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Abstract
This review/research paper deals with the reduction of nonlinear partial differential equations governing the dynamic behavior 
of structural mechanical members with emphasis put on theoretical aspects of the applied methods and signal processing. 
Owing to the rapid development of technology, materials science and in particular micro/nano mechanical systems, there 
is a need not only to revise approaches to mathematical modeling of structural nonlinear vibrations, but also to choose/pro-
pose novel (extended) theoretically based methods and hence, motivating development of numerical algorithms, to get the 
authentic, reliable, validated and accurate solutions to complex mathematical models derived (nonlinear PDEs). The review 
introduces the reader to traditional approaches with a broad spectrum of the Fourier-type methods, Galerkin-type methods, 
Kantorovich–Vlasov methods, variational methods, variational iteration methods, as well as the methods of Vaindiner and 
Agranovskii–Baglai–Smirnov. While some of them are well known and applied by computational and engineering-oriented 
community, attention is paid to important (from our point of view) but not widely known and used classical approaches. In 
addition, the considerations are supported by the most popular and frequently employed algorithms and direct numerical 
schemes based on the finite element method (FEM) and finite difference method (FDM) to validate results obtained. In spite 
of a general aspect of the review paper, the traditional theoretical methods mentioned so far are quantified and compared with 
respect to applications to the novel branch of mechanics, i.e. vibrational behavior of nanostructures, which includes results 
of our own research presented throughout the paper. Namely, considerable effort has been devoted to investigate dynamic 
features of the Germain–Lagrange nanoplate (including physical nonlinearity and inhomogeneity of materials). Modified 
Germain–Lagrange equations are obtained using Kirchhoff’s hypothesis and relations based on the modified couple stress 
theory as well as Hamilton’s principle. A comparative analysis is carried out to identify the most effective methods for solv-
ing equations of mathematical physics taking as an example the modified Germain–Lagrange equation for a nanoplate. In 
numerical experiments with reducing the problem of PDEs to ODEs based on Fourier’s ideas (separation of variables), the 
Bubnov–Galerkin method of static problems and Faedo–Galerkin method of dynamic problems are employed and quanti-
fied. An exact solution governing the behavior of nanoplates served to quantify the efficiency of various reduction methods, 
including the Bubnov–Galerkin method, Kantorovich–Vlasov method, variational iterations and Vaindiner’s method (the 
last three methods include theorems regarding their numerical convergence). The numerical solutions have been compared 
with the solutions obtained by various combinations of the mentioned methods and with solutions obtained by FDM of the 
second order of accuracy and FEM for triangular and quadrangular finite elements. The studied methods of reduction to 
ordinary differential equations show high accuracy and feasibility to solve numerous problems of mathematical physics and 
mechanical systems with emphasis put on signal processing.

1  Introduction

In this review, we consider numerous computational 
approaches derived from mathematical physics and more 
widely used over the years to find nonlinear PDE solutions 
that govern the dynamic behavior of structural members. 
This section will include the description of advantages 
(sometimes disadvantages) of the classical and extended 
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theoretical variants of methods developed by Fourier and 
Galerkin, variational methods, as well as the variational 
iteration and Kantorovich–Vlasov methods, and others.

1.1 � Fourier Methods (FM)

A number of computational methods aimed at solving a wide 
variety of problems in mathematical physics and technology 
were based on the ideas of the great French scientist J. Fou-
rier including the method of separation of variables or the 
method of eigenfunctions [1]. He formulated the methods 
which later gave impetus to the use of the variable separation 
procedure when creating new approaches to solving equa-
tions for functions of several variables. William Thomson 
(Lord Kelvin) called this work “The Great Mathematical 
Poem”.

The advantage of the Fourier method is that it creates 
a simple way to obtain an explicit solution. This method 
allows us to present a series of very wide class of functions, 
since it requires that one smoothness condition is satisfied 
inside the area, and others on the boundary. Employment 
of the apparatus of asymptotic analysis to obtain estimates 
of the Fourier coefficients improved the convergence and 
highlighted the features of the series. There are many other 
benefits while using Fourier’s method, which are specific to 
each particular problem. For example, it includes the clear 
physical meaning of Fourier coefficients in vibrations prob-
lems and heat dissipation problems.

Nowadays the Fourier-based methods have found vari-
ous applications while analyzing linear and nonlinear PDEs. 
Propagation processes governed by PDEs can be solved 
using the so-called split-step Fourier method. It requires a 
simple numerical implementation and can cause phenomena 
which are not detected by other numerical methods. This 
approach is widely used in the numerical analysis of non-
linear optical fiber channels [2]. The algorithm is a combi-
nation of reducing the step-size for the integration along a 
chosen variable, and then by utilizing a discrete-time rep-
resentation of the propagating signals to get back and forth 
between time and frequency domains using FFT (Fast Fou-
rier Transform).

Though the direct Fourier method and the split-step Fou-
rier method are faster than most commercial programs, in 
general they are computationally time-consuming, and often 
the finite-difference methods are used instead [3].

When analyzing mechanical systems, machines and 
mechanisms, the signal processing is based on the time-
frequency resolution of Fourier methods and wavelets. The 
Fourier methods belong to the oldest and have been used to 
solve static and dynamic problems of structural members, 
including rods, beams, plates and shells, and the solutions 
can be obtained either in the form of stresses or displace-
ment functions. Numerous problems of nonlinear discrete 

and continuum mechanics are solved with a help of the Fou-
rier methods. In the former case the system of governing 
ODEs is solved using either single (periodicity) or double 
(quasi-periodicity) Fourier series, while in the latter case 
usually the governing PDEs are solved using the Galerkin 
and Bubnov–Galerkin methods, as well as the separation 
of variable method matched with the Fourier series. The 
Fourier methods and the associated harmonic analysis are 
always involved either explicitly or implicitly in solving a 
variety of problems of mathematical physics including the 
Navier-Stokes equations, Litllewood–Paley decompositions, 
Besov spaces, etc.

Fourier series representation includes both real and com-
plex sinusoids. In the case of signals (noise) often measured 
in engineering problems, the Fourier representation has a 
direct physical interpretation. Various waveforms have Fou-
rier series representations, and therefore the Fourier-based 
analysis is inherently involved in any engineering action. 
Any periodic/quasi-periodic signal with the given period/
periods can be approximated by 1D/2D Fourier series. The 
Fourier series can approximate odd and even square waves/
signals. In addition, regular pulse trains, triangle wave-
form as well as saw tooth waveforms have their Fourier 
expressions.

As it has already been mentioned, in engineering Fourier 
methods serve as a paradigm for solving majority of prob-
lems dealing with signal processing, including the Fourier 
transform, discrete-time Fourier transform, discrete Fou-
rier transform, short-time Fourier transform and different 
wavelets. Though FFT does not belong strictly to the Fou-
rier methods, it can be understood also as the Fourier idea 
matched with a computational technique for evaluating the 
discrete Fourier transforms. It should be noticed that the 
short-time Fourier transform makes it also possible to trace 
time evolution of the frequency components, although usu-
ally wavelet transforms are used for this purpose.

From the engineering point of view the Fourier methods 
represent the strength of a signal measured by its ampli-
tudes versus its frequencies, i.e. an arbitrary signal can be 
presented as a sum of sinusoids (harmonics) of different fre-
quencies. This allows us to carry out the spectral analysis 
and detect numerous important frequencies, including those 
occurring in periodic, quasi-periodic and chaotic signals. 
The discrete-time/discrete Fourier transforms, and the short 
Fourier transform use the discrete-time complex sinusoids, 
whereas the Fourier transform employs signals as weighted 
combinations of continuous-time complex-valued sinusoids.

In mathematical modeling of mechanical/mechatronic 
systems mainly differential equations are studied. ODEs 
describe lumped mass mechanical systems and refer to dis-
placements (positions), velocity and accelerations, whereas 
PDEs describe the behavior (statics and dynamics) of 
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continuously distributed mass systems and enable the pre-
diction of vibrations, sound, fluid flow, waves, etc.

A property of the Fourier series, i.e. differentiation of 
a sum of harmonics of different frequencies yields a sum 
of harmonics of the same frequencies corresponds to the 
behavior met in real world processes, physics and engineer-
ing. It is well known that the engineering approaches based 
on measuring and control of the mechanical, electric and 
mechatronic systems involve time delay. This is well fitted 
by the Fourier series, since a delay of the sum of harmonics 
of different frequencies results in the sum of harmonics of 
the same frequencies.

The Fourier methods are well suited to study signal-sys-
tem interactions. In the case of linear time-invariant sys-
tems, the so-called “eigenfunction” property holds, i.e. an 
input described as an arbitrary sum of complex harmonics 
of different frequencies yields an output given by the sum of 
complex harmonics of the same frequencies. The FMs allow 
also for employing filters to separate certain frequency com-
ponents of the input signal. In addition, they give efficient 
computational results of the FFT algorithms based on the 
properties of complex harmonics. The Fourier methods are 
extensively described in numerous books [4–6]. Fornberg 
[7] employed the Fourier method based on FFT to approxi-
mate space derivatives for hyperbolic PDEs with emphasis 
put on its stability and accuracy.

Kreiss and Oliger [8] developed a stability theory for the 
Fourier pseudo-spectral method with the application to the 
linear hyperbolic/parabolic PDEs with variable coefficients.

Majda et al. [9] employed the Fourier method to gen-
eral linear hyperbolic Cauchy problems with nonsmooth 
initial data. It was proven that the appropriate smoothing 
techniques give stability, whereas smoothing combined with 
smoothing of the initial data yielded infinite order accuracy 
of the obtained results.

Kosloff et al. [10] used the Fourier method to construct 
a 2D forward modeling algorithm. The solution included 
discretization in both space and time. Temporal deriva-
tives were approximated by the second order differencing, 
whereas spatial derivatives were estimated via FFT. The 
algorithm was validated using the analytic solutions for 2D 
Lamb problem.

Peyret [11] employed the Fourier method to solve the 
problems of spatial periodicity in one/two directions 
matched with the Chebyshev polynomials.

1.2 � Galerkin Method (GM)

The Galerkin method can be thought as an extension of the 
method of Ritz [12] who considered the problem �u = f  ( �
stands for a differential operator acting in a Banach space). 
The approximating solution is u(x) = UN(x) =

∑N

i=1
�iwi(x), 

where N is the natural number and wi ∈ XN ⊂ X forms a 

linearly independent system. It is expected that �i (weights) 
can be defined using the condition that the residual (i) 
r = �u − f → min . However, a question arises how to 
define coordinate functions and test functions to find a suit-
able form of the residual to satisfy the requirement that uN 
tends to u, where u is the exact solution. Galerkin proposed 
a general method and pointed out that the residual should 
be orthogonal to a system of test functions (linearly inde-
pendent) where the orthogonality refers to the integral sense 
[13]. (Nowadays, it is recognized that Galerkin employed 
not widely known, brilliant idea published by Bubnov (an 
engineer and marine officer) who applied his method to ship 
building problems. This is why in many cases the method 
is referred to as the Bubnov–Galerkin method, while some 
researchers distinguish the Galerkin and the Bubnov–Galer-
kin methods).

Therefore, after modifications, the general Galerkin-based 
idea is to find weight coefficients �i using the orthogonality 
relation of the form (ii) ⟨�uN − f , �k⟩ = 0 for all �k ∈ YM , 
where uN is given by (i), and YM ⊂ Y∕ is the set of independ-
ent test functions in the space conjugate to Y; duality pairing 
of Y and Y∕ is defined by ⟨⋅, ⋅⟩. The latter general formula-
tion includes various special cases: (a) the Bubnov–Galerkin 
method when X and Y are Hilbert spaces and spaces XN and 
YN coincide (see [14]); (b) the Ritz–Galerkin method when 
(ii) is generated by a quadratic equation and comes from 
the Euler equation ([15], chapter 4; [16]); (c) the Petrov-
Galerkin method where the problem was applied to fit the 
eigenvalues ([17–19]); (d) the Taylor–Galerkin method 
where emphasis is laid on the finite element method applied 
to PDEs [20]; the Faedo–Galerkin method where dynamic 
properties are concerned [21].

Nowadays the Galerkin methods play a fundamental role 
in numerical solutions of PDEs including elliptic, parabolic 
and hyperbolic equations [22].

The method is widely used by the classical and extended 
discretization algorithms employed explicitly and/or implic-
itly in the finite element methods (FEMs), finite difference 
methods (FDMs), and spectral element methods (SEMs).

Nodal (Lagrangian interpolants/polynomials) and modal 
Fourier basis and Legendre polynomials may serve as basis 
functions in 1D, and they can be extended to higher space 
dimensions by using SEM and a concept of tensor products. 
It should be emphasized that the global modes can be for-
mulated in a mathematical, physical and/or empirical way.

A particular role in finding solutions to a PDE plays the 
modified FEM known as the Galerkin FEM. In this case the 
Lagrange and Hermite elements are used as trial functions 
and this approach can be formulated in both global and local 
way.

More recently the classical FEM includes extension to fit 
the discontinuous problems based on completely discontinu-
ous basis functions instead of the piece-wise polynomials 
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[23]. The review paper [23] addressed the problems of the 
discontinuous Galerkin methods for solving high-order time-
dependent PDEs with emphasis put on the consideration of 
numerical flux, stability, time discretizations, accuracy of 
the solution and error estimates.

As already mentioned, Galerkin-type approaches have 
found great application in both mathematical physics 
[24–28] and mechanical engineering as well as signal pro-
cessing [29] (due to the page limit of our review, we have 
omitted here numerous articles dealing with these issues).

Importance of the Galerkin methods, its sound applica-
tion and possible further extension can be found in the edito-
rial written by Repin [30].

1.3 � Kantorovich–Vlasov Methods (KVM)

Among variety of the numerical methods devoted to the 
solution of static and dynamic problems of structural mem-
bers, a key role is played by the methods introduced by 
Kantorovich [31] and Vlasov [32], further known as the 
Kantorovich–Vlasov method (KVM). It has the following 
advantages: 

	 (i)	 solution to a nonlinear PDE(s) considered in the 
Cartesian coordinates is represented by a single 
series of infinite terms as a combination of func-
tions with separable variables where all components 
of the approximation are unknown. For example, in 
the case of uniformly loaded Kirchhoff–Love rec-
tangular plate deflection, w(x, y) is represented as 
w(x, y) =

∑∞

n=1
f (x)gn(y);

	 (ii)	 the original 2D (3D) problem is reduced to a system 
of two (three) coupled 1D problems;

	 (iii)	 the iterative procedure of KVM is efficient for com-
putations, since it converges rapidly (usually, it takes 
a few iterations with a few terms in the approximat-
ing function to achieve the validated and stable solu-
tion);

	 (iv)	 KVM is useful and shows advantages over other 
traditional methods of reduction of PDEs to ODEs 
while dealing with vibrations of beams, plates and 
shells.

