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Abstract
The accurate result of heuristic models combined by social inspired optimization methods is interesting issue for optimizations 
of hierarchical stiffened shells (HSS). In this paper, six heuristic combined by social-inspired optimization is compared for both 
ability and accuracy in optimization of load-carrying capacities of HSS. A three level optimization method is employed as (1) 
explicit dynamic method to provide the train database of optimization model, (2) six heuristic models including response surface 
method (RSM), multivariate adaptive regression splines (MARS), Kriging, artificial neural network, radial basis function neural 
network (RBFNN), and support vector regression (SVR) for approximating load-carrying capacity of HSS and (3) an improved 
partial swarm optimization (IPSO) to search for the optimum results of HSS. In IPSO as optimizer operator, a random adjust-
ing process is presented to update the positions of particles using best particle by a dynamical bandwidth generated by normal 
standard distribution. Optimization performances for accuracy and ability of six heuristic models coupled by IPSO are compared 
for optimum model as maximum load-carrying capacity under mass constraint of HSS. The SVR, Kriging and RSM combined 
by IPSO can be introduced as efficient and accurate modeling-based optimization method to evaluate the optimum design of 
HSS. The best optimal result is obtained by RBFNN while the worst optimum result is given using MARS among other models.

1  Introduction

Stiffened shells are widely implemented for engineering 
components of launch vehicles and fuselages [1–3], which 
are under axial compression carry load. For improving the 
ability of stiffened shells against geometric imperfections, 

Wang et al. [4] proposed innovative hierarchical stiffened 
shell (HSS) using major and minor stiffeners as larger and 
smaller sizes. Through the numerical study, Wang et al. [4] 
pointed out that major failures of HSS are the global buck-
ling, the partial global buckling (happens between major stiff-
eners), skin local buckling, stiffener local buckling and plas-
tic buckling modes. In comparison to the traditional stiffened 
shell, the low imperfection sensitivity of HSS was verified by 
numerical analyses [4–6] and experiments [7, 8]. The high 
load-carrying capacity of HSS was conducted by Wang et al. 
[9], Tian et al. [10], and Zhao et al. [11]. Particularly, experi-
mental studies were carried out for composite HSS and the 
load-carrying advantage of HSS was validated [12, 13]. In 
addition, the abilities of hierarchical stiffened panels against 
thermal buckling [14] and blast [15] were investigated.

Aiming at improving the load-carrying capacity of 
HSS, the optimization techniques can be employed for 
HSS. However, it is two major challenges. First challenge 
is high buckling analysis cost caused by the complicated 
stiffener characteristics in the FE analysis of HSS. Tian 
et al. [16] pointed out that the explicit dynamic method 
would be more suitable to be used in the optimization 
process of stiffened shells than other nonlinear buckling 
methods because it can guarantee the convergence of 
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nonlinear post-buckling analysis. Based on the experi-
mental result, the accuracy and credibility of the explicit 
dynamic method was validated [17]. However, the compu-
tational time of the explicit dynamic method is so heavy 
that it is hardly used as direct analysis approach in the 
optimization process. In this case, many efficient analysis 
models have been proposed. For instance, Wang et al. [18] 
employed Asymptotic Homogenization Method to smear 
minor stiffeners of HSS, significantly reducing the post-
buckling analysis time of HSS by 84%. Based on Numeri-
cal-based Smeared Stiffener Method (NSSM), Wang et al. 
[9] established an adaptive equivalent strategy for HSS, 
which can further reduce the post-buckling analysis time 
of HSS. Sadowski et al. [19] employed a computational 
strategy to aid researchers in calculating buckling load 
results of metal shells under various load cases. Although 
using efficient analysis models, the optimization cost is 
still too huge. Thus, the surrogate modelling technique has 
been used to accelerate the optimization efficiency of HSS.

Second challenge is the low accuracy for predictions of 
optimum HSS using heuristic models. The reason is that the 
optimization of HSS is a complex optimization problem with 
multiple design variables. By means of the radial basis func-
tion (RBF), Wang et al. [18], Zhao et al. [11] and Hao et al. 
[20] performed the hybrid optimizations for HSS aiming at 
maximizing the load-carrying capacity and minimizing the 
weight. Li et al. [21] applied Kriging-based hybrid aggressive 
space mapping method for the fast buckling optimization of 
variable-stiffness cylinders. By considering the limitation of 
optimization using surrogate model as inaccurate predictions 
for ultimate conditions of structures, the global optimizing 
ability is challenged. In order to enhance the global optimiz-
ing ability of surrogate-based optimizations of HSS, Tian 
et al. [22] proposed a competitive sampling method based on 
multi-fidelity analysis methods. Multi-fidelity surrogate tech-
nology has been proposed to improve the abilities for accu-
racy and computational efficiency of heuristic optimizations 
[23, 24]. The objective of this paper is to develop more accu-
rate surrogate models for optimizations of HSS. To achieve 
for this aim, an optimization framework is implemented to 
compare and to review of six heuristic optimization methods 
using three levels of (1) explicit dynamic method to provide 
the train database for calibrating the models, (2) heuristic 
models to predict the optimization models and (3) improved 
partial swarm optimization (IPSO) to search the optimal con-
ditions of HSS. Six heuristic approaches as soft computing 
and statistical models are applied which include the response 
surface method (RSM), multivariate adaptive regression 
splines (MARS), Kriging, artificial neural network (ANN), 
radial basis function neural network (RBFNN), and support 
vector regression (SVR). As given from comparative results, 
the IPSO provides the best optimum results compared to PSO 
while the RBFNN as soft computing model and Kriging as 

statistical approach are provided the accurate optimal results 
compared to other models.

