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Abstract
Since early publications in the late 1980s and early 1990s, the finite volume method has been shown suitable for solid 
mechanics analyses. At present, there are several flavours of the method, which can be classified in a variety of ways, such 
as grid arrangement (cell-centred vs. staggered vs. vertex-centred), solution algorithm (implicit vs. explicit), and stabilisa-
tion strategy (Rhie–Chow vs. Jameson–Schmidt–Turkel vs. Godunov upwinding). This article gives an overview, historical 
perspective, comparison and critical analysis of the different approaches where a close comparison with the de facto standard 
for computational solid mechanics, the finite element method, is given. The article finishes with a look towards future research 
directions and steps required for finite volume solid mechanics to achieve more widespread acceptance.

1  Introduction

“Now however I recognise the FVM/FEM dichotomy as 
being comparable with those between Protestant and 
Catholic, or Sunni and Shia. That is to say that it promotes 
needless conflict; and expense; and loss of opportunity.” 
[1] With these words, Brian Spalding highlighted the, at 
times, unproductive nature of the debate around the rela-
tive merits of the finite volume (FVM) and finite element 
(FEM) methods. Although accepted in the computational 
fluid dynamics (CFD) field, there remains a reluctance and 
general confusion around the application of the finite vol-
ume method to solid mechanics. The aim of this article is 
to clarify this confusion, by: providing an overview of the 
significant developments within the field; linking variants 
of the finite volume method for solid mechanics analyses; 
comparing finite volume methods with standard finite ele-
ment methods; and, finally, identifying future directions for 
the field.

Building on the foundations of the finite difference 
method, the finite volume method is a generalisation in terms 
of geometry and topology: simple finite volume schemes 

reduce to finite difference schemes. Whereas the finite dif-
ference method is based on nodal relations for differential 
equations, the finite volume method balances forces acting 
on control volumes, directly discretising the integral form 
of the conservation laws. A number of prior developments 
within CFD provided the foundation for the earliest paper 
on the cell-centred finite volume method for solid mechanics 
by Demirdžić et al. [2]. In the subsequent three decades the 
finite volume method for solid mechanics has developed in 
a number of directions, differing in terms of discretisation, 
solution methodology and overall philosophy. The varied 
approaches may be classified in a number of ways, includ-
ing, for example:

•	 Grid arrangement: cell-centred [2, 3] vs. vertex-cen-
tred [4–12] vs. staggered-grid [13–19], as well as more 
recently face-centred [20, 21] and meshless [22, 23];

•	 Solution algorithm: implicit [3, 24, 25] vs. explicit 
(matrix-free) [26–28];

•	 Stabilisation approach: Rhie–Chow [29, 30] vs. Jame-
son–Schmidt–Turkel [31] vs. Godunov two-sided 
upwinding [27, 32].

There are countless other ways to classify the approaches, 
for example, based on force discretisation at the control vol-
ume face, however, the current article will base its discus-
sion primarily around the three classification types above.

The essential characteristic of a finite volume method is 
the integration of the governing conservation equation over 
finite control volumes. In this sense, the cell-centred vs. 
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vertex-centred vs. staggered-grid approaches primarily differ 
in how these control volumes are constructed. Cell-centred 
approaches use the primary mesh control volumes, whereas 
vertex-centred approaches construct a dual mesh with con-
trol volumes surrounding the vertices of the primary mesh. 
On the other hand, staggered-grid approaches create mul-
tiple secondary meshes, one for each scalar component of 
the primary solution vector, constructed about the primary 
mesh faces. Despite their close relationship, as explored fur-
ther in Sect. 3, approaches based on differing grid arrange-
ments often differ greatly in terms of philosophy: as noted 
by Baliga and Atabaki [33], the cell-centred method is often 
thought of as a control-volume finite difference method, 
combining ideas borrowed from finite volume and finite 
difference methods; whereas, the vertex-centred approach 
is viewed as a control-volume finite element method, for-
mulated by amalgamating concepts native to finite volume 
and finite element methods.

Regardless of the chosen grid arrangement, spatio-tem-
poral integration of the governing equations may adopt an 
implicit or explicit solution algorithm. Implicit algorithms 
are characterised by the solution of a linear system of equa-
tions and are unconditionally stable with respect to the time 
increment size. In contrast, explicit or matrix-free algorithms 
avoid the need to construct such a system of linear equations 
but the time increment size is restricted by the classic Cou-
rant–Friedrichs–Lewy constraint [34]. The choice of solu-
tion algorithm often depends on the problems of interest, 
with implicit methods favoured for elliptic and parabolic 
cases (steady-state and quasi-steady-state) and explicit meth-
ods for hyperbolic (high rates, wave propagation). Once the 
grid arrangement and solution algorithm are selected, care 
must be taken in the construction of a stable discretisation 
that does not suffer from unphysical instabilities in the solu-
tion field. To this end, a variety of stabilisation approaches 
have been proposed. Generally, each approach can be viewed 
upon as adding some form of diffusion to the surface force 
discretisation with the purpose of quelling high-frequency 
oscillations. Rhie–Chow-style stabilisation is common in the 
implicit approaches originating from the work of Demirdžić 
and Muzaferija [29], while Godunov upwinding and Jame-
son–Schmidt–Turkel approaches are more commonly seen in 
the explicit approaches, rooted in the solution of compress-
ible gas flow Euler equations.