In the beginning, the reduction of PDEs dimension occur-
ring in mathematical physics and mechanics to that of the 
counterpart 1D problem was carried out by Grigorenko and 
his disciples [33–36] as well as by Krysko and his co-work-
ers [37–39]. Then, Bespalova successfully employed this 
method to various problems of nonlinear structural mechan-
ics [40–42].

More recently, Bespalova and Urusova [43] used the 
advanced Kantorovich–Vlasov approach to reduce the 
3D problem of torsion of an anisotropic prism to three 

corresponding 1D problems. In addition, they reported new 
results regarding warping of the cross-section and deforma-
tion of the prism axis for different types of anisotropy.

Bespalova [44] proposed also to match the inverse-itera-
tion method of successive approximations and the advanced 
KVM to calculate natural frequencies of an elastic parallel-
epiped with different boundary conditions. The dependence 
of lower frequencies of a 3D cantilever beam was reported.

Surianinov and Chaban [45] used the KVM to reduce the 
2D problem of calculating the anisotropic plate based on 
the proposed analytical-numerical method. This approach 
yielded the solution of a basis differential equation of bend-
ing an anisotropic plate with any boundary conditions and 
without any restrictions given to the external load.

Nwoji et al. [46] applied the KVM to the flexural inves-
tigation of simply supported Kirchhoff plates subjected to 
transverse uniformly distributed load. The Vlasov approach 
was applied to construct coordinate functions in the x direc-
tion, whereas the Kantorovich method was used to consider 
the displacement field. They reported that the obtained solu-
tions were rapidly convergent for both deflection and bend-
ing moments. The results obtained were validated by the 
Levi-Nadai solutions.

Then, Kerr [47] extended the Kantorovich method to get 
the exact solution in both directions by using the iterative 
procedure. Kapuria and Kumari [48] applied KVM to study 
a 3D problem of elasticity solution of laminated composite 
structures in cylindrical bending. Aghdam et al. [49] used 
successfully the Kantorovich method in the static analysis of 
moderately thick, functionally graded sector plates. Wu et al. 
[50] found the Kantorovich-based solution when studying 
a simply supported beam under linearly distributed loads. 
The multi-term extended KVM was applied to find analyti-
cal solution for the bending problem of moderately thick 
composite annular sector plates with general boundary con-
ditions and loadings [51].

The free vibration analysis based on KVM of symmetri-
cally laminated fully clamped skew plates and of moderately 
thick, functionally graded plates was carried out in the works 
[52, 53]. Vibrations of laminated plates with various bound-
ary conditions based on the extended Kantorovich method 
were analyzed [54].

Kapuria et al. [55] studied the 3D elasticity solution of 
laminated plates with a help of multi-term extended Kan-
torovich method, whereas Kumari et al. [56] used the 3D 
extended Kantorovich solution for Levy-type rectangular 
laminated plates with edge effects.

Huang et al. [57] used KVM to estimate local stresses in 
composite laminates upon polynomial stress function.

Kumari and Behera [58] obtained a closed form 3D solu-
tion for a rectangular laminated plate with Levy type sup-
port based on the extended Kantorovich method. Natural 
frequencies were estimated for composite and sandwich 
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laminates. In addition, the effect of the span to thickness 
ratio and in-plane modulus ratio on the natural frequencies 
was also investigated. Ike and Mama [59] carried out the 
flexural analysis of Kirchhoff–Love plates using the vari-
ational Kantorovich method.

1.4 � Variational Methods (VM)

The variational methods belong to the fundamental tools 
for solving variety of linear/nonlinear problems not only in 
mechanics but in mathematical physics due to the rigorous 
mathematical bases. In the classical mechanics it concerns 
the mechanics of solids and fluids, materials modeling and 
properties (creeps, plasticity and smart materials fabrication, 
materials with memories, etc.), the statics and dynamics of 
structural members dealing with real engineering construc-
tions, heat transfer, and others. It allows us to model com-
plex behavior of both discrete systems and continuum.

Theoretical achievements, counted from the 18th century, 
introduced by seminal works of Euler, Lagrange, Bubnov, 
Galerkin, Kantorovich, Nowacki, Vlasov, Vaindiner, Reiss-
ner and Ritz along with Hamilton’s principle have recently 
attracted great interest of the researches, and have brought 
back the classical approaches based on the variational 
methods and energy principles. This is motivated by grow-
ing attractiveness of numerical/computational methods in 
applied sciences, and in particular in engineering includ-
ing the final element method, finite difference method, Ritz 
method, weighted-residual methods, and more.

The variational methods require good mathematical back-
ground, as it is shown by the authors of the outstanding mon-
ographs [60–65], but it seems that the pressure of rapidly 
developing technology and engineering approaches shifted 
and somehow shallowed the fundamental achievements of 
variational classical theories to engineering and applied sci-
ences with direct application to the finite element methods.

However, the classical variational approaches can be 
extended to mathematical branches of science (geometry, 
topology, analysis), mathematical physics, optimization 
problems and mathematical modeling and analysis of non-
linear behavior in biology, medicine, and economics.

There are numerous publications devoted to the theory 
and application of variational methods. Since the latter have 
been closely matched with the computational methods, it is 
almost impossible and perhaps useless to cite all or major-
ity of them. Therefore, only few of them will be mentioned.

Courant [66] pointed out importance of the calculus of 
variations and its equivalence with the boundary value prob-
lems of PDEs. He considered variational problems with ref-
erence to quadratic functionals, rigid and natural boundary 
conditions, the Rayleigh–Ritz method, the method of finite 
differences, and the method of gradients.

The rigorous treatment and extension of the classical 
variational methods is offered by Marsden et al. [67] who 
proposed a variational and multisymplectic formulation of 
compressible/incompressible models of continuum mechan-
ics on general Riemannian manifolds. An interplay of com-
pressible/incompressible continuum mechanics, constrained 
multisymplectic field theories, symmetries, momentum 
maps and Noether’s theorem was offered.

Direct applications of variational methods for engineers 
can be found in the book [68]. It gives friendly written basic 
material devoted to variational methods for algebraic equa-
tions, and to differential equations, the treatment of Hilbert 
and functional spaces feasible for engineers, as well as func-
tionals and calculus of variations.

Finally, it should be emphasized that the classical vari-
ational methods still attract interest of the scientists which 
is documented by the original treatment and extension to the 
thematic issues presented in the monographs/books [69–74].

1.5 � Variational Iteration Method (VIM)

The next method is the variational iteration method (VIM), 
which relieves a researcher from the need to construct a sys-
tem of approximating functions like in the Galerkin method. 
Arbitrarily defined functions (satisfying only the smoothness 
conditions) are taken and then they are refined in the process 
of calculation by VIM based on the solutions of the original 
system of differential equations.

This method was first proposed and applied in 1933 by 
Shunk [75] to calculate the bending of cylindrical panels. 
But the work went unnoticed and the method was rediscov-
ered again in 1964 by Zhukov [76], who used it to calculate 
a thin rectangular plate. Further, VIM was widely used by 
many researchers to solve the problems of shell and plate 
theory [37]. The substantiation of this method for the class 
of equations described by positive definite operators was 
given in [38].

It is worth noting here that in the literature there is a large 
number of different names for the method of variational 
iterations. This method is often called by Kerr [77–79] the 
extended Kantorovich method and it was published 38 years 
after Shunk and 5 years after Zhukov. Given this, we can say 
that the method has been rediscovered.

The variational iteration method or extended Kantorovich 
method has been used over the past half century to solve 
the problems of statics, stability, natural frequencies and 
dynamics.

The VIM was extended by Ji-Huan He [80, 81] who used 
the old concept of Lagrange multiplier method, with empha-
sis put on analytical solutions. The approach proposed by He 
found many followers and his modification to the classical 
VIM was employed in a wide range of issues of mathemati-
cal physics dealing with ODEs and PDEs. On the other hand, 
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the convergence of VIM was discussed in many papers, 
including [82–86].

Solodov and Svaiter [87] proposed a novel projection 
algorithm to solve variational inequality. First, an appropri-
ate hyperplane separating the current iterate from the solu-
tion was employed. It required a single projection onto the 
feasible set and application of the Amijo-type line search 
along a feasible direction. The next iteration was a projection 
of the current iterate onto the intersection of the feasible set 
with the halfspace including the solution.

Matinfar et al. [88] developed a so called modified vari-
ational iteration method (MVIM) by merging the classical 
VIM with He’s polynomials and applied it to solve heat 
transfer problems governed by PDEs with variable coeffi-
cients. The proposed algorithms matched the variational iter-
ations with the homotopy, perturbation methods and exhib-
ited all advantages of the coupled technique. The authors 
showed that MVIM was employed without any discretization 
procedures and strong assumptions and was free from errors.

Noor and Mohyud-Din [89] developed an analytical ver-
sion of VIM called the variational decomposition method 
based on the example of the eighth-order boundary value 
problem. Analytical solutions were found as the conven-
tional technique confirmed the reliability, validity and high 
accuracy of the proposed method.

Ji-Huan He [90] again considered VIM with emphasis 
laid on recent results and new interpretations. Procedures 
illustrating the solution were based on nonlinear oscillators 
governed by ODEs. Then, He and Wu [91] discussed the 
application of VIM to nonlinear wave equations and non-
linear fractional differential equations occurring in various 
engineering problems. They noticed that VIM may serve as 
a candidate to solve problems of strongly nonlinear equa-
tions which cannot be attacked by the classical approximate 
methods.

Barari et al. [92] combined the homotopy perturbation 
method and VIM to solve nonlinear ODEs with an oscillat-
ing solution. They stressed that the method did not require 
either linearization or small perturbation which is needed in 
the classical approaches.

Saadatmandi and Dehghan [93] employed He’s vari-
ational method to solve the generalized pantograph equa-
tion. They demonstrated that only a few iterations were suf-
ficient to guarantee a highly accurate solution, and it was not 
affected by computation round of errors.

Abbasbandy and Shivanian [94] used VIM successfully 
to solve nonlinear Volterra’s integro-differential PDEs. They 
observed that VIM yielded more accurate results as com-
pared to the homotopy perturbation method and the Ado-
mian decomposition method.

Salehoor and Jafari [95] employed the VIM extended by 
He to find a solution to nonlinear gas dynamics equation 
and Stefan equation. The method involved the Lagrange 

multipliers to identify the optimal values of parameters in 
a functional.

Heydari et al. [96] combined the spectral method and 
VIM for heat transfer problems with high order of nonlin-
earity. The method was implemented to solve an unsteady 
nonlinear convective-radiative equation with two small inde-
pendent parameters.

Wazwaz [97] applied VIM for solving linear/nonlinear 
ODEs with variable coefficients. He tested a variety of mod-
els including the hybrid selection model, Thomas-Fermi 
equations, as well as the Kidder and Ricatti equations.

Zhang et al. [98] used a new scheme while adopting VIM 
to solve the problem of infrared radiative transfer in a scat-
tered medium. Both upward and downward intensities were 
calculated separately by VIM and it was found that VIM was 
more accurate comparing to the discrete-ordinates method.

Narayanamoorthy and Mathankumar [99] used VIM 
to solve problems governed by the linear Volterra fuzzy 
integro-differential equations. Two test problems were con-
sidered and the approximate versus exact solutions were 
validated.

El-Sayed and El-Mongy [100] employed the modified 
VIM to solve the free vibration problem of a tapered Euler-
Bernoulli beams mounted on 2DoF mass-spring-damper 
subsystem. Natural frequencies and mode shapes for uni-
form/tapered beam were studied. It was demonstrated how 
highly accurate results were obtained by adjusting only a 
few iterations of VIM.

1.6 � Vaindiner’s Method (VaM)

This method, while rigorous and powerful, did not attract, 
however, special attention particularly among the western-
oriented researchers. The method can be viewed as an 
extension and modification of the Kantorovich and Bub-
nov–Galerkin methods. An approximate solution to a prob-
lem governed by PDEs was searched in the form of the sum 
of products of the coordinate and sought functions with 
applications to the Fourier general polynomials and series 
[101, 102]. In the first product, a given function depends 
on x, whereas in the second product it depends on y. The 
approach was then further extended and developed by study-
ing many problems of the convergence of the methods used, 
the decreasing order of the studied systems, interpolation of 
functions with many variables, lattice collocation, boundary 
value problems and singular integral equations of elasticity 
in 3D [101–107].

Vaindiner’s method was widely used to study station-
ary geometrically nonlinear problems of the shell theory 
[108]. The system of nonlinear ordinary differential equa-
tions was reduced to a nonlinear system of algebraic equa-
tions by the finite difference method. And then, the problem 
was solved by the general iteration method. A solution for 
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square plates with three types of boundary conditions was 
obtained including the analysis of a simple support, sliding 
clamping of the contour, a simple support on two opposite 
edges and sliding clamping on the other two. More recently, 
Vaindiner’s method was used to study the static bending of 
plates taking into account physical nonlinearity and differ-
ent moduli of material [109, 110], and also to consider the 
problems of one-sided corrosion of shells [111].

A brief review of the literature reveals that there is 
no available comparative analysis of the methods so far 
described and schematically shown in Fig. 1 (description of 
the Agranovskii–Baglai–Smirnov method (ABSM) is omit-
ted here, because it is presented in Sect. 3.3). Many of the 
above methods have not been applied to problems in the 
theory of plates and shells. This is why we have employed 
and quantified the effectiveness of the methods based on the 
example of the Germain–Lagrange PDE.

1.7 � Closing Remarks

It is well recognized that in solving multidimensional prob-
lems of mathematical physics, the reduction of dimension 
plays a crucial role, and next an attempt to achieve a solu-
tion in a compact way is highly required. In this respect, an 
original multidimensional problem is substituted by its coun-
terpart sequence of one-dimensional problems. This makes 
it possible to obtain solutions without time-consuming 
numerical computations, which is important for engineering 
applications. Since in most cases it is impossible to obtain an 
exact match between the original multidimensional problem 
and the sequence of one-dimensional problems, appropriate 
functionals are proposed and used to solve the problem in 
an approximate way.

Nonlinear dynamics of the one-dimensional macro-struc-
tural-mechanical issues has been recently deeply revisited 

with regard to chaotic and bifurcational features (see books 
[112–114] and review paper [115]). Thus, with the appropri-
ate methodology suitable from the engineering point of view 
and reliable and accurate approaches to the transition from 
nonlinear multidimensional problems to a set of nonlinear 
but one-dimensional problems, progress can be made in the 
computational aspects of modern mechanics, aeronautics 
and civil engineering.

Worth noting is the interest of engineering community 
in the so called reduced order models (ROMs), where the 
transition from multidimensional infinite problems governed 
by nonlinear PDEs is reduced to a set of nonlinear ODEs, 
where the problem is highly truncated to the single-mode 
approximation. Although this approach allows us to find a 
relationship between the dynamics of structural members 
with infinite degrees of freedom and the dynamics of lumped 
massed systems with one degree of freedom governed by 
the second order ODE, in many cases it does not allow us to 
obtain reliable results. Therefore, recognizing several advan-
tages of this engineering-oriented approach, such as direct 
fit to the well-known classical 1 DoFs oscillators, includ-
ing Duffing, Duffing-Helmholtz and van der Pol archetypal 
systems, and capturing the basic dynamic phenomena of 
structural members under study, we prefer to highlight more 
rigorous mathematically and reliable methods to be used by 
engineering community, which is why ROMs are not cov-
ered by our review article.

