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Abstract
Large-scale structural topology optimization has always suffered from prohibitively high computational costs that have till 
date hindered its widespread use in industrial design. The first and major contributor to this problem is the cost of solving 
the Finite Element equations during each iteration of the optimization loop. This is compounded by the frequently very 
fine 3D models needed to accurately simulate mechanical or multi-physical performance. The second issue stems from the 
requirement to embed the high-fidelity simulation within the iterative design procedure in order to obtain the optimal design. 
The prohibitive number of calculations needed as a result of both these issues, is often beyond the capacities of existing 
industrial computers and software. To alleviate these issues, the last decade has opened promising pathways into accelerat-
ing the topology optimization procedure for large-scale industrial sized problems, using a variety of techniques, including 
re-analysis, multi-grid solvers, model reduction, machine learning and high-performance computing, and their combinations. 
This paper attempts to give a comprehensive review of the research activities in all of these areas, so as to give the engineer 
both an understanding as well as a critical appreciation for each of these developments.

1 Introduction

Structural and material design for enhanced performance at 
a lighter overall weight has been the quintessential industrial 
challenge of the 21st century. This involves a combination 
of: material selection, volume fraction depending on weight 
limits, and the “architecture”. This third stage of design, 

which is essentially designing the topology or material dis-
tribution using mathematical optimization, can allow for 
drastic improvements in performance. The paradigm for 
this, termed as topology optimization i.e. finding the optimal 
relative density distribution over a voxel grid for a chosen 
volume fraction under a prescribed set of external loads and 
boundary conditions, was first presented in 1989 by Bend-
soe [24] and has today greatly matured with wide spread 
application in structural optimization [216, 218] among 
other fields. The technique is widely used in industry as well 
as in academia for myriad applications, such as aerospace, 
mechanical, and biomedical engineering [44].

A review of the papers published since 1989 sheds light 
on its extensive application to structural mechanics, as seen 
from both books and journals [27, 28, 132, 166–168, 178]. 
[25] first applied it to the optimization of continuum struc-
tures, while [187] considered topology optimization with the 
homogenization method. [60] was the first to consider local 
stress constraints, [23] studied linearly elastic continuous 
structures for topology optimization. Ananthasuresh et al, 
[146] and others worked on compliant mechanism design 
using topology optimization. The optimal stiffener design 
of shell/plate structures with the small deformation was 
studied by [41, 43, 129, 155] carried out studies on linearly 
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elastic structures to maximize eigen frequencies for topology 
design. [81] worked on topology optimization with pres-
sure loading. [37] and others studied topology optimization 
with geometric nonlinearities. [26, 28, 154] and it has been 
successfully applied to find the optimum topology of a lin-
early elastic structure for its global stiffness and applied it to 
dynamic problems. [243] used sequential convex program-
ming (SCP) method. [130] considered a frequency response 
optimization problem for both the optimal layout and the 
reinforcement of an elastic structure. Some researchers 
[154] studied the drawbacks in Optimality criteria method. 
Generally SCP (Sequential convex programming) method is 
used for frequency problems. [244] studied very large scale 
optimization by Sequential convex programming. Exten-
sive work on optimum topology of discrete structures such 
as trusses and grid-type structures was done by [168]. The 
performance-based optimization (PBO) method was devel-
oped by [117] for topology design of continuum structures 
with stress, displacement and mean compliance constraints. 
Topology optimization with genetic algorithms was studied 
with morphological geometric representation scheme by 
[193, 194, 204, 205].

[47] used topology optimization for minimum-weight 
structural design under local stress-based constraints for 
fatigue resistance and a global constraint on compliance. 
[48] used topology optimization for designing periodic 
microstructures with stress constraints to prevent high stress 
concentrations at the microscale. [64] recently presented a 
strategy using aggregation functions for maximum size-
constrained topology optimization.

Significant research was conducted on the topology 
optimization of multi-scale nonlinear problems by Xia and 
Breitkopf [66, 215, 215, 218]. The literature shows that it 
has also been applied to multi-physics problems [139], fluid 
dynamics [33, 56, 171], heat transfer [221], acoustics [54, 
232], electromagnetism [206], and optics [110].

For structural problems, density-based methods are today 
the most widely used by engineers along with level-set meth-
ods [242] (that provide an unambiguous boundary descrip-
tion), topological derivative procedures [6, 147], phase field 
techniques [219], etc [65]. A good review of key develop-
ments in structural topology optimization post 2000 was 
presented by [50].

For years, topology optimized solutions were seen as 
impractical and requiring interpretation before fabrica-
tion (obviously until additive manufacturing). To directly 
address the issue of manufacturability, significant research 
has been carried out, under both the density-based [27] and 
level set [6, 202] frameworks. Related literature surveys can 
be found in [112, 125]. Targeting conventional machining 
and injection molding, the length scale issue [5, 73, 75, 77, 
158, 238] no-undercut restriction [220] and feature-driven 
design [126].

The main impetus for its sudden increase in popularity 
is very likely the recent advancements in additive manufac-
turing [95, 240], a rapidly evolving technology that allows 
for quick and direct fabrication of a complicated optimized 
topology, which was not the case with conventional manu-
facturing. With the modern-day mastery of these manufac-
turing techniques, the topology optimization technique is 
increasingly being applied in the design of engineered mate-
rials for aerospace applications [141].

During the last three decades, several typical topology 
optimization methods have been developed, such as the 
homogenization-based approach [26], the solid isotropic 
material with penalization (SIMP) approach [169, 241], the 
evolutionary structural optimization approach [226], the 
level set-based approach [6, 202] and the recently devel-
oped moving morphable components/voids (MMC/MMV) 
approach [76]. The most-commonly used Solid Isotropic 
Material with Penalization (SIMP) or power-law approach 
is developed to ensure void(0)-solid(1) solutions for �e by 
penalizing intermediate densities [241]. A similar approach 
can be applied for stress-constrained topology optimization 
problems to address the singularity problem [113]. [164] 
studied the effects of using the artificial power law exponent 
on the solutions obtained in the SIMP approach. The vast 
majority of commercial TO softwares today such as Opti-
Struct and Genesis are based on SIMP. While the SIMP is 
theoretically well-established, issues such as an ill-condi-
tioned stiffness matrix due to low density elements can cause 
computational problems as well as singularity issues [185]. 
Alternatives to the SIMP method are the RAMP (Rational 
Approximation of Material Properties) method [182] and the 
explicit penalization method. Popular schemes for solving 
this problem are gradient-based schemes like the Optimal-
ity Conditions (OC) method [27], Sequential Convex Pro-
gramming (SCP) as mentioned previously and the Method 
of Moving Asymptotes (MMA) [188, 189]. The Evolution-
ary Structural Optimization (ESO) [160] and Bi-directional 
Evolutionary Structural Optimization (BESO) [91, 92] are 
also very successful and must be mentioned in this context.

Topology optimization is surprisingly far from attaining 
mainstream popularity among structural engineers, despite 
nearly two decades of research that have been devoted to 
the subject. Besides obvious challenges such as interpreting 
topology optimized solutions using CAD/CAE software, this 
is mainly due to the frequently prohibitive computational 
cost associated with these procedures.

There are two main problems hindering large-scale topol-
ogy optimization: 

1. It involves repeated expensive high-fidelity solutions of 
a physical model (e.g. the FE equilibrium equation in 
structural mechanics), whose size is directly related to 
the grid resolution.
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2. Prohibitively high memory requirement, which is indi-
rectly related to the grid resolution.

