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Abstract
Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the sin-
gle-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective 
metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-
objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, 
multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, suc-
cess history-based adaptive multi-objective differential evolution, success history–based adaptive multi-objective differential 
evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based 
incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolu-
tionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algo-
rithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical 
trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to 
tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms 
in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation 
algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work 
assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.

1 Introduction

Truss optimisation has become a popular research topic 
for decades as there have been over hundreds of publica-
tions each year recently. The research in truss optimisation 
has several aspects of studies such as problem formulation 
and development of optimisation algorithms. The optimi-
sation problem can be categorised as single-objective and 

multi-objective optimisation. Furthermore, the special cases 
of multi-objective truss optimisation having more than three 
objective functions being assigned are called many-objective 
truss design [1]. Traditional design objectives in literature 
are mass, displacement, compliance, natural frequencies, 
and frequency response function. Design variables, on the 
other hand, can be topological, shape and sizing optimisa-
tion. Topology design variables determine truss initial layout 
while shape design parameters specify nodal positions. Siz-
ing variables will assign the truss elements’ cross-sectional 
areas. Design constraints usually include stress, displace-
ment, bifurcation buckling, and natural frequencies. Such 
constraints often lead to non-convex feasible regions, which 
means some gradient-based optimisers may struggle to find 
the optima, as a result, metaheuristics (MHs) are used as 
alternative optimisation solvers due to their high flexibility 
in coding and implementing.

The use of MHs is a more popular choice for truss opti-
misation because of their advantages in a derivative-free 
feature, robustness, simplicity to understand, and high 
flexibility in coding and implementation. One of the most 
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outstanding features is that MHs can explore a Pareto front 
of a multi-objective optimisation within one optimisation 
run. Apart from that, they can deal with a wide range of 
design variables and functions although they may be less 
efficient in some cases [2–8]. Truss design with discrete 
shape and sizing variables, which is more practical, is pos-
sible with using MHs. They are capable of solving design 
problems with concurrent topology, shape and sizing design 
variables while some non-differentiable constraints can be 
imposed [9].

The majority of research work on truss optimisation 
focused on single-objective design with most if not all 
assigning structural mass as a design objective while the 
constraints are set for safety requirements of the truss under 
several loading conditions. A large number of metaheuristics 
have been implemented on such a constrained design prob-
lem. In the early days, genetic algorithms (GA) [10, 11] and 
simulated annealing [12] were arguably the most popularly 
used MH. Then, it came to the era of particle swarm opti-
misation [13] and differential evolution (DE) [14]. Up to the 
present time, there has been a great number of algorithms 
being developed and used. Those include teaching learning 
based optimisation [15], artificial bee colony algorithm [16], 
charged system search [17], firefly algorithm [18], collid-
ing body optimisation algorithm [19], bat algorithm [20], 
krill herd algorithm [21], ray optimisation [22], modified 
symbiotic organisms search [23], hybridised passing vehi-
cle search and simulated annealing [24], and the list goes 
on. Meanwhile, Pholdee and Bureerat [25] bridged the gap 
between the fields of metaheuristics in computer science 
and truss optimisation by examining the performance of top 
self-adaptive metaheuristics mostly the winner of the annual 
completion at the congress on evolutionary computation 
(CEC competitions). It was found that those self-adaptive 
MHs are powerful for truss optimisation. The comparative 
performance of new algorithms should be studied as new 
MHs have been developed almost every month. That means 
new powerful algorithms could be noticeable.

For multi-objective truss optimisation, there has been 
much less research work compared to the single-objective 
cases. Nevertheless, muti-objective design is advantageous 
as more design objective can be added to the design prob-
lem. In real applications, it is common that designers are 
interested in optimising several design criteria so that a set 
of Pareto optimal solutions can be obtained for further deci-
sion making. Moreover, in cases of structural reliability opti-
misation, it is more effective to pose the design problem as 
multi-objective optimisation with a reliability index being 
one of the objective functions [26–28]. With the capability 
of solving multi-objective optimisation within one run and 
less time-consuming function evaluations of truss optimisa-
tion, MHs are good choices to be used for multi-objective 
optimisation of trusses.

Simultaneous topology, shape and sizing optimisation with 
many objective functions for static and dynamic applications 
of the structure was presented in [9]. The objective func-
tions include mass, compliance, natural frequency, frequency 
response function and vibration force transmission. There have 
been a number of multi-objective metaheuristics (MOMHs) 
implemented on multi-objective truss optimisation. Those 
include: multi-objective evolutionary algorithms using an 
approximate gradient [29], hybridisation of real-code popula-
tion-based incremental learning and differential evolution [30], 
hybrid real-code population-based incremental learning and 
approximate gradients [31], multi-objective adaptive symbiotic 
organisms search [32], multi-objective modified heat transfer 
search [33]. The comparative study of several MOMHs for 
truss design has been made e.g. in [27], however, as there have 
been a great number of new MOMHs recently, the compara-
tive performance of them for truss design should be studied so 
as to update the knowledge in the field.

This paper presents comparative performance studies of 
MOMHs for truss optimisation. The design problem is posed 
to optimise structural mass and compliance subject to stress 
constraints. Eight traditional truss benchmark structures are 
used to create the test problems. MOMHs including: multi-
objective ant lion optimiser (MALO) [34], multi-objective 
dragonfly algorithm (MODA) [35], multi-objective grasshop-
per optimisation algorithm (MOGOA) [36], multi-objective 
grey wolf optimiser (MOGWO) [37], multi-objective multi-
verse optimisation (MOMVO) [38], multi-objective water 
cycle algorithm (MOWCA) [39], multi-objective Salp swarm 
algorithm (MSSA) [40], success history-based adaptive multi-
objective differential evolution (SHAMODE) [28], success 
history-based adaptive multi-objective differential evolution 
with whale optimisation (SHAMODE-WO) [28], non-domi-
nated sorting genetic algorithm II (NSGA-II) [41], hybridisa-
tion of real-code population-based incremental learning and 
differential evolution (RPBILDE) [30], differential evolution 
for multi-objective optimisation (DEMO) [42], multi-objective 
evolutionary algorithm based on decomposition (MOEA/D) 
[43], and unrestricted population size evolutionary multi-
objective optimisation algorithm (UPS-EMOA) [44] are 
used in this investigation while four performance indicators 
are employed. The rest of the paper is organised as follows: 
Sect. 2 presents the truss design problems. The optimisation 
algorithms used in this work are briefly presented in Sect. 3. 
Section 4 discusses and analyses the results. Finally, Sect. 5 
concludes the work and suggest future directions.