The rest of the paper is organized in the following way. 
Problem statement is given in Sect. 2, whereas solutions 
based on the methods described in Sect. 1 are reported in 
Sect. 3. Section 4 presents solutions of the problem using 
FEM and FDM, and concluding remarks are given in Sect. 6.

Fig. 1   The scheme of connec-
tions of the Fourier method 
(FM) with the Bubnov–Galerkin 
method (BGM), Kantorovich–
Vlasov method (KVM) and 
their modifications
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2 � Problem Statement

To construct a mathematical model of a Ger-
main–Lagrange nanoplate based on the modified couple 
stress theory, an elastic isotropic rectangular plate is con-
sidered. The rectangular coordinate system associated 
with the nanoplate is introduced in the following way: 
� = {x, y, z ∕ (x, y, z ) ∈ [0, a] × [0, b]× [−h∕2 , −h∕2 ]} . 
The nanoplate has dimensions a, b, h along axes x, y, z,  
respectively. Its middle surface at z = 0 is denoted by 
B = {x, y ∕(x, y ) ∈ [0, a] ×[0, b]} (see Fig. 2).

The displacements along the x, y axes refer to u, v, respec-
tively. Deflection (normal plate movement) along the z axis 
is denoted by w = w(x, y) . In order to construct the math-
ematical model, we introduce the following assumptions and 
hypotheses: (i) Kirchhoff hypothesis holds; (ii) rotation iner-
tia of the plate elements are not taken into account; (iii) plate 
material is homogeneous and isotropic, i.e. it is assumed 
that for the same stress the same deformations occur in all 
points and elastic properties in each point of the plate are the 
same in all directions; (iv) all displacement components are 
considered to be significantly smaller than the characteristic 
size of the considered rectangular plate; (v) the deformations 
of middle surface �xx, �yy, �xy are assumed to be negligible 
compared to unity (this does not mean that the relationship 
between movements and deformations must be linear).

Owing to the modified couple stress theory [116], the 
accumulated energy of deformation U of the plate, taking 
its size-dependent behavior into account, is governed by the 
following formula

where �xx, �yy, �xy,�xx, �yy, �xy,mxx
,m

yy
,m

xy
,�

xx
,�

yy
,�

xy
 denote 

the components of the symmetric part of stress tensor � , 

(1)

U =
1

2 ∫
�

(
�xx�xx + �yy�yy + �xy�xy

+m
xx
�
xx
+ m

yy
�
yy
+ m

xy
�
xy

)
d�

components of deformation tensor � , components of the 
deviatory part of the symmetric tensor of the higher order 
m, and the components of the symmetric part of curvature 
tensor �.

Linear deformations and displacements are coupled via 
the following relations

The following relation for the non-zeroth component of the 
symmetric curvature tensor part holds

For non-zero components of the symmetric part of stress 
tensor � and for the deviatory part of the tensor of the higher 
order m, the following relations take place [116]:

where: �
(
x, y, z, ei

)
=

E�

(1+�)(1−2 �)
, �

(
x, y, z, ei

)
=

E

2(1+�)
 are 

t h e  L a m é  p a r a m e t e r s ; 

ei =
√
2

3

��
�
xx
− �

yy

�2

+ �2
yy
+ �2

xx
+

3

2
�2
xy

 describes the 

intensity of deformation; E - Young modulus; � - Poisson’s 
coefficient; l - material length parameter associated with the 
symmetric tensor of the relation gradient.

According to the method of variable parameters of 
elasticity [117], E

(
x, y, z, ei

)
 and �

(
x, y, z, ei

)
 are not con-

stant but they depend on the coordinates and intensity of 
deformations.

Equations (2), (3) and (4) are used to derive deformation 
energy U of the nanoplate, i.e. we have

We introduce the following notation: 
h

2∫
−

h

2

(� + 2�)z2 dz = �1

,
h

2∫
−

h

2

�z2 dz = �2 , 
h

2∫
−

h

2

� dz = �3 . Then, �i = �i
(
x, y, ei

)
 are the 

functions of coordinates and intensity of deformations. 
Equation (5) takes the following form

(2)�xx = −z
�2w

�x2
, �yy = −z

�2w

�x2
, �xy = −2z

�2w

�x�y

(3)�
xx
=

�2w

�x�y
, �

yy
= −

�2w

�x�y
, �

xy
=

1

2

(
�2w

�y2
−

�2w

�x2

)
.

(4)
�
xx
= (� + 2�)�xx, �

yy
= (� + 2�)�yy, �

xy
= 2��xy,

m
xx
= 2�l2�

xx
, m

yy
= 2�l2�

yy
, m

xy
= 2�l2�

xy
,

(5)

U =
1

2

a

∫
0

b

∫
0

h

2

∫
−

h

2

{
(� + 2�)

(
−z

�2w

�x2

)2

+ (� + 2�)

(
−z

�2w

�y2

)2

+ 2�

(
−z

�2w

�x�y

)2

+
1

2
�l2

[
−
�2w

�x2

]2

+
1

2
�l2

[
−
�2w

�y2

]2
+ �l2

[
−
�2w

�x�y

]2}
dzdydx.

Fig. 2   General view of the nanoplate
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where the underlined members include higher order terms.
External work related to the distributed forces takes the 

following form

Kinetic plate energy is as follows

The associated variations of U, W, K are as follows

(6)

U =
1

2

a

∫
0

b

∫
0

�
�1

��
�2w

�x2

�2

+

�
�2w

�y2

�2
�

+ 2�2

�
�2w

�x�y

�2

+
1

2
�3l

2

��
�2w

�x2

�2
+

�
�2w

�y2

�2
+ 2

�
�2w

�x�y

�2�⎫⎪⎬⎪⎭
dxdy,

(7)W = ∬
B

q(x, y)w(x, y)dB.

(8)K =
1

2 ∫
B

h

2

∫
−

h

2

�(x, y, z)
(
�w

�t

)2

dzdB.

(9)

�U = ∬
B

{
�1

�4w

�x4
+ 2

��1

�x

�3w

�x3
+

�2�1

�x2
�2w

�x2
+

+ �1
�4w

�y4
+ 2

��1

�y

�3w

�y3
+

�2�1

�y2
�2w

�y2

+ 2

(
�2�2

�x�y

�2w

�x�y
+

��2

�x

�3w

�x�y2
+

��2

�y

�3w

�x2�y
+ �2

�4w

�x2�y2

)

+
1

2
l2
[
�3

�4w

�x4
+ 2

��3

�x

�3w

�x3
+

�2�3

�x2
�2w

�x2

+ �3
�4w

�y4
+ 2

��3

�y

�3w

�y3
+

�2�3

�y2
�2w

�y2

+2

(
�2�3

�x�y

�2w

�x�y
+

��3

�x

�3w

�x�y2
+

��3

�y

�3w

�x2�y
+ �3

�2w

�x�y

)]}
�w dxdy

+

a

∫
0

�1
�2w

�y2
�

(
�w

�y

)|||||

b

0

−

(
��1

�y

�2w

�y2
+ �1

�3w

�y3

)
�(w)

|||||

b

0

−2

(
��2

�x

�2w

�x�y
+ �2

�3w

�x2�y

)
�(w)

|||||

b

0

dx

+

b

∫
0

�1
�2w

�x2
�

(
�w

�x

)||||
a

0

−

(
��1

�x

�2w

�x2
+ �1

�3w

�x3

)
�(w)

|||||

a

0

− 2

(
��2

�y

�2w

�x�y
+ �2

�3w

�x�y2

)
�(w)

|||||

a

0

dy + 2�2
�2w

�x�y
�(w)

||||
a

0

||||
b

0

,

where: I =
h

2∫
−

h

2

�dz.

Employing Hamilton’s principle, we get

and we obtain the following equation of dynamics of the 
nanoplate based on the modified couple stress theory with 
variable elastic parameters

(10)

�W = ∬
B

q(x, y, t) �wdB,

�K =

b

∫
0

a

∫
0

I
�2w(x, y, t)

�t2
�wdxdy,

(11)

t1

∫
t0

�(K − U +W) dt = 0,
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The corresponding choice of the boundary conditions is 
given with regard to the plate edge [0; b]:

For the case, when elasticity parameters are independent of 
both coordinates and time, the modified couple stress theory, 
the Germain–Lagrange equations of the following form can 
be used

where D =
Eh3

12(1−�2)
+

Ehl2

2(1+�)
 , and it will be further referred 

to as the modified Germain–Lagrange equation.
In the future, we will use two types of boundary condi-

tions and their combinations:

where n stands for a normal to the plate boundary.
For the numerical study, we use the non-dimensional 

form of Eq. (14). We introduce the following non-dimen-
sional variables

(12)

(
�1 +

1

2
l2�3

)
�4w

�x4
+ 2

(
�2 +

1

2
l2�3

)
�4w

�x2�y2

+
(
�1 +

1

2
l2�3

)
�4w

�y4
+ 2

(
��1

�x
+

1

2
l2
��3

�x

)
�3w

�x3

+

(
�2�1

�x2
+

1

2
l2
�2�3

�x2

)
�2w

�x2
+ 2

(
��1

�y
+

1

2
l2
��3

�y

)
�3w

�y3

+

(
�2�1

�y2
+

1

2
l2
�2�3

�y2

)
�2w

�y2
+ 2

(
�2�2

�x�y
+

1

2
l2
�2�3

�x�y

)
�2w

�x�y

+ 2

(
��2

�x
+

1

2
l2
��3

�x

)
�3w

�x�y2
+ 2

(
��2

�y
+

1

2
l2
��3

�y

)
�3w

�x2�y

= q(x, y) + I
�2w

�t2
.

(13)

�1
�2w

�y2

||||
b

0

= 0 or �

(
�w

�y

)|||||

b

0

= 0,

(
��1

�y

�2w

�y2
+ �1

�3w

�y3

)
− 2

(
��2

�x

�2w

�x�y
+ �2

�3w

�x2�y

)

+2�2
�2w

�x�y

||||
b

0

= 0

or �(w)|b
0
= 0.

(14)D

(
�4w

�x4
+ 2

�4w

�x2�y2
+

�4w

�y4

)
= q,

(15)w||B = 0,
�2w

�n2

||||B = 0 (simple support),

(16)w||B = 0,
�w

�n

||||B = 0 (clamping),

Then Eq. (14) can be rewritten as follows (bars over the 
dimensionless parameters are omitted)

where: D =
1

12(1−�2)
+

�2

2(1+�)
 , � - non-dimensional material 

length parameter equal to 0 for the classical mechanics case, 
and it is in the interval (0; 0.5] for higher order mechanics.

Boundary conditions (15), (16) should be attached to 
Eq. (18) in the same dimensionless form. The derived PDEs 
will be solved both analytically and numerically by several 
methods: the Kantorovich–Vlasov method, variational itera-
tion method, Vaindiner’s method, Bubnov–Galerkin method, 
by the use of double trigonometric series, the finite element 
method and the finite difference method. In order to keep 
accuracy of the solution, the Agranovskii–Baglai–Smirnov 
method will be used [118, 119].

Equation (18) can be presented in its counterpart opera-
tor form

where L is the operator (in general nonlinear) acting in a 
Hilbert space H. Boundary conditions (14) and (15) have 
the following operator representations

Remark 1  It should be noted that Eq. (12) with the corre-
sponding boundary conditions stands for the generalization 
of the modified Germain–Lagrange equation (MGLE). It 
allows one to take into account the heterogeneous structure 
of the nanoplates. The properties of nanoplates can be het-
erogeneous prior to deformation and can be changed during 
loading. This theory is based on the deformation theory of 
plasticity and makes it possible to recalculate elastic moduli 
and Poisson’s ratios, depending on the deformation diagram 
and the loading process.

Remark 2  Equation (12) is used to consider physical non-
linearity for nanostructures using the iterative scheme of 
the method of variable elastic parameters. The method of 
variable parameters of elasticity [117], used to solve a physi-
cally nonlinear problem, employs the fact that Ei(x, y, z, ei) , 
vi(x, y, z, ei) are not constant. They depend on the deformed 
state at a structure point and are defined by the following 
formulas

(17)
w̄ =

w

h
, x =

x

a
, y =

y

b
, q =

a2b2

Eh4
q, 𝛾 =

l

h2
,

𝜆 =
a

b
.

(18)D

(
1

�2
�4w

�x4
+ 2

�4w

�x2�y2
+ �2

�4w

�y4

)
= q,

(19)L(w) = q,

(20)l(w) = f .
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Here we consider that volumetric deformation 
K1i = const . In the deformation theory of plasticity [120], 
the shear modulus is defined in the following form:

where �
i
 , e

i
 stand for the plate stress intensity and plate 

deformations, respectively. The relationship �
i
(e

i
) is deter-

mined experimentally for a given nanomaterial.

3 � Analytical and Numerical Methods 
for Solving MGLE

3.1 � Exact Solution of MGLE Based on Navier’s 
Double Trigonometric Series

We consider first a possibility to get analytical solution to 
Eq. (18) with boundary conditions (15). External transverse 
load q(x, y) is taken into account in the following form

where

Deflection function w(x, y) is taken in the form of the double 
trigonometric series

and each term of solution (23) satisfies all boundary condi-
tions (15).

Equations (21), (23) and (18) allow us to derive the fol-
lowing algebraic equation

Taking into account the linear independence of the terms in 
Eq. (24), we obtain

Ei =
9K1iGi

3K1i + Gi

, �i =
1

2

3K1i − 2Gi

3K1i + Gi

.

Gi =
1

3

�
i
(e

i
)

e
i

(21)q(x, y) =

N∑
m=1

N∑
n=1

Bmn sinm�x sin n�y,

(22)Bmn = ∫
1

0 ∫
1

0

q(x, y) sinm�x sin n�y dxdy.

(23)w(x, y) =

N∑
m=1

N∑
n=1

Amn sinm�x sin n�y,

(24)

N∑
m=1

N∑
n=1

{
AmnD

[
(m�)2 + (n�)2

]2
− Bmn

}
sinm�x sin n�y = 0.

(25)Amn =
Bmn

D
[
(m�)2 + (n�)2

]2 .

Then the counterpart solution in a general form can be writ-
ten as follows

For uniformly distributed constant load q = q0, coefficients 
Bmn take the following form

Therefore, we obtain

where

For Eq. (18), convergence of the solution is studied depend-
ing on the number of terms of series N in (28), for the fol-
lowing fixed values � = 0, � = 0.3, � = 0.5 (see Table 1).

Analysis of the results given in Table 1 shows that for 
� = 0 , five members of the series should be considered, 
whereas for � ≠ 0 three members of the series are sufficient 
to get a reliable solution. In what follows, we will consider 
this as an exact solution and compare it with the solutions 
obtained numerically using other methods.