2 � Analytical Approach‑Based FE Analysis

In this paper, the explicit dynamic method is used as the 
analytical approach of HSS, which can capture the ultimate 
load-carrying capacity of HSS and has a good agreement 
with the experiment [17]. The formulation of the explicit 
dynamic method is as follows,

where M stands for the mass matrix, a stands for the vector 
of nodal acceleration, �ext

t
 stands for the vector of applied 

external force, �int
t

 stands for the vector of internal force, C 
stands for the damping matrix, V stands for the vector of 
nodal velocity, K stands for the stiffness matrix, U stands 
for the vector of nodal displacement, and t stands for the 
time. Here, the explicit time integration with the central dif-
ference method is employed to approximate velocity and 
acceleration.

3 � Heuristic Data‑Driven Approaches

In this section, six modelling approaches to predict the 
objective performance function as load-carrying capacity 
and subjective function as mass are presented using math-
ematical functions by the following relations:

3.1 � Response Surface Method (RSM)

The RSM is a simple approximated tool which is commonly 
defined using second-order polynomial basic functions as 
below [25, 26]:

where P(X) is the predicted objective or subjective condi-
tions for HSS which is predicted using NV  number of input 
variables x including ts (skin thickness), Naj (number of 
axial major stiffeners), Nan (axial minor stiffeners between 
axial major stiffeners), Ncj (number of circumferential major 
stiffeners), Ncn (circumferential minor stiffeners between cir-
cumferential major stiffeners), hrj (major stiffener height), 
hrn (minor stiffener height), trj (major stiffener thickness) 
and trn (minor stiffener thickness). a0, ai and aij are unknown 
coefficients for polynomial terms which are computed using 
least square estimator [27, 28]:

(1)��t = �
ext
t

− �
int
t

− ��t −��t

(2)P(X) = a0 +

NV∑
i=1

aixi +

NV∑
i=1

NV∑
j=i

aijxixj
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3.2 � Multivariate Adaptive Regression Spline (MARS)

The MARS is a statistical regression tool as nonlinear and non-
parametric technique presented by Friedman [29]. The MARS 
can be used to simulate the nonlinear relations between struc-
tural response as predicted function and the input variables by 
piecewise linear splines basis function (BF) as below form:

where �i = 0, 1, …, m are unknown coefficients and m is the 
number basis functions ( BF ) that it is given using forward 
backward stepwise scheme. BFi is computed from piecewise 
linear function as follows:

In which, C is knot which is a constant coefficient. The 
applied basis functions ( BF ) are explored by using a stepwise 
process. The model using MARS is structured by using two 
stages as (i) BF functions and their potential knots are chosen 
to provide the accurate prediction in first stage, and (ii) in sec-
ond stage, the BF terms with lowest effect are eliminated [30].

3.3 � Kriging Method

The Kriging model is a well-known framework to estimate the 
geostatistical problems [31]. The Kriging model is presented 
as follows [32]:

where G(X) the basic functions. β is unknown coefficient 
vector which is computed as:

where O represents the observed load and mass of shell. R 
denotes the correlation as

(3)P(X) = �0 +

m∑
i=1

�iBFi

(4)BFi = {max(0, x − Ci) , max(0,Ci − x)}

(5)P(X) = G(X)T� + r(X)T�

(6)� = (GTR−1G)−1GTR−1O

In which, r (Xi, Xj) is the covariance basis function which 
is given as follows:

where θ is unknown correlation parameters θ  ˃  0 and 
rij =

‖‖‖Xi − Xj

‖‖‖ . In Eq. (5), r(X) = [R(X1,X;�),R(X2,X;�),… ,R(Xn,X;�)]
T 

and � = R−1(O − GT�) [28]. It can be conducted from Krig-
ing model that the predicted data is computed using a covari-
ance terms by using the correlation matrix R which it may 
provide the nonlinear relation for a complex engineering 
problem.

3.4 � Support Vector Regressions (SVR)

The support vector machines-based learning approaches are 
a powerful intelligent approach to regress the nonlinear prob-
lems [33]. For a N-set database, the SVR basis predicted func-
tion is presented as below:

where �0 is bias and K(x, xi) is the Kernel function for trans-
ferring the input data from x- space to N-set feature space. 
The Gaussian radial basis function as kernel functions is 
used in this current study as below relation [34, 26]:

where � is the parameter of Kernel function. In Eq. (9), �
i
 

and �∗
i
 represent the Lagrange multipliers which is deter-

mined based on maximizing the regression function as 
below [35]:

(7)R =

⎡⎢⎢⎢⎣

1 r(X1,X2) …

r(X2,X1) 1

⋮ ⋱

r(Xn,X1) r(Xn,X1) ⋯

r(X1,Xn)

r(X2,Xn)