2  Optimisation Problems

In this paper, eight truss optimisation problems are gath-
ered from [23, 30]. All the test problems are converted to SI 
unit while some problems are modified, as a result, most of 
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the truss optimisation problems evaluated in this study are 
different from their original problems. We employed eight 
multi-objective truss sizing optimisation problems, 10-bar, 
25-bar, 37-bar, 60-bar, 72-bar, 120-bar, 200-bar, and 942-bar 
evaluated. Structural mass and compliance are assigned as 
objective functions subject to allowable stress constraints. 
The problems are described in Eq. 1 whereas the compliance 
is calculated using Eq. 2. Displacement and loading vectors 
in the equation are employed from finite element analysis.

 where f1 and f2 re structural mass and compliance respec-
tively. �max and �a are maximum stress occurs on the struc-
ture and allowable stress respectively. Material properties 
and allowable stress of all test problems are equally speci-
fied. Density, modulus of elasticity, and allowable stress are 
set as 7850 kg/m3, 200 GPa, and 400 MPa respectively. In 
practice, the size of each member of the structures are usu-
ally discrete design variables due to beam standard sizing, 
therefore, the sizing variables are assigned as being discrete 
in this study. The ground structure of the 10-bar, 25-bar, 
37-bar, 60-bar, 72-bar, 120-bar, 200-bar, and 942-bar struc-
tures are displayed in Figs. 1, 2, 3, 4, 5, 6, 7 and 8 respec-
tively. The 10-bar, 37-bar, 60-bar and 200-bar test problems 
in Fig. 1, 3, 4, and 7 are 2D or plane trusses while the 25-bar, 
72-bar, 120-bar, and 942-bar in Figs. 2, 5, 6, and 8 are 3D 
or space trusses.       

There are grouped design variables in some test prob-
lems, thus, the number of design variables may not equal to 
the number of truss members. The numbers of design vari-
ables of the 10-bar, 25-bar, 37-bar, 60-bar, 72-bar, 120-bar, 
200-bar, and 942-bar problems are 10, 8, 15, 25, 16, 7, 29, 
and 59 respectively.

Four performance metrics, hypervolume (HV), Genera-
tional Distance (GD) [45], Inverted Generational Distance 
(IGD) [46], and Spacing-to-Extent (STE) [23] employed to 
measure the performance of the optimisation algorithms. 
HV is used to measure the spread of a Pareto front while 
STE is ratio between spacing and extent of a front. GD 
and IGD, on the other hand, are used to measure distances 
between an obtained Pareto front and a reference front. The 
reference front can be a true Pareto front of the optimisation 
problem being solved or a non-dominated front where its 
members are not dominated by any non-dominated solution 
obtained from the optimisers being compared.

HV is an area (or hypervolume in cases of having more 
than two objective functions) between a reference point 
and a Pareto front as illustrated in Fig. 2. From Fig. 2, the 
reference point is on the top-right corner of the figure. 

(1)
min

(
f1, f2

)

s.t.�max�a

(2)compliance = u
T
F

Points with the x-marker are solutions in the Pareto front 
(sometimes referred to as non-dominated solutions) while 
the grey-highlighted area between the reference point and 
the Pareto front is the hypervolume of the front. Reference 
points of the test problems used in this study are maximum 
objective functions found from all algorithms and all opti-
misation runs. The more superior front has higher HV or a 
larger area.

For GD and IGD, reference fronts are needed. In fact, the 
original definitions of GD and IGD require the true Pareto 
front of an optimisation problem as a reference front. How-
ever, such a front is not available in this study. The reference 
front of a particular test problem herein is obtained in such 
a way that, having run each algorithm M1 times for all M2 
algorithms, all non-dominated solutions from the obtained 
M1M2 fronts are put together. Then, the non-dominated solu-
tions of those combined M1M2 fronts are sorted and selected 
to be the members of the reference front. The indicators GD 
and IGD can be computed using Eqs. 3 and 4 respectively.

where |P| is the number of solutions in the obtained Pareto 
front and di is the Euclidian distance of the objective func-
tions vector of the ith solution in the obtained front to its 
nearest solution from the reference front.

where |P′|s the number of solutions in the reference front 
and d′is Euclidian distance of objective functions vector of 
the ith solution in the reference front to its nearest solution 
from the obtained front. IGD, by its definition, can measure 
both front advancement and extension.

STE is the ratio between front spacing and extent. Calcu-
lation of STE of a Pareto front is given in Eqs. 5–7.

where |P| is number of solutions in the obtained Pareto front, 
di is the Euclidian distance of objective functions vector of 
the ith solution to its nearest neighbour, d is the mean value 
of all di M is the number of objective functions, fimax and 
fimin are respectively the maximum and minimum values of 

(3)GD =

�∑�P�
i=1

(di)
2

�P�

(4)IGD =

�∑�P��
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i
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(5)Spacing =
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(7)STE = Spacing∕Extent
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Fig. 1  Ground structures of 10-bar truss, 25-bar truss, 37-bar truss, 60-bar truss, 72-bar truss, 120-bar truss, 200-bar truss, and 942-bar truss
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the ith objective function of the front. A superior front can 
be indicated with higher HV whereas fronts lower value of 
GD, IGD, and STE means the better fronts.