3.2 � Bubnov–Galerkin Method

Further, we will formulate an application scheme of the Bub-
nov–Galerkin method using the example of operator equa-
tion (19) and taking into account boundary conditions (20).

Let an algebraic base {𝜙j} ⊂ D(L) be chosen in H (Hilbert 
space) and approximate solution (19) be sought in the fol-
lowing form

(26)w =
1

D�4

N∑
m=1

N∑
n=1

Bmn

sinm�x sin n�y
[
(m�)2 + (n�)2

]2 .

(27)Bmn =
16q0

mn�2
; m = 1, 3, 5,… ; n = 1, 3, 5,… .

(28)w =
16q0

D�6

N∑
m=1

N∑
n=1

sinm�x sin n�y

(m2 + n2�2)
2
mn

,

(29)� =
a

b
, � =

x

a
, � =

y

b
.

Table 1   Quantifying reliable solutions of the nanoplate deflection 
versus series terms N for different parameter �

Values 
N

wN(0.5;0.5), � = 0 wN(0.5;0.5), � = 0.3wN(0.5;0.5), � = 0.5

1 0.318 0.231 0.155
2 0.318 0.231 0.155
3 0.310 0.225 0.151
5 0.311 0.225 0.151
10 0.311 0.225 0.151
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where: aj are the unknown numerical coefficients, �j(x, y) are 
the known analytical functions (approximation), and w0(x, y) 
is the function satisfying boundary conditions (20).

Substitution of (30) into (19) yields the following residual

In order to determine unknown coefficients aj,j = 1,… ,N, 
according to the Bubnov–Galerkin method [121, 122], we 
require that the basis functions {�j}

N
k=1

 were also orthogonal 
to residual (31), i.e. so that the following condition

is satisfied.
For the Bubnov–Galerkin method the unknown coeffi-

cients aj included in (31) must be determined from the solu-
tion of the following system of linear algebraic equations

where R is the residual equation (19), and �k are the same 
analytic functions (weights) that appear in (30). Since the 
linear problem is considered in (19), Eq. (33) can be written 
in its counterpart matrix form

Solving the system of algebraic equations by any method 
aimed at estimating aj, and substituting the obtained solution 
into (31), we obtain an approximate solution w.

Applying the Bubnov–Galerkin method when choosing 
weights �k(x, y) and approximating functions �j(x, y) , the 
following conditions are hypothesized: 

1.	 �j(x, y) ∈ H , �k(x, y) ∈ H where H is the Hilbert space;
2.	 ∀ j, k function �j(x, y) , �k(x, y) are linearly independent 

and continuous in space �;

(30)w = w0(x, y) +

N∑
j=1

aj�j(x, y),

(31)

R(a0, a1, a2,… aN , x, y) = L(w) − q

= L(w0) +

N∑
j=1

ajL(�j) − q.

(32)(R,�k) = ∬
�

R�k dxdy

(33)(R,�k) = 0, k = 1, 2,… ,N

(34)
N∑
j=1

aj(L(�j) − q,�k) = −L(w0,�k).

3.	 �j(x, y) , �k(x, y) satisfy rigorously the main boundary 
conditions (and arbitrary initial conditions);

4.	 �j(x, y) and �k(x, y) should represent the first N elements 
of the complete system of functions;

5.	 �j(x, y) and �k(x, y) satisfy a completeness property in H.

Now, let us illustrate the advantages of BGM. We illus-
trate the process of finding solutions of the modified Ger-
main–Lagrange equation for boundary conditions (15).

Displacements w can be expanded by using the follow-
ing series:

After applying the Bubnov–Galerkin method for 
q(x, y) = q = const, we find

Table 2 presents solutions of the deflection in the center of 
the plate wm(0.5;0.5) depending on the number of terms in 
the series (36) for three values of � and fixed parameters 
q = 7 , � = 1.

Solutions, which coincide completely with the solution 
obtained by Navier, are highlighted in Table 2. The given 
example illustrates the fact that inclusion of � in the modified 
Germain–Lagrange equation improves the convergence of 
the Bubnov–Galerkin method.

3.3 � Agranovskii–Baglai–Smirnov Method (ABSM)

The idea is to construct an iterative procedure for solv-
ing the original equation (19) with the right-hand side 
as a residual from the solution at the previous step 
[118, 119]. We consider the algorithm for applying the 

(35)w(x, y) =

N∑
i=1

N∑
j=1

Aij(sin(i�x) sin(j�y)).

(36)

w(x, y)

=

N∑
i,j=1

64�2q sin
(

�i

2

)2

sin
(

�j

2

)2

�4D(sin (2�i) − 2�i)(sin (2�j) − 2�j)
(
�2j2 + i2

) sin (i�x) sin (j�y).

Table 2   Quantification of reliable solutions for nanoplate deflection 
versus a series of N terms for different � ( q = 7 , � = 1)

Values 
N

wN(0.5;0.5), � = 0 wN(0.5;0.5), � = 0.3wN(0.5;0.5), � = 0.5

1 0.318 0.231 0.155
2 0.318 0.231 0.155
3 0.310 0.225 0.151
5 0.311 0.225 0.151
10 0.311 0.225 0.151
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Agranovskii–Baglai–Smirnov method (ABSM) using an 
example of the operator equation (19).

A new differential equation is constructed in the follow-
ing way

where we changed the right-hand side in Eq. (19); now it 
plays the role of the residual of the solution to the original 
equation. This process is repeated n times. Finally, the fol-
lowing series is used as the input solution

The proof of the convergence of the ABSM method was 
given in references [118, 119]. In the following sections, the 
method of combinations of the Kantorovich–Vlasov method, 
the variational iteration method, and the Vaindiner method 
will be considered.

3.4 � Solving MGLE by Kantorovich–Vlasov Method

Owing to the Kantorovich–Vlasov method (KVM) [31, 32], 
a solution to Eq. (19) can be searched in the following form

Weight functions Xj(x) satisfy boundary conditions (15) and 
(16). Functions Yj(y) are the searched functions defined by 
the following system of projected equations (we substitute 
(39) into (19) and employ the BGM with respect to co-ordi-
nate x):

Procedure (40) reduces the problem of PDEs to ODEs by 
employing the Bubnov–Galerkin method regarding one of 
the coordinates. Solving the system of ODEs with the cor-
responding boundary conditions, we obtain a set of functions 
Yj(y) , and next substituting them into (39), we obtain the 
desired solution.

3.5 � Proof of the Convergence of KVM for Some Class 
of Problems

In this section we will prove that the KVM method for a 
certain class of problems (including geometrically nonlin-
ear problems of the theory of plates and shells [39]) coin-
cides with the projection methods. A distinctive feature of 
the method relies on the way of constructing an extremely 
dense system of subspaces [123].

(37)L(w1(x, y)) = q(x, y),

(38)w(x, y) =

n∑
i=1

wi(x, y).

(39)wN(x, y) =

N∑
j=1

Xj(x)Yj(y).

(40)
(
(Lj(w) − q),Xk(x)

)
= 0, k = 1, 2,… ,N.

Let G be a bounded space R2 with boundary �  . Consider 
the first boundary problem for a quasi-linear elliptic equation 
type of order 2m of the following form

where: � = (�1 + �2) - integer multi-index of differentiation; 
|�| = �1 + �2 ; D� = D

�1
1
D

�2
2

 ; Di = �∕�xi ; the same holds for 
� and � . Function A�(x, �� ) where �� = (��1, ��2) is nonlinear 
and depends on all possible indices � at |�| ≤ m , x = (x1.x2) . 
Finally, let h(x) ∈ L2(G) . Function u(x) is called the gener-
alized solution of problem (31) and (32), if u(x) ∈

◦

Wm
2
(G) 

and if for any function v(x) ∈
◦

Wm
2
(G) the following integral 

identity holds

We introduce a few assumptions, which will be implemented 
in the next steps of the article. 

1.	 The problem of solving Eq. (41) under condition (42) is 
equivalent to solving the operator equation 

2.	 Area G = E1 × E2 , where E1 and E2 are the bounded sets 
of spaceR1.

3.	 Each element of the complete system of functions {
�i(x)

}
 of space 

◦

Wm
2
(E1 × E2) takes the form 

and moreover, the system of functions 
{
�i(x2)

}
 is complete 

in space 
◦

Wm
2
(E2) , and 

{
�i(x1)

}
 in 

◦

Wm
2
(E1) . (In the future, we 

will employ the following lemma).

Lemma 1  If sequence 
{
vn(x1, x2)

}
 of the elements of space 

◦

Wm
2
(G) converges in norm to a certain element v∗ ∈

◦

Wm
2
(G) , 

i.e.

and for ∀n , function vn can be taken as

(41)Lu ≡ ∑
|�|≤m

(−1)|�|D�A�(x,D
�u) = h(x) (|�| ≤ m),

(42)D�u|� = 0, |�| ≤ m − 1,

(43)
∑
|�|≤m

(A�(x,D
�u),D�v) = (h, v).

(44)u = Tu, T ∶
◦

Wm
2
(G) →

◦

Wm
2
(G),

(45)�i(x1, x2) = �i(x1)�i(x2), x1 ∈ E1, x2 ∈ E2,

(46)

‖‖vn − v∗‖‖2◦
Wm

2

= ∫
E1×E2

m∑
k=0

∑
(k)

|||||
�k(vn − v∗)

�k1x1�
k2x2

|||||

2

dx1dx2 → 0, n → ∞,
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where gi(x2) are the given elements of the complete system 
of functions 

{
�i(x2)

}
 , and N is the fixed number, then func-

tion v∗(x1, x2) can also be represented in a similar way, i.e.

In order to prove the Lemma, it suffices to consider only 
o n e  t e r m  i n  e x p r e s s i o n  ( 4 7 ) .  I n d e e d , 
∫

E1×E2

||vn − v∗||2dx1dx2 → 0, n → ∞, or, according to Fubi-

ni’s theorem, we have

where 0 ≤ Fn(x1) = ∫
E2

||vn − v∗||2dx2.
It follows from (48) that there is a sequence 

{
Fnk (x1)

}
 

such that

for almost all x1.
Formula (49) shows that a certain sequence of elements 

from a finite-dimensional subspace of dimension N (which 
linearly spans N given elements gj(x2) ∈

◦

Wm
2
(E2) ) converges 

for almost all x1 to the element v∗(x1, x2) . Since every finite-
dimensional subspace is closed, it is obvious that v∗(x1, x2) 
has the representation (47). The Lemma is proved. ▪

Now let us pay attention to the proof of convergence of 
the Kantorovich–Vlasov method.

Definition 1  We will say that an approximate solution to 
problem (41) and (42) is sought by the Kantorovich–Vlasov 
method, if the following assumptions hold: 

(1)	 the solution to problem (41) and (42) is sought in the 
form 

 where: ∀j �j(x1) ∈
◦

Wm
2
(E1), gj(x2) N - known elements 

from the complete system of functions 
{
�i(x2)

}
 , N - 

fixed number;
(2)	 N unknown functions �j(x1) are estimated from the fol-

lowing system of equations: 

vn(x1, x2) =

N∑
j=1

�n
j
(xx)gi(x2),

(47)v∗(x1, x2) =

N∑
j=1

�n
j
(xx)gi(x2).

(48)∫
E1

Fndx1 → 0, n → ∞,

(49)∫
E2

||||||

N∑
j=1

�
nk
j
(x1)gj(x2) − v∗(x1, x2)

||||||

2

dx2 → 0, k → ∞,

(50)uN(x1, x2) =

N∑
j=1

�j(x1)gj(x2),

 The formulated method with the defined assumptions 
satisfies the following convergence theorem.

Theorem 1  Let T be a completely continuous operator on a 
certain non-empty open set 𝛺 ⊂

◦

Wm
2
(E1 × E2) , and let Eq. 

(44) have an isolated solution u0 ∈ � with non-zero index, 
then there is N0 and �0 such that when N ≥ N0 , the system of 
equations (51) has in the area ‖‖u − u0

‖‖ ◦

Wm
2

≤ �0 at least one 

solution uN and all solutions uN when N → ∞ tend to u0 by 
the norm.

Indeed, we see that the system of equations (51) is equiv-
alent to the system obtained from projection of Eq. (44) onto 
the set

where: gj(x2) N - fixed elements from the system 
{
�i(x2)

}
 ; 

∀j �j(x1) go over the whole space 
◦

Wm
2
(E1) , and N is the given 

number.
It is enough to observe that we can substitute 

v → �(x1)gl(x2) to identity (43), where �(x1) is the arbitrary 
function from 

◦

Wm
2
(E1) . Obviously, set MN is linear and, as 

follows from the Lemma, it is a closed set. Thus, MN is the 
subspace of space 

◦

Wm
2
(E1 × E2) (in general, of infinite 

dimension). Taking into account the latter statement and 
(51), we see that Eq. (44) is projected onto subspace MN 
orthogonally, and therefore projection operator PN  is 
bounded. Further, from the representation of the elements 
of the basic system 

{
�i(x1, x2)

}
 of space 

◦

Wm
2
(E1 × E2) in the 

form (45) it follows that the sequence of subspaces MN is 
e x t r e m e l y  d e n s e  i n  

◦

Wm
2
(E1 × E2)  ,  i . e . 

∀y ∈
◦

Wm
2
‖‖PNy − y‖‖ ◦

Wm
2

→ 0, N → ∞.

The theorem is proved. This proof of the theorem is simi-
lar to the proof of the convergence of the Galerkin method 
for nonlinear problems (see [119]).

Comment The obtained results can be easily extended to 
fit the nanoplate behavior, and the authors refer to the modi-
fied Germain–Lagrange equation.

(51)

�
���≤m�

E1

⎡
⎢⎢⎣�E2

F(x1, x2)D
�2
2
gl(x2)dx2

⎤
⎥⎥⎦
D

�1
1
�(x1)dx1 = 0,

F(x1, x2) = A�

�
x,D�

N�
j=1

�j(x1)gj(x2)

�
− h(x1, x2),

∀�(x1) ∈
◦

Wm
2
(E1), l = 1,… ,N.

(52)MN =

{
v(x1, x2)

||||||
v(x1, x2) =

N∑
j=1

�j(x1)gj(x2)

}
,
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3.5.1 � Analytical Solution of MGLE by KVM in the First 
Approximation

The approximate solution w (x, y) can be written in the form

As an initial approximation for boundary conditions (15), 
we take function X0(x) = sin(�x) and use notation Q =

q

D
 . 

Substituting (53) into (18), we obtain

where X0
(4) =

d4X0(x)

dx4
.

Using the Bubnov–Galerkin method, we get

and we obtain the following differential equation:

where

The following function is used to solve Eq. (56):

(53)w(x, y) = X0(x)Y1(y).