⋮

1

⎤⎥⎥⎥⎦

(8)r
(
Xi,Xj

)
= e

� r2
ij

(9)P(X) = �0 +

N∑
i=1

(�i − �∗
i
)K(x, xi)

(10)K(x, xi) = exp

(
−
‖‖x − xi

‖‖2
2�2

)

(11)

Maximize −
1

2

N�
i,j=1

(�i − �∗
i
)(�j − �∗

j
)K(xi, xj) − �

N�
i=1

(�i − �∗
i
)+

N�
i=1

yi(�i − �∗
i
)

Subjected to

⎧
⎪⎨⎪⎩

N∑
i=1

(�i − �∗
i
) = 0

0 ≤ �i ≤ C

0 ≤ �∗
i
≤ C
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where ε-insensitive loss function is used for neglecting 
values of predicted data less than the observed values in 
regression process. Factor C > 0 represent the regularization 
coefficient. The accuracy of the predicted SVR model can 
be improved by perfect selection of the model parameters as 
� , � and C. In this work, the parameters of SVR models are 
selected by trial and error.

3.5 � Artificial Neural Network (ANN)

Artificial neural network (ANN) model is a well-Known 
popular learning process to provide the nonlinear relation 
between input set and output observation. The multilayer 
feed forward neural network is commonly applied in ANN 
models, which is presented by the following relation [36]:

where β0 and �j are respectively the biases for output data 
and M-hidden layer, wij denotes the weights to joint j-th 
input variable and j-th hidden neuron while wj represent 
the weights of output neuron which provide the relations 
between j-th hidden neuron and output data, f is an activation 
function for hidden neurons. The active function f is given 
as sigmoid function by following relation:

The ANN model is structured using NV input variable 
(i.e. NV = 9 in this current study) and M hidden neurons that 
it is selected between 5 and 25 by using trial and error for 
both load and mass models in this study. The back-propa-
gation is a most common learning approach to calibrate the 
ANN in Eq. (12) which is applied to search the weights and 
biases. The Levenberg–Marquardt back-propagation method 
[37] is utilized for normalized input and output data sets 
between − 1 and 1, in this study.

3.6 � Radial Basis Function Neural Network (RBFNN)

The RBFNN can be provided the efficient and accurate pre-
diction compared to the ANN-based multilayer feed forward 
for some nonlinear problems due to fast training process and 
simple structure [38, 39]. The mathematical relation-based 
radial basis function (RBF) is presented as below:

where wj represents the weights to link j-th hidden neuron 
(j = 1, …, M) and output data while, Cj is the center j-th RBF 

(12)P(X) =

[
�0 +

M∑
j=1

wjf1

(
�j +

NV∑
i=1

wijxi

)]

(13)f (X) =
1

1 + exp(−X)

(14)P(X) = �0 +

M∑
j=1

wj�(||x − Ci||)

of hidden neuron. � refers to activation function which is 
defined using Gaussian function as follows:

� is the RBF parameter. The RBFNN involves three basic 
layers including input, hidden layer and output layers. The 
input layer contains NV neurons. The hidden layer involves 
of M RBFs which transform the NV dataset to M-dimen-
sional input database.

4 � Optimization Schemes

Two optimization approaches using the partial swarm opti-
mization (PSO) are utilized to find the optimal conditions of 
HSS in this current study. The original PSO and a proposed 
improved PSO (IPSO) is presented as below subsections.

4.1 � PSO Scheme

The particle swarms as social psychologist can be used as an 
optimization process to find the best manner of the engineer-
ing problems. The PSO is a computational intelligence by 
using a simple formulation and high-abilities in optimization 
problems. This approach is extracted from the psychologi-
cal behavior of birds for searching the corn as food that this 
behavior of animals is applied into an optimization method 
as Particle Swarm Optimization (PSO) [40]. In PSO, the pat-
tern of each particle (bird) is random simple perturbations to 
search optimum conditions (food) that the position of each 
particle is computed using the current position of particles, 
best particle among current position and the best position 
among the history of their movements as below relations:

In which, gbest and pbest are respectively the best popula-
tion of each partial and best population in current positions. 
c1 and c2 are acceleration coefficients which set as 2 and r1 
and r2 are two random uniform numbers in the range from 
0 to 1. �k is inertia weight which is computed as follows:

where �min = 0.4 and �max = 0.9 . In PSO process, maxi-
mum ( vmax ) and minimum ( vmin ) velocities are respec-
tively given as x

U−xL

10
 and − xU−xL

10
 ( xU and xL are the variables 

upper and lower bound for x) that the initial each particle 
velocity is randomly computed in the domain of vmax and 
vmin.