3  Optimisation algorithms

Multio-bjective metaheuristics work based upon the use of 
a set of solutions (individuals) which is traditionally called 
a population. The population is then iteratively improved 
by means of improving mechanisms (e.g. reproduction and 
selection) until a termination condition is met. For multi-
objective optimisation, metaheuristics using a population 
of design solutions have some advantage as one can sort 
and find non-dominated solutions from a population. This 
idea leads to the use of MHs for exploring a Pareto front 
of multi-objective optimisation within one run. There 
have been several ideas employed for dealing with multi-
objective metaheuristic search. Those include a Pareto 
dominance concept [30], elistism [41], and decomposi-
tion based concept [43]. Most of the algorithms, however, 
exploit the non-dominated sorting scheme for identifying 
non-dominated solutions. For minimisation, solution x1 
is said to dominate solution x2 if its objective vector f1 
dominates f2. This is true if at least one element in f1 is 
strictly lower than the corresponding element in f2 and 
all elements in f1 are not higher than those corresponding 
elements in f2. For a set of solutions or a population any 
individual that is not dominated by the others is defined as 
a non-dominated solution in the set. With these definitions, 
a set of non-dominated solutions can be set and improve 
iteratively to reach the true Pareto front.

To estimate the Pareto optimal solutions for the truss 
design problems discussed above, we employ the following 
recently developed and well-known algorithms:

• Multi-objective ant lion optimiser (MOALO) [34]
  MOALO uses the relationship principals of ants and 

antlions in nature. The multi-objective mechanisms of 
MOLAO are similar to those in MOPSO: an archive to 
store non-dominated solutions during the optimisation 
process and a leader selection mechanism to select ‘best’ 
non-dominated solutions for position updating of other 
solutions. A niching mechanism is used to help with 
choosing the leaders.

• Multi-objective dragonfly algorithm (MODA) [35]
  The DA algorithm is inspired by the rare swarming 

behaviours of dragonflies in nature. In the multi-objective 
version (MODA), non-dominated solutions are stored in 
a repository. Such solutions are then selected based on 
a grid selection mechanism to be used in the main equa-
tions of the DA algorithm.

• Multi-objective grasshopper optimisation algorithm 
(MOGOA) [36]

  The GOA algorithm was proposed with inspiration 
from the swarming behaviour of grasshoppers in nature. 
The original version of this algorithm requires a set of 
solution to update their positions in an n-dimensional 
space, which is defined by the problem. To solve multi-
objective problems using this algorithm, it was equipped 
with an archive and leader selection mechanisms.

• Multi-objective grey wolf optimiser (MOGWO) [37]
  As a recent optimisation algorithm, GWO mimics the 

social hierarchy and hunting mechanisms of grey wolves 
in nature. This algorithm requires the three best solutions 
(alpha, beta, and delta) to update the position of other 
solutions. To solve multi-objective problems, these three 
solutions are selected from non-dominated solutions dur-
ing the optimisation process.

• Multi-objective multi-verse optimisation (MOMVO) [38]
  The inspiration of the MVO algorithm is the theory 

of multi-verse in physics. The multi-objective version of 
this algorithm is developed using similar mechanisms of 
MOGWO: archive and selector. There is also a method 
to maintain the diversity of solutions in the archive.

• Multi-objective water cycle algorithm (MOWCA) [39]
  As its name suggests, the WCA algorithm simulates 

the water cycle in nature. A crowding distance is used in 
this algorithm to choose non-dominated solutions.

• Multi-objective Salp swarm algorithm (MSSA) [40]
  The SSA algorithm is inspired by the swarming pat-

terns of salps in ocean, in which such creatures create a 
chain to navigate and forage. There is a leader that plays a 
critical role in this algorithm, which is one solution when 
solving single-objective problems. The MSSA algorithm 

Fig. 2  The Hyper Volume performance indicator for quantifying the 
coverage of multi-objective algorithms
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Fig. 3  Pareto fronts obtained by the algorithms for the 10-bar truss problem, 25-bar truss problem, 37-bar truss problem, 60-bar truss problem, 
72-bar truss problem, 120-bar truss problem, and 200-bar truss problem
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uses the same equations in SSA but the leader is selected 
from an archive of non-dominated solutions.

• Success history–based adaptive multi-objective differen-
tial evolution (SHAMODE) [28]

  The optimiser exploits the successive history-based 
adaptive strategy for tuning the control parameters of dif-
ferential evolution. The non-dominated sorting operator 
is used for collecting non-dominated solutions during and 
optimisation search. The procedure starts with a popula-

tion and an initial Pareto archive. The population and 
the archived are iteratively updated using DE operator 
with the self-adaptive DE parameters until reaching the 
termination criterion.

• Success history–based adaptive multi-objective differen-
tial evolution with whale optimisation (SHAMODE-WO)

  SHAMODE-WO is a hybrid algorithm that integrates 
the spiral movement of whale optimisation algorithm to 
the DE binomial crossover. Instead of using a mutant 

Fig. 4  Mean HV of the 10-bar 
truss problem

Fig. 5  Mean HV of the 25-bar 
truss problem
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vector and its parent for crossover, SHAMODE-WO 
replaces the parent with a new solution generated by the 
whale spiral movement operator.

• Non-dominated sorting genetic algorithm II (NSGA-II) 
[41]

  NSGA-II is probably the most cited multi-objective 
evolutionary algorithm. The method is based on an elit-
ism strategy. With an initial population, GA operators 
namely crossover and mutation are applied to create a 

set of offspring solutions. The next generation is classi-
fied by using non-dominated sorting and crowding dis-
tance comparison operators. The process is repeated until 
reaching the termination criterion.

• Hybridisation of real-code population-based incremental 
learning and differential evolution (RPBILDE) [30]

  This is the multi-objective version of real-code popula-
tion-based incremental learning, which uses a probability 
matrix to generate a solution population. The solutions 

Fig. 6  Mean HV of the 37-bar 
truss problem

Fig. 7  Mean HV of the 60-bar 
truss problem
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created from the probability matrix are then hybridised 
with the existing non-dominated solutions by using the 
DE operators. The probability matrix and the set of non-
dominated solutions are iteratively updated until meeting 
the termination criterion.