Consider the simplest structural design problem where the 
reference state equation is modeled using linear elasticity, 
and information about the material distribution is incor-
porated through an auxiliary function: the classical (self-
adjoint) compliance minimization problem:

where � is a vector containing the values of all element 
design variables (that is, the element densities �e ), u is the 
displacement vector, F is the force load vector, c is the 
objective function, i.e. compliance in this case, K(�) (i.e. K 
hereafter) is the global stiffness matrix, ve is the element vol-
ume and N is the number of FE elements, vfrac and V are the 
volume fraction and volume of design domain respectively.

In the simplest case, SIMP is used to relate the elemental 
relative density variable �e with the interpolated/penalized 
(elemental) material property Ee by:

where p ∈ (1,∞) is the penalization parameter, Emax ∈ R 
denotes the material property (for e.g. Young’s modulus) of 
solid material, Ee ∈ R denotes the penalized property, Emin 
is a very small positive number to avoid problems related to 
vanishing stiffness, usually taken as 0.001.

Regardless of the optimization algorithm, the computa-
tional bottleneck is generally the solution of the large scale 
linear system (i.e. the equilibrium equation) during each 
optimization iteration [11, 44, 70, 98, 223]

despite having a sparse symmetric positive definite stiffness 
matrix K [1, 9, 50]. Since K is positive definite, the FE prob-
lem may be solved using a direct solver, such as Cholesky 
factorization.

The performance and therefore feasibility of a topology 
optimization procedure could thus be affected by the num-
ber of degrees of freedom, complexity/non-linearity of the 
material model, the performance of the FE solver (for struc-
tural problems), type of sensitivity analysis depending on 
self-adjointness, and whether or not uncertainties need to 
be taken into account, etc. In the field of structural design, 
the key challenge has always been dealing with high-dimen-
sional problems [1] such as those encountered in additive 

(1)

min
�
c(�) = UTKU

s.t. ∶ KU = F

N
∑

e=1

ve�e ≤ vfracV

�min ≤ �e ≤ 1, e = 1⋯N

(2)Ee(�e) = Emin + �p
e
(Emax − Emin)

(3)KU = F

manufacturing, i.e. the number of degrees of freedom(n) 
required by 3D printing resolution (for example). Grid reso-
lution is of critical importance as [2, 177] explained: using 
coarse grid resolution could cause an artificial length-scale 
limitation and limit the solution space of the optimization 
problem. By using a sufficiently high-resolution FE mesh, 
we may obtain finer structures with additional details and 
improved performance [2]. Therefore, the ability to handle 
high-resolution topology optimization formulation is (in 
many cases) non-negotiable, despite the computational cost 
entailed.

In the classical nested approach, the Finite Element (FE) 
equilibrium equation (3) needs to be solved during each 
iteration of the optimization routine. Even assuming the 
simplest linear elastic (Hookean) material under small dis-
placements, a single linear system has to be solved at each 
iteration to determine the nodal displacements U to evaluate 
the objective function (equation (1)). For the density-based 
approach using a classical optimality criteria design update, 
this cost can already be around 90% of the total computa-
tional cost for a benchmark problem with 100,000 design 
variables using a direct solver [44], and this further scales 
up with the size of the problem, not to mention as additional 
physics gets integrated into the structural performance. Itera-
tive solvers, mostly preconditioned Krylov subspace solvers, 
such as Conjugate Gradients (CG) [11, 13], MINRES or 
GMRES, have a major computational advantage since they 
do not need high accuracy (i.e. low tolerances) during the 
early/intermediate stages of the optimization routine. How-
ever, in the later stages of the optimization routine, linear 
solvers tend to become ill-conditioned and an ordinary itera-
tive method can quickly run into difficulties [185].

Another way to reduce FEA costs is the adaptive p-refine-
ment [18], where the mesh topology stays the same but 
higher order shape functions are used. p-refinement confers 
robustness against locking and high aspect ratios, gives an 
exponential rate of convergence and is generally superior 
to h-refinement for the same computational cost. However, 
due to the fact that the conventional TO approaches typically 
assume a constant relative density distribution within the 
element, the efficacy of these methods is questionable [78].

To speed up the convergence of the procedure, second-
order techniques have been used including variants of the 
MMA [36, 189], sequential quadratic programming (SQP) 
[15, 165], meshless methods [53] and interior point algo-
rithms [44, 88, 131]. However, these techniques are usually 
difficult to implement and don’t scale up well with problem 
size, compared with the classical first-order methods. To 
resolve the scalability issue, [116] presented a fixed-point 
iteration with periodic Anderson extrapolations.

[185] proposed a PareTO approach based on topological 
sensitivity [61, 148], with several reported advantages over 
SIMP including faster convergence of solvers due to better 
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conditioned matrices (by not relying on relative densities), 
fewer optimization iterations and multiple Pareto optimal 
topologies for a given volume fraction. The last few decades 
have seen different approaches that have been tested for alle-
viating the computational cost, using one of the following 
strategies: 

1. Allowing approximate linear solutions
2. Reducing the number of iterations in Krylov subspace 

methods.
3. Increasing computational efficiency by leveraging exist-

ing capacity

which may be broadly classified under: multi-grid (MG) 
methods, reanalysis (using inexact solutions computed using 
classical methods), reanalysis with state-of-the-art reduced 
order models based on machine learning (ROM), high-per-
formance computing (HPC) approaches [2, 133] and much 
more recently Iso-Geometric Analysis (IGA) [52, 67, 123, 
200]. It goes without saying, a combination of two or more 
of these approaches tends to yield superior improvements 
compared to using each one on by itself. The goal of this 
paper is to comprehensively and critically discuss the lat-
est developments in each of these branches of research, as 
well as shed some light on emerging topics (such as Neural 
networks and Deep Learning [170]) highlighting advantages 
and potential limitations, in a bid to help the structural engi-
neer make appropriate choices when attempting to use topol-
ogy optimization in industrial-sized problems.

This paper is organized in the following manner: Sect. 2 
deals with high-performance computing (HPC) approaches, 
Sect. 3 with approximate reanalysis using ROM, Sect. 4 with 
multi-grid (MG) methods, Sect. 5 with IGA and Sect. 6 with 
emerging approaches like Deep Learning and Neural Net-
works. The paper ends with concluding comments including 
recommendations and proposed areas for future work.

2  High Performance Computing

Obtaining high resolution solutions to accurately predict the 
physical shape and simulate properties is a challenging task 
using personal desktop machines, since the memory and 
computational capacity needed would be above and beyond 
what is generally available [214]. From the point of view 
of applications such as 3D printing, manufacturing-specific 
constraints are required to ensure printability of the final 
solutions [141]. Iterative computing is always used to find 
the optimized design by topology optimization, which will 
lead to expensive computational cost as has already been 
seen, particularly for 3D large-scale problems or problems 
requiring high-resolution. Using parallel computing [186] 
to circumvent this problem is the second oldest strategy for 

accelerating the optimization procedure, and probably has 
the maximum potential both by itself, as well as in conjunc-
tion with the other strategies described in this paper.

Despite the vast increase in computational power of 
microprocessors today, the capacity to sustain the dramatic 
increase in processing speed (from Moore’s law) shifts the 
focus from increasing the speed of a single processing unit 
to increasing parallelism (width) by switching to multiple 
cores or parallel architectures [172]. This is because there 
is a gap between the processing power and the ability of the 
memory to transmit data at the same rate.