From afar, each of these main variants of finite vol-
ume method can seem quite distinct; however, upon closer 
inspective, they share many similarities in terms of discreti-
sation and solution algorithm. Nevertheless, the fragmented 
nature of the finite volume solid mechanics community is 
evident from many recent publications in the area, where 
authors, reviewers and editors tend to be unaware of devel-
opments within the field, for example, see [35]. In addi-
tion, and more generally, there is a lack of awareness in the 

computational mechanics community around the capabilities 
of the finite volume method for solid mechanics. Accord-
ingly, a comparative and critical review of the finite volume 
method for solid mechanics is timely, relevant and essential 
for the future progress of the field. Within this domain, there 
are a number of open questions: What are the strengths and 
weaknesses of the various approaches? Which approaches 
show the greatest potential and widest applicability? Are 
there possibilities for the various methods to be combined 
to produce superior methods? How do the finite volume 
approaches relate to finite element methods? Are there direc-
tions of development which are missing? This article will 
attempt to provide answers to these questions, as well as 
providing a unifying framework for the discussion of finite 
volume methods for solid mechanics, and their relationship 
with finite element methods. Given the scale of the field, 
it is outside the scope of the article to provide an exhaus-
tive review of all formulations; instead, the article aims to 
provide detailed analysis on the main variants of approach 
common in the literature. The primary novel contributions of 
the current article are twofold: (i) The first detailed review of 
the finite volume solid mechanics field is presented; and (ii) 
The first analysis of similarities and differences between all 
main variants of the finite volume method for solid mechan-
ics is detailed.

The remainder of the article is constructed as follows: 
Sect. 2 provides a chronological overview of the prominent 
finite volume developments for solid mechanics. Section 3 
compares and contrasts the three main flavours of the finite 
volume method for solid mechanics. In Sect. 4, the finite vol-
ume method for solid mechanics is compared to the “stand-
ard” continuous Bubnov–Galerkin finite element method, 
highlighting similarities and differences in terms of discre-
tisation, solution methodology and overall philosophy. Sec-
tion 5 reviews the variety of structural applications to which 
the finite volume method has been applied in its thirty year 
history. The penultimate section briefly reviews software 
that use, or have previously used, the finite volume method 
for solid mechanics simulations. Finally, Sect. 7 summaries 
the main conclusions of the article and considers the current 
challenges facing the field.

2 � History of the Finite Volume Method 
for Computational Solid Mechanics

The development of the finite volume method for solid 
mechanics has occurred independently in a number of 
forms, with finite difference methods, computational fluid 
mechanics algorithms, and finite element methods provid-
ing much of the inspiration. This section gives an overview 
of the historical development of these finite volume meth-
ods. The treatise is primarily partitioned based on the grid 
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arrangement, where comments regarding the solution algo-
rithm and stabilisation scheme are given where appropri-
ate. In-depth dissections of the technical details are left to 
Sect. 3. While the field is small and fragmented, there are 
a number of notable reviews worth mentioning, including 
those of Maneeratana [36], Vaz Jr. et al. [37] and Cavalcante 
et al. [38].

Before delving into details of influential publications, it 
is insightful to first consider the literature landscape as a 
whole. To this end, Fig. 1 presents a histogram of the pub-
lications in the area to-date, separated into journal articles, 
conferences, Ph.D. theses, Masters theses and books. Of 
course, exact records of each publication type are difficult 
to track and consequently the data should be taken as indica-
tive. To complement this, Fig. 2 lists the most popular inter-
national journals for publishing finite volume solid mechan-
ics articles; only journals with greater than five articles have 

been included. Furthermore, a table of the most cited articles 
related to the finite volume method for solid mechanics can 
be found in “Appendix 1”. 

A perspective on the literature landscape is gained from 
the co-authorship network presented in Fig. 3, which has 
been generated using the VOSviewer software [39]. A co-
authorship network is a visual method to assess research 
collaborations within a field, as well as observe detached 
regions of research. Referring to Fig. 3, the three larger 
sub-networks broadly correspond to: implicit cell-centred 
approaches indicated by the red sub-network centred on 
demirdžić and ivanković; implicit vertex-centred approaches 
indicated by the green sub-network centred on cross, bai-
ley and fallah; and a specialised form of finite volume 
method for microstructural analysis indicated by the blue 
sub-network centred on aboudi, pindera and cavalcante. 
Although the co-authorship graph is not a direct measure 

Fig. 1   Histogram of the finite 
volume method for solid 
mechanics publications to-date. 
(Color figure online)

Fig. 2   Number of publications 
per journal related to compu-
tational solid mechanics using 
the finite volume method, based 
on the cited references, where 
only journals with greater than 
five articles have been counted. 
(Color figure online)
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of contribution to the field, it does provide insight into the 
collaboration between authors and subdivisions within the 
domain. In the graph, individual authors are represented by 
filled circles, and a co-authored publication between two 
individual authors is symbolised by a line connecting the 
two filled circles; the line thickness increases with increasing 
number of co-authored publications; the size of an author’s 
filled circle is directly proportional to the number of their 
related publications. To maintain interpretability, only 
authors with five or more related publications have been 
included in the network, and only peer-reviewed publications 
have been incorporated.