• Differential evolution for multi-objective optimisation 
(DEMO) [42]

  DEMO uses the elitism concept as with NSGAII. The 
only difference is it exploits DE mutation and binomial 
crossover for reproduction instead of using the operators 
of real-code GA.

• Multi-objective evolutionary algorithm based on decom-
position (MOEA/D) [43]

  MOEA/D is another popular concept for multi-objec-
tive evolutionary algorithms. The technique exploits a 
scalarisation technique e.g. the weighted sum method 
to decompose the optimisation problem, and reproduce 
new solutions. Similarly to most MOMHs, the method 
is population-based, and uses a non-dominated sorting 
technique to keep a set of non-dominated solutions. The 
population and the set of non-dominated solutions are 
improved iteratively until reaching the stopping condi-
tion.

• Unrestricted population size evolutionary multi-objective 
optimisation algorithm (UPS-EMOA) [44]

UPS-EMOA exploits the idea that a greater size of non-
dominated solutions set can improve the search diversity 
rather than filtering some of them to keep a constant archive 
size as with most MOMHs. The method uses the DE opera-
tors to create offspring while the archive for non-dominated 

solutions are allowed to have many members as long as the 
computer memory can handle it.

MATLAB codes of the abovementioned algorithms are 
mostly provided by their authors while some are coded by 
the authors of this paper. We use the same programming 
language and hardware to have a fair comparison between 
all algorithms.

4  Results and Discussion

In this study, 30 independent runs of each algorithm for solv-
ing each test problem are performed while the implemented 
multi-objective optimisers include MOALO, MODA, 
MOGOA, MOGWO, MOMVO, MOWCA, MSSA, SHAM-
ODE, SHAMODE-WO, NSGA-II, RPBILDE, DEMO, 
MOEA/D, and UPSEMOA. Four performance indicators, 
HV, GD, IGD, and STE, are evaluated to measure the search 
performance of all competitors. Additional statistical results, 
Friedman ranking based on the four metrics, are also car-
ried out to confirm search performance of the optimisation 
algorithms.

The results of mean HV, GD, IGD, and STE are provided 
in Tables 1, 3, 5, and 7 respectively. Their related Friedman 
ranks are presented in Tables 2, 4, 6, and 8 respectively. As 
mentioned in the previous section, the results with higher 
values HV are the better while the results with lower values 
of the remaining indicators are the better. In Tables 1, 2, 3, 
4, 5, 6, 7 and 8, the best result for each test problem is high-
lighted with bold font. From Tables 1 and 2, best means and 
Friedman ranks based on HV are coincided. SHAMODE 

Fig. 8  Mean HV of the 72-bar 
truss problem
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provided the best mean HV and Friedman rank for the 60-bar 
test problem while the best means and Friedman ranks of the 
rest are obtained by SHAMODE-WO.

From Tables 3 and 4, the best GD means and Fried-
man ranks results are coincided in most test problems. The 
best results for the 37-bar, 60-bar, and 120-bar problems 
are obtained from using SHAMODE while the best results 
for the 72-bar, 200-bar, and 942-bar problems are found by 
SHAMODE-WO. The best results for the 25-bar problem is 
found by MOEA/D while the best GD mean and Friedman 
rank for the 10-bar problem are obtained by MOWCA and 
SHAMODE respectively.

For the comparative IGD results in Tables 5 and 6, the 
best algorithms based on both mean value and Friedman 
rank aspects are similar for most test problems. SHAMODE-
WO provided the best mean values and the best Friedman 

ranks in cases of the 10-bar, 25-bar, 37-bar, 200-bar, and 
942-bar problems while the best IGD mean and Friedman 
rank for 60-bar and 72-bar problems are obtained from 
MOGWO, SHAMODE. The best mean and Friedman rank 
for the 120-bar problem are found by different algorithms 
which are SHAMODE-WO and SHAMODE in that order.

For the STE results in Tables 7 and 8, the best STE means 
and Friedman ranks are all coincided. SHAMODE-WO 
gives best mean and Friedman rank of the 942-bar problem 
while RPBILDE provided best results for the remaining test 
problems.

From the results, the performance of the optimisation 
algorithms in multi-objective truss optimisation problems 
are measured in many different aspects using the HV, GD, 
IGD, and STE metrics. The HV results in most problems 
coincide to the IGD results, SHAMODE-WO is the best 

Table 1  Mean hypervolume from 30 independent runs of all algorithms (The bold numbers are the best results) 

HV mean 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 2.2009E+09 5.4256E+08 1.4040E+08 3.1883E+08 2.7371E+09 7.8035E+10 2.5057E+10 1.6704E+14
MODA 2.1426E+09 5.3627E+08 1.3219E+08 3.1849E+08 2.5684E+09 7.7712E+10 2.0598E+10 1.2779E+14
MOGOA 2.1575E+09 5.3251E+08 1.3438E+08 3.1834E+08 2.7166E+09 7.7959E+10 2.2445E+10 1.4225E+14
MOGWO 2.3665E+09 5.6298E+08 1.5378E+08 4.0365E+08 3.0957E+09 8.3834E+10 2.7019E+10 1.8330E+14
MOMVO 2.3347E+09 5.5925E+08 1.5095E+08 3.7083E+08 3.0311E+09 8.2753E+10 2.5917E+10 1.6751E+14
MOWCA 2.0053E+09 4.5162E+08 1.3787E+08 3.5575E+08 2.7902E+09 5.7039E+10 2.4729E+10 1.6390E+14
MSSA 2.1739E+09 5.4146E+08 1.3419E+08 3.2144E+08 2.6712E+09 7.8291E+10 2.2714E+10 1.4500E+14
SHAMODE 2.3893E+09 5.6909E+08 1.5565E+08 4.0551E+08 3.1124E+09 8.4826E+10 2.7161E+10 1.8249E+14
SHAMODE-WO 2.3934E+09 5.6932E+08 1.5591E+08 4.0219E+08 3.1194E+09 8.4834E+10 2.7375E+10 1.8611E+14
NSGA-II 2.2343E+09 4.9814E+08 1.4687E+08 3.8366E+08 2.9804E+09 7.2689E+10 2.5807E+10 1.6782E+14
RPBILDE 2.3757E+09 5.6836E+08 1.5298E+08 3.9333E+08 3.0765E+09 8.4367E+10 2.6760E+10 1.7874E+14
DEMO 2.2584E+09 5.1793E+08 1.4928E+08 3.5917E+08 2.8442E+09 8.0265E+10 2.5018E+10 1.7862E+14
MOEA_D 2.2208E+09 5.5974E+08 1.4650E+08 3.4868E+08 2.9428E+09 7.7887E+10 2.5820E+10 1.7247E+14
UPSEMOA 2.1916E+09 5.0990E+08 1.4151E+08 3.5126E+08 2.5166E+09 7.4092E+10 2.5269E+10 1.7751E+14

