. Their imple-
mentation depends on both the complexity of the analysis 
and the targeted simplicity which results in faster processing 
and decision time for actuation. The use of advanced tech-
niques like ANN and its application in engine development 
to train these models and their calibration is also discussed. 
Yap et al. [60], utilized an optimization layer-by-layer (OLL) 
network as a supervised feed-forward learning algorithm, 
like the backpropagation, but OLL was proven to have a 
faster computation time. The architecture of OLL is shown 
in Fig. 8. This network consists of three layers. All neurons 
in the input layer are connected to all neurons in the hidden 
layer with weights W

hi
 . All hidden neurons are connected 

to all output neurons in the output layer with weights V
oh

.

Fig. 8  Architecture of OLL in a 
layer by layer optimization

Fig. 9  Structure of NOE RNN 
used in virtual sensors
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Recurrent neural network (RNN) models possess the 
advantage of having the dynamic behavior of the controlled 
system being manipulated by a simulated environment. Fig-
ure 9 shows the scheme of the RNN model used for virtual 
sensors where y ̂ and u are output and control input, respec-
tively. These RNNs are developed from static multi-layered 
perception feed-forward networks. To introduce the dynamic 
effect, feedforward connections are added among the neu-
rons. The control structure described here is referred to as a 
nonlinear output error (NOE) model. Training and test data 
sets have been derived from experimental data and measured 
on a compact commercial engine during engine transients by 
imposing throttle and load perturbations. To enhance RNN 
generalization, the input variables have been uncorrelated 
by perturbing the fuel injection around the stoichiometric 
amount.

4  Recent Engine Control Strategies

During the last few years, new technologies have been added 
as a result of new stringent actions and global standards set 
by a variety of organizations. Consequently, significant work 
has been done to increase the accuracy of prediction models, 
controller design and optimization, and to validate the differ-
ent driving cycles practiced globally. Controller robustness 
and stability depends on the method of identifying control 
variables and plant states. These variables can be a sensor 
output or a model output based on the methods discussed 
earlier in combustion modeling. This section discusses a 
few approaches made in the development of modern diesel 
engines with advanced integrated systems to enhance effi-
ciency and reduce emissions. Following are the challenges 
that are covered in this article:

a. Accurate prediction models
b. Controller design and optimization techniques
c. Controller robustness and stability strategies
d. Verification and validation through globally-practiced 

driving cycles

Air-path control in the EGR and Turbo equipped engines 
plays an important role in optimized fuel and  NOx control. 
In 2015, Min et al. [61] proposed an air-path model for a 
light-duty diesel engine with duel EGR-VGT to predict the 
unmeasurable states in-cylinder such as mass exchange 
traces and temperature. State estimation was done using the 
Least Square Optimization method and introduced a time 
constant for temperature and a transport delay to achieve 
the temperature estimation within 5% error and fuel mass 
flow accuracy up to three decimals. Another approach was 
made using the carbon dioxide  (CO2) based air-path model 
to evaluate the effectiveness of EGR under the emission 

constraints. This model required a physical sensor to meas-
ure oxygen  (O2) and was lacking the physical models for 
each subsystem [62]. But neither Min et al.. nor Tan et al. 
estimated  NOx or proposed any active  NOx control strat-
egies. Wang et  al. proposed a multi-input multi-output 
(MIMO) state feedback controller for multiple fuel injection 
pulses based on the pressure-based air-path model data taken 
from an engine map. The controller showed the guaranteed 
stability and shorter settling time for the experiment object, 
but this cannot be used as a generic solution due to a lack of 
physical models for EGR and VGT [63].