Amdahl’s law:

states that increasing the number of processors for a problem 
of fixed size will increase the algorithmic speed up (SPA) 
asymptotically up to a theoretical limit 1∕(1 − R) , where S is 
the time spent in the sequential portion of the code, P is the 
time spent in the parallel portion, N is the number of proces-
sors and R is the ratio of the time spent in the parallel portion 
to the total execution time. Therefore rather than powerful 
parallel (often heterogenous) systems alone, the need is for 
numerical algorithms which are able to achieve adequate 
scalability with such systems [172]. Distributed computing 
power has today reached an almost unimaginable number of 
2.3 exaFLOPS (floating point operations per second) with 
Peta-FLOP (1015 FLOP) computers being more commonly 
used in very large research organizations. With the decrease 
in cost of computer hardware, almost every research group 
today has access to parallel computing systems.

The key element to successfully use HPC in FE-based 
topology optimization is a combination of physical parti-
tioning of the design domain among processors or nodes, or 
domain decomposition [29], an iterative solver such as PCG 
or MG, and parallel algorithms for the matrix operations 
using Message Passing Interface (MPI) [149], Open Multi-
Processing (OpenMP) [150], etc. Domain decomposition is 
a classical technique for solving PDEs by decomposing the 
spatial domain of the problem into multiple subdomains, 
in order to allow solvers that can be parallelized on coarse-
grain computing systems [40]. It could be either implicit or 
explicit. [63] also demonstrated a material-based decom-
position by decomposing the solid and void portions of 
the domain separately and then merged the two FE meshes 
together. Next, parallel algorithms attempt to manage the 
communication between different processors, through shared 
memory (e.g. OpenMP) or message passing (e.g. MPI). 
Shared memory processing entails an overhead of addi-
tional processor and bus cycles, while message passing adds 
transfer overhead on the bus, and additional memory need 
for queues, message boxes and message latency. Multiple 

(4)SPA =
1

(1 − R) + (R∕N)
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instruction multiple data (MIMD) is the most important 
approach where parallelism is achieved using a number of 
processors functioning asynchronously and independently 
of each other. A popular subset of this, called the Single 
Program Multiple Data (SPMD) paradigm, allows all pro-
cessors involved in the program to co-operatively execute 
the same main program, but at any given moment different 
processors may be running different instruction-streams or 
different sections of the same program and/or act on different 
data sets. These processors self-schedule in dynamic fashion 
according to the program and through synchronization built 
in the program [49].

In what is likely the earliest work about parallel topol-
ogy optimization, [32] used a Cray T3E supercomputer 
and presented a CPU parallel strategy for 3D large-scale 
topology optimization based on the regularized intermediate 
density control method along with domain decomposition, 
and the MMA algorithm, to get a high-quality resolution 
of realistic designs in 3D. The equilibrium equations were 
solved by a preconditioned conjugate gradient algorithm. 
However, their convergence rate was on the lower side and 
the iterative optimization procedure was not very stable. 
Subsequently, [101] used parallel topology optimization 
for large-scale eigenvalue-related structural design. [199] 
presented a parallel algorithm based the SIMP and the OC 
criterion for 2D structural topology optimization. [133] sug-
gested the combination of parallel computing environment 
and domain decomposition aiming to reduce the computa-
tional cost of the optimality criteria method, adopting the 
master-slave programming paradigm in combination with 
multiple instruction multiple data (MIMD) shared memory 
architecture, and the Jacobi preconditioned Conjugate Gradi-
ent to solve the equilibrium equation (Algorithm 1). 

Here P is the search direction vector and r2 is the resid-
ual, for the PCG algorithm. In typical Master-Slave fash-
ion, every slave processor handled every single element 
within its own (p) subdomain separately and assembly of 
global matrices was avoided. However, they applied it only 
to 2D problems with a maximum size of only 2.56 × 104 
dofs. An OpenMP implementation would look similar to 
Algorithm 2. 
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[62] considered efficient parallel computing assisted 
topology optimization for fluid mechanics problems. [45] 
used parallel programming with the IBM Cluster 1350 in a 
two-scale optimization problem in order to compute simulta-
neously the optimal material and structure. [63] used Finite 
Element Tearing and Interconnect (FETI) with a primal dual 
solver.

A key point was discussed in detail by [63], and that is 
the important distinction between numerical scalability and 
parallel scalability. Parallel scalability is the ability of the 
parallel implementation of an algorithm, i.e. on a given par-
allel system to demonstrate a speedup that increases with 
the number of working processors, for a fixed problem size, 
and hides the true amount of inter-processor communica-
tion overhead. Given that the objective of using parallel 
computing for topology optimization is to also enable the 
solution of larger-scale (3D) problems rather than simply 
solving problems of a fixed size faster, numerical scalability 
of the algorithm is equally important, i.e. the computational 
complexity of an algorithm needs to grow (ideally linearly) 
with the size of the problem. This is intimately related to 
the increase in iterations (for convergence) with the prob-
lem size for the same error criteria. Therefore, both parallel 
as well as numerical stability need to be addressed by any 
developments in this sub-field.

Owing to their high computing capacity, which in turn 
is due to their high bandwidth (that hides the latency under 
thread parallelism), an overwhelmingly popular approach 
for accelerating topology optimization is using Graphics 

Processing Units or General Processing Units (GPU) com-
puting. GPUs are a class of multi-core processors with a 
faster and smaller set of instructions, and capable of han-
dling a large number of concurrent threads [236]. These are 
specially designed for rapidly manipulating computer mem-
ory, and are today widespread in embedded systems, cell-
phones, PCs, and workstations. Their highly parallel struc-
ture makes them significantly more efficient than ordinary 
CPUs for processing large blocks of data in parallel. The first 
use of GPUs in topology optimization was by [201] in 2009. 
This work used a Preconditioned Conjugate Gradient (PCG) 
solver on a GPU for heat conduction based topology optimi-
zation. However, convergence of the solver was affected by 
round off errors arising from the early GPUs not supporting 
double-precision. [172] then wrote a nodal-wise assembly-
free implementation of SIMP topology optimization using a 
commodity graphics card showing equivalent performance 
to that obtained with a 48 core shared memory system. The 
CG algorithm was modified to avoid accumulating numeri-
cal errors due to the limitations of single precision at the 
time. Speed ups of 10 to 60 were reported on a GeForce 
GT X280 with 1GB memory. [184] also used a node-wise 
strategy implemented on both a CPU as well as GPU. The 15 
million degrees of freedom tip-cantilever problem required 
2 hrs on a 1.5 GB memory GPU, while a 92 million degrees 
of freedom version of the same problem required close to 12 
days on a 6 GB memory CPU, both implementations being 
limited by available memory. [39] presented a graphics pro-
cessing unit (GPU) implementation of the level set method 
and demonstrated the efficiency of this implementation by 
solving the inverse homogenization problem for designing 
isotropic materials with maximized bulk modulus.

[236] was the first to combine unstructured meshes and 
GPU computing. To prevent a race condition, a fast greedy 
coloring algorithm had to be used before the topology 
optimization procedure. As expected, the performance, 
while good, was not comparable to that obtainable using 
a structured mesh. However, unstructured meshes allow 
the definition of complex design domains, loadings and/
or constraints. [185] executed his non-SIMP PareTO 
algorithm on both quad-core CPUs with 6 GB memory 
(parallelism through OpenMP) as well as 480-core GPU, 
with the GPU implementation for 15 million dof prob-
lem being over 19 times faster than the CPU implementa-
tion. [66] extended the current concepts of topology opti-
mization to the design of structures made of nonlinear 
micro-heterogeneous materials considering a two scale 
approach; in order to regain the computational feasibil-
ity of the computational scale transition, a modern model 
reduction technique was employed: the potential-based 
reduced basis model order reduction with GPU accelera-
tion. [162] addressed two key difficulties when solving 
discrete structural topology optimization problems using 
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evolutionary algorithms, i.e. to generate geometrically 
feasible structures and handling a high computation time. 
These difficulties were addressed by adopting triangular 
representation for two-dimensional continuum structures, 
correlated crossover and mutation operators, and by per-
forming computations in parallel on GPU. In [136, 137] 
the authors alleviated the computational constraints of the 
robust topology optimization of continuum structures and 
those of evolutionary topology optimization problems and 
obtained good speed-ups using a GPU computing based 
strategy based on the SIMP and the optimality criterion 
(OC) updating scheme [138] (Algorithm 3). 