(54)
1

�2
X0

(4)Y1 + 2X
(2)

0
Y1

(2) + �2X0Y
(4)

1
= Q,

(55)

1

∫
0

(
1

�2
X0

(4)Y1 + 2X
(2)

0
Y1

(2) + �2X0Y
(4)

1
− Q

)
X0dx = 0,

(56)A1Y
(4)

1
+ B1Y

(2)

1
+ C1Y1 = D1,

(57)

A1 = �2

1

∫
0

X2
0
dx =

�2

2
, B1 =

1

∫
0

2X
(2)

0
X1dx = −�2,

C1 =
1

�2

1

∫
0

X
(4)

0
X0dx =

�4

�22
, D1 = Q

1

∫
0

X0dx = Q
2

�
.

where

Finally, substituting (58) into (53) we find the desired 
solution

Equation (56) can be solved numerically, for example, by the 
finite difference method (FDM) with approximation O(h2) . 
A very important point plays a number of partitions of vari-
able y. Results of the study on convergence of the solution 
depending on the number of partitions n, are reported in 
Table 3 for � = 0.

On the other hand, Table 4 shows the results achieved 
using the Kantorovich–Vlasov method (KVM) in the first 
approximation, obtained analytically (54) and numerically 
( wAg ) applying the Agranovskii–Baglai–Smirnov method 
(ABSM). The analytical solution of MGLE by the Kan-
torovich–Vlasov method in the first approximation taking 
into account the Agranovskii–Baglai–Smirnov approach is 
difficult to find. The numerical solution obtained by match-
ing KVM + ABSM is presented in Table 4.

Let us consider the solution of Eq. (18) found via the 
Kantorovich–Vlasov method in the first approximation for 
the clamped boundary conditions (16).

As an initial approximation, we take function 
X1(x) = sin2(�x) . Similarly, for the boundary condition (15) 
we obtain the following solution to the original equation:

(58)Y1(y) = c1e
S1y + c2ye

S1y + c3e
−S1y + c4ye

−S1y + k1,

(59)

c1 = −
k1(2e

−2S1 − 2e−S1 − 2 − 2S1 + 2eS1 + S1e
−S1 + S1e

S1 )

2e−2S1 + 2e2S1 − 4
,

c2 =
k1(S1 − S1e

−S1 )

2eS1 − 2e−S1
, S1 = ��,

c3 = −
k1(2 − 2S1e

−S1 − 2e2S1 − 2S1 + 2eS1 + S1e
−S1 + S1e

S1 )

2e−2S1 + 2e2S1 − 4
,

c4 =
k1(S1 − S1e

S1 )

2eS1 − 2e−S1
, k1 =

D1

C1

.

(60)
w(x, y) = sin (�x)

[
c1e

S1y + c2ye
S1y + c3e

−S1y + c4ye
−S1y + k1

]
.

Table 3   Numerical solution of 
Eq. (25) using FDM

Number of parti-
tion points n

wn(0.5;0.5)

5 0.296
9 0.310
15 0.313
19 0.313
25 0.313

Table 4   Computation of the nanoplate centre deflection for various 
methods and difference length scale parameter �

� w(0.5; 0.5) wAg(0.5;0.5) w(0.5; 0.5)
(length 
parameter of 
material)

Analytical solu-
tion

Numerical solu-
tion

Exact Navier’s

KVM KVM + ABSM solution

0 0.313 0.308 0.311
0.3 0.228 0.228 0.225
0.5 0.153 0.153 0.151
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The equations are solved using the finite difference 
method. Table 5 shows the deflection values depending on 
the number of partitions for � = 0 . The results reported in 
Table 5 show that n = 55 partitions are required to achieve 
convergence of the results. However, for boundary condi-
tion (15) n = 15 partitions are sufficient. The increase in the 
number of partitions is directly related to the edge effect 
caused by boundary condition (16).

Table 6 gives analytical results obtained by the KVM 
method in the first approximation and numerical results for 
( wAg ) taking into account the ABSM method for boundary 
condition (16).

3.5.2 � Analytical Solution of MGLE by KVM in the Second 
Approximation

Now, we consider a similar approach but for the second 
approximation of the KVM. Deflection function is repre-
sented by w(x, y) = sin(�x)Y1(y) + sin(3�x)Y2(y) . After 
applying the Bubnov–Galerkin method, the following sys-
tem of differential equations is obtained

or equivalently

where coefficients A1 , C1, B1 , D1,A2 , C2, B2 , D2 are 
defined in the following way:

(62)

c1 + 3 + k1 = 0,

k1 + e−N1(c3 cos(E1) + c4sin(E1)) + eN1 (c1 cos(E1)

+ c2sin(E1)) = 0,

E1c2 + E14 + N1c1 − N1c3 = 0,

eN1(c2E1 cos(E1) − c1E1sin(E1)) + eN1 (c4E1 cos(E1)

− c3E1sin(E1)) = 0.

(63)

1

∫
0

(
1

�2
X1

(4)Y1 + 2X
(2)

1
Y1

(2) + �2X
(2)

1
Y
(4)

1
− Q

)
X1dx = 0,

1

∫
0

(
1

�2
X2

(4)Y2 + 2X
(2)

2
Y2

(2) + �2X
(2)

2
Y
(4)

2
− Q

)
X2dx = 0,

(64)
A1Y

(4)

1
+ B1Y

(2)

1
+ C1Y1 = Ded1,

A2Y
(4)

2
+ B2Y

(2)

2
+ C2Y2 = D2,

Table 6   Nanoplate center deflection using the analytical (KVM) and 
numerical (KVM+ABSM) solutions for different �

� w(0.5; 0.5) wAg(0.5;0.5)

(parameter length of 
material)

Analytical solution Numerical solution

KVM KVM+ABSM

0 0.292 0.290
0.3 0.212 0.210
0.5 0.142 0.142

Table 5   Nanoplate center 
deflection obtained using the 
FDM for different number of 
partitions n ( � = 0)

Number of points n wn(0.5; 0.5)

5 0.337
9 0.308
15 0.298
19 0.296
25 0.294
35 0.293
55 0.292
75 0.292

where

Coefficients c1, c2, c3, c4 are determined from the boundary 
conditions as the solution of the following system of alge-
braic equations

(61)
w(x, y) = sin2(�x)

[
eN1y

(
c1 cosE1y + c2 sinE1y

)
+

+e−N1y
(
c1 cosE1y + c2 sinE1y

)
+ k1

]
,

K1,2 = N1 ± E1i, K3,4 = −N1 ± E1i,

N1 =
√�t� cos

�
� + 4�

2

�
,

E1 =
√�t� sin

�
� + 4�

2

�
, t1 =

−B1

2A1

+

�
−
�
B1

2 − 4A1C1

�

2A1

i,

�1 = arctan

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

�
−
�
B1

2 − 4A1C1

�

2A1

⎞
⎟⎟⎟⎠
∕

�
−B1

2A1

� ⎞⎟⎟⎟⎠
, k1 =

D1

C1

.
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Solving the system of equations (64) we get

where

(65)

A1 = �2

1

∫
0

(X1 + X2)X1dx =
�2

2
,

B1 =

1

∫
0

2
(
X
(2)

1
+ X

(2)

2

)
X1dx = −�2,

C1 =
1

�2

1

∫
0

(
X
(4)

1
+ X

(4)

2

)
X1dx =

�4

�22
,

D1 = Q

1

∫
0

X1dx = Q
2

�
.

A2 = �2

1

∫
0

(X1 + X2)X2dx =
�2

2
,

B2 =

1

∫
0

2
(
X
(2)

1
+ X

(2)

2

)
X2dx = −9�2,

C2 =
1

�2

1

∫
0

(
X
(4)

1
+ X

(4)

2

)
X2dx =

�4

�22
,

D2 = Q

1

∫
0

X2dx = Q
2

�
.

(66)

w(x, y) = sin (�x)
[
c1e

S1y + c2ye
S1y + c3e

−S1y + c4ye
−S1y + k1

]
+ sin (3�x)

[
c5e

S2y + c6ye
S2y + c7e

−S2y + c8ye
−S2y + k2

]
,

Table  7 shows the results obtained using the Kan-
torovich–Vlasov method in the second approximation w2m 
for boundary conditions (15), while w1m is used in the first 
approximation.

Analysis of the results given in Table 7 leads to the con-
clusion that the analytical solution of the first approximation 
according to the Kantorovich–Vlasov method gives results 
close to those obtained by Navier, the difference is 0.9% 
for � = 0 , and 1.3% for � = 0.3 and � = 0.5 . Obtaining an 
analytical solution using the Agranovskii–Baglai–Smirnov 
method matched with the Kantorovich–Vlasov method is 
problematic due to the large amount of calculations. Com-
parison with the results obtained by the above combinations 
of methods in comparison with the Navier method gives 

S1 = ��, S2 = 3��, k1 =
D1

C1

, k2 =
D2

C2

,

c1 = −
k1(2e

−2S1 − 2e−S1 − 2 − 2S1 + 2eS1 + S1e
−S1 + S1e

S1 )

2e−2S1 + 2e2S1 − 4
,

c2 =
k1(S1 − S1e

−S1 )

2eS1 − 2e−S1
,

c3 = −
k1(2 − 2S1e

−S1 − 2e2S1 − 2S1 + 2eS1 + S1e
−S1 + S1e

S1 )

2e−2S1 + 2e2S1 − 4
,

c4 =
k1(S1 − S1e

S1 )

2eS1 − 2e−S1
,

c5 = −
k2(2e

−2S1 − 2e−S2 − 2 − 2S2 + 2eS2 + S2e
−S2 + S2e

S2 )

2e−2S2 + 2e2S2 − 4
,

c6 =
k2(S2 − S2e

−S2 )

2eS2 − 2e−S2
,

c7 = −
k2(2 − 2S2e

−S2 − 2e2S2 − 2S2 + 2eS2 + S2e
−S2 + S2e

S2 )

2e−2S2 + 2e2S2 − 4
,

c8 =
k2(S2 − S2e

S2 )

2eS2 − 2e−S2
.

Table 7   Comparison of the nanoplate centre deflection using the analytical solutions of the KVM (the first and second approximation) and the 
numerical solution of the KVM+ABSM versus the Navier solution for different �

� w1(0.5;0.5) w(0.5;0.5) w2(0.5;0.5) w(0.5; 0.5)
(parameter length of 
material)

Analytical solution of KVM in 
the first approximation

Numerical solution in the first 
approximation KVM + ABSM

Analytical solution of KVM in the 
second approximation

Exact 
Navier’s 
solution

0 0.314 0.308 0.310 0.311
0.3 0.228 0.223 0.227 0.225
0.5 0.153 0.150 0.152 0.151
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the same result, and the comparison of results obtained by 
the Kantorovich–Vlasov method in the second approxima-
tion with the Navier results yields the following errors: 0.3% 
for � = 0 , and 0.7% for � = 0.3 and � = 0.5 . Though the 
Kantorovich–Vlasov method in the second approximation 
slightly improves the solution, it does not coincide with the 
exact one. Apparently, the reason for this lies in the idea of 
separating variables.

3.6 � Variational Iteration Method (VIM)

This method presents a modification of the Kan-
torovich–Vlasov method (KVM). Owing to VIM, an n term 
trial solution for a two-dimensional problem is taken to have 
the following form

Here, X(0)

j
(x) is a priori specified, and in general may not 

satisfy the given boundary conditions Yj(1)(y) . We employ 
the Bubnov–Galerkin method with regard to coordinate x 
and we get a set of n ordinary differential equations (ODEs) 
with regard to coordinate y. Its solution with an account of 
the boundary conditions yields the system of functions 
where Yj(1)(y) is substituted into (67):

Therefore, the solutions by the Kantorovich–Vlasov method 
coincides exactly with the first iteration in the VIM. Further, 
we use Yj(1)(y) obtained through KVM as the test functions 
Xj(x) are unknown to be re-determined after applying the 
Bubnov–Galerkin method and with regard to y we obtain 
a set of n ordinary differential equations (ODEs) with the 
respect to x. They yield a set of functions Xj

(1) , which allows 
us to present the solution in the following form

The so far described procedure can be repeated m-times until 
the result converges to a desired degree:

This method eventually removes all assumptions on both sets 
of Xj(x) and Yj(y) , but the accuracy of the obtained approxi-
mate solution depends on the number of trial solution terms.

(67)wN(x, y) =

N∑
j=1

X
(0)

j
(x)Yj(y).

(68)w
(1)

N
(x, y) =

N∑
j=1

X
(0)

j
(x)Y (1)

j(y).

(69)wN(x, y) =

N∑
j=1

X
(1)

j
(x)Y

(2)

j
(y).

(70)w
(m)

N
(x, y) =

N∑
j=1

Xj
(m−1)(x)Y

(m)

j
(y), m = 1, 2… n.

3.7 � Proof of the Convergence of VIM While Solving 
the Operator Equation

Let us present a proof of the convergence of the variational 
iteration method (VIM) for the operator equation reported 
in [38].

The scheme of VIM can be formally described in the fol-
lowing way. It is necessary to find a solution to the equation

where L[w] is the operator defined on the manifold D(L) of 
the Hilbert space L2(�) ; q(x, y) stands for a given function 
of two variables x and y; w (x, y) is the searched function of 
the same variables; and �(x, y) is the space associated with 
variations of x and y.

If �(x, y) = T × P (T - a certain bounded set of variables 
x, P bounded set of y), then the solution of Eq. (71) takes 
the form

where functions Xi(x) and Yi(y) are defined by the system 
of equations

in the following way. A certain system composed of N 
functions with respect to one of the variables, for instance, 
X0
1
(x), X0

2
(x),… , X0

N
(x) is given. Then, the first N equa-

tions of system (73) is determined by the system of N 
functions Y1

1
(x), Y1

2
(x),… , Y1

N
(x) . Next, the obtained 

functions are employed to create a new set of functions x, 
i.e. X2

1
(x), X2

2
(x),… , X2

N
(x) , which is further used to con-

struct a set of new functions with respect to variable y, i.e. 
Y3
1
(x), Y3

2
(x),… , Y3

N
(x) , and so on.

Definition 2  The process of calculating a given system of 
functions by another one will be called the VIM step. The 
number of steps taken to determine any set of functions cor-
responds to the superscript (number) of functions from the 
set under consideration.

Breaking the process of finding functions Xi(x) and Yi(y) 
on the k-th step (which, for example, corresponds to getting 
a set of functions (Yk

1
(y), Yk

2
(y), … , Yk

N
(y)) , allows us to con-

struct function wk
N
=

N∑
i=1

Xk−1
i

(x)Yk
i
(y), which is taken as an 

approximate solution to Eq. (71) obtained by the VIM.

(71)L
[
w(x, y)

]
= q(x, y), x, y ∈ �(x, y),

(72)wN(x, y) =

N∑
i=1

Xi(x)Yi(y),

(73)

∫
T

(
L
[
wN

]
− q

)
X1(x)dx = 0, ∫

P

(
L
[
wN

]
− q

)
Y1(y)dy = 0,

⋮ ⋮

∫
T

(
L
[
wN

]
− q

)
XN(x)dx = 0, ∫

P

(
L
[
wN

]
− q

)
YN(y)dy = 0,
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Remark 1  Here and further on, by operator L[w] we mean 
a certain differential operator, which is defined on set D(L) 
of Hilbert space L2(�) . Thus, at each step, system (73) will 
disintegrate into the corresponding system of ordinary dif-
ferential equations, with resolved the solvability problem.