(15)�(||x − Ci||) = exp

(
−
||x − Ci||2

�2
i

)

(16)
Vk+1 = �kVk + c1r1[pbest − Xk] + c2r2[gbest − Xk]

X
k+1

= Xk + Vk+1

(17)�k = �min +
NI − k

NI
(�max − �min),
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4.2 � Improved PSO Scheme (IPSO)

The convergence speed rate and global optimal results are 
two major important characteristics of efforts to apply the 
optimization methods as PSO. It can be used a variant of 
IPSO algorithm to achieve the best performances for both 
fast convergence and avoiding the local optima than PSO. 
Consequently, the ability of PSO is enhanced using random 
adjusting sachem for optimizing load-carrying capacity of 
HSS. This methodology randomly involves two major adapt-
ing proposes for each particle as well as PSO in first sage 
and the best conditions in second stage. In second adjust-
ing step, the best population is adjusted based on a random 
pitch-adjusting normal term as follows:

where k and NI are respectively the current and total itera-
tions. Based on Eq. (18), the best particles gbest are adjusted 
by using a normal random value with mean of 0 and stranded 
deviation of 1 ( Normrand(0, 1) ). The factor 

√
1 −

k

NI
 in 

Eq. (5) gives larger values at the initial iterations while com-
putes the smaller values at the final iteration. It is assumed, 
the new positions are randomly adjusted using the best popu-
lation and the PSO adjusting process. Therefore, Eqs. (17) 
and (18) are randomly combined to adopt the new position 
in IPSO as below:

(18)X
k+1

= gbest + Normrand(0, 1) ×

√
1 −

k

NI

where Vk+1 is computed using Eq.  (16) and r is a ran-
dom = number in the range from 0 to 1.

5 � Hierarchical Stiffened Shell (HSS)

5.1 � Studied Example of HSS

The configuration of HSS is displayed in Fig. 1. The diameter 
D of the HSS is 3000 mm, and the length L of the HSS is 
2000 mm. The HSS has 9 design variables, including Naj, Ncj, 
Nan, Ncn, ts, hrj, hrn, trj, and trn. The design space of 9 design 
variables is listed in Table 1. The material of the HSS is SiC 
particle reinforced Al matrix (SiC/Al) composites, which is a 
potential composite material used in aerospace fields [41]. The 
mechanical properties of SiC/Al composites are as follows: 
Young’s modulus E = 100,000 MPa and Poisson’s ratio υ = 0.3. 
The boundary condition of the HSS is to keep the lower end of 
the HSS clamped and the upper end fixed except the degrees 
of freedom along the axial direction. A uniform axial load is 
applied to the upper end of the HSS.

5.2 � Database of HSS

The data of HSS for evaluating load-carrying capacity under 
mass constraint in the modeling process are computed using 
the FE method. The input data sets in train and test phases of 
nine variables of HSS are simulated using the Latin hyper-
cube sampling (LHS) that these input data sets in train and 
test are jointed to a computer program to compute the load 
capacity and mass of HSS. The total data of train and test 
data are respectively given as 430 and 100 data points that 
the statistical properties of data including maximum (Xmax), 
minimum (Xmin), average (Xmean), standard deviations (STD) 
and coefficient of variations (COV) for test and train datasets 
are presented in Table 2. Four input (i.e. Naj, Nan, Ncj and Ncn) 
data are integer while other are continues variables. The COVs 
of input variables are varied in the range from 0.2 to 0.4 in 
training period and from 0.15 to 0.4 in testing period. The 
different of COVs between test and train data are shown in 
load data obtained by FE model. The bar diagram of the train 
and test data computed by FE analysis for studied problem 
are presented in Figs. 2 and 3, respectively. As seen, the load 

(19)

X
k+1

=

{
Xk + Vk+1 r < 0.8 − 0.4

k

NI

gbest + Normrand(0, 1) ×

√
1 −

k

NI
otherwise

Fig. 1   Schematic diagram of hierarchical stiffened shell

Table 1   The design space of 
design variables for hierarchical 
stiffened shell

ts (mm) trj (mm) trn (mm) hrj (mm) hrn (mm) Ncj Ncn Naj Nan

Lower bound 2.5 3.0 3.0 15.0 6.0 3 1 20 1
Upper bound 5.5 12.0 12.0 30.0 15.0 9 4 50 4
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capacities in train and test phases are respectively varied about 
15,000–24,000 kN and 11,000–19,000 kN while the mass 
effective domains are respectively computed as 265–465 kg 
and 245–395 kg for train and test databases.

6 � Simulation and Optimization Results

The results based on three-level optimization process 
involve two major categories. In the first category, the 

Table 2   statistical properties of input data and FE results of load and mass in train and test phases

Variables Train dataset (430 data pints) Test dataset (100 data points)

Xmin Xmax XMean STD COV Xmin Xmax XMean STD COV

hj 15 30 22.96 4.66 0.20 15 30 22.5 4.40 0.20
hn 6 15 11.82 2.20 0.19 9 15 12 1.76 0.15
naj 20 50 35.88 9.13 0.25 20 50 35 8.79 0.25
Nan 1 4 2.54 0.98 0.39 1 4 2.5 0.97 0.39
Ncj 3 9 5.78 1.87 0.32 3 9 6 1.81 0.30
Ncn 1 4 2.49 1.00 0.40 1 4 2.5 0.97 0.39
tj 3 12 7.29 2.74 0.38 3 12 7.5 2.64 0.35
tn 3 12 7.30 2.70 0.37 3 12 7.5 2.64 0.35
ts 2.5 5.8 4.10 0.91 0.22 2.5 5.5 4 0.88 0.22
Load 7302.73 33,973.90 19,270.45 4470.07 0.23 6851.09 31,631.36 16,304.54 4967.41 0.30
Mass 204.58 609.85 354.26 67.98 0.19 214.55 523.30 343.56 67.96 0.20