The literature reveals many computational strategies to 
address the problem of scalability. [2, 3] proposed a fully 
Message-Passing-Interface (MPI) based parallel topology 
optimization framework by using the SIMP approach and 
the method of moving asymptotes (MMA) [188]. [1] then 
designed a full-scale aircraft wing with more than one 
billion 3D elements by using parallel computation on a 
cluster with 8000 processors based on the SIMP approach. 
An OpenMP based parallel technique was employed by 
[153] for structural topology optimization of minimum 
weight formulation with stress constraints. [57] presented 
a framework for CPU and GPU parallel structural topology 
optimization using the SIMP approach based on polygonal 
elements, considering 12 million 3D elements.

[222] proposed a parallel computation formulation 
based on GPUs by using the parameterized level-set 
method and IGA applied to 2D problems. Most recently, 
[122] presented a fully parallel parameterized level set 
method to realize large-scale or high-resolution struc-
tural topology optimization design. In their work, the 

entire optimization process is parallelized, consisting of 
mesh generation, sensitivity analysis, assembly of the ele-
ment stiffness matrices, solving of equilibrium equations, 
parameterization and updating of the level set function, as 
well as the output of the computational results.

Most recently [180] presented their Topology Optimi-
zation module, based on SIMP and OC, of their High-
Performance Optimization Computing Platform (HP-
OCP). This module considered a variety of performance 
objectives including compliance both with and without 
structural constraints, with all libraries programmed in C#. 
The module was coupled with the commercial structural 
software SAP2000. However, there was little discussion on 
the parallelization and message passing schemes involved.

While the rush to incorporate parallel computing, espe-
cially with GPUs in this field is understandable, we must 
note that proper implementation of topology optimization 
requires adequate technology as well as proper formulation 
to take full advantage of its potential at accelerating com-
puting, which is far from straightforward. Every strategy 
has its limitations as well as advantages, and the cost–ben-
efit ratio must be weighed carefully before attempting a 
one-size-fits-all approach.

GPUs have certain shortcomings: although GPUs are 
faster than CPUs, the time needed for transferring large 
amounts of data from the CPU to the GPU could lead 
to a significantly higher overhead. Also, while they have 
several cores, GPU cores tend to run slower than CPU 
cores. From the point of view of managing inter-processor 
communication, the OpenMP strategy is used in shared 
memory architecture computers such as multi-core pro-
cessors, which will limit the scale of calculation due to 
the limitation of computer memory. When the number of 
threads increases shared memory architecture performs 
worse than than distributed memory clusters, and also have 
lower scalability than MPI clusters. MPI has the obvious 
disadvantage of greater communication due to the mes-
sage passing needed (since nothing is shared). OpenMP 
allows seamless transition between sequential and paral-
lel operations following the fork-join model [153]. CUDA 
(Compute Unified Device Architecture)-aware MPI [17] is 
a potential solution for combining the advantages of MPI 
and GPUs, when the data size (or single node computa-
tion) is too large to fit into the memory/capability of a 
single GPU.

From the point of view of scalability, besides using an 
iterative solver for the equilibrium equations, it is better 
to use a separable convex approximation of the objec-
tive function, like in the MMA algorithm [188, 189], for 
large-scale optimization on a cluster. This is due to both 
its lower memory requirements and ease of paralleliza-
tion [63].
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3  Approximate Re‑analysis 
and Reduced‑order Modeling

As we have discussed in the main introduction, the goal 
of accelerating large-scale topology optimization is alle-
viating overall computational cost without sacrificing 
problem resolution [2, 177]. In this context, approximate 
reanalysis is the oldest approach in design optimization, 
where we efficiently and rapidly analyze the structure 
after any change in its design, i.e. topology (in the context 
of this paper). The holy grail of reanalysis in mechanics 
and design is to (approximately) determine the structural 
response (displacements, forces, stresses, strains, etc) after 
any such change, using the initial response of the structure 
i.e. without solving the high-fidelity model equations. In 
reality, the high-fidelity model need to be occasionally 
resolved over the course of the optimization, but only over 
a few iterations. The first major paper on reanalysis in the 
context of topology optimization was inarguably the semi-
nal work of Kirsch and Papalambros [109] in 2001, using 
the Combined Approximations (CA) method [103, 105, 
106, 108, 174]. This paper has spawned several different 
contributions by various authors over the last two decades, 
using a variety of strategies.

Approximate reanalysis hinges on reusing the Cholesky 
factorization for a series of consecutive iterations (for a 
direct solver) usually based on a preset error criterion; and 
Krylov subspace methods [9, 203] for Iterative solvers. 
Some key references in this regard are [10, 12, 90, 124, 245]. 
Krylov subspace solvers have low memory requirement and 
have good scalability for parallel computing [13], but they 
need a large number of iterations to converge. Their perfor-
mance (when using the popular PCG) depends on the qual-
ity of the pre-conditioner used, such as Jacobi, incomplete 
Cholesky factorization, multi-grid etc. Krylov subspace 
recycling is another very useful numerical technique used 
to improve convergence in iterative solvers by reusing the 
data generated during previously-performed exact solves. To 
our best knowledge, the most influential work in this context 
is that of [203] who used an iterative MINRES (minimum 
residual) method for efficient Krylov subspace recycling and 
applied it to compliance minimization. [7] used multi-grid 
pre-conditioners generated at selected iterations and subse-
quently reused, along with Krylov subspace recycling. [38] 
proposed a three-stage hybrid Proper Orthogonal Decom-
position (POD)-based procedure to speed up the solution: 
direct solution over the first few POD basis vectors (obtained 
from the Krylov vectors), iterative solution over the full aug-
menting space using the augmented CG algorithm, and itera-
tive solution over the full space using the augmented PCG.

Reanalysis can thus predict the current topology using 
the solutions of previous iterations. The central theme in 

successfully using inexact solutions within the optimiza-
tion procedure, is the paradigm of construction and updat-
ing/enrichment of a reduced basis � during the course of 
the procedure, e.g. Galerkin projection [19]. This basis 
� = [�1 ⋯�M] is obtained using an effective set of M solu-
tion vectors (displacement field vectors) [U1 ⋯UM] . � is 
then used to approximate U as follows:

The equilibrium equation (3) is projected onto � (which 
is usually of much lower dimension) yielding a reduced 
system:

where

The approximate solution of the full-scale system may then 
be recovered by a linear combination of the basis vectors.

A good ROM (i.e. basis � ) can approximate the exact 
solution of (3), at a drastically reduced computational cost. 
Previous and ongoing developments in statistical and phys-
ics-based reduced-order modeling ensure that this branch of 
research gets special attention. These have gained significant 
interest in recent years in various domains, be it in analysis 
[14, 99, 111] or optimization [46, 58, 59, 74, 161] with sig-
nificant contributions to nonlinear structural topology opti-
mization [66, 217] and material characterization [140, 218].