Table 2  Mean Friedman 
rank of hypervolume from 
30 independent runs of all 
algorithms (The bold numbers 
are the best results)

HV rank 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 9.6000 8.5667 10.2000 12.2667 10.6667 9.7000 9.4667 9.2667
MODA 11.7667 9.8000 12.9000 12.2333 13.1667 9.6000 13.8667 14.0000
MOGOA 11.2333 10.4667 12.2333 12.6333 11.1000 9.3667 12.4333 12.7000
MOGWO 3.9000 4.4000 3.3667 2.1000 3.0333 3.9000 2.9000 2.3667
MOMVO 5.2000 5.5000 5.0333 6.4667 5.1000 5.1333 6.9333 9.2000
MOWCA 11.4000 12.8000 10.8333 8.3667 9.1000 13.0000 9.7667 10.0333
MSSA 10.8667 8.8000 12.3000 12.3000 11.5667 9.2333 12.1333 12.3000
SHAMODE 1.9333 2.1333 1.7333 1.6667 1.9000 1.6000 2.3000 2.8333
SHAMODE-WO 1.1333 1.4333 1.2667 2.3667 1.5667 1.4333 1.0333 1.0000
NSGA-II 8.4333 12.4333 7.5667 5.1333 6.4667 10.9333 7.2000 9.0333
RPBILDE 3.0333 2.6667 3.9667 3.9333 3.7667 3.0667 3.9000 5.0000
DEMO 7.6333 10.3667 6.1333 7.9333 8.6667 7.0333 8.4667 5.1333
MOEA_D 9.0667 4.9333 7.9000 8.9667 7.2667 9.7000 6.9667 7.1000
UPSEMOA 9.8000 10.7000 9.5667 8.6333 11.6333 11.3000 7.6333 5.0333
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algorithms based on HV and IGD while RPBILDE provided 
best STE results. SHAMODE and SHAMODE-WO are con-
sider joint winners in the GD results. SHAMODE-WO is 
also among one of the runners-up in the STE results, thus, 
the results of all metrics could still be considered being coin-
cident. There are only the results from the GD metric which 
somewhat differ from the others. The reason is that GD only 
measures Euclidian distances from the obtained solutions to 
the reference front, thus, the spread of the obtained fronts is 
ignored. STE, on the other hand, measures the front exten-
sion and distribution. However, IGD, and HV can measure 
both the advancement and the spread of the front. IGD used 
all solutions in the reference front to compute the distances, 
therefore, a wider spread front will result in overall lower 
distances and consequently lower IGD, which means it is 
more reliable than GD.

For overall performance comparison, the mean Friedman 
ranks of all metric results (Tables 2, 4, 6, 8) are summed up 
and reported in Table 9. The best result in each test problem 
is bold and underlined while the runners-up (the 2nd and the 
3rd) are presented with the bold font. The overall best algo-
rithm based on the Friedman rank is SHAMODE-WO while 
SHAMODE and RPBILDE are the runners-up. SHAMODE-
WO obtained the best mean ranks in 7 out of 8 problems. 
SHAMODE provided best mean rank in 1 out of 8 test and 
is the runner-up in 7 out of 8 test problems. RBILDE is the 
runner-up in 6 out of 8 problems.

The best Pareto fronts based on the hypervolume indica-
tor obtained from the various optimisers for all multi-objec-
tive truss optimisation problems are illustrated in Fig. 3. In 
cases that the number of design variables are low, the fronts 
obtained from using the various optimisers are somewhat 

Table 3  Mean generational distance from 30 independent runs of all algorithms (The bold numbers are the best results)