Remark 2  Function wN(x, y) is called the N-th approximation 
of the solution for Eq. (71), if the number of terms of the 
series in representation (70) is equal to N.

Consider the case of the first approximation, i.e. 
the solution of Eq.  (73) will be sought in the form 
w1(x, y) = X(x)Y(y), where functions X(x) and Y(y) are 
determined in the above described way from the system of 
equations

Let operator L in (71) be positive definite. Let us introduce 
the notation: HL(T × P) is the energy space of operator L 
[123], [∙, ∙] is the scalar product of elements in HL; and w0 is 
the exact solution to Eq. (71).

Theorem  2  If L is a positive definite operator with its 
action space D(L) ⊂ HL,then the sequence of elements of 
�k = wk

1
(x, y) − w0HL

 is monotonically decreasing, that is, for 
arbitrary i and j and if i ≥ j , the following inequality holds

Proof of Theorem 2  Consider subset M1
1
 of space HL , which 

takes the form

Obviously, set M1
1
 is the subspace of space HL(T × P) (in the 

general case the problem has infinite dimension). Accord-
ingly, it is possible to define the projection of element w0 
onto space M1

1
 . It is known that to satisfy the condition for 

element X0(x)Y∗(y) ∈ M1
1
 as the projection of w0 onto M1

1
 it 

is required that

for arbitrary elements X0(x)Y(y) ∈ M1
1
 .  Hence, if 

X0(x)Y∗(y) ∈ M1
1
 , then Eq. (76) coincides with the first equa-

tion of system (64).

(74)
∫
X

(
L
[
X(x) ⋅ Y(y)

]
− q

)
X(x)dx = 0,

∫
Y

(
L
[
X(x) ⋅ Y(y)

]
− q

)
X(y)dy = 0.

(75)||wi
1
− w0||HT

≤ ||wj

1
− w0||HT

.

M1
1
=
{
w(x, y)|w(x, y) = X0(x)Y(y), X0(x) ∈ HL(T), Y(y) ∈ HL(P)

}
.

(76)
[
X0(x)Y∗(y) − w0, X0(x)Y(y)

]
HL

= 0,

Consequently, element X0(x)Y1(y) , which is a result of 
the first step of the variational iteration method, stands as 
the projection of element �0 onto subspace M1

1
 . Therefore, 

the inequality

for elements X0(x)Y(y) ∈ M1
1
 ,  holds. By a simi-

lar construction, we obtain the inequality for sub-
s p a c e  M1

2
= {w(x, y)|w(x, y) = X0(x)Y1(y);X(x) ∈ 

HL(T), Y
1(y) ∈ HL(P)} which corresponds to the second 

step of the VIM, i.e.

for arbitrary elements X(x)Y1(y) ∈ M1
2
 . From (77) and (79) it 

follows that ||X2(x)Y1(y) − w0||HT
≤ ||X0(x)Y1(y) − w0||HL

 . 
Arguments similar to those given above are valid for the 
functions obtained at the k-step of the VIM. Finally, the 
mathematical induction method proves the theorem and at 
the same time inequality (75). 	�  ◻

Proof of the Theorem (the case of higher approximations)  The 
result of Theorem 1 is extended to the case of higher approx-
imations. Namely, inequality (75) takes the following form

Further investigation requires proof of the following 
lemma. 	�  ◻

Lemma 2  Let each element of the basis system of the space 
HL satisfy the following conditions

If the components of some basis function �i serve as the ini-
tial approximation of VIM, i.e.  X0(x) ≡ �i(x) , then for any 

number k of steps taken by VIM, the following inequality 
holds wk

1
(x, y) − w0HL

≤ c�i(x)�i(y) − w0HL
 , where c is the 

arbitrary real number.

Proof of the Lemma  Since X0(x)Y1(y) ≡ �i(x)Y
1(y) , then by 

Theorem 2 we have

On the basis of the above Lemma, one criterion for VIM 
convergence is formulated. First, we identify the space HL 
with the space 

0

Wm
2
(�) , which is obtained by enclosing the 

norm

(77)w1
1
(x, y) − w0HL

≤ X0(x)Y(y) − w0HL

(78)X2(x)Y1(y) − w0HL
≤ X(x)Y1(y) − w0HL

wm
N
(x, y) − w0HL

≤ wn
N
(x, y) − w0HL

, m ≥ n.

�i(x, y) = �i(x)�i(y), ∀i�i(x) ∈ HL(T), �i(y) ∈ HL(P).

wk
1
(x, y) − w0HL

≤ �i(x)Y
1(y) − w0HL

≤ c�i(x)�i(y) − w0HL
.
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of the set of infinitely differentiable functions 
0

C∞ (�) with 
compact carrier in � . 	�  ◻

Theorem 3  Let each element of the basis system of the space 0

Wm
2
(T × P) take the following form

where 
{
�i(x)

}
 is the basis system in space 

0

Wm
2
(T) , simi-

larly 
{
�i(y)

}
 in space 

0

Wm
2
(P) and to obtain an arbitrary 

N-th approximation by VIM, the base elements of the system 
are taken 

{
�i(x, y)

}
 as the first approximation. Then, for a 

large value of N, VIM gives a unique approximate solution 
�N and the sequence 

{
wN

}
 converges by the norm of the 

space 
0

Wm
2
(T × P) to the exact solution w0 regardless of the 

number of steps k, which can be performed for every N-th 
approximation, i.e.

Proof of Theorem 3  If the theorem is proved for the approxi-
mations obtained in the first step of VIM, then based on the 
results of the Lemma it will be valid for any chosen k-th 
step. Therefore, we consider the N-th approximation of the 
solution to problem (71), which was obtained in the first 
step. Similarly to the statement used in Theorem 2, it can be 
shown that each w1

N
 is the projection of the element w0 into 

the subspace

where X0
i
(x) consists of N fixed elements from the system {

�i(x)
}
 for arbitrary i, Yi(y) takes all values from space 0

Wm
2
(P) . Thus w1

N
= �Nw0 , where �N is the operator of 

an orthogonal projection on the subspace M1
N

 , which is 
bounded. Since the elements of the basis system �i(x, y) have 
the form (73), it is extremely dense in 

0

Wm
2
(T × P) [123]. 

The proof can be completed similarly to the proof of Theo-
rem 16.2 [123]. 	�  ◻

Remark 3  The results of Theorem 1 and the Lemma show 
that using VIM, one can obtain an approximate solution to 

‖w‖Wm
2
=

⎧⎪⎨⎪⎩
∫
�

m�
k=0

�
(k)

����
�kw

�k1x�k2y

����dxdy
⎫⎪⎬⎪⎭

2

(79)�i(x, y) = �i(x)�i(y),

‖‖‖w
k
N
− w0

‖‖‖ 0

Wm
2

→ 0, N → ∞.

M1
N
=

{
w(x, y)|w(x, y) =

N∑
i=1

X0(x)Y1(y)

}
,

Eq. (71) not worse than using the Ritz method in the cor-
responding subspace.

VIM can be extended to cover more variables. For exam-
ple, if the desired solution to Eq. (71) is a function of three 
variables x, y, z , then an approximate solution by VIM will 
be searched for in the form Q(x, y, z) = X(x)Y(y)Z(z) , and the 
VIM procedure can be applied to each variable.

Remark 4  When implementing VIM, it is not necessary to 
construct an initial approximation that satisfies the bound-
ary conditions of the problem. Suppose that operator L[w] 
defines a boundary problem. As an initial approximation 
we take any function from the domain of definition of the 
differential operator of this problem. Then, in the first step, 
we obtain a system of functions satisfying the boundary con-
ditions in one of the variables, and in the second step - in 
both variables.

Remark 5  These results can be extended to the equations of 
the nanoplate, which the authors called the modified Ger-
main–Lagrange equation.

3.8 � Variational Iteration Method for Solving MGLE

Our goal is to apply the variational iteration method to solve 
the modified Germain–Lagrange equation with boundary 
conditions (15).

T h e  K a n t o rov i ch – V l a s ov  m e t h o d  i n  t h e 
f i r s t  a p p r ox i m a t i o n  y i e l d e d  t h e  s o l u t i o n 
Y1(y) = c1e

S1y + c2ye
S1y + c3e

−S1y + c4ye
−S1y + k1 to Eq. (56).

As mentioned above, further the approximate solution can 
serve as an initial approximation to obtain the solution with 
respect to x. The obtained Y1(y) as the specified functions 
and X2(x) as unknown are to be re-determined after applying 
the Bubnov–Galerkin method. For this, we follow a similar 
procedure and, as a result, we find the function

Table 8   Estimation of deflection of the nanoplate centre using VIM 
and ABSM versus the exact solutions for different �

� w(0.5; 0.5) wAg(0.5;0.5) w(0.5; 0.5)
(parameter length 
of material)

VIM ABSM Exact solution

0 0.307 0.308 0.311
0.3 0.223 0.224 0.225
0.5 0.150 0.150 0.151
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Then, using the variational iteration procedure, we find func-
tions Xi, Yi that allow us to obtain a solution with a given 
accuracy � . The solution takes the following form:

where

Next, the Agranovskii–Baglai–Smirnov procedure is used 
in combination with the variational iteration method in the 
first term approximation. It should be mentioned that the 
analytical solution of the problem is not an easy task. This 
is why in this case, we use finite difference method of the 
second-order accuracy to solve the obtained ODEs. The con-
vergence of the solution is investigated as a function of the 
number of partition points along the appropriate coordinate. 
It was found that the optimal partitioning in spatial coordi-
nates for a hinged support is 15 points, and for clamping it 
is 55 points. The same partition is equal for all values of the 
dimensionless parameter length of material �.

Table 8 shows results of the analytical procedure using 
the variational iteration method with respect to the first term 
approximation for boundary conditions (15), and numeri-
cal results for wAg using the Agranovskii–Baglai–Smirnov 
method versus the exact solution.

(80)X2(x) = c5e
S2x + c6xe

S2x + c7e
−S2x + c8xe

−S2x + k2.

(81)

wi(x, y) =
[
c4i+1e

Six + c4i+2xe
Six + c4i+3e

−Six

+c4i+4xe
−Six + ki

]
×

×
[
c4i+1e

Siy + c4i+2xe
Siy + c4i+3e

−Siy

+c4i+4xe
−Siy + ki

]
,

(82)

Si =

√
Bi

2Ci

, ki =
Di

Bi

,

c4i+1 = −
ki(2e

−2Si − 2e−Si − 2 − 2Si + 2eSi + S2e
−Si + Sie

Si )

2e−2S2 + 2e2S2 − 4
,

c4i+2 =
ki(S2 − S2e

−S2)

2eS2 − 2e−S2
,

c4i+3 = −
ki(2 − 2S2e

−S2 − 2e2S2 − 2S2 + 2eS2 + S2e
−S2 + S2e

S2 )

2e−2S2 + 2e2S2 − 4
,

c4i+4 =
ki(S2 − S2e

S2 )

2eS2 − 2e−S2
.

The solution for boundary conditions (16) will be the 
same as for boundary conditions (15). Following the above 
reasoning, we obtain function Yi, Xi in the following form:

where

Table 9 shows the values of displacement w obtained ana-
lytically and displacement wAg obtained using the Agranovs-
kii–Baglai–Smirnov method, for boundary conditions (16).

A few comments on the application of the variational 
iteration method in the analytical and numerical solution 
using the Agranovskii–Baglai–Smirnov method in the 
first approximation are given below. The numerical results 
obtained by the Kantorovich–Vlasov method in the first and 
second term approximations, by the Kantorovich–Vlasov 
method using the variational iteration method and by the 
Agranovskii–Baglai–Smirnov method give practically the 
same results. The use of the variational iteration method 
offers the following advantage: the system of approximat-
ing functions does not need to be known, while in the Bub-
nov–Galerkin method two coordinates should be defined, 
whereas in the Kantorovich–Vlasov method it is required to 
know one coordinate. The system of approximating func-
tions is obtained from the solutions of ODEs. The variational 
iteration procedure converges even when the set of approxi-
mating functions does not satisfy boundary conditions of 
the problem.

3.9 � Vaindiner’s Method

Vaindiner’s method (VaM) can be considered as an extension 
of the Kantorovich–Vlasov method. The proof of the con-
vergence of this method is given in [103] for a linear inho-
mogeneous second order equation with variable coefficients.

Consider the application of this method to the operator 
equation (19). This equation can be both linear and non-
linear and up to the eighth order. In our case, operator equa-
tion (19) is an inhomogeneous fourth-order equation, i.e. 

(83)

wi(x, y)

=
[
eNix

(
c4i+1 cos

(
Eix

)
+ c4i+2 sin

(
Eix

))
+e−Nix

(
c4i+1 cos

(
Eix

)
+ c4i+2 sin

(
Eix

))
+ ki

]
×
[
eNiy

(
c4i+1 cos

(
Eiy

)
+ c4i+2 sin

(
Eiy

))
+e−Niy

(
c4i+1 cos

(
Eiy

)
+ c4i+2 sin

(
Eiy

))
+ ki

]
,

(84)

c4i+1 + 4i+3 + k1 = 0,

k1 + e−N1 (c4i+3 cos(E1) + c4i+4sin(E1))

+ eN1 (c4i+1 cos(E1) + c4i+2sin(E1)) = 0,

E1c4i+2 + E14i+4 + N1c4i+1 − N1c4i+3 = 0,

eN1 (c4i+2E1 cos(E1) − c4i+1E1sin(E1))

+ eN1 (c4i+4E1 cos(E1) − c4i+3E1sin(E1)) = 0.

Table 9   Analytical versus numerical (MABS) solutions for different �

� w wAg

(parameter length of mate-
rial)

Analytical solution Numeri-
cal solution 
(ABSM)

0 0.292 0.292
0.3 0.212 0.212
0.5 0.142 0.142
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the modified Germain–Lagrange equation. An n term trial 
solution is assumed in the following form

where weight functions Y1j(y) and X2j(x) , and functions X1j(x) 
and Y2j(y) are unknown. They are determined using the Bub-
nov–Galerkin procedure, i.e. we have

In other words, a system of 2N ordinary differential equa-
tions is obtained. This allows us to find the 

{
X1j(x)

}
N

 and {
Y2j(y)

}
N

 functions, and then substituting them in (85) we 
get a trial solution of the problem.