There are several ways of obtaining � within the sub-
space spanned by M previously computed solutions [44], 
for example: 

1. a simple collection of M solution vectors [U1 ⋯UM]

2. an ortho-normalized basis, e.g., QR decomposition
3. Principal Components Analysis (PCA) or POD

Several approaches of this kind have been proposed. The 
Combined Approximations (CA) method has been a fixture 
in the early literature, right since [109] where the reduced 
basis vectors were obtained from the binomial series expan-
sion, with higher order terms incorporated depending on 
accuracy needed. The key advantage of CA is combining 
both local approximations as well as global approxima-
tions [109], and it has been applied to linear reanalysis as 
well as eigenvalue problems [107]. [9] also used reanaly-
sis with the CA method, presented the notion of consist-
ent sensitivities (for reanalysis) and applied his approach to 
2D and 3D compliance minimization problems, reporting 
a speed up of 3 to 5 for 3D problems. [31] applied the CA 
to topology optimization for repeated eigenvalue problem 
analysis. For eigenvalue problems, CA is reportedly useful 
only for obtaining lower mode shapes accurately, therefore 

(5)U ≈ Ũ = ��

(6)KU = F ⟶ k� = f

(7)k = �TK�, f = �TF
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[239] applied reanalysis using a modified version of CA for 
eigenvalue problems, the Block Combined Approximations 
with Shifting (BCAS) method for repeated solutions of the 
eigenvalue problem in the mode acceleration method. [183] 
also used the BCAS and proposed an indicator for control-
ing the reanalysis. The CA was also used for reanalysis by 
[12] for robust topology optimization (i.e. manufacturing 
uncertainty tolerant designs) and applied to compliant mech-
anism design. [83] used reanalysis in topology optimization 
for dynamic problems using multiple dynamic condensa-
tion model by combining mass orthogonalization and Ray-
leigh–Ritz analysis. [230, 231] used a variety of techniques, 
such as mode superposition, Ritz and quasi-static Ritz vec-
tors for topology optimization problems involving frequency 
response.

[230] used eigenmodes and Ritz vectors for a reduced 
basis to approximate the vibration response in topology 
optimization.

In 1999, [104] had proposed Gram–Schmidt orthonor-
malization to generate � . [70, 71] extended the approach 
of [109] and used Gram–Schmidt orthonormalization for 
the on the fly construction of � based on the violation of an 
error residual �rb , against a user-specified tolerance ( �Tol).

He also added a term to “correct” the sensitivities when 
using the approximate solution, similar to [9]. Despite their 
accuracy and efficiency, which was demonstrated for a vari-
ety of 2D and 3D compliance minimization problems prob-
lems, two drawbacks appeared to remain: 

1. The limiting effect of the numerical instability of succes-
sive Gram–Schmidt orthogonalizations in high-dimen-
sional spaces.

2. The prohibitive high cost of the “updating” phase of 
the reduced basis, requiring a large number of full-field 
solutions of the linear system.

Surprisingly, none of the previously mentioned ROMs 
considered a reduced basis obtained by Principal Compo-
nents Analysis (PCA), which is known to provide a math-
ematically optimal basis for a given set of data.

Xia, Breitkopf and others [216, 218] were the first to 
bring PCA into topology optimization. They used a non-
intrusive ROM to alleviate the cost of repeated RVE (Rep-
resentative Volume Element) computations in the FE2 analy-
sis during multi-scale level-set topological optimization for 
minimum compliance. � extracted using PCA and the ROM 
was built using Diffuse Approximation [34, 142], in an on-
line manner: built during the first iteration and updated in 
the following iterations.

(8)�2
rb
=

∥ KUrb − F ∥2

∥ F ∥2
=

∥ K(𝜱𝜶 + ū) − F ∥2

∥ F ∥2

[44] performed reanalysis by combining a Singular 
Value Decomposition (SVD)-based ROM (at the start of 
the topology optimization procedure) and Krylov sub-
space methods with ROM-recycling (towards the end). 
[8] resolved the second limitation by exploiting specific 
characteristics of a multi-grid preconditioned conjugate 
gradients (MGCG) solver. However, they obtained the 
sequential solution by solving the linear system. [174] 
combined approximate reanalysis technique (based on 
CA) with Sequential Piecewise Linear Programming 
(SPLP) [72], due to the method’s demonstrated superior-
ity over Sequential Linear Programming (SLP) as well as 
Convex Separable Approximations (CSA) [189], for use 
in problems involving geometric nonlinearities.

[223] extended the approach of [70, 109] to topology 
optimization (Algorithm 4) and with basis construction 
using Principal Components Analysis and mono-fidelity 
data. [224] then combined their previous work with multi-
grid methods, using successive resolutions of variable-
fidelity solutions of successive approximations to the 
equilibrium equation (thus at a lower cost), all within 
the optimization algorithm. The main challenge in the 
PCA-based approach is the relatively substantial number 
of high-fidelity solutions needed leading to a potentially 
high computational cost, with the addition of the multi-
grid (MG) solver a moderate enhancement to the previous 
work. For this, criteria and transition schemes between the 
low and high-fidelity models were established. However, 
memory-efficient schemes are still needed to perform the 
SVD incrementally. Also using an adaptive stopping cri-
terion would have conceivably improved the performance 
further. 
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A key area of future work here would be using either 
incremental SVD (or even randomized SVD [20]) in place of 
simply adding or subtracting snapshots while generating the 
basis � (Algorithm 5 above [156]). Incremental SVD goes 
further than Algorithm 4 by using adaptive snapshot selec-
tion, on-the-fly snapshot selection and on-the-fly truncation. 
Adaptive snapshot selection can identify the optimization 
iterations at which the equilibrium equation must be solved. 
On-the-fly snapshot selection can pre-evaluate the poten-
tial contribution of a displacement vector snapshot before 
modifying � , while on-the-fly truncation can limit the size 
of � during adaptations. In Algorithm 2, �trunc is the thresh-
old on singular value truncation error, �orth is a threshold on 
�(∶, 1)T�(∶, end) , �in and �out are variables used to track 
the loss of information due to truncation during on-the-fly 
basis updation.

4  Multi‑grid Methods

The challenge of reducing computational effort in topology 
optimization has been approached from different angles, 
such as Approximate Reanalysis (previous section). Multi-
grid methods (MG) where use multiple computational scales 
i.e. resolutions, and bypass the computational cost associ-
ated with performing all solutions of the equilibrium equa-
tion (3) (i.e. all iterations) on a high resolution mesh. These 
are state-of-the-art recursive and iterative numerical meth-
ods for the large-scale linear systems arising in partial differ-
ential equations stemming from various physical problems 

[35, 79, 134, 198], that have proved to be the most effective 
techniques today from the points of view of accuracy and 
efficiency [8].

There are two main types of MG methods [176], geo-
metric multigrid (GMG) and algebraic multigrid (AMG) 
methods, for solving linear systems. AMG methods are in 
turn of two different types: CF (Coarse-Fine) AMGs and 
SA (Smooth Aggregation) AMGs. MG methods use Jacobi, 
Gauss-Seidel, or successive over/under relaxation methods 
to smooth out high-frequency errors, and accelerate con-
vergence by distributing the residual and correction vectors 
across different resolutions/levels through prolongation and 
restriction operators [128]. As a result, The MG solver’s 
computational workload increases linearly with the num-
ber of DOF, and the speed of convergence is independent 
of the grid resolution as a result of three important steps: 
pre-smoothing, coarse-grid correction and post-smoothing.