Finally, before considering individual contributions, we 
will clarify the meaning of a number of terms in the cur-
rent context to avoid any confusion. For the domain spatial 
discretisation, this will be referred to interchangeably as the 
“mesh” or “grid”; each sub-domain in a finite volume mesh 
will be equivalently referred to as a “control volume”, a 
“cell”, or even an “element”; similarly, each sub-domain in 
the finite element mesh will be referred to as an “element” 
or “cell’. The term “node” indicates the mesh location where 
the solution variable is stored, which could be a vertex, face-
centre or cell-centre depending on the method.

2.1 � Cell‑Centred Approaches

Thirty years ago, Demirdžić et al. [2] proposed the first 
application of the cell-centred finite volume method in its 
modern form to solid mechanics. Subsequently, cell-centred 
developments have primarily focussed on two relatively dis-
connected approaches:

•	 Implicit cell-centred approaches based on the original 
approach of Demirdžić et al. [2], and

•	 Explicit Godunov-type cell-centred approaches stemming 
from the work of Trangenstein and Colella [40].

The cell-centred approach takes its name from the 
dependent variable(s) residing at the cell centres (control 
volume centroids); equivalently, the approach has been 
termed the colocated, co-located or collocated finite volume 
method, as the dependent variables share their location at the 
cell centres/centroids.

2.1.1 � Implicit Cell‑Centred Methods

Considering first the implicit methods: in the original 
approach of Demirdžić et al. [2], a structured rectangu-
lar 2-D method was applied to the simulation of thermal 

Fig. 3   Co-authorship network 
of the finite volume method 
for solid mechanics, generated 
using the VOSviewer software 
[39]. To maintain interpret-
ability, only authors with five 
or more related peer-reviewed 
publications have been included 
in the network. The network 
provides insight into collabora-
tions within the field but is not a 
direct measure of contribution. 
(Color figure online)
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deformations in welded workpieces (Fig. 4a). The dis-
placement was assumed to vary linearly between compu-
tational nodes, and the small strain material behaviour was 
described by the Duhamel–Neumann form of Hooke’s law. 
A distinguishing feature of the proposed solution algo-
rithm was the partitioning of the surface force term into a 
compact-stencil implicit term and a larger stencil explicit 
term. As a result, the linear momentum vector equation 
was temporarily decoupled into three scalar component 
equations that were independently solved, where outer 
fixed-point/Gauss–Seidel/Picard iterations provided the 
required coupling. This form of solution methodology is 
termed a segregated approach, as the governing conserva-
tion of linear momentum equation is segregated into three 
scalar equations during solution. This style of implicit seg-
regated solution algorithm was inspired by the methods 
adopted in similar CFD procedures, where the restrictive 
computer memory sizes available at the time necessitated 
memory efficient procedures.

The original 2-D method was later generalised to 3-D 
convex polyhedral cells by Demirdžić and Muzaferija [41] 
(Fig. 4b). This form of the cell-centred approach has since 
been extended to deal with a wide variety of solid and 
multi-physics phenomena, including:

•	 Elastoplasticity [3, 25, 36, 42–54] and viscoelasticity 
[55–60];

•	 Thermo-elasticity [2, 41, 61–65] and hygro-thermo-elas-
ticity [66–77];

•	 Poro-elasticity [78–85];
•	 Anisotropy [66, 67, 69, 72–75, 86–89] and heterogeneous 

material properties [79, 84, 90–92].
•	 Incompressibility and quasi-incompressibility [93–100];
•	 Contact mechanics [25, 101–105];
•	 Finite strains and rotations [25, 36, 88, 95, 106–117];
•	 Fracture mechanics [60, 79, 80, 82, 84, 91, 118–132];

•	 Casting, melting, solidification and residual stresses [44, 
45, 133–137];

•	 Fluid–solid interaction [29, 93, 94, 96, 98, 99, 113, 138–
166];

•	 Beams, plates and shells [59, 89, 145, 146, 150, 167–
187];

•	 Solid–electrostatic interaction [188, 189] and wave prop-
agation [42, 190–192];