3.9.1 � Analytical Solution of MGLE by Vaindiner’s Method

To solve (18) with boundary conditions (15) 
using VaM, a  t r ia l  solut ion takes the form 
w(x, y) = sin(�x)Y11(y) + X12(x) sin(�y) . Applying the Bub-
nov–Galerkin procedure, the following system of differential 
equations is obtained

where coefficients A11 , B11 ,C11, D11,A12 , B12 ,C12, D12 
are as follows

(85)wij(x, y) =

N∑
j=1

X1j(x)Y1j(y) + X2j(x)Y2j(y), i = 1, 2,

(86)

(
L(wij) − q, Y1k(y)

)
= 0, k = 1, 2,… ,N, i = 1, 2,(

L(wij) − q,X2k(x)
)
= 0, k = 1, 2,… ,N, i = 1, 2,

(87)
A11Y

(4)

11
+ B11Y

(2)

11
+ C11Y11 = D11,

A12X
(4)

12
+ B12X

(2)

12
+ C12X12 = D12,

Solving the system of equations (87), we get

where

(88)

A11 = �2

1

∫
0

X2
1
dx =

1

2
,

B11 =

1

∫
0

2X
(2)

1
X1dx = −�2�2,

C11 =
1

�2

1

∫
0

X
(4)

1
X1dx =

�4�4

2
,

D11 = Q1

1

∫
0

X1dx = Q1

2

�
,

A12 =
1

�2

1

∫
0

Y2
1
dy =

�4

2
,

B12 =

1

∫
0

2Y
(2)

1
Y1dy = −�2�2,

C12 = �2

1

∫
0

Y
(4)

1
Y1dy =

�4

2
,

D12 = Q2

1

∫
0

Y1dy = Q2

2

�
.

(89)

Y11(y) = c11e
S1y + c21ye

S1y + c31e
−S1y + c41ye

−S1y + k11,

X12(x) = c12e
S1x + c22xe

S1x + c32e
−S1x + c42xe

−S1x + k12,

(90)

c11

= −
2k11e

−2S1 − 2k11e
−S1 − 2k11 − 2S1k11 + 2k11e

S1 + S1k11e
−S1 + S1k11e

S1

2e−2S1 + 2e2S1 − 4
,

c21 =
S1k11 − S1k11e

−S1

2eS1 − 2e−S1
, c41 =

S1k11 − S1k11e
S1

2eS1 − 2e−S1
, c22 =

S1k12 − S1k12e
−S1

2eS1 − 2e−S1
,

c31

= −
2k11 − 2S1k11e

−S1 − 2k11e
2S1 − 2S1k11 + 2k11e

S1 + S1k11e
−S1 + S1k11e

S1

2e−2S1 + 2e2S1 − 4
,

c12

= −
2k12e

−2S1 − 2k12e
−S1 − 2k12 − 2S1k12 + 2k12e

S1 + S1k12e
−S1 + S1k12e

S1

2e−2S1 + 2e2S1 − 4
,

c32

= −
2k12 − 2S1k12e

−S1 − 2k12e
2S1 − 2S1k12 + 2k12e

S1 + S1k12e
−S1 + S1k12e

S1

2e−2S1 + 2e2S1 − 4
,

c42 =
S1k12 − S1k12e

S1

2eS1 − 2e−S1
, k11 =

D11

C11

, k12 =
D12

C12

, S1 = ��.
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By substituting functions Y11(y) and X12(x) into the expres-
sion for displacement w(x, y), we obtain the desired solution. 
This iterative procedure can be repeated.

If function Y11(y), X12(x) is known, we can find function 
X12(x), Y22(y) . Then

(91)

A21 =
1

�2

1

∫
0

X2
1
dx , B21 =

1

∫
0

2X
(2)

1
X1dx ,

C21 = �2

1

∫
0

X
(4)

1
X1dx , D21 = Q1

1

∫
0

X1dx ,

A22 = �2

1

∫
0

Y2
1
dy , B22 =

1

∫
0

2Y
(2)

1
Y1dy ,

C22 =
1

�2

1

∫
0

Y
(4)

1
Y1dy , D22 = Q2

1

∫
0

Y1dy,

S21 =

√
B21

2C21

, S22 =

√
B22

2C22

, k21 =
D21

B21

, k22 =
D22

B22

,

c51

= −
2k21e

−2S21 − 2k21e
−S21 − 2k21 − 2S21k21 + 2k21e

S1 + S21k21e
−S1 + S21k21e

S21

2e−2S21 + 2e2S21 − 4
,

c61 =
S21k21 − S1k21e

−S21

2eS21 − 2e−S21
, c81 =

S22k22 − S22k22e
S22

2eS22 − 2e−S22
,

c62 =
S22k22 − S22k22e

−S22

2eS22 − 2e−S22
,

c71

= −
2k21 − 2S21k21e

−S1 − 2k21e
2S21 − 2S21k21 + 2k21e

S21 + S21k21e
−S21 + S21k21e

S1

2e−2S21 + 2e2S21 − 4
,

c52

= −
2k22e

−2S22 − 2k22e
−S22 − 2k22 − 2S22k22 + 2k22e

S22 + S1k22e
−S22 + S1k22e

S22

2e−2S1 + 2e2S1 − 4
,

c72

= −
2k22 − 2S22k22e

−S22 − 2k22e
2S22 − 2S22k22 + 2k22e

S22 + S22k22e
−S22 + S22k22e

S22

2e−2S22 + 2e2S22 − 4
,

c82 =
S22k12 − S22k12e

S22

2eS22 − 2e−S22
, k21 =

D21

C21

, k22 =
D22

C22

.

We obtain the functions

As a result, we have the following displacement function

In order to solve the modified Germain–Lagrange equa-
tion, we will use combined Vaindiner’s and the Agranovs-
kii–Baglai–Smirnov methods (VaM+ABSM). In this case 
each ordinary differential equation is solved by the finite 
difference method with the error O

(
h2
)
 . The convergence 

of the solution of ordinary differential equations depending 

(92)

X21(x) = c51e
S21x + c61xe

S21x + c71e
−S21x + c81xe

−S21y + k21,

Y22(y) = c52e
S22y + c62ye

S22y + c72e
−S22y + c82ye

−S22y + k22.

(93)w(x, y) = X21(x)Y21(y) + X22(x)Y22(y).

Table 10   Estimation of the nanoplate centre deflection using VaM 
and VaM+ABSM versus the Navier solution for different �

� w(0.5; 0.5) wAg(0.5;0.5) w(0.5; 0.5)
(parameter 
length of mate-
rial)

Analytical solu-
tion by VaM

Numerical solution 
(VaM+ABSM)

Exact 
Navier’s 
solution

0 0.307 0.308 0.311
0.3 0.223 0.223 0.225
0.5 0.150 0.150 0.151
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on the number of partitions along the spatial coordinate is 
investigated. As a result of a numerical experiment, it is 
found that the required number of partitions in the finite 
difference method is 9 points for boundary condition (15) 
and 55 points for boundary condition (16).

Table  10 gives displacement wm(0.5;0.5) obtained 
by the analytical Vaindiner’s method and displacement 
w(0.5;0.5) obtained by Vaindiner’s method combined with 
the Agranovskii–Baglai–Smirnov method and exact Navier’s 
solution.

Solution for boundary conditions (16) is obtained like that 
for boundary conditions (15). In this case, a trial function of 
displacement w (x, y) takes the following form

Next, we obtain the system of equations

where

Solving the system of equations (94), we obtain

w(x, y) = sin2(�x)Y11(y) + X12(x)sin
2(�y).

(94)
A11Y

(4)

11
+ B11Y

(2)

11
+ C11Y11 = D11,

A12X
(4)

12
+ B12X

(2)

12
+ C12X12 = D12,

(95)

A11 = �2

1

∫
0

X2
1
dx = �2

3

16
, B11 =

1

∫
0

2X
(2)

1
X1dx = −

�2

2
,

C11 =
1

�2

1

∫
0

X
(4)

1
X1dx =

�4

�2
, D11 = Q1

1

∫
0

X1dx = Q1

1

4
,

A12 =
1

�2

1

∫
0

Y2
1
dy =

1

�2
3

16
, B12 =

1

∫
0

2Y
(2)

1
Y1dy = −

�2

2
,

C12 = �2

1

∫
0

Y
(4)

1
Y1dy =

�2�4

2
, D12 = Q2

1

∫
0

Y1dy = Q2

1

4
.

(96)

Y11(y) = eN11y
(
c11 cos

(
E11y

)
+ c21 sin

(
E11y

))
+ e−N11y

(
c31 cos

(
E11y

)
+ c41 sin

(
E11y

))
+ k11,

X12(x) = eN12x
(
c12 cos

(
E12x

)
+ c22 sin

(
E12x

))
+ e−N12x

(
c32 cos

(
E12x

)
+ c42 sin

(
E12x

))
+ k12,

where

Substituting the obtained values into the form for the dis-
placement, we obtain the following solution to the original 
equation

N11 =

�
��t11�� cos

�
�11 + 4�

2

�
,

E11 =

�
��t11�� sin

�
�11 + 4�

2

�
,

N12 =

�
��t12�� cos

�
�12 + 4�

2

�
,

E12 =

�
��t12�� sin

�
�12 + 4�

2

�
,

t11 =
−B11

2A11

+

�
−
�
B11

2 − 4A11C11

�

2A11

i,

�11 = arctan

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝

�
−
�
B11

2 − 4A11C11

�

2A11

⎞⎟⎟⎟⎠

��−B11

2A11

� ⎞⎟⎟⎟⎠
,

k11 =
D11

C11

,

t12 =
−B12

2A12

+

�
−
�
B12

2 − 4A12C12

�

2A12

i,

�12 = arctan

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝

�
−
�
B12

2 − 4A12C12

�

2A12

⎞⎟⎟⎟⎠

��−B12

2A12

� ⎞⎟⎟⎟⎠
,

k12 =
D12

C12

.

Table 11   Estimation of the nanoplate centre deflections using VaM 
and VaM+ABSM for different �

� w(0.5; 0.5) wAg(0.5;0.5)

(parameter length of 
material)

Analytical solution 
by VaM

Numerical solution by 
VaM+ABSM combina-
tion

0 0.289 0.290
0.3 0.210 0.211
0.5 0.142 0.142
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where

Formula (97) forms a classical solution obtained by Vain-
diner’s method. However, this solution can be refined. Since 
we know functions Y11(y), X12(x), we can find functions 
X12(x), Y22(y) . To do this, the iterative procedure can be 
repeated, and hence

(97)

w (x, y) = sin2(�x)
[
eN11y

(
c11 cos

(
E11y

)
+ c21 sin

(
E11y

))
+e−N11y

(
c31 cos

(
E11y

)
+ c41 sin

(
E11y

))
+ k11

]
+
[
eN12x

(
c12 cos

(
E12x

)
+ c22 sin

(
E12x

))

+ e−N12x
(
c32 cos

(
E12x

)
+ c42 sin

(
E12x

))
+ k12

]
sin2(�y),

(98)

c11 + 31 + k11 = 0,

k11 + e−N11(c31 cos(E11) + c41sin(E11))

+ eN11 (c11 cos(E11) + c21sin(E11)) = 0,

E11c21 + E1141 + N11c11 − N11c31 = 0,

eN11 (c21E11 cos(E11) − c11E11sin(E11))

+ eN11 (c41E11 cos(E11) − c31E11sin(E11)) = 0,

c12 + 32 + k12 = 0,

k12 + e−N12(c32 cos(E12) + c42sin(E12))

+ eN12 (c12 cos(E12) + c22sin(E12)) = 0,

E12c22 + E1242 + N12c12 − N12c32 = 0,

eN12 (c22E12 cos(E12) − c12E12sin(E12))

+ eN12 (c42E12 cos(E12) − c32E12sin(E12)) = 0.

Table 12   Square plate centre deflection for different n and � yielded 
by FDM (load equal 7, to boundary conditions (102))

Number of partition points 
for one coordinate

wn(0.5;0.5) wn(0.5;0.5) wn(0.5;0.5)

� = 0 � = 0.3 � = 0.5

(n = 5) 0.307 0.225 0.150
(n = 11) 0.310 0.225 0.151
(n = 15) 0.310 0.225 0.151
(n = 21) 0.310 0.225 0.151
(n = 25) 0.310 0.225 0.151
Exact Navier’s solution 0.311 0.225 0.151

Table 13   Square plate centre deflection for different n and � yielded 
by FDM (load equal 21, boundary conditions (103))

Number of partition 
points for one coordinate

wn(0.5;0.5) wn(0.5;0.5) wn(0.5;0.5)

� = 0 � = 0.3 � = 0.5

(n = 5) 0.412 0.299 0.201
(n = 11) 0.314 0.228 0.153
(n = 15) 0.302 0.220 0.148
(n = 21) 0.296 0.215 0.145
(n = 25) 0.294 0.214 0.144
(n = 31) 0.293 0.213 0.143
(n = 35) 0.292 0.212 0.142
(n = 41) 0.292 0.212 0.142

Table 14   Solution to MGLE for 
boundary conditions (15) for 
q = 7 and boundary condition 
(16) for q = 21

Number of Clamping Simple Number of Clamping Simple
Triangular wn(0.5;0.5) Support Triangular wn(0.5;0.5) Support

Finite wn(0.5;0.5) Finite wn(0.5;0.5)

Elements Elements

5 0.291 0.309 5 0.289 0.309
11 0.290 0.310 11 0.289 0.310
21 0.290 0.310 21 0.290 0.310
31 0.290 0.310 31 0.290 0.310
37 0.290 0.310 37 0.290 0.310
Exact Navier’s solution 0.311 Exact Navier’s solution 0.311
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As a result, we have the following displacement function

Table 11 shows the displacement obtained analytically by 
Vaindiner’s method for boundary conditions (16), and the 
numerical solution obtained by the combined methods of 
Vaindiner and Agranovskii–Baglai–Smirnov.

The following conclusions can be formulated. The accu-
racy of the solution for two types of boundary conditions 
obtained by the Vaindiner method is comparable to the accu-
racy of the solution obtained by the Kantorovich–Vlasov 
method and variational iteration method. It is worth not-
ing that the solution by Vaindiner’s method and the Kan-
torovich–Vlasov method depends on a correct choice of 
the initial approximation. This limitation can be removed 
by using the procedure of the variational iteration method 
in each equation of the system obtained by the Vaindiner 
method (100). Like in the case of the variational iteration 
method, this will allow us to use any smooth function for the 
initial approximation.

(99)

Y21(y) = eN21y
(
c11 cos

(
E21y

)
+ c21 sin

(
E21y

))
+

+ e−N21y
(
c31 cos

(
E21y

)
+ c41 sin

(
E21y

))
+ k21,

X22(x) = eN22x
(
c52 cos

(
E22x

)
+ c62 sin

(
E22x

))
+

+ e−N12x
(
c72 cos

(
E22x

)
+ c82 sin

(
E22x

))
+ k22.

(100)w(x, y) = X21(x)Y21(y) + X22(x)Y22(y).