In order to better reflect on the applications of MG meth-
ods in topology optimization, i.e. gaining rapidly a large 
number of high-fidelity solutions at a relative low computa-
tional cost for updating the basis using a MG solver, several 
crucial steps of the MG method must be pre-defined: 

1. Discretization scheme This step requires that the dis-
crete form of the differential equation must be numeri-
cally stable so that the relaxation method can effectively 
smooth out the high-frequency error, in other words, the 
FE equilibrium equation (3) must provide a numerical-
stable iterative solution. Fortunately, equation (3) is 
itself a stable discrete form of the corresponding dif-
ferential equations.

2. Relaxation method The general principle is that the 
residual is supposed to become fully smooth before it 
is projected (restricted) from a fine grid on to a coarse 
grid. The relaxation method can use either Gauss–Sei-
del iterations, weighted Jacobi iterations, CG etc, with a 
small number of iterations (2–3 are usually enough) on 
each mesh level. This can rapidly eliminate the high-fre-
quency error and then the rest of the low-frequency error 
will dominate and couple with the high-frequency error, 
meaning that too many relaxations are unnecessary. It is 
also important to note that the choice of the particular 
relaxation method needs to be sufficiently robust in order 
to avoid high-frequency oscillations during the iteration.

3. Restriction and Prolongation The smoothed residual 
is transferred from the finest grid to the coarsest grid 
step-by-step using a series of restriction operators cor-
responding to each individual mesh level. Once we reach 
the coarsest mesh, the residual equations can be directly 
solved, and then (like during the restriction phase), the 
corresponding correction is transferred from the coars-
est grid to the finest grid step-by-step through a series 
of prolongation operators corresponding to each level. 
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Usually, restriction operator and prolongation operator 
on same grid are transposed with each other and their 
constructions could refer to literature [224]. In short, 
restriction transfers the finer-grid residual to a coarser-
gird and prolongation transfers each coarser-grid correc-
tion to the finer-grid.

4. Mesh coarsening Proceeding from the modularity and 
portability of the program design, standard mesh coars-
ening strategy is generally used (step size is doubled 
along all directions). Especially for some FEM-based 
topology optimization problems, standard rectangular 
elements are naturally convenient for mesh coarsening, 
which in some way can be viewed as GMG, based on 
a true geometric grid background. With the coarsening 
of the mesh, each level of restriction and prolongation 
matrices are constructed and stored in advance. For the 
coefficient matrices at each layer of coarse grid, a typi-
cal symmetric positive definite operator is the Galerkin 
projection approximation. The global stiffness matrix in 
equation (3) is exactly symmetric positive definite, and 
thus the Galerkin approximation maintain the property 
of symmetric positive definiteness at each grid level.

5. Nested iteration Generally, “V” or “W” cycles are used. 
“W” cycles are more robust but relatively expensive. 
When the number of grid layer is small, “V” cycles 
can replace “W” cycle, with small computation and the 
same stability. In addition, there are “S cycles” [42], “F 
cycles” [135], etc., whose performances lie in between.

These are the basic steps of the MG method, among them, 
fine-grid relaxation, coarse-grid correction and nested itera-
tion form the backbone of MG. Fine-grid relaxation takes 
care of eliminating high-frequency errors, coarse-grid cor-
rection eliminates low-frequency smoothed errors, while 
nested iterations connecting all levels by using restriction 
operators and prolongation operators to solve the same prob-
lem. The basic idea of the MG method can be interpreted as 
simply redistributing the same problem on a series of grids 
of different sizes (multiple-resolutions).

Assume total m levels of grid 𝛺1 ⊃ 𝛺2 ⊃ ⋯ ⊃ 𝛺m : A 
typical “V” cycle MG iteration of recursive form is given 
in Algorithm 6: 

In ROM-based topology optimization, criteria and transi-
tion schemes between the low and high-fidelity POD snap-
shots information has then been established by using multi-
ple grid resolutions of to break down the size of the problem.

The literature reveals the popularity of MG methods 
in topology optimization. [102] was the first to officially 
propose multi-resolution multi-scale topology optimiza-
tion (MTOP) using wavelets to parameterize � (similar to 
the regularization technique in the MOLE method [157]) 
and progressive refinement of the grid during the optimiza-
tion. [55] firstly presented a partially reduced SQP approach 
which uses multigrid methods for the solution of the lin-
earized model equation, which is applied well in the shape 
optimization of turbine blades. Secondly, [55] and [131] 
both gave a new nonlinear interior point strategy for the 
treatment of the arising inequality conditions profitably cou-
pled with a so-called simultaneous multigrid strategy for the 
solution of the quadratic subproblems in a SQP-algorithm, 
which makes for the equilibrium equation in elastic struc-
ture topology optimization is simultaneously solved only 
once together with the overall optimization problem lead-
ing to a significant reduction of computational complexity. 
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[100] then extended their previous work to adaptive wave-
let-Galerkin analysis for multi-scale topology optimization. 
[181] proposed a multi-resolution approach where the opti-
mization was first performed on a coarse (low resolution) 
grid, followed by adaptive refinement along the solid-void 
interface. The goal was to obtain a high-resolution solution 
at relatively low computational cost. The issue with this was 
that the solution space for the design problem was probably 
artificially limited by using the coarse grid at the beginning. 
[213] describes topology optimization of electromagnetic 
systems using the multigrid method which works effec-
tively as a fast linear solver. [235] proposed a methodology 
based on multigrid scheme used to accelerate the cellular 
automata design algorithm by coupling the iterations on the 
finest grid with the iterations of the correction solution on 
the coarse grids, which is demonstrated to be a powerful 
tool for solving topology optimization problems compared 
to other algorithms based on finite element analysis. [143, 
144] proposed another multi-resolution topology optimiza-
tion scheme using different length scales for the density dis-
tribution � the displacements U.

Very recently [118] demonstrated a triple acceleration 
method using a combination of a multilevel mesh, an initial-
value-based PCG, and local-updating. Most recently [209] 
proposed a new high-efficiency iso-geometric topology opti-
mization (HITO), where the powerful multigrid conjugate 
gradient method (MGCG) [8] was used for accelerating solv-
ing the large-scale linear system (i.e. equilibrium equation), 
resulting in a significant improvement in computational 
efficiency.

While MG clearly accelerates the solution of the large-
scale linear system arising in structural topology optimiza-
tion and significantly reduce computational costs, very few 
researchers appear to have investigated the effect of coupling 
a ROM with MG, which should conceivably improve the 
performance further. This was studied by [224] who coupled 
their previous “on-the-fly” POD based AR [224] with MG 
and demonstrated the performance improvements on compli-
ance minimization as well as compliant mechanism design. 
The improvements were admittedly modest in comparison to 
a vanilla MG, but this could have been significantly better if 
they had used an adaptive stopping criterion as well.

5  Iso‑geometric Topology Optimization

In most engineering simulations, pre-processing or geomet-
ric modeling takes up significant computational effort and 
time, especially for complex shapes. To this end, most of 
the commercial numerical simulation engineering softwares 
perform a sequential procedure of computer aided design 
(CAD) followed by computer aided engineering (CAE). In 
general, the creation of CAD models takes up the majority 

of the time and effort in the overall simulation. To meet the 
need of today’s complex engineering designs, an integrated 
CAD–CAE can help cope with the complex and simula-
tion- specific geometry creation and automated mesh genera-
tion so as to improve the scalability of products in industry. 
Iso-Geometric analysis (IGA) was introduced by Hughes 
and his research group in early 2000 [93, 200] in order to 
overcome the shortcomings of the popular CAE methods, 
in particular FEA, and to integrate CAD–CAE for better 
numerical precision.