Of particular note are the developments of Weller et al. 
[193] and Jasak and Weller [194], where the same implicit 
cell-centred form has been demonstrated to be well-suited 
to running on distributed-memory supercomputers. The 
domain decomposition method was used where the solution 
domain is decomposed into a number of sub-domains, each 
solved on a separate central processing unit (CPU) core; 
necessary coupling between the sub-domains is performed 
using a message-passing protocol, initially parallel virtual 
machine, but message passing interface in later publica-
tions. The Weller et al. [193] and Jasak and Weller [194] 
implementations form a component of the popular open-
source C++ library OpenFOAM, formerly commercial 
software FOAM. Many of the subsequent developments in 
the implicit cell-centred field have been based on the Open-
FOAM platform, for example, [25, 30, 77, 78, 83, 88, 90, 
104, 112, 113, 131, 195]. It should, however, be noted that 
the explicit Godunov-type approaches have also been imple-
mented in OpenFOAM [28, 196].

The essence of the implicit cell-centre finite volume 
method has been the use of a displacement approach com-
bined with a segregated algorithm; however, alternative 
solution methodologies have also been developed, includ-
ing geometric multi-grid procedures [86, 120, 142, 143, 
197], block-coupled algorithms [30, 188, 189, 198, 199], 
hybrid/mixed pressure–displacement formulations [46, 95, 
97, 100, 138, 139, 200, 201], Aitken acceleration [78, 160, 

Fig. 4   Original 2-D struc-
tured quadrilateral mesh of 
Demirdžić et al. [2] (left) and 
the subsequent generalisation 
to 3-D unstructured convex 
polyhedra [41] (right). (Color 
figure online)
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199], and curvilinear formulations [43, 202]. In addition, 
fourth-order accuracy variants have been proposed [203] as 
well as novel gradient and tractions calculation methods [25, 
157, 160, 199, 204–208]. Apart from the standard continuum 
approaches, a number of authors have proposed implicit cell-
centred finite volume methods for beams, plates and shells 
[59, 89, 145, 146, 150, 167, 173, 174, 181, 185, 186, 209, 
210].

2.1.2 � Explicit Cell‑Centred Methods

Explicit Godunov-type finite volume methods were first pro-
posed for the solution of hyperbolic problems characterised 
by waves and shocks [32, 211, 212], and have been popular-
ised for the solution of Euler compressible gas flow equa-
tions. The typical approach, which casts the conservation 
laws as a system of first-order hyperbolic equations, is char-
acterised by the solution of a Riemann problem (propaga-
tion of a solution discontinuity) at the control volume faces 
to determine forces. The resulting discretisation evaluates 
the force at a control volume face as a weighted average of 
the force evaluated at each side of the face. Godunov-type 
methods were first applied to structural problems by Tran-
genstein and Colella, when they modelled the 1-D propa-
gation of waves in elasto-plastic solids [40, 213, 214]; in 
their approach, the primitive conservation variables were 
the linear momentum vector and the deformation gradient 
(or displacement gradient) tensor. Subsequently, the method 
has been extended to unstructured 3-D grids in a variety 
of forms, differing in terms of discretisations and primitive 
variables [20, 21, 26–28, 32, 196, 215–236], for example, 
see Fig. 5. Although cell-centred formulations are the most 
common form of Godunov-type method, vertex-centred [31, 
237] and, recently, face-centred approaches [20, 21] have 
also been explored.

To-date, Godunov-type approaches have been used to 
model a wide range of physical mechanisms:

•	 Linear elasticity [21, 40, 213, 232];
•	 Material nonlinearity [26, 28, 196, 216, 218, 222–224, 

226–236];
•	 Fracture and cavitation [216, 226];
•	 Finite strains [28, 196, 222–224, 226–229, 231, 233–

236];
•	 Material heterogeneity [217, 219];
•	 Wave propagation and impacts [32, 40, 213–219, 222–

229, 231–236].

A distinctive characteristic of Godunov-type methods 
is the adoption of fully explicit solution algorithms, where 
the time increment size is restricted by the standard Cou-
rant–Friedrichs–Lewy constraint [34].

From an implementation and philosophy perspective, the 
implicit approaches stemming from Demirdžić et al. [2] dif-
fer greatly from the explicit approaches deriving from Tran-
genstein and Colella [40]. The most obvious difference is 
the need of the implicit approach to form and solve a linear 
system of equations, and the time increment size restriction 
for explicit methods. In addition to this, the implicit methods 
have typically assumed a smooth variation of the primitive 
variable within each cell (or across cell faces); in contrast, 
the explicit approaches have aimed to directly approximate 
the propagation of solution discontinuities. Many of these 
technical distinctions are discussed further in Sect. 3. It 
should be noted that explicit cell-centred approaches that do 
not adopt a Godunov approach are also possible, for exam-
ple, as developed by Selim et al. [238, 239].