GD mean 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 1.0750E+02 4.7307E+01 4.3242E+01 9.4015E+01 2.8828E+02 3.3392E+02 9.0548E+02 9.7771E+04
MODA 8.0166E+01 4.3430E+01 4.1741E+01 9.0713E+01 2.6179E+02 1.9008E+02 1.1135E+03 5.1003E+04
MOGOA 9.3015E+01 3.7380E+01 4.2384E+01 1.0474E+02 2.2947E+02 2.4224E+02 1.0567E+03 5.5540E+04
MOGWO 3.3629E+01 2.4774E+01 1.0918E+01 2.6304E+01 5.6767E+01 1.5826E+02 2.3520E+02 2.0849E+04
MOMVO 3.4572E+01 1.6919E+01 1.4515E+01 3.6262E+01 8.4438E+01 1.6983E+02 4.2620E+02 5.4865E+04
MOWCA 1.6669E+01 1.7911E+01 1.2827E+01 3.1257E+01 6.8105E+01 1.1078E+02 3.1080E+02 4.3154E+04
MSSA 7.3215E+01 5.1633E+01 3.9725E+01 1.0034E+02 2.2276E+02 3.0058E+02 8.9872E+02 5.0559E+04
SHAMODE 1.6705E+01 8.1491E+00 4.1474E+00 9.4632E+00 2.4552E+01 9.5672E+01 8.8201E+01 1.6579E+04
SHAMODE-WO 1.7350E+01 8.1428E+00 4.2693E+00 1.0179E+01 2.4464E+01 9.7443E+01 6.6234E+01 7.8342E+03
NSGA-II 4.2469E+01 3.4780E+01 1.1000E+01 2.2281E+01 5.3190E+01 2.6677E+02 1.6912E+02 2.4668E+04
RPBILDE 1.8719E+01 8.3392E+00 8.0436E+00 2.5977E+01 3.5301E+01 9.9116E+01 1.7516E+02 2.9317E+04
DEMO 5.1627E+01 3.2649E+01 1.6059E+01 3.8994E+01 1.3084E+02 2.3173E+02 2.8757E+02 3.3437E+04
MOEA_D 2.5784E+01 7.2692E+00 7.4276E+00 2.7510E+01 2.8965E+01 1.2487E+02 1.2728E+02 1.8207E+04
UPSEMOA 2.5355E+01 1.1474E+01 1.0613E+01 2.2670E+01 6.1775E+01 1.5187E+02 1.0916E+02 2.5146E+04

Table 4  Mean Friedman rank 
of generational distance from 
30 independent runs of all 
algorithms (The bold numbers 
are the best results)

GD rank 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 10.2833 9.4917 9.9417 12.0000 10.8750 10.1833 10.0917 10.2583
MODA 11.8333 10.9417 11.9667 11.3750 12.3167 10.1000 12.9500 12.5000
MOGOA 9.8583 9.2750 10.6250 10.2083 9.7000 9.0333 10.6083 10.3417
MOGWO 5.6083 5.5333 4.9417 4.0750 4.7750 5.5917 4.9500 5.1167
MOMVO 6.0417 6.0417 6.3250 6.4417 6.6417 5.9500 7.7250 9.9583
MOWCA 10.0417 11.2750 10.6917 9.1833 9.8500 10.7833 9.6667 9.5583
MSSA 10.5750 9.9833 11.2750 10.2667 10.3583 9.8833 11.0250 10.8583
SHAMODE 2.6917 2.9333 2.7083 2.8917 3.3833 2.7667 3.5250 3.6000
SHAMODE-WO 2.2583 2.2667 1.9667 3.9833 3.3750 2.7250 1.9083 1.4000
NSGA-II 8.0917 10.8250 8.2667 6.4333 6.8000 9.6083 7.5417 7.8250
RPBILDE 3.7083 3.1750 4.1417 4.2083 4.1917 3.4333 4.3500 6.1167
DEMO 7.6750 9.3083 7.0500 8.1083 7.8500 7.9500 7.2833 5.1750
MOEA_D 7.8083 5.4667 6.9333 7.8083 6.1917 8.0750 6.9750 7.8750
UPSEMOA 8.5250 8.4833 8.1667 8.0167 8.6917 8.9167 6.4000 4.4167
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comparable, however, when the problem has a greater num-
ber of design variables, the best fronts obtained from using 
the best and worst optimisers clearly fall apart.

Figures 4, 5, 6, 7, 8, 9, 10 and 11 show the search history 
of the implemented optimisers for the eight test problems as 
the average hypervolume from 30 runs versus the iteration 
numbers. The figures illustrate that there can be roughly two 
groups of MHs according to the final HV values. The first 
group has good consistency and convergence rate including 
SHAMODE-WO, SHAMODE, MOGWO, and RPBILDE. 
The second group is somewhat inconsistent and has low 
values of HV. These include MOALO, MODA, MOGOA, 
MOWCA, MSSA, NSGA-II, DEMO, MOEA/D, and UPS-
EMOA while MOMVO is at the borderline. RPBILDE is 
more efficient if the design problem has a lower number of 
design variables while its performance slightly drops when 

the design problem is large-scale. UPS-EMOA, on the other 
hand, has low performance for the cases with low number of 
design variables but its performance increases when solv-
ing a large-scale problem. The results of MODA show that 
it is somewhat inefficient for solving truss multi-objective 
optimisation.  

For reproduction capability, MOGWO arguably has the 
most efficient reproduction scheme as it has the highest HV 
in the early stage of an optimisation run. The second and 
third best reproductions are SHAMODE-WO and SHAM-
ODE respectively, which implies that the integration of 
whale spiral movement into the DE binomial crossover helps 
increase its performance. The reproduction of RPBILDE has 
low performance at the early stage but robustly improves 
as the search goes on. It is possible that if MOGWO and 
RPBILDE can exchange some features, their performance 

Table 5  Mean inverted generational distance from 30 independent runs of all algorithms (The bold numbers are the best results)