The following problems typically encountered by FEA 
were addressed by IGA: 

1. The finite element mesh is unable to capture the exact 
structural geometry, which will considerably lower the 
numerical precision

2. Lower-order continuity between the neighboring finite 
elements, even with the higher-order elements.

The main idea behind IGA is creating basis functions 
that can concurrently form the complex structural geom-
etry (boundaries and edges), and also obtain the problem 
solution of primary and secondary unknowns in a finite 
dimensional discretized space. IGA uses several basis func-
tions, for example, B-splines [51], Non-Uniform Rational 
B-Splines (NURBS) [195], and recently developed functions 
like T-splines [22].

In IGA, we consider the whole domain to be sub-divided 
into multiple patches, on which basis functions like NURBS 
are defined. For an analogy with standard FEA, a patch may 
be considered as an element where the shape functions for 
the primary unknowns are defined. The global characteristic 
matrix, for e.g. the stiffness matrix for elastic deformable 
bodies may be evaluated by adopting a similar assembly 
strategy as in FEA:

Let us consider knot vectors � = {�0, �1, ...�i, ...�n+p+1 } 
and � = {�0, �1, ...�j, ...�m+q+1 }, a sequence of non-decreasing 
real numbers used to define the parametric coordinate space 
in 2D [200]. Here, �i and �j represent the ith and jth knot; p 
and q are the polynomial order, n and m are the number of 
basis functions used to construct a patch in isoparametric 
coordinates. The knot vectors are used to define the basis 
functions for creating geometry and evaluating unknowns.

Formulating the NURBS function for a typical 2D patch, 
the approximated primary unknown, i.e. the displacement 
vector �p of the patch can be written as [51, 200]:

where �i,j are the displacement functions defined at 
( n + 1) × (m + 1) control points for the patch. Bi,j(�, �) are 
the 2D NURBS basis function defined to both create the 

(9)�p(�, �) =

n
∑

i=0

m
∑

j=0

Bi,j(�, �)�
p,q

i,j
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geometry as well as evaluate the displacement field in para-
metric coordinates (�, �) as:

where Np

i
(�) and Nq

j
(�) are the normalized B-spline basis 

functions of polynomial degree p and q, respectively, and wi,j 
are the weight factors associated with the normalized func-
tions. NURBS basis are derived from the standard B-splines 
by using these weights for more numerical precision. The 
ith B-spline basis function of polynomial degree p, is defined 
for p = 0 as

and for p ≥ 1 as

Similar to the displacement field, the geometries can be cre-
ated using NURBS basis functions [84]. For representing the 
patch geometry in isoparametric coordinates �(�, �) using 2D 
NURBS, the following equation is used:

Classical variational principles can be used to derive the 
characteristic matrix of a patch. For example, by formulat-
ing the energy principle on an elastic deformable body acted 
upon by a volumetric body force, b and a surface traction 
force, T we can write:

where VP is the volume and � P is the surface boundary of 
a patch P.

By substituting �� = B�� and using the material constitu-
tive matrix C in Eq. 15, the stiffness matrix of a patch P may 
be obtained as:

where B is the strain-displacement matrix of the differential 
operator of the basis functions. Once the stiffness matrices 
of individual patches are obtained, assembly is performed to 
obtain the global stiffness matrix of the domain.

Recently, researchers have tried to exploit the features 
of IGA to create optimal structural designs [82, 121, 173]. 
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(14)∫VP

��T ∶ �dV − ∫VP

��TbdV − ∫
� P
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[175] was the first contribution to IGA-based topology 
optimization (ITO) using trimmed spline basis functions. 
The control point based density allocation with the popular 
solid isotropic material penalization (SIMP) method was 
used by [159, 229]. A typical implementation of the mini-
mum compliance problem using IGA-based SIMP method 
is shown in Algorithm 7.

In IGA, as discussed above, NURBS are applied to 
construct the complex structural geometry and boundaries 
and also conform to higher order continuities of the shape 
functions at the finite element nodes. The initial works 
on ITO used splines to present the structural boundaries 
[159, 175]. Researchers have reported the advantages of 
IGA coupled with LSM for getting 0/1 designs for com-
plex materials and structures [210, 228]. An isogeometric 
structural optimization method for the topology optimiza-
tion of structures using bi-directional evolutionary struc-
tural optimization (BESO) method was adopted in [210]. 
Also, the parameterized level set method (LSM) was inte-
grated with IGA to get topologically optimized materials 
and structures in [207, 208].

IGA-based level-set topology optimization has been 
applied to material and structure level designs, including 
the optimization of shell structures [85–87, 97, 237], flexo-
electric materials [80] and material microstructures [94]. 
Multi-objective topology optimization has been successfully 
implemented for plane elasticity problems by IGA-based 
LSM topology optimization framework [94]. [52] developed 
a phase field model with the IGA to solve the compliance 
minimization problem.
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IGA-based moving morphable component (MMC) topol-
ogy optimization methods were developed for compliance 
or volume minimization problems in [89, 225]. [67] recently 
presented a SIMP-based ITO method using density distri-
bution function adopted from the concept of parameterized 
level set functions. 

Algorithm 8 Isogeometric Topology Optimization
1: procedure ITO-SIMP
2: System parameters (volume fraction, filter, etc)
3: Initial FE related operations (mesh parameters, load

definitions, etc)
4: Initialize optimization procedure and densities ρ
5: Define basis functions using (10) and
6: Bi,j (ξ, η), i = 0 · · ·n, j = 0 · · ·m
7: while error ≥ tol do
8: Define (n+ 1)× (m+ 1) control points
9: Patch geometry with control points and (12)
10: Define ρ at control points
11: Define ui,j at control points using Bi,j

12: Evaluate patch KP (14)
13: Standard assembly of global K
14: Solve KU = F
15: up for all patches (9)
16: Objective function (e.g. c(ρ))
17: Sensitivity analysis and filtering
18: Applying optimal solution technique
19: Update ρ and calculate error
20: if error ≥ tol then
21: Re-initialize domain

In the aforementioned discussion about the development 
of ITO methods, the popular topology optimization methods 
and IGA have been discussed, from the micro-structural or 
material description to the macro-structural models. Next, 
we provide a brief description about the applications of ITO 
methods to complex set of problems. The dynamic classes of 
problems in topology optimization have been considered for 
designing functionally graded materials with optimal eigen-
frequencies [190], to characterize free vibration [191], and 
for fast explicit dynamic solver development [69].

Compliant mechanism design has also been attempted 
using ITO by [120], however, the framework needs to be 
tested on complex designs. Multi-resolution topology 
optimization has also been studied using IGA and various 
classes of problems, including plane stress, compliant mech-
anism and heat conduction [119, 211]. Multi-scale isogeo-
metric topology optimization using NURBS basis has been 
implemented for the design of lattice structures [233] and 
layered beam designs [192].

[212] applied ITO to the multi-material distribution and 
functional graded materials. Since most of the ITO works 
are done at the structural level, the optimization of meta-
materials has recently started picking up. Very recently, 
IGA-based optimization has been applied to the design 
of smoothed petal auxetic material structures [68], and a 

number of works are devoted to the optimization of 2D and 
3D auxetic metamaterials using ITO [68], and architected 
materials [145, 227].

An obvious extension is using AR with a PCA-based 
ROM for ITO, given that the computational cost can scale 
up severely when using ITO. This, in our opinion, should be 
the subject of future research by interested groups.