2.2 � Vertex‑Centred Approaches

2.2.1 � Implicit Vertex‑Centred Methods

Fryer et al. [5] was the first to propose a vertex-centred 
finite volume method for solid mechanics. The approach, 
initially termed a control volume-unstructured mesh 

Fig. 5   Forms of mesh employed 
by Kluth and Després [26] and 
Aguirre et al. [237]. (Color 
figure online)



3727Thirty Years of the Finite Volume Method for Solid Mechanics﻿	

1 3

procedure, could analyse complex 2-D geometry using 
both quadrilateral and triangular cells (Fig.  6a). The 
method of Fryer et al. [5] followed closely the approach 
of Baliga and Patankar [240] from a decade earlier, who 
developed a so-called control-volume-based finite element 
method for convection–diffusion equations on unstructured 
triangular grids.

In addition to the designation vertex-based finite volume 
method, the formulation is referred to by a number of other 
names, including vertex-centred finite volume method, cell-
vertex finite volume method, control volume procedure, 
control-volume finite element method, control-volume-based 
finite-element method, and element-based finite volume 
method.

In contrast to cell-centred and staggered-grid approaches, 
vertex-centred approaches store the primary unknowns at the 
primary mesh vertices and integrate the governing equation 
over secondary/dual mesh control volumes surrounding each 
primary mesh vertex.

The original 2-D approach of Fryer et al. [5] was subse-
quently extended to three dimensions by Bailey and Cross 
[24] (Fig. 6b) and has since been applied to a wide range of 
physical phenomena:

•	 Compressible and incompressible elasticity [24, 242–
250];

•	 Elasto-plasticity, elasto-visco-plasticity, creep and mate-
rial nonlinearity [179, 183, 241, 251–253];

•	 Finite strains and geometric nonlinearity [254–260];
•	 Beams, plates and shells [168, 261, 262];
•	 Multi-physics and fluid–solid interaction [249, 263–280];
•	 Casting [4, 7, 9, 10, 264–267, 281–284], extrusion and 

forging [285–287];
•	 Welding [288, 289];
•	 Contact mechanics [290];
•	 Functionally graded solids [291, 292] and wood drying 

[293, 294];

•	 Micropolar/Cosserat elasticity (shear stress may not be 
symmetric) [295, 296];

•	 Vibrations, acoustics and wave propagation [178, 297–
299].

Alternative solution methodologies have been exam-
ined, including mixed displacement-rotation approaches 
[300–302], and addressing parallelisation on distributed 
memory supercomputers [303, 304]. Also of note are the 
developments of Maitre et  al. [305] and Souhail [306], 
who proposed a higher order extension of the vertex-based 
approach.

It is important to note the distinction between overlapping 
and non-overlapping vertex-centred methods: the more com-
mon approach involves non-overlapping control volumes, 
where the control volumes about each primary mesh ver-
tex do not overlap with the control volumes of neighbour-
ing primary mesh vertices. In the less popular overlapping 
control volumes approaches, for example, as discussed by 
Oñate et al. [12], primary mesh vertices partly share control 
volumes with primary mesh neighbouring vertices, resulting 
in the governing equations being integrated more than once 
over regions of the domain; this overlapping local integra-
tion domain approach is more similar to the finite element 
method. Additionally, Tsui et al. [249] proposed a variation 
on the common approach to construct the control volumes: 
the primary mesh cell centres are joined together to make the 
control volumes, rather than joining the cell-centres to the 
face-centres as per the classic vertex-based method.

2.2.2 � Explicit Vertex‑Centred Methods

Similar to cell-centred methods, both implicit and explicit 
solution algorithms have been developed, although explicit 
vertex-centred methods have seen less development. 
Within the category of explicit vertex-centred methods, 
there exists a variety of sub-classes, including: so-called 

Fig. 6   Vertex-based finite vol-
ume formulation of Fryer et al. 
[5] (left) showing the construc-
tion of control volumes around 
a mesh vertex for quadrilateral 
and triangular 2-D cells, and of 
Taylor et al. [241] showing the 
extension to 3-D cells. (Color 
figure online)
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dual-time-stepping explicit methods, where the solution is 
calculated in an explicit manner and a linear system is not 
directly formed [248, 249, 277, 279, 297]; Godunov-type 
approaches [31, 237] similar to those seen in cell-centred 
approaches, as noted in Sect. 2.1; and the so-called grid 
method [307–312]. Regarding the grid-method, the origi-
nators of the method, Zhang and Liu [307], argue for the 
distinction between the grid method and the vertex-based 
finite volume method, however, the authors of the current 
article believe this distinction is unwarranted: like other 
finite volume methods, the grid method starts from the 
governing momentum equation in strong integral form and 
approximates the forces over the boundaries of the control 
volumes; although there are minor differences in the tech-
niques used to approximate the surface forces, for example, 
comparing Dormy and Tarantola [313] and Zhang and Liu 
[308], the grid method still remains a form of vertex-centred 
finite volume method.