Fig. 2   Bar diagram of evaluated FE analysis for load capacity and mass in training data pints

Fig. 3   Bar diagram of evaluated FE analysis for load capacity and mass in testing data pints
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predicted results in test phase based on the six studied 
models are presented. The models-based mechanical 
learning approach are trained by the parameters which are 
determined using trial and error as (1) the parameters of 
SVR are C = 9000, σ = 16.5 and ε = 0.25 for training load 
and C = 5000, σ = 15 and ε = 0.15 for training mass, (2) the 
hidden layers in training process-based ANN are M = 11 
for load and M = 23 for mass while (3) the parameters 
of RBFNN models are M = 95 and σ = 0.5 for load and 
M = 83 and σ = 2.5 for mass. The calibrating models using 
six heuristic data-driven approaches including RSM, Krig-
ing, MARS, SVR, ANN and RBFNN are used in optimi-
zation process-based PSO and IPSO that the optimization 
results are compared in second category.

6.1 � Comparative Results for Modelling Conditions 
of HSS

The model’s accuracy was evaluated using statistical com-
parative factors including root mean square error (RMSE), 
mean absolute error (MAE), Nash and Sutcliffe efficiency 
(NES) and modified agreement index (d) statistics as below:

where N is the number of data in training phase (430) 
and testing phase (100), O, P and O are the observed FE, 
predicted models and mean of observed FE for mass or 

(20)MAE =
1

N

N∑
i=1

|Oi − Pi|

(21)RMSE =

√√√√ 1

N

N∑
i=1

[Oi − Pi]
2

(22)d = 1 −

∑N

i=1
�Oi − Pi�∑N

i=1
(�Oi − O� + �Pi − O�)

, 0 < d ≤ 1

(23)NES = 1 −

∑N

i=1
�Oi − Pi�∑N

i=1
�Oi − O�

, −∞ < NES ≤ 1

load-carrying capacity force, respectively. The comparative 
statistics of different predicted data-driven models for test 
(validation) dataset are presented in Table 3. The observed 
data computed by FE method corresponding to predicted 
data points approximated by studied models are plotted in 
Figs. 4 and 5 for load and mass in test phase, respectively.

By presented results in Table 3 and Fig. 4 for load data-
base, the accurate prediction is determined using the RSM 
and Kriging models by comparing the NSE and d which are 
also followed by the machine learning approaches as ANN, 
SVR and RBFNN models, while the MARS is ranked at the 
last predicted model for evaluating the load capacity of HSS. 
According to R2 in Fig. 4, the ANN model shows the highest 
R2 (R2 = 0.8709) which follows by Kriging (R2 = 0.8689) and 
RBFNN (R2 = 0.8662) models while the lowest R2 is 0.8518 
which obtained by MARS model. Finally, the Kriging model 
has the highest d and NSE (d = 0.625, NSE = 0.238) and 
the lowest RMSE (RMSE = 3317.6kN) that this modelling 
approach can be ranked as best among other studied models. 
The MARS model provides the last lowest RMSE and MAE 
for load predictions. Corresponding to RMSE values, the 
ranked models for predicting load are Kriging, RMS, ANN, 
SVR, RBFNN and MARS.

The results in Table 3 and Fig. 5 for mass indicated that 
the RBFNN method guaranteed highly accuracy for predic-
tion of mass by comparing the statistics of NSE = 0.774, 
d = 0.889 and MAE = 12.416 kg. By applying nine input 
data, the all models can be provided the accurate predic-
tions with high-correlation for mass while the predicted 
results for load are shown the inaccurate results. By com-
paring NSE values, the Kriging is followed the results as 
well as ANN while the RSM, and MARS models are ranked 
in second level. The worst method is ANN (NSE = 0.769) 
compared to other models. As seen, the Kriging, RBFNN, 
RSM and SVR performed the better than other models for 
predictions of mass with high-accuracy. It is evaluated the 
accuracy of models by RMSE (Table 3) and R2 (Fig. 5) that 
the best accuracy is obtained using RBFNN and SVR mod-
els. However, the MARS and ANN is decreased the accuracy 
of mass predictions. Finally, the RBFNN has the highest 
estimated accuracy (R2 = 0.9998), while the MARS has the 

Table 3   Comparative statistics 
of different models in test 
phases

The bold numbers are the best statistic among other relative statistic

Models Mass Load

MAE (kg) RMSE (kg) d NSE MAE (kN) RMSE (kN) d NSE

RSM 12.441 13.040 0.889 0.773 2987.855 3318.028 0.625 0.238
Kriging 12.428 13.020 0.889 0.774 2987.879 3317.603 0.625 0.238
MARS 12.472 14.103 0.888 0.773 3108.856 3389.592 0.611 0.212
SVR 12.542 12.775 0.889 0.771 3027.744 3360.563 0.618 0.227
RBFNN 12.416 12.880 0.889 0.774 3034.138 3362.171 0.621 0.226
ANN 12.652 12.944 0.887 0.769 3011.791 3343.453 0.622 0.231
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Fig. 4   Scatterplot for FE model-based computed data and models-based predicted data of load in test phase

Fig. 5   Scatterplot for FE model-based computed data and models-based predicted data of mass in test phase
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lowest accuracy (R2 = 0.9885) for mass evaluation as con-
straint function of the optimization HSS model. The best 
models for prediction of mass are not confirmed the same 
models which are provided the best predictions for load. 
Consequently, the models for approximate the optimization 
model as well as the optimization process are importance to 
compute the accurate optimal results of HSS. The approxi-
mated results of different models to simulate the load as 
objective and mass as subjective functions are important 
issues in optimization process.