System Identification methods are proven to help evalu-
ate such complex models including complex subsystems. 
Neilsen et al. used the Hammerstein-Weiner model for sys-
tem identification to develop a complex nonlinear system 
consisting of EGR and VGT together with the fuel injection 
system [64]. A nonlinear adaptive controller was developed 
to control the EGR which continuously estimates the cylin-
der states with respect to operating points based on the Ham-
merstein model converging the system into the optimal con-
trol points in the presence of a few disturbances in fuel flow 
and Turbo effect. Although it controls the EGR, there were 
no methods proposed to estimate the in-cylinder states like 
Pressure, AHRR, and  NOx prediction was not done to assist 
the feedback control. The transient model requires additional 
control strategies to reduce overshoot during the operating 
cycle. A gain scheduled feedback proportional-integral (PI) 
controller for EGR and VGT is proposed by Hong et al. 
[65] to schedule gains for managing non-linearity of diesel 
engine models with EGR and VGT during the transient oper-
ating cycle. Based on the air-path model, static gains were 
derived from a nonlinear relation between the EGR and VGT 
performed on the European Operating Points. With the new 
scheduling variables based on the intake and exhaust pres-
sure instead of the valve positions, controller performance 
was enhanced by reducing the pressure overshoot from 64 
to 12% for a step change. However, Gain Scheduling is a 
repetitive procedure thus makes it time-consuming.

Another approach taken by Yang et al. [66] evaluated air-
path models with EGR, Turbo, and Electrical Turbo Assist 
(ETA) for the closed-loop controller. These models were 
obtained from the MATLAB system identification toolbox 
using the lookup tables and test data on the engine. A sim-
ple MIMO controller (PI) was designed for three inputs and 
three outputs. Its robustness was also checked for distur-
bances by introducing gain scheduling strategies for certain 
setpoints in operations. But this approach was truly based 
on the lookup tables; hence, any uncertainty may fail the 
model’s fitness. An additional active disturbance rejection 
controller with an extended observer is needed for such error 
tracking and control [67]. These approaches that were based 
on only a feedback controller with the lack of estimated 
or measured cylinder states restrict the robustness of the 
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controller. Accurate prediction of cylinder states and engine-
out products based on detailed physical and chemical kinet-
ics models are needed for advanced modern diesel engine 
control. Ease of controller design and model parametric 
reduction is required to deal with these complex systems 
that are the results of detailed models.

Nylén et al. [68] proposed a functional mock-up inter-
face (FMI) to implement the workflow from linear local 
feedback controllers to non-linear global systems and 
vice versa to control the global systems. Tools like Mod-
ellica Dymola can be used for such model-based control 
and significant model reduction. This approach provides 
a guideline for dealing with the complex systems for its 
optimization and control. Feed-forward and model pre-
dictive control are promising techniques for controlling 
complex nonlinear systems because of their adaptability 
and enhanced controller performance. Better results were 
found in both error and rising- time improvements for a 
model including EGT and VGT derivations? based on 
lookup tables [69, 70]. Dahl et al. [71] proposed a model 
predictive controller (MPC) for a reduced system. It was 
based on the Nelder-Mead-Simplex Algorithm for obtain-
ing the parameter and cost function vectors between linear 
local models and the ultimate nested global model. They 
used burnt gas fraction as a control unit of  NOx control 
instead of EGR and showed better results using MPC in 
terms of improved error estimation and control. Similar 
approaches with MPC and additional supervisory control-
lers including more constraints in the system show opti-
mized results in for transient cycles except for the over-
shoots when the steps are changed [72]. A zero-vibration 
input shaping in the robotics approach in an open-loop 
feed-forward system for input shaping to compensate 
the undesired overshoots and sensitivity is proposed by 
Großbichler et al. [73]. They noted a significant reduction 
in  NOx for some of the defined ranges of the operating 
points with better uncertainty handling.

With an understanding that an accurate model with 
detailed local models having multiple degrees of freedom 
is needed for an engine control problem to solve efficiently, 
some of the additional techniques are needed to make 
the controller more stable, faster, and more adaptive. In 
2016, Yamazaki et al. [74] developed a strategy for model-
based control of diesel engines with multiple fuel injec-
tion schemes to predict accurate in-cylinder pressure and 
temperature and controlled it with the EGR disturbances. 
A physics-based detailed model with all subsystems was 
developed. A feedforward and a feedback controller to con-
trol main fuel injection timing showed good accuracy in con-
trolling the peak pressure timing in a cylinder. It has been 
proven that higher degrees of freedom (DOF) for fuel injec-
tion strategies reduce the EO emissions significantly [75]. 
Another work by Yamazaki et al. on the premixed charge 