2.3 � Staggered‑Grid Approaches

In staggered-grid approaches, as originally proposed for 
CFD by Harlow and Welch [314], the components of the pri-
mary solution variable, for example, the x and y components 
of displacement, are stored at different locations. In addition, 
different sets of control volumes are used when integrating 
the discretised governing equation in each Cartesian direc-
tion. For example, the x-momentum component equation 
employs a different grid to the y-momentum component 
equation. The primary motivation for such staggered-grid 
approaches is the avoidance of solution instabilities, namely 
the “checker-boarding” phenomenon, where high frequency 
variations appear in the solution variables that are unob-
servable to the discretisation. Consequently, staggered-grid 
approaches do not need to explicitly included a stabilisation 
term, as is common in cell-centred methods. The exten-
sion of staggered-grid approaches to general unstructured 
3-D meshes is, however, not trivial; and consequently, this 
major limitation has resulted in declining popularity for such 
approaches in solid mechanics.

The first application of a staggered-grid formulation 
to solid mechanics was by Beale and Elias [13, 14], who 
showed how the finite volume CFD code PHOENICS 
could be applied to stress analysis problems. In their 
method, Beale and Elias used the analogy between the 
stream functions in creeping-fluid-flow and the Airy stress 
functions in solid mechanics, where the stress components 
were the primary unknowns. This method was later gen-
eralised by Spalding et al.  [15, 17, 315–321], where a 
displacement, rather than a force analogy, was adopted, 
having the major advantage of being more general in three 
dimensions. Spalding noted that a CFD solution proce-
dure designed for computing velocities is suitable for 

computing displacements if the convection terms are set 
to zero and the volume/dilatation stress term is introduced 
by inclusion of a pressure- and temperature-dependent 
source term. As a consequence, the resulting solution 
method used an implicit SIMPLE algorithm [322, 323], 
still popular in modern CFD codes. The employed primi-
tive variables were displacement and pressure, as opposed 
to velocity and pressure in standard fluid flow analyses.

The use of mixed displacement-pressure approaches, 
however, is not a requirement of staggered-grid 
approaches. Hattel, Hansen and collaborators [16, 18, 
19, 324–336] demonstrated a staggered-grid approach 
where the sole primary variable was displacement. Hattel 
and Hansen [16] initially proposed their staggered-grid 
approach for the analysis of thermally induced stresses 
in casting problems, and subsequently extended it for a 
variety of thermo-elasto-plasticity problems. They termed 
their approach “a control volume based finite difference 
method”, further indicating the close-relationship with 
finite difference methods. The authors noted that their 
method resulted in an elegant formulation for non-con-
stant material properties, a benefit of the staggered grid 
approach.

In addition to the displacement and displacement-pres-
sure approaches, a number of alternative staggered grid 
formulations have also been proposed: Spalding [319] 
proposed a staggered formulation where rotation and dis-
placement were the primitive variables; Spalding surmised 
that the rotation-based method may provide a more effi-
cient solution algorithm in certain situations. The approach 
is described in documentation from an early version of 
the PHOENICS software; however, issues with boundary 
conditions are noted and no further articles appear on the 
formulation. A similar idea was subsequently proposed 
by Wenke et al. [300–302] in the framework of vertex-
based finite volume methods, where both displacements 
and rotations are considered the primitive variables. More 
recently, Wang and Melnik [337] put forward a staggered 
finite volume approach for analysis of shape memory 
alloys, defined on 2-D structured rectangular grids. In con-
trast to the majority of staggered grid approaches, which 
employ implicit solution algorithms, Rajagopal et al. [338] 
proposed a one-step explicit staggered grid finite volume 
approach to investigate the response of a layered viscoe-
lastic plate.

2.4 � Other Approaches

Across the spectrum of finite volume methods for solid 
mechanics, not all procedures align with the previously 
discussed divisions.
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2.4.1 � Approaches for Periodic Heterogenous 
Microstructures

Although arguably not a fundamental class of finite volume 
method, there has been significant development related to 
specialised versions of the finite volume method for periodic 
microstructures. Depending on the formulation, the related 
methods can be referred to by a number of names, includ-
ing: the higher-order theory for functionally graded material 
(HOTFGM) [339], the high-fidelity generalised method of 
cells (HFGMC) [340–343], the finite volume direct averag-
ing micromechanics (FVDAM) theory [344, 345], or some 
variant thereof. Although there is some disagreement over 
the naming convention [342, 343, 345], these methods have 
a common origin in the method of cells and the generalised 
method of cells developed by Aboudi and Paley [346–348]. 
Recent discussions around the development of these meth-
ods can be found in Haj-Ali and Aboudi [343], Cavalcante 
et al. [38], Gong et al. [291], and Cavalcante and Pindera 
[349], along with reviews of the high fidelity generalised 
method of cells approaches by Aboudi [350] and of micro-
structural analysis approaches by Pindera et al. [351] and 
Charalambakis and Murat [352]. Reviews of the applica-
tion of such methods can be found in Aboudi et al. [353] 
and Aboudi [354]. A brief overview of the discretisation 
used in HOTFGM/HFGMC/FVDAM approaches is given 
in “Appendix 2”.