6.2 � Comparative Results

The optimization process is included two subsections as i) 
evaluating the performances of PSO and IPSO for both fast 
convergence rate and avoiding the local optimum ii) evaluat-
ing the accuracy of optimum conditions.

6.2.1 � Comparison of PSO and IPSO

The optimization method of PSO and IPSO are used 
with a same optimization factors as number of total 
iterations = 4000, number of particles = 20, c1 = c2 = 2, 
�min = 0.4 and �max = 0.9 . The initial particles for all 
design variables are randomly generated in the range from 
maximum and minimum values presented in Table 1 as 
design domains while the initial velocities of particles are 
given in the range from x

U−xL

10
 to − xU−xL

10
 . The different models 

are applied to simulate the load as objective and mass as 
subjective and then the PSO and IPSO are implemented to 
search optimal design point of HSS. The optimization results 
of different modelling approaches for both PSO and IPSO 
are computed. The results of optimization methods in terms 
of various six models are compared based on 5-run time 
which are separately computed.

The iterative histories of load capacity with respect to 
the best (maximum) and average of five optimums resulted 
from optimization method (mean) for PSO and IPSO-based 

Fig. 6   Iterative results of load for different models corresponding to PSO and IPSO

Table 4   Comparison of the 
statistical optimum results for 
different models in PSO and 
IPSO

Models PSO IPSO

Max Min Mean STD Max Min Mean STD

ANN 24,313.22 22,600.35 23,503.32 639.42 24,379.46 24,209.44 24,277.63 83.14
RBFNN 23,402.73 23,284.66 23,352.47 41.27 23,480.66 23,443.12 23,473.01 14.95
SVR 24,329.3 23,627.72 23,911.71 233.62 24,398.15 23,964.18 24,225.72 211.15
RSM 23,267.19 22,692.1 23,139.98 224.07 23,383.97 23,371.83 23,381.5 4.84
MARS 28,468.16 25,915.92 27,641.28 1002.87 28,612 28,496.46 28,588.81 46.17
Kriging 23,695.94 21,904.2 23,157.78 656.43 23,860.72 23,695.86 23,794.73 80.71
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different models are presented in Fig. 6, while the statisti-
cal properties of optimum results for five separated runs for 
optimization method is listed in Table 4 for different models. 
As seen from result presented in Fig. 6, almost results with 
respect to mean load are closely followed with best results 
obtained by IPSO while it is demonstrated the significant 
differences between the mean and best results of PSO for all 
models. The proposed IPSO provides the optimum results 
in almost its run time compared to PSO for all modeling 
approaches. The IPSO is performed best optimum results 
compared to the PSO for almost models as RSM, Kriging, 
ANN and RBFNN models.

By comparing the results of Table 4, the STD of IPSO for 
five runs is obtained less than the relative STD of models 
computed by PSO that it improved from 41.7 to 14.95 for 
RBFNN, from 639.42 to 83.15 for ANN, from 656.43 to 
80.51 for Kriging and from 224.08 to 4.84 for RSM. This 
mean that the almost optimum results of IPSO are tended 
to the best results while PSO may be avoided these condi-
tions for several runs. The obtained results of optimization 
method indicated that the IPSO can be provided the optimal 
results compared to PSO while the convergence rate of PSO 
is strongly improved for all modelling approaches. As seen 
the modelling method can be affected on the optimum results 
of HSS as well as PSO and IPSO. The optimum loads using 
SVR, ANN and MARS models are computed more than 
24,000 kN while the optimum loads for RSM and RBFNN 
are obtained less than 23,500 kN.

6.2.2 � Accuracy of Predicted Optimum Results

The accuracies of approximated optimal results for different 
models are compared in this section. Five optimum results 
which are obtained using the PSO and IPSO for different 
modelling approaches are used to compute the mass and 
load-carrying capacity by FE model. Based on the results 
computed by FE model corresponding to the optimal design 
point by modelling approaches, the accuracy models are 
compared in PSO and IPSO. The design points obtained 
by PSO and IPSO are applied to compute the load and 
mass based on FE models whose statistical characteristics 
as maximum (max), minimum (min), mean and standard 
deviations (STD) of FE models are presented in Table 5. By 
comparing results from Tables 4 and 5, the means of leads 
for FE method and optimization approaches are significantly 
changed for load predictions using MARS model thus the 
results obtained by this model cannot cover the appropri-
ate predictions for both load and mass in the optimization 
process.