IGD mean 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 6.9404E+02 1.0377E+02 9.2570E+01 4.4351E+02 5.0234E+02 6.6225E+03 1.0726E+03 8.5551E+04
MODA 9.8329E+02 1.8724E+02 1.4298E+02 2.8263E+02 6.7376E+02 7.8846E+03 2.0890E+03 3.2706E+05
MOGOA 1.0278E+03 2.5069E+02 1.6138E+02 3.2652E+02 5.1096E+02 6.9073E+03 2.1578E+03 3.0564E+05
MOGWO 1.7364E+02 2.7312E+01 3.4052E+01 8.0818E+01 1.4674E+02 1.3504E+03 5.3741E+02 8.7258E+04
MOMVO 1.9550E+02 4.7407E+01 4.8165E+01 1.9504E+02 2.4182E+02 9.8877E+02 1.1882E+03 2.6579E+05
MOWCA 1.8219E+03 6.1500E+02 2.2160E+02 3.9864E+02 6.4706E+02 1.6538E+04 1.7337E+03 2.0246E+05
MSSA 1.0807E+03 1.7830E+02 1.7381E+02 3.2017E+02 5.8565E+02 7.4525E+03 2.0079E+03 2.9332E+05
SHAMODE 1.0126E+02 1.6100E+01 1.8091E+01 1.3400E+02 1.2876E+02 6.9801E+02 4.8163E+02 7.2950E+04
SHAMODE-WO 5.2364E+01 1.2185E+01 1.3833E+01 1.6464E+02 1.3298E+02 6.4704E+02 1.4317E+02 1.3902E+04
NSGA-II 4.6497E+02 1.6439E+02 1.0163E+02 2.1872E+02 2.9935E+02 4.2818E+03 1.2977E+03 1.7264E+05
RPBILDE 3.2842E+02 5.0636E+01 7.1395E+01 1.6951E+02 3.1126E+02 2.2942E+03 8.1144E+02 1.7535E+05
DEMO 3.0249E+02 1.3039E+02 4.5812E+01 2.5829E+02 2.8862E+02 1.9849E+03 8.6287E+02 4.0698E+04
MOEA_D 1.2892E+03 2.1637E+02 1.7140E+02 4.4136E+02 6.5605E+02 9.4462E+03 1.8823E+03 3.3507E+05
UPSEMOA 7.0315E+02 1.6106E+02 1.0603E+02 3.1757E+02 5.5010E+02 5.3107E+03 1.1108E+03 4.7123E+04

Table 6  Mean Friedman rank of 
inverted generational distance 
from 30 independent runs of all 
algorithms (The bold numbers 
are the best results)

IGD rank 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 9.0000 7.4333 7.6333 12.5333 9.1000 9.9333 6.9000 5.0333
MODA 10.8000 10.0000 10.2667 8.1667 11.6333 10.8667 12.3667 12.6333
MOGOA 10.9000 10.9667 10.8667 9.5333 9.7333 10.1000 12.0333 11.9000
MOGWO 3.6667 3.3667 3.5333 1.6667 2.8667 3.7000 3.2667 5.1333
MOMVO 4.0667 4.6667 4.6667 5.0000 5.1667 3.1667 7.6000 10.7667
MOWCA 12.9333 13.5667 13.1000 11.5333 10.8000 13.5000 10.2333 8.6000
MSSA 11.2667 9.4667 11.3000 9.4333 10.4667 10.5667 11.9667 11.5000
SHAMODE 2.3333 2.2333 2.0333 3.0333 2.3667 2.0667 2.7333 4.5333
SHAMODE-WO 1.1000 1.1667 1.2667 4.0667 2.4000 2.1667 1.1333 1.0000
NSGA-II 6.9333 9.7000 8.5000 6.2000 6.1333 7.3333 7.7333 7.8000
RPBILDE 5.4667 4.4667 6.5333 4.5667 6.6667 5.3333 5.0000 7.8000
DEMO 5.5000 8.0333 4.7333 7.3333 5.9000 5.2000 5.5000 2.5000
MOEA_D 12.0000 10.6000 11.6333 12.3333 11.7667 12.1000 11.5000 12.6667
UPSEMOA 9.0333 9.3333 8.9333 9.6000 10.0000 8.9667 7.0333 3.1333
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Table 7  Mean spacing-to-extent from 30 independent runs of all algorithms (The bold numbers are the best results)

STE mean 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 1.0934E−02 1.1810E−02 1.0554E−02 1.4908E−02 1.1970E−02 9.8899E−03 1.4286E−02 1.9312E−02
MODA 2.2309E−02 1.8872E−02 2.2303E−02 2.3382E−02 1.7376E−02 1.7507E−02 2.0228E−02 1.6884E−02
MOGOA 6.9239E−03 5.9176E−03 8.1910E−03 6.7033E−03 7.9155E−03 7.4130E−03 6.2342E−03 5.9736E−03
MOGWO 8.3516E−03 6.6940E−03 7.7681E−03 7.5748E−03 7.8240E−03 8.8079E−03 7.3142E−03 8.5219E−03
MOMVO 8.5326E−03 8.3224E−03 8.5202E−03 7.4489E−03 9.2224E−03 8.7959E−03 7.4215E−03 8.5069E−03
MOWCA 2.8303E−02 2.6596E−02 1.9744E−02 1.3859E−02 1.9559E−02 3.2262E−02 1.3473E−02 1.0292E−02
MSSA 1.0074E−02 1.0174E−02 1.0964E−02 8.0179E−03 9.4310E−03 9.1962E−03 9.3203E−03 9.9281E−03
SHAMODE 5.7010E−03 5.1342E−03 6.9634E−03 7.2410E−03 8.4742E−03 5.7440E−03 7.2350E−03 4.7271E−03
SHAMODE−WO 5.4654E−03 4.6108E−03 5.4730E−03 9.1518E−03 8.9589E−03 5.5198E−03 5.4558E−03 4.2746E−03
NSGA−II 1.0903E−02 1.7464E−02 1.3428E−02 1.3483E−02 9.9105E−03 1.3439E−02 1.3180E−02 9.3690E−03
RPBILDE 4.8950E−03 4.1377E−03 4.1182E−03 4.4865E−03 4.3165E−03 4.4327E−03 4.6357E−03 5.2054E−03
DEMO 9.4242E−03 1.0477E−02 9.2925E−03 1.0128E−02 8.8808E−03 1.0650E−02 1.0740E−02 5.8071E−03
MOEA_D 6.3166E−03 5.4176E−03 6.2777E−03 7.1558E−03 5.0736E−03 7.1561E−03 6.3385E−03 9.3219E−03
UPSEMOA 1.3134E−02 1.5373E−02 9.9493E−03 1.3923E−02 1.3424E−02 1.1533E−02 1.2814E−02 5.4328E−03

Table 8  Mean Friedman rank 
of spacing-to-extent from 
30 independent runs of all 
algorithms (The bold numbers 
are the best results)