2.4.2 � Meshless Finite Volume Approaches

Meshless methods have been proposed to overcome the 
drawbacks of mesh-based finite element and finite volume 
methods, particularly related to large deformations and 
cracking. Atluri and Shen [355] were the first to propose a 
meshless finite volume formulation, based on the earlier gen-
eralised Meshless Local Petrov–Galerkin (MLPG) method 
by Atluri and Zhu [356]. The approach has subsequently 
been extended and applied to a variety of problems in elasto-
statics, elasto-dynamics and fracture mechanics [357–374]. 
Based on the initial development of Atluri and Shen [355], 
Moosavi and Khelil [366] proposed a novel meshless form 
of the finite volume method for elasto-static analysis, that 
combined the finite volume concept with the meshless 
local Petrov–Galerkin approach with moving least squares 
interpolation. Moosavi and co-workers have since extended 
the method to elasto-dynamics, beams, plates, shells and 
crack problems [367–369, 373, 374], where the method has 
been named the orthogonal meshless finite volume method. 
Whereas the Atluri and Shen [355] approach uses overlap-
ping control volumes, the meshless finite volume method 
developed by Ebrahimnejad et al. [22, 375, 376] employs 
non-overlapping control volumes. The method has been 
applied to 2-D elasticity with adaptive mesh refinement, 

and was later extended to problems with material discon-
tinuities [23, 377], to free vibration analysis of laminated 
composite plates [378, 379], and to fractures in orthotropic 
media [380].

2.4.3 � Eulerian Approaches

There are many solid mechanics problems which can be 
equivalently considered from the fluid mechanics perspec-
tive, for example, in the analysis of extrusion and draw-
ing. Eulerian “fluid” approaches are often used to solve 
such problems, for example, [46, 48, 50–52, 54, 286, 287, 
381–393]. These methods are more closely related to CFD 
procedures and are not discussed further here.

2.4.4 � Miscellaneous

Teng et al. [394] and Chen et al. [395] developed a finite 
volume method to simulate the draping of woven fabrics, 
where the governing nonlinear equations were solved using 
a single-step full Newton–Raphson method. Martin and Pas-
cal [396, 397] proposed a novel discrete duality finite volume 
method for solving linear elasticity problems on unstruc-
tured meshes; the main characteristic of the discretisation is 
the integration of the governing equations over two meshes: 
the given primal mesh and also over a dual mesh built from 
the primal one. Pietro et al. [398] proposed a novel discre-
tisation scheme for linear elasticity with only one degree 
of freedom per control-volume face, corresponding to the 
normal component of the displacement.

3 � Comparing Variants of the Finite 
Volume Method for Computational Solid 
Mechanics

The finite volume method, like other related numerical 
approaches, consists of the following main components: 

(a)	 Discretisation of space and time;
(b)	 Discretisation of the mathematical model equations;
(c)	 Solution algorithm.

To facilitate comparison between the major variants, three 
popular formulations will be considered here:

•	 Implicit cell-centred approach originating from the work 
of Demirdžić et al. [2];

•	 Implicit vertex-centred approach of Fryer et al. [5] and 
Bailey and Cross [24];
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•	 Explicit cell-centred approach emanating from Trangen-
stein and Colella [40].

Analysis and insight into the similarities and differences 
between these variants is provided.

3.1 � Mathematical Model for Dynamic Linear 
Elasticity

To allow a clear comparison of the methods, the dynamic 
behaviour of a body with volume Ω and surface Γ is analysed 
(Fig. 7), where part of its boundary is subjected to a speci-
fied displacement, ub , and the remainder is subjected to a 
specified traction, Tb.

Assuming the relationship between stress and strain to 
be described by Hooke’s law, the governing conservation 
of linear momentum equation, a generalisation of Newton’s 
second law, can be given in strong integral form as:

Small deformations are assumed i.e. no distinction is made 
between the initial and deformed configurations; � is the 
initial density, u is the unknown total displacement vector, 
n is the outward-pointing surface unit normal vector, � is 
the del operator, � is the first Lamé parameter, � is the sec-
ond Lamé parameter, synonymous with the shear modulus, 
� is the second-order identity tensor, and f b is a body force 
acceleration. To avoid unnecessary complexity, the mate-
rial properties ( � , � and � ) are assumed to be uniform and 
isotropic; however, this assumption is not required. It should 

(1)

∫Ω

�
�2u

�t2
dΩ

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Inertia forces

=∮Γ

n ⋅

[
��u + �(�u)T + � tr(�u)�

]
dΓ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Surface forces

+ ∫Ω

�f b dΩ

⏟⏞⏞⏟⏞⏞⏟
Body forces

be noted that the finite volume method directly discretises 
this strong integral form of the governing equation, without 
requiring weighting functions, the weak form of the equation 
or the use of the Gauss divergence theorem.