6  Emerging Methods

Over the last few decades, it is clear that the science of com-
putational mechanics has moved from insisting on classical 
mechanical models with rigorous mathematical development 
to accepting Soft Computing (SC) heuristic approaches and 
finding statistically significant patterns in material behavio-
ral data. This is for good reason, these methods are usually 
very scalable as well as reliable. Some important examples 
are Genetic Algorithms/GAs (meta-heuristics), Machine 
Learning (ML), Artificial Neural networks (ANNs), Fuzzy 
Logic (FL) [96]. Note that some of the methods described 
in the section on AR could conceivably be included in this 
section, especially the ones involving PCA since these are 
classified under ML techniques. Deep learning is a subset of 
ML stemming from bio-inspired artificial neural networks 
(ANNs). In this section, we mostly focus on the applications 
of NNs, Deep Learning (DL) and Data-Driven methods.

Shallow NNs were the precursors to Deep Learning (DL) 
for training/testing data before computing power increased 
to its current level. Applications of shallow NNs in problems 
of structural optimization may be found in the available lit-
erature. [4] and [152] were the first authors to successfully 
integrate shallow NNs into structural optimization. [151] 
also used a shallow NN model in reliability based structural 
optimization.

In the context of ML, [127] used K-means clustering to 
reduce the dimensionality of the design domain in meta-
modeling based topology optimization.

Open-source deep learning frameworks like Theano, Ten-
sorflow and Keras promoted the application of DL in various 
fields.The use of NNs and DL for topology optimization is 
relatively new but it has gained traction in the past few years. 
[16] first proposed a heuristic approach for topology optimi-
zation where analytical sensitivities are difficult to obtain, 
by substituting approximate sensitivities using a trained 
ANN. An older (but slowly gaining popularity) branch of 
research appears to follow the so-called data-driven para-
digm instead of replying on computationally demanding 
physics-based topology optimization using constitutive mod-
els. The theoretical ideal of this approach is that by using 
a sufficiently broad dataset that spans variations in loads, 
boundary conditions, material models, objective functions 
and design domains, one can train a regressor (given enough 
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degrees of freedom) to construct a mapping from the input 
conditions of a given problem to its corresponding optimal 
topology [21]. [30] discussed the challenges associated with 
the data-driven techniques like inaccurate and sub-optimal 
structural predictions. [197] proposed a data-driven tech-
nique using PCA and a fully connected NN to learn the map-
ping between loading configurations and optimal topologies. 
[196] applied a critical instant analysis method to solve the 
optimization problem under force uncertainty.

Typical modifications of the ANN include convolutional 
neural networks (CNNs), recurrent neural networks (RNNs), 
auto encoders (AEs) and variational auto encoders (VAEs). 
Convolution operation in ANNs is a cross-correlation 
between input data and a convolutional filter, represented in 
terms of a weighting matrix. The convolution filter strides 
on the input image to produce an output feature map as out-
put. [179] was likely the first to apply a deep convolutional 
encoder–decoder architecture to 2D topology optimization 
by framing it as an image segmentation problem, and train-
ing a meta-model to pixel-wise predict the final image ( � ). 
The proposed model had an hourglass shape with three lay-
ers: encoder network (6 layers), decoder network (mirror of 
the encoder network), and a final pixel-wise classification 
network. The model’s input was two grayscale images; the 
density distribution �i obtained after the last topology opti-
mization iteration, and the last performed update (gradient) 
of the densities �i − �i−1 . Classical SIMP was used for the 
initial iterations yielding a non-binary distribution; the NN 
was then used for segmentation of the resulting image to 
obtain a 0/1 solution.The model’s output (final predicted 
structure) was a grayscale image with the same grid resolu-
tion. A major issue was that their approach only considered 
the density distribution ( � and its gradient as model training 
inputs, and ignored boundary conditions and key optimi-
zation parameters. Also the CNN could not predict a new 
structure that did not already exist in the training datasets.

Among various deep learning methods, generative mod-
els such as the Generative Adversarial Network (GAN), 
approximate a probability density function of the given 
data to try and learn the true input data distribution; and 
are widely used in computational physics. [234] used super-
vised learning to learn a target function for � from a training 
dataset, including boundary conditions and other parame-
ters paired with the corresponding optimal topologies. A 
two-stage refinement was performed using GANs with 
variational auto encoders (VAE) to non-iteratively predict a 
near-optimal structure. The inputs in the form of loading and 
displacement boundary conditions were provided to their 
generative networks. The modified VAE could efficiently 
predict the optimized topology but it was difficult to train the 
neural network to predict a very detailed structure.

[114] proposed a Moving Morphable Components 
(MMC) explicit framework for generating training sets and 

used support vector regression (SVR) along with K-nearest-
neighbors (KNN) ML models for mapping the optimal lay-
out/topology and the external loading, in a bid to obtain “real 
time” design topology optimization. [115] also presented a 
DL-based non-iterative topology optimizer for conductive 
heat transfer structures, trained on black-and-white density 
distributions and generate near-optimal topologies. They 
used a two-stage hierarchical prediction-refinement pipe-
line consisting of a GAN for low resolution topology, cou-
pled with a super resolution generative adversarial network 
(SRGAN) for a high resolution topology solution. CWGANs 
have the advantage of requiring limited training datasets that 
pre-satisfy the optimization conditions.

[163] used conditional Wasserstein generative adversarial 
networks (CWGAN) consisting of two deep CNNs: a gen-
erator and a discriminator, to replace conventional topology 
optimization while drastically reducing computationally 
cost. [96] integrated Deep Belief Networks (DBNs) into 
SIMP topology optimization and was able to drastically 
reduce the number of optimization iterations needed for the 
final solution. The striking feature of their methodology was 
that their model was only trained once using the topologies 
obtained for a simple 2D test minimum compliance test case 
of fixed size and with a fixed set of boundary and loading 
conditions, but the trained DBN was able to predict topolo-
gies for any 2D or 3D test case, different boundary/loading 
conditions and problem size. This performance gives us a 
glimpse into the full potential of AI if properly applied in 
this field.

ML and NN approaches probably give the best compu-
tational performance when sufficient computing power is 
available. The advantage of being able to side step or reduce 
the physics behind the system being optimized and work on 
data can allow for additional developments in soft comput-
ing to permeate into field of topology optimization, poten-
tially allowing for real time structural design.

7  Conclusions

The challenges inherent in the admittedly computation-
heavy large-scale topology optimization continue to hinder 
its widespread industrial use in this day and age, despite the 
availability of both computing power and resources, numeri-
cal methods, soft computing algorithms as well as manufac-
turing methods that can take full advantage of the methodol-
ogy. The eventual goal of accelerating large-scale topology 
optimization would be real-time design obtaining directly 
manufacturable solutions, without sacrificing grid resolu-
tion. With that in mind, this paper has attempted to provide 
an honest and critical appraisal of developments in various 
areas related to attenuating these issues, such as High Per-
formance Computing, AR, Multi-Grid methods, multi-level 



4564 S. Mukherjee et al.

1 3

Reduced Order Models, Isogeometric Topology Optimiza-
tion (ITO) and Deep Learning. Each approach comes with its 
own set of advantages and disadvantages, as we have seen. A 
judicious combination of the mentioned approaches, as is the 
case with some of the newest contributions in the literature, 
has been shown to yield superior acceleration compared 
with using them in standalone fashion. High-Performance 
Computing is an evolving field, and using both GPUs as 
well as CPUs with CUDA-aware MPI should be investigated 
for memory-intensive topology optimization problems. The 
combination of Multi-Grid methods and Reanalysis needs 
more investigation as we believe that this will reap the high-
est dividends out of all of the other approaches. Also with 
the rising popularity of Iso-Geometric Analysis, a potential 
area of research could be the use of Approximate Reanalysis 
and Machine/Deep Learning methods in ITO.
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