STE rank 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 9.7000 10.0333 9.5000 10.9667 10.5000 8.5333 12.0000 13.0333
MODA 13.0333 12.4000 12.1333 12.9333 11.7000 11.4000 12.5333 12.4333
MOGOA 5.0667 4.7667 6.7000 5.8333 6.1000 6.0333 5.5000 5.4667
MOGWO 7.1333 5.8667 6.3667 6.2000 6.5333 7.4667 6.4667 8.7333
MOMVO 7.4333 7.4667 7.3000 5.9667 7.8667 7.7000 6.6667 8.5667
MOWCA 12.9667 12.5000 11.4667 9.7667 12.5000 12.6333 10.5000 10.3000
MSSA 8.5667 9.0000 9.2667 6.7000 7.5333 7.4667 7.8333 9.2000
SHAMODE 3.8000 4.2000 5.4333 5.6333 7.0667 4.2333 6.2333 3.6333
SHAMODE-WO 3.6000 3.2667 3.4667 7.6333 7.5333 4.0667 4.1000 2.6000
NSGA-II 8.6333 10.9333 10.7667 9.4333 8.5333 10.0333 9.7667 8.9667
RPBILDE 2.6333 2.3000 1.7000 2.2000 2.2667 1.8000 2.5333 4.8000
DEMO 7.9000 8.7333 8.4000 8.5000 7.1667 9.1667 8.1000 5.4667
MOEA_D 4.7667 4.0000 4.2667 4.4667 2.9667 5.6000 5.1667 8.0333
UPSEMOA 9.7667 9.5333 8.2333 8.7667 6.7333 8.8667 7.6000 3.7667

Table 9  Overall mean Friedman 
rank of all metrics for all test 
problems (The underlined 
and bold numbers are the best 
results while the bold numbers 
are the second and third best)

Mean rank 10-bar 25-bar 37-bar 60-bar 72-bar 120-bar 200-bar 942-bar

MOALO 10.2833 9.4917 9.9417 12.0000 10.8750 10.1833 10.0917 10.2583
MODA 11.8333 10.9417 11.9667 11.3750 12.3167 10.1000 12.9500 12.5000
MOGOA 9.8583 9.2750 10.6250 10.2083 9.7000 9.0333 10.6083 10.3417
MOGWO 5.6083 5.5333 4.9417 4.0750 4.7750 5.5917 4.9500 5.1167
MOMVO 6.0417 6.0417 6.3250 6.4417 6.6417 5.9500 7.7250 9.9583
MOWCA 10.0417 11.2750 10.6917 9.1833 9.8500 10.7833 9.6667 9.5583
MSSA 10.5750 9.9833 11.2750 10.2667 10.3583 9.8833 11.0250 10.8583
SHAMODE 2.6917 2.9333 2.7083 2.8917 3.3833 2.7667 3.5250 3.6000
SHAMODE-WO 2.2583 2.2667 1.9667 3.9833 3.3750 2.7250 1.9083 1.4000
NSGA-II 8.0917 10.8250 8.2667 6.4333 6.8000 9.6083 7.5417 7.8250
RPBILDE 3.7083 3.1750 4.1417 4.2083 4.1917 3.4333 4.3500 6.1167
DEMO 7.6750 9.3083 7.0500 8.1083 7.8500 7.9500 7.2833 5.1750
MOEA_D 7.8083 5.4667 6.9333 7.8083 6.1917 8.0750 6.9750 7.8750
UPSEMOA 8.5250 8.4833 8.1667 8.0167 8.6917 8.9167 6.4000 4.4167
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can probably be improved. For the large-scale cases of 200-
bar and 942-bar trusses, MOALO has the second best repro-
duction at the early stage after MOGWO, however, as the 
optimisation process continues, the HV drops. This implies 
that its selection operator is not sufficiently effective.

The selection process of MOMHs is vital for both 
selection of the next generation population and the Pareto 
archive. The Pareto archive is usually assigned to keep non-
dominated solutions, which at the final iteration it will be 

regarded as the obtained approximate Pareto front. Often, 
during the optimisation run, the Pareto archive will contain 
an excessive number of non-dominated solutions possibly 
reaching the computer memory limit. This makes research-
ers invent the so-called Pareto archiving technique to screen 
some non-dominated solutions out of the archive. The con-
cept is to maintain the high diversity of the solutions that 
are not removed as much as possible. With such a concept, 
it can be seen that some implemented MOMHs have the 

Fig. 9  Mean HV of the 120-bar 
truss problem

Fig. 10  Mean HV of the 200-
bar truss problem
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problem of archiving non-dominated solutions leading to 
the drop of the average HV in later iterations. This includes 
MOWCA, DEMO, NSGAII, MSSA, MOALO, and UPS-
EMOA. It should be noted that, although the original version 
of UPS-EMOA offers not to limit the archive size, but it is 
sometimes impractical. Thus, it has to be limited with a very 
large archive size. The problem of Pareto archiving is very 
important according to this study as some underperformers 
may be improved by using another archive scheme.

5  Conclusions

The comparative performance study of a number of new 
and established multi-objective metaheuristics for truss 
optimisation has been carried out. Eight classical truss 
structures usually presented in literature are used to set up 
the multi-objective test problems. The design problem is 
posed to minimise structural mass and compliance subject 
to bound and stress constraints while fourteen MOMHs are 
implemented to solve the problems. The comparative results 
based on the four performance indicators i.e. HV, GD, IGD, 
and STE reveal that SHAMODE-WO is considered the 
overall best algorithm while SHAMODE and RPBILDE 
are the second and third best optimisers respectively. It is 
very challenging to improved the search speed and consist-
ency of a metaheuristic to solve variety of problems. There 
is still a big room for developing a novel metaheuristic with 
better performance in future work. In truss multi-objective 
optimisation, MH operators for both search diversifica-
tion and intensification need to be invented. The former is 

used to get a better front spread and deal with a problem 
with nonconvex feasible region while the latter is used to 
improve front advancement. The archiving technique is also 
an important element of MOMHs as discussed in the result 
section.
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