According to the results obtained by modelling 
approaches and FE method for mass and load, the errors as 
|XFE − Xmodel|/XFE × 100 are presented in Tables 6 and 7 for 
load and mass, respectively. By comparing errors of estimat-
ing maximum load presented in Table 5, the best results for 
the modelling approaches are provided as RBFNN with min-
imum of 0.08% in PSO and 0.01% in IPSO as first ranked 
model and SVR with minimum of 0.19% in PSO and 0.03% 
in IPSO as second ranked model. However, ANN model can 
be provide the best results for searching optimum condi-
tions while this modeling method to predict load capacity 

Table 5   Comparison of the 
statistical optimum results using 
FE method for optimal design 
points of different models 
obtained by PSO and IPSO

Models PSO IPSO

Max Min Mean STD Max Min Mean STD

ANN 23,022.18 21,477.99 22,191.38 555.9015 23,320.78 23,104.34 23,232.15 104.3831
RBFNN 23,421.28 22,912.27 23,131.79 188.1283 23,484.53 22,957.64 23,373.51 208.0595
SVR 24,099.1 23,159.43 23,675.94 380.2201 24,023.45 23,307.75 23,585.37 339.2836
RSM 23,673.72 21,910.63 23,058.73 603.3339 24,041.92 23,906.05 23,935.73 53.17,212
MARS 28,607.57 24,071.56 27,122.3 1601.838 28,227.02 27,017.62 27,295.26 466.4628
Kriging 24,303.68 22,391.64 23,388.67 798.2491 27,045.6 24,219.53 25,905.69 1373.67

Table 6   Statistical properties of 
errors between FE method and 
models for approximated load in 
PSO and IPSO

Models PSO IPSO

Max Min Mean STD Max Min Mean STD

ANN 10.02 3.61 5.93 2.34 5.52 3.81 4.50 0.83
RBFNN 1.88 0.08 0.99 0.65 2.11 0.01 0.44 0.84
SVR 5.05 0.19 2.13 1.75 4.68 0.03 2.86 2.22
RSM 3.57 0.34 1.30 1.26 2.79 2.18 2.31 0.24
MARS 7.66 0.79 3.33 2.53 5.90 0.95 4.77 1.91
Kriging 3.15 0.98 2.21 0.71 11.78 2.16 7.90 4.67
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has highest rank but approximated mass by ANN model is 
also affected on the optimization method and it may provide 
an optimal design point by ANN model for load with high-
error. For mass errors, the best results are obtained using the 
modelling approaches of RBFNN (min = 0.02 in PSO and 
min = 1.41 in IPSO), RSM (min = 0.8 in PSO and min = 2.69 
in IPSO) and ANN (min = 1.09 in PSO and min = 1.14 in 
IPSO) while the worst models are as MARS (min = 13.99 in 
PSO and min = 22.71 in IPSO) and SVR (min = 5.32 in PSO 
and min = 3.68 in IPSO).

The results form Tables 6 and 7 demonstrated that the 
studied models may affected with different accuracy for 
modelling load and mass as well as the ANN that it provides 
the acceptable results for mass while its predictions shows 
the larger error than other models in load. The predictions 
results by comparing the train and test data sets can be pro-
vided an appropriate way to select a robust model for exist-
ing dataset, but the accuracy predictions of the modelling 
approaches combined by the optimization approaches can 
not guaranteed. As seen, the RBFNN combined by IPSO 
can provide the acceptable results for optimization of this 
problem while the MARS shows the worst prediction for 

optimization of HSS. This problem as a complex engineer-
ing optimization example can be applied for testing other 
modelling approaches or hybrid intelligent optimization 
methods, in future.

The best optimal results obtained using PSO and IPSO 
in terms of accuracy are listed in Table  8 for different 
models. These results obtained for five runs for both PSO 
and IPSO which are given based on the minimum errors 
for approximated load and mass using the proposed opti-
mization approach. The approximated load using IPSO is 
obtained more the PSO while it is provided the larger mass 
than the PSO. The approximated modelling approaches can 
be categorized as three levels for optimization of studied 
HSS example

1.	 The best modelling approaches as RBFNN 
(Pcr = 23,048.87 in PSO and Pcr = 23,483.08 in 
IPSO), Kriging (Pcr = 23,450.76 in PSO), and RSM 
(Pcr = 23,375.43 in PSO) that their buckling modes 
are shown in Fig. 7. It is conducted that the maximum 
load-carrying capacity is obtained by RBFNN model 
combined by IPSO with minimum error. It can be found 

Table 7   Statistical properties of 
errors between FE method and 
models for approximated mass 
in PSO and IPSO

Models PSO IPSO

Max Min Mean STD Max Min Mean STD

ANN 3.00 1.09 1.69 0.70 3.29 1.11 1.99 1.06
RBFNN 1.45 0.02 0.65 0.59 2.70 1.41 1.68 0.51
SVR 7.81 5.32 6.48 0.79 7.16 3.69 6.03 1.41
RSM 1.68 0.80 1.09 0.30 2.95 2.69 2.74 0.10
MARS 27.78 13.99 23.54 4.96 26.63 22.71 23.53 1.55
Kriging 8.35 1.81 3.96 2.39 21.65 3.39 14.35 8.92