4 � Numerical Solution of MGLE by FDM 
and FEM

We will use the well-known methods to obtain numerical 
solutions for numerous PDEs of mathematical physics. 
This is the finite difference method (FDM) with approxima-
tion O

(
h2
)
 and the finite element method (FEM). Recently, 

these methods have been widely used in various fields of 
continuum mechanics. It seems interesting to compare the 
solutions obtained by the methods of reducing partial dif-
ferential equations to ordinary differential equations with the 
solutions obtained by the above methods. Next, we compare 
the numerical solutions of the modified Germain–Lagrange 
equation obtained by the methods of reducing partial differ-
ential equations to ordinary differential equations with the 
solutions attained by the finite difference method and finite 
element method for some types of boundary conditions.

4.1 � Finite Difference Method

Let us apply the second-order finite difference method to 
equation (18). We get

(101)

D
[
wi+2,j + wi−2,j + wi,j+2 + wi,j−2+

+ 2
(
wi+1,j+1 + wi+1,j−1 + wi−1,j+1 + wi−1,j−1

)

+20wi,j − 8
(
wi+1,j + wi−1,j + wi,j+1 + wi,j−1

)]
= qh4.

Table 15   Analytical and 
numerical solutions obtained by 
various methods for estimation 
of the nanoplate centre 
deflection (b.c. (15), q = 7 ) for 
different �

Type of Methods � = 0 � = 0.3 � = 0.5

solution w(0.5; 0.5) w(0.5; 0.5) w(0.5; 0.5)

Analytical solutions Navier method 0.311 0.225 0.151
BGM 0.311 0.228 0.153
KVM
(in first term approximation ) 0.314 0.228 0.153
KVM
(in second term approximation) 0.312 0.225 0.152
VIM 0.307 0.223 0.150
VaM 0.307 0.223 0.150

Numerical solution FDM 0.310 0.225 0.151
FEM - (Triangular Elements
(350 Elements)) 0.310 0.225 0.151
FEM - (Quadrangular Elements
(165 Elements)) 0.310 0.225 0.151
KVM in first term + ABSM 0.308 0.223 0.150
KVM in second term + ABSM 0.310 0.225 0.151
VIM + ABSM 0.308 0.224 0.150
VaM + ABSM 0.308 0.223 0.150
VaM + VIM 0.308 0.223 0.150
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We obtain a system of linear equations n2 for each grid node, 
where n is the number of grid nodes, each on the x and y 
axes. We solve this system by the Gauss method. In order to 
determine the values of the extreme grid nodes, we use the 
following boundary conditions.

For boundary conditions (15), we have

For boundary conditions (16), we have
(102)

w0,0 = wn,0 = w0,n = wn,n = 0,

w−1,i = w1,i, wn+1,i = wn−1,i ,wi,−1 = wi,1 , wi,n+1 = wi,n−1

Tables 12 and 13 show the results obtained for bound-
ary conditions (102) and (103), using the finite difference 
method for a square plate under the action of a constant 
transverse load.

Analysis of the results shows that the material length 
parameter �  can significantly influence the results 
obtained. The solution for the material length parameter 

(103)

w0,0 = wn,0 = w0,n = wn,n = 0,

w−1,i = −w1,i, wn+1,i

= −wn−1,i ,wi,−1 = −wi,1 , wi,n+1 = −wi,n−1 .

Table 16   Analytical and 
numerical solutions obtained 
by various methods for the 
estimation of the nanoplate 
centre deflection (b.c. (16), 
q = 21 ) for different �

Type of solution Methods � = 0 � = 0.3 � = 0.5

w(0.5; 0.5) w(0.5; 0.5) w(0.5; 0.5)

Analytical solutions KVM
(in first term approximation ) 0.289 0.210 0.142
KVM
(in second term approximation) 0.291 0.212 0.143
VIM 0.292 0.212 0.142
VaM 0.289 0.210 0.142

Numerical solution FDM 0.294 0.214 0.144
FEM - (Triangular Elements
(350 Elements)) 0.297 0.217 0.146
FEM - (Quadrangular Elements
(165 Elements)) 0.297 0.217 0.146
KVM in first term + ABSM 0.290 0.210 0.142
KVM in second term + ABSM 0.291 0.211 0.143
VIM + ABSM 0.292 0.212 0.142
VaM + ABSM 0.290 0.211 0.142
VaM + VIM 0.290 0.210 0.142

Table 17   Various methods of solution versus MGLE and the number 
of equations required to obtain a reliable solution (b.c. (15), � = 0)

The number of 
equations required 
to

Solution method obtain a reliable 
solution

n N n ∗ N

Kantorovich–Vlasov method in first term 15 1 15
Kantorovich–Vlasov method in second term 30 1 30
Variational iteration method in first term 15 3 45
Vaindiner’s method in first term 30 3 90
Finite difference method O(h2) 121 1 121
Finite element method, triangular elements 1498 1 1498
Finite element method, quadrangular elements 1242 1 1242

Table 18   Various methods of solution versus MGLE and the number 
of equations required to obtain a reliable solution (b.c. (16), � = 0.5)

The number of 
equations required 
to

Solution method obtain a reliable 
solution

n N n ∗ N

Kantorovich–Vlasov method in first term 15 1 15
Kantorovich–Vlasov method in second term 30 1 30
Variational iteration method in first term 15 2 45
Vaindiner’s method in first term 30 1 30
Finite difference method O(h2) 121 1 121
Finite element method, triangular elements 1498 1 1498
Finite element method, quadrangular elements 1242 1 1242
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� = 0.3; � = 0.5 coincides with Navier’s exact solution. The 
convergence of the solution obtained by the finite difference 
method depends essentially on the type of boundary condi-
tions. Namely, for boundary conditions (103) three times 
more partition points are required than in the case of bound-
ary condition (102).

4.2 � Finite Element Method

In this case we will use linear triangular and quadrangular 
elements while employing FEM. According to the algorithm 
for solving the problem, the area is automatically divided 
into a given number of elements. The solution is obtained 
by the system of linear algebraic equations using the Gauss 
method. A convergence study is provided depending on the 
number of the used elements.

Table 14 shows the results of the study on convergence 
for the finite element method when solving the modified 
Germain–Lagrange equation for boundary conditions (15) at 
a constant transverse load q = 7 and for boundary conditions 
(16) for fixed q = 21 , and � = 0.

Thus, the best convergence is achieved for 11 triangular 
finite elements, both for boundary conditions (15) and (16).

Table 14 presents the analysis of results of the study 
on the convergence of the solution of the modified Ger-
main–Lagrange equation by the finite element method. Thus, 
the best convergence is achieved for 11 triangular finite ele-
ments, for both boundary conditions studied. For quadran-
gular finite elements for both types of boundary conditions, 
convergence is achieved for 21 finite elements. To reduce the 
number of elements when solving the problem, it is possible 
to use symmetry of the solution and reduce the number of 
elements by 4 times, but in this case it was not done.

5 � Comparison of Results Obtained 
by the Methods of Reducing PDEs to ODEs 
and by Numerical Methods

Previously, the equation governing bending of a nanoplate 
taking into account the modified couple stress theory and the 
method of variable parameters of elasticity has been derived. 
Now, it is solved by some of the already mentioned meth-
ods: the Kantorovich–Vlasov method with various modifica-
tions; variational iteration method, Vaindiner’s method, the 
Agranovskii–Baglai–Smirnov method, Bubnov–Galerkin 
method, the method of double trigonometric series approxi-
mation, the finite element method and the finite difference 
method.

Table 15 presents the values of the maximum displace-
ment calculated by various methods for solving the equation 
of bending of a nanoplate under the action of a uniformly 
distributed load ( q = 7 ) for boundary conditions (15).

The analysis of the numerical results and final data 
reported in Table 15 shows that the solutions obtained by 
various numerical methods including the finite element 
method, finite differences method, Kantorovich–Vlasov 
method in N terms and the variational iteration method 
combined with the Agranovskii–Baglai–Smirnov method 
are very close to the exact solution.

The maximum difference between the exact solution 
and solutions obtained by other methods does not exceed 
1.2%, so these methods are competitive. Methods for reduc-
ing PDEs to ODEs allow us to obtain an analytical solution 
with extremely high accuracy. The most important conclu-
sion based on the obtained results is as follows. The cost of 
computer time when using these methods is several times 
cheaper than when using the numerical methods based on 
FEM and FDM.

Table 19   Various methods of solution versus MGLE and the number 
of equations required to obtain a reliable solution (b.c. (16), � = 0)

The number of 
equations required 
to

Solution method obtain a reliable 
solution

n N n ∗ N

Kantorovich–Vlasov method in first term 55 1 55
Kantorovich–Vlasov method in second term 110 1 110
Variational iteration method in first term 55 3 165
Vaindiner’s method in first term 110 3 330
Finite difference method O(h2) 1225 1 1225
Finite element method, triangular elements 1498 1 1498
Finite element method, quadrangular elements 1242 1 1242

Table 20   Various methods of solution versus MGLE and the number 
of equations required to obtain a reliable solution (b.c. (16), � = 0.5)

The number of 
equations required 
to

Solution method obtain a reliable 
solution

n N n ∗ N

Kantorovich–Vlasov method in first term 55 1 55
Kantorovich–Vlasov method in second term 110 1 110
Variational iteration method in first term 55 2 110
Vaindiner’s method in first term 110 1 110
Finite difference method O(h2) 1225 1 1225
Finite element method, triangular elements 1498 1 1498
Finite element method, quadrangular elements 1242 1 1242



4809Review of the Methods of Transition from Partial to Ordinary Differential Equations: From Macro‑…

1 3

In addition, Table 16 presents the values of the maximum 
nanoplate displacement calculated by various methods for 
solving the equation of bending of a nanoplate under the 
action of uniformly distributed load ( q = 21 ) for boundary 
conditions (16).

In this case, the comparative analysis of the numerical 
results based on the data reported in Table 16 for boundary 
condition (16) for square nanoplate leads to the conclusion 
that if � = 0.3, � = 0.5 the results of all methods are quite 
close. The largest differences in the solutions arise when 
� = 0 . It should be emphasized that the values of solutions 
by the mentioned methods devoted to the reduction of PDEs 
to ODEs are close to each other and their difference is 0.6%.

In addition, we have compared the number of algebraic 
equations while employing the Kantorovich–Vlasov method, 
variational iteration method, Vaindiner’s method, FEM and 
FDM. Table 17 shows a comparison of the number of equa-
tions required to solve Eq. (18) at � = 0 for boundary condi-
tions (15). The following notation is used: n is the number 
of equations, N - is the number of iterations (if necessary), 
n ∗ N is the total number of equations to obtain a solution.

Table 17 presents the results of analysis for different num-
ber of equations for � = 0 , and for various methods.

The same is done in Table 18 but for � = 0.5.
We have also analyzed the same problem regarding 

equation (14) for � = 0 for boundary conditions (16) (see 
Table 19).

The same analysis has been extended for the case when 
� = 0.5 (see Table 20).

Based on the analysis of Tables 17, 18, 19 and 20, it can 
be concluded that in terms of computer time the most expen-
sive are the finite difference and finite element methods. 

The analysis of the numerical results given in Tables 17, 
18, 19 and 20 leads to the conclusion that in terms of com-
puter time the most expensive are the finite difference and 
finite element methods. The methods that reduce the original 
problem for a partial differential equation to solving an ordi-
nary differential equation use a one-dimensional grid. This 
leads to a decrease in the number of algebraic equations and 
an increase in the speed of obtaining a solution.

6 � Concluding Remarks

This article presents a comprehensive review of the literature 
on methods of reducing nonlinear partial differential equa-
tions to a set of nonlinear differential equations with empha-
sis put on their reliability, validity, accuracy and computa-
tional efficiency. Since the nonlinear PDEs govern dynamic 
and static behavior of numerous systems in mechanics, aero-
nautics and civil engineering, a proper choice of the feasible 
computational method to study mass distributed mechanical 
systems based on the signal processing plays an important 

role in the system modeling, identification, monitoring and 
control.

The classical methods aimed at solving the problem have 
their origin in mathematical physics. However, the problem 
has not yet been fully resolved and, as our review has shown, 
it requires revision and more attention to the known meth-
ods of finite elements and finite differences widely used in 
engineering community but not well recognized as competi-
tive approaches. The methodology is well known: a given 
multidimensional problem should be substituted by its coun-
terpart sequence of one-dimensional problems. However, 
the obtained results strongly depend on the used methods, 
which answer numerous questions and require checking of 
the authenticity, reliability, validity, stability of results, etc.

The following methods have been reviewed and exam-
ined due to their state-of-the art levels of performance and 
computational advantages: the Fourier methods, the Galer-
kin-type methods, the variational methods, the variational 
iterations, the Kantorovich–Vlasov methods, Vaindiner’s 
method, the Agranov- skii-Baglai-Smirnov method with 
respect to the archetypal finite element and finite difference 
methods.

The quantification and comparison of the tested (above 
mentioned) methods was carried out on the basis of the mod-
ified Germain–Lagrange PDE governing the dynamics of a 
nanoplate and with comparison to the exact results obtained 
on the basis of Navier’s method.

Although the paper has a review character, it includes 
also our original results. The whole work can be briefly sum-
marized based on the following major conclusions. 

•	 A mathematical model of Germain–Lagrange nanoplates, 
taking into account the physical nonlinearity and inho-
mogeneity of the material, has been derived.

•	 The comparative analysis of numerous methods, includ-
ing the Kantorovich–Vlasov method, the variational 
iteration method, and Vaindiner’s method aiming at the 
reduction of PDEs to ODEs was carried out for the first 
time.

•	 For each method described above, theorems have been 
both formulated and proved and thus their mathematical 
justification has been given.

•	 The proven convergence theorems for solutions obtained 
by the Kantorovich–Vlasov methods and variational 
iteration method can be applied to solve the modified 
Germain–Lagrange equations.

•	 The solutions obtained by the mentioned methods of 
reducing the equations of mathematical physics to ordi-
nary differential equations have been compared with the 
exact Navier solution obtained by the authors for the 
modified Germain–Lagrange equation.

•	 These methods appeared to be effective. The computation 
time for obtaining a solution by these methods is much 
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shorter than the computation with the use of either the 
finite difference or finite element methods.

•	 A numerical experiment has shown that the investigated 
methods of reducing partial differential equations to 
ordinary differential equations are highly accurate. They 
provide a solution with an error of less than 1 percent.

•	 The convergence to the exact solution for the investigated 
methods has been significantly improved for nanostruc-
tures.

•	 For the first time, we have proposed to use the procedure 
for refining solutions based on the Agranovskii–Baglai–
Smirnov method while reducing PDEs to ODEs for prob-
lems in the theory of nanoplates.

•	 When solving ODEs numerically, it has been found that 
the accuracy of solution depends on the type of boundary 
conditions and the number of partition intervals.

•	 Analysis of the methods for reducing elliptic PDEs of 
mathematical physics to ODEs allows drawing conclu-
sions about their effectiveness in solving problems of the 
theory of plates, taking into account physical nonlinear-
ity and material heterogeneity.

•	 The presented review and analysis of the methods imply 
that they can be applied to hyperbolic equations of math-
ematical physics, including construction of an iterative 
procedure within the algorithms of the Faedo–Galerkin 
method.
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