compression ignition (PCCI) diesel engine estimated the 
parameters in the cycle by cycle operation. A feedback (FB) 
controller derived from an inverse model of discretized com-
bustion was implemented to control the targeted set points 
in-cylinder [76]. The simulation showed significant and fast-
targeted control, but some delays occurred when the step 
inputs were changed. These delays were caused by the error 
and inaccurate tracking in the air-path model. To compen-
sate for this, a two DOF feedforward and feedback controller 
was developed along with an anti-wind-up control method to 
reduce overshoots at step change. They called this additional 
controller a Feedback Error Learning (FEL) system.

Zhang et al. [77] proposed the use of a CMAC (Cerebel-
lar Model Articulation Controller) as a feedforward (FF) 
controller that trains the FEL developed before in their pre-
vious work as mentioned here above. A comparison of the 
FF CMAC and FB controller model with the FF CMAC and 
FEL model demonstrated the advantages of CMAC with 
FEL. Response in CMAC and FB always delayed by one 
cycle. However, when used with the FEL, it is seen that after 
the learning phase of FEL from CMAC, there is no delay in 
reference tracking because of the learning from the CMAC. 
the training data coming from a sensor does have limita-
tions regarding indirect measurements, especially in peak 
pressure measurements. Cylinder Pressure based control of 
diesel engine applications is explained by Willems et al. in 
2018 [78]. With the additional DOFs involved, Yamazaki 
et al. applied their controller findings by including more 
systems like Turbo and EGR together for detailed air-path 
and fuel injection models [79–81]. Physical actuator delays 
affect the control scheme and its performance significantly. 
Zhang et al. developed a chattering-free sliding mode con-
trol for diesel engine air path system with actuator faults 
that reduces the effect of the faults with their prior knowl-
edge that demands the Fault detection models [82]. Kerik 
et al. developed an MPC for the diesel engine air-path and 
extended the actuator delay for the steady-state errors, over-
shoots, and other noises. This MPC with prediction models 
and an extended observer embedded with actuator delay 
showed better response for a few operating points. That 
still needs to be validated for wider operating points range 
[83]. The versatility of these models is the next task in the 
to-do list for researchers and that enhanced versatility can be 
achieved by harmonizing the operating cycles for validation 
used in different parts of the world.

The environmental pollution control agencies/organiza-
tions around the world have set policies and strategies to 
achieve their targeted goals in the next few years. In the case 
of  NOx emission from heavy-duty vehicles, it is seen that 
the existing technology can control the EO emissions under 
thresholds for all operations except low speed and low load 
application (less than 25mph) [84]. It is necessary to control 
the formation itself rather than after-treatment because of the 
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after-treatment light-off limitations. Techniques like cylin-
der deactivation and variable valve actuation are required 
to achieve these goals [85]. A detailed effort was made by 
Shaver et al. [86] to develop a control-oriented model of a 
diesel engine’s gas exchange process, which captures the 
complete interaction of air handling system components and 
flow in a multi-cylinder diesel engine with VGT and cooled 
with EGR. Models were created using GT-Suite and test 
data was acquired using dSPACE from electronic control 
module (ECM) and validated for both steady and transient 
operations. This work led to the development of closed-loop 
control and estimation strategy for Miller cycle development 
which will ultimately leverage the capabilities of a variable 
valve actuation (VVA) system.

In-line with the previous work by Shaver et al., a nonlin-
ear model-based controller was developed for combustion 
timing with respect to CAD and could achieve control of 
the SOC and intake oxygen mass fraction within the resolu-
tion of 1 CAD and 1% fraction respectively. The controller’s 
stability was demonstrated through Lyapunov analysis, and 
the functionality was experimentally validated at multiple 
operating conditions [87]. However, this work required a 
model for VVA with EGR and VGT acting together, which 
was then developed by Guan, Wei et al., 2019. According 
to them, although the Miller cycle adversely affects car-
bon monoxide and unburned hydrocarbon emissions at a 
light load of 2.2 bar, mean effective pressure is accurately 
indicated. Combining the Miller cycle with a second intake 
valve opening strategy as the formation of a relatively hot-
ter in-cylinder charge induced by the presence of internal 
exhaust gas recirculation led to a significant 82% reduction 
in soot emissions when compared with the baseline engine 
operation [47]. Also, the controller design and implementa-
tion strategies have been used with controllers like dSPACE 
DS1104 and experimental validation can is done to achieve 
near-zero accuracy [88]. The overall results demonstrated 
that advanced variable valve actuation–based combustion 
control strategies can control the exhaust gas temperature 
and engine-out emissions at low engine loads.