Table 8   Optimal results for different models in PSO and IPSO

Models Design point using PSO Predicted models Observed FE

hj hn Naj Nan Ncj Ncn tj tn ts Load Mass Load Mass

ANN 30 15 34 1 3 1 3 10.011 5.800 23,853.12 369 23,022.18 373.08
RBFNN 29.945 15 48 4 4 1 4.800 3.001 4.899 23,284.66 369 23,048.87 369.09
SVR 30 14.934 40 3 5 1 5.225 3.023 5.566 23,800.67 369 23,847.09 389.73
RSM 30 15 50 2 3 2 3 4.484 5.478 23,267.19 369 23,375.43 371.97
MARS 19.873 6 47 2 9 4 10.86 3 5.477 25,915.92 369 24,071.56 429.00
Kriging 30 9.351 37 2 4 1 3 12 5.439 23,220.49 369 23,450.76 375.79

Models Design point using IPSO Predicted models Observed FE

ANN 30 14.912 45 1 3 1 3 12.000 5.342 24,209.88 369 23,320.78 373.23
RBFNN 30 15 50 1 3 1 5.750 3 5.529 23,480.52 369 23,483.08 374.29
SVR 30 14.990 39 4 4 1 4.399 3 5.553 23,964.18 369 24,023.45 383.14
RSM 30 15.000 33 4 3 1 3 10.158 4.330 23,383.9 369 23,906.05 379.22
MARS 23.079 6 47 4 9 1 11.062 4.843 5.8 28,611.96 369 27,076.68 477.65
Kriging 30 15 48 3 4 1 3.120 3.009 5.749 23,695.86 369 24,227.15 381.97
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from Fig. 7 that, buckling modes of optimal results 
based on RBFNN, Kriging and RSM are elastic buckling 
modes. Specifically, they are all global buckling modes, 
which are considered as buckling modes with high load-
carrying capacity for HSS [9].

2.	 The accurate extracted optimization results are 
Pcr = 23,048.87kN, mass = 369.09  kg with optimal 
design variables as hj= 29.945 mm, hn= 15 mm, Naj= 48, 
Nan= 4, Ncj= 4, Ncn= 1, tj= 4.8 mm, tn= 3.0 mm and 
ts= 4.899 mm while the maximum load capacity based 
on mass less than 375 kg among all models are obtained 
as Pcr = 23,483.08kN and mass = 374.29 kg with opti-
mal design variables as hj= 30 mm, hn= 15 mm, Naj= 50, 
Nan= 1, Ncj= 3, Ncn= 1, tj= 5.75 mm, tn= 3.0 mm and 
ts= 5.529 mm.

3.	 Models with the moderately results as Kriging combined 
by IPSO, RSM combined by IPSO, SVR combined by 
both PSO and IPSO and hybrid ANN by PSO and IPSO. 
As seen, the SVR can be predicted the accurate load but 
it is required to improve for tuning its parameters for 
approximating the accurate prediction of mass. On the 
other hand, the ANN can be provided the robust predic-
tion to modelling mass but its modeling to approximate 
load shows the huge errors.

4.	 The worst model which provided optimal results with 
large values of errors is the MARS combined by IPSO 
and PSO. This non- parametric approach may be loosed 
its accuracy in approximating the optimal results of this 
problem that the buckling mode shape of these model-
ling methods is presented in Fig. 8. It can be observed 
that, buckling occurs near the boundary of the HSS. 
According to Ref. [42], this kind of elephant foot mode 

is referred to as the plastic buckling mode, which is 
caused by the material yield.

7 � Conclusion

The optimization process using finite element model is more 
computationally for evaluating the optimal design-based 
maximizing load capacity of hierarchical stiffened shells 
(HSS). Therefore, the hybrid heuristic models can be applied 
to reduce the computational burden in optimization process. 
The accuracy of hybrid heuristic models is a major challenge 
in intelligent optimization approach. In this current work, six 
heuristic-basis social inspired optimization is reviewed using 
three-phase framework as follows: i) finite element model 
to analyze HSS for providing the train and test databases 
ii) the modelling methodology to approximate the load and 
mass of optimization model iii) the optimization process to 
search the optimal design. The main effort of this optimiza-
tion propos is comparative survey for accuracy of six heu-
ristic approaches including response surface method (RSM), 
multivariate adaptive regression splines (MARS), Kriging, 
artificial neural network (ANN), radial basis function neural 
network (RBFNN), and support vector regression (SVR). 
Improved partial swarm optimization (IPSO) is presented 
using random improvisation using the best partial, dynami-
cal bandwidth and normal standard distribution. Based on 
the comparative results of hybrid models, the following con-
clusions are extracted.

1.	 The all hybrid heuristic methodan be used for optimiza-
tion of HSS However, the accuracy of optimal condition 
is depended on the accurate predictions of data-driven 
techniques.

2.	 The IPSO provides the superior optimal performances 
for HSS compared to PSO.

3.	 The best and worst modeling methodologies are RBFNN 
and MARS among other, respectively. The RSM and 
Kriging combined by IPSO and PSO can be provided 
an accurate result compared to SVR combined by IPSO.

4.	 Kriging and RSM combined by IPSO, SVR and ANN 
combined by PSO and IPSO are shown the lowest accu-

Fig. 7   Buckling modes of optimal results based on RBFNN, Kriging 
and RSM

Fig. 8   Buckling modes of optimal results based on MARS
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racy than Kriging and RSM combined by PSO and 
RBFNN combined by PSO and IPSO.
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