3.2 � Implicit Cell‑Centred Approach

In this sub-section, the implicit cell-centred approach stem-
ming from Demirdžić et al. [2] is described.

3.2.1 � Discretisation of Time

For all described variants of the finite volume method, dis-
cretisation of the solution domain comprises time discretisa-
tion and space discretisation. The total specified simulation 
time is divided into a finite number of time increments, Δt , 
and the discretised governing equations are solved in a time-
marching manner.

3.2.2 � Discretisation of Space

For the implicit cell-centred approach, the spatial domain is 
divided into a finite number of contiguous convex polyhedral 
cells bounded by polygonal faces that do not overlap and fill 
the space completely. A typical control volume is shown in 
Fig. 8, with the computational node P located at the cell cen-
tre/centroid, and the cell volume is ΩP ; Nf  is the centroid of 
a neighbouring control volume, which shares face f with the 
current control volume; �f  is the area vector of face f, vector 
df  joins P to Nf  , and x is a positional vector. No distinction 
is made between different cell volume shapes, as all general 
convex polyhedra are discretised in the same fashion.

3.2.3 � Discretisation of the Mathematical Model Equations

The governing conservation law (Eq. 1) is applied to each 
polyhedral cell in the mesh. The discretisation of each of the 

Fig. 7   Generic solid body, with volume Ω and surface Γ , subjected to 
boundary displacements, u

b
 , and boundary tractions, T

b
 . (Color figure 

online)

Fig. 8   General convex polyhedral control volume. Adapted from [25, 
29, 155]. (Color figure online)
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three terms (inertia, surface forces, body forces) within the 
equation is now discussed in turn.

Considering first the spatial discretisation of the inertia 
term in Eq. (1). The term can be approximated by mak-
ing an assumption about the variation of the displacement 
vector u over the cell; typically in the implicit cell-centred 
approach a linear variation is assumed. This linear varia-
tion can be expressed in terms of a truncated Taylor series 
expansion about the cell centre:

This expression says that the displacement u(x) at any point 
in the cell can be calculated using the cell-centre displace-
ment uP and the constant gradient of displacement within 
the cell (�u)P . This approximation is second-order order in 
space i.e. as the mesh spacing is reduced, the error in this 
approximation reduces at second-order rate. In principle, 
any other distribution could be used; for example, Demirdžić 
[203] extended the approach to use a fourth-order cubic 
distribution.

Using the approximation in Eq. (2), the inertia term can 
be calculated using the midpoint rule as a function of the 
cell-centred values:

where the subscript P on the density has been dropped as a 
uniform density field is assumed i.e. �P = �.

The acceleration �2u∕�t2 may be discretised in time 
using any appropriate finite difference scheme; in the 
original cell-centred approach of Demirdžić et al. [2], the 
bounded first-order backward Euler method was used:

where m is the time-step counter; the superscript on the 
unknown current time value of displacement has been 
dropped for brevity. Here it is assumed that the time-step 
size Δt is constant; however, the method can be general-
ised to variable time-step sizes. There are numerous other 
temporal discretisations that may be used; for example, the 
unbounded second-order backward Euler scheme [194], the 
second-order trapezoidal rule [199], or the second-order 
Newmark schemes that are popular with the finite element 
method.

The final discretised inertia term is:

(2)u(x) = uP + (x − xP) ⋅ (�u)P

(3)∫Ω

�
�2u

�t2
dΩ ≈ �

(
�2u

�t2

)

P

ΩP

(4)
(
�2u

�t2

)

P

≈
uP − 2u

[m−1]

P
+ u

[m−2]

P

Δt2

(5)∫Ω

�
�2u

�t2
dΩ ≈ �

uP − 2u
[m−1]

P
+ u

[m−2]

P

Δt2
ΩP

In a similar fashion, the body force term (second term 
on the right-hand side of Eq. (1)) is approximated by 
assuming f b to vary over the cell according to Eq. (2). 
Consequently, the term can be approximated in terms of 
the cell-centre values using the midpoint rule as:

Towards the discretisation of the surface force term, the 
closed surface integral in Eq. (1) is converted into a sum of 
surface integrals over each polygonal face:

where nFaces is the number of faces in the cell. This form 
represents a force balance for the cell. To approximate the 
stress term [��u + �(�u)T + � tr(�u)�] at each cell face, the 
assumed variation of displacement in Eq. (2) is once again 
used; accordingly, the stress can be calculated in terms of the 
displacement gradient values at the face centre (centroid):

where subscript f indicates a quantity at a face centre, for 
example, (�u)f  is the gradient of displacement tensor at the 
centre of face f. The approach used to approximate this face 
displacement gradient is one of the principal differences 
between variants of the finite volume method. In addition, 
polygonal faces may not be flat and approaches have been 
examined to accommodate this; for example, Tuković et al. 
[208] proposed decomposing all faces into triangles before 
evaluating the forces.

As a consequence of the assumed variation (Eq. 2), the 
gradient of displacement �u is constant within each cell and 
so