as well as improve upon the fuel conversion efficiency 
and total fluid consumption at high engine loads, poten-
tially reducing the engine operational costs. Based on these 
findings, Miller Cycle Development and Control is a future 
research gap for Diesel Engine development and can be opti-
mized for better performance and emission control. Table 4 
shows the recent strategies that are required for versatile 
control of a modern diesel engine. It includes the compari-
son of different controlling strategies based on control vari-
ables, controller stability, adaptability, robustness, and its 
optimization. These models and corresponding controller 
strategies can be implemented as a separate plugin device/s 
on existing systems as.

well [89].

5  Summary

This review provides a brief history of Diesel Engine devel-
opment as well as the emission control strategies that have 
evolved over the last few decades. Figure 10 illustrates the 
percentage contribution of the literature since 1930 that was 
reviewed for this article. The increase in the number of on-
road vehicles led to the establishment of the EPA which 
introduced stringent emission control norms and the need 
to minimize tailpipe emissions. Efforts taken by various 
researchers and car manufacturers to comply with these 
mandates are discussed in the second section. Finally, the 
complexity of engine control algorithms due to various tech-
nologies and the need for diesel engine combustion mode-
ling is discussed in detail. The three major types of modeling 
methods and the respective work done by researchers using 
each method are investigated and provide insight into the 
strengths and limitations of each method.

Empirical and phenomenological models have several 
disadvantages because they are limited to specific test cases 
and computational efforts respectively, which largely elimi-
nates their use for the generic purpose. The current state 
of the art for these models set a scope for a more detailed 
study of the combustion phenomenon by understanding and 
developing multi-phase combustion models. Physics-based 
combustion models are best suited to meet controller design 
requirements considering new technologies like EGR and 
VVA. Various attempts are being made to develop more 
generic and realistic models for current engine technologies 
that consider the maximum number of transient variables. 
A potential to develop the high-fidelity Miller cycle model 
for combustion phasing is also proposed. This model can 
include more engine parameters to achieve higher resolution 
with respect to CAD for performance and emission control 
with a maximum accuracy of more than 96%.

There is a potential to develop ANNs and machine-
learning-based techniques for sub-models/models, which 
can interact with each other and make them more generic 
and adaptive. Few researchers have developed a structure of 
the sensor dynamics models consisting of dead time and a 
first order-low-pass filter with a certain response time. These 
sensor-dynamic phenomenological algorithms have a signifi-
cant impact on comparisons of virtual sensors with physical 
sensors. Especially this is true, when rapid transients and 
various engine operating region response times vary, poten-
tially leading to errors in sensor comparisons. To reduce 
these errors, a rapid  NOx-measurement in the proximity of 
an exhaust manifold is necessary.

During the last decade, various environmental protection 
organizations around the world revised their clean transpor-
tation policies and the threshold for emissions. Surveys have 
been done on different technologies involved in achieving 
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the targets set by these organizations. A few approaches are 
discussed in the last section based on the controller design 
and development that emphasizes precise and stable engine 
control. Accurate cylinder state estimation techniques are 
needed to achieve these stringent goals for controller devel-
opment because of the limitation in state measurements with 
the physical sensors. Another survey from international 
council for clean transport (ICCT) concluded that more 
strategies are needed to deal with engine control during the 
low load operating points. Certain techniques like Cylinder 
de-Activation and VVA are proven to be effective for these 
requirements. In conclusion, precise in-cylinder state esti-
mations, robust controllers, and a targeted and harmonized 
operating cycle will guide the future development in Diesel 
Engine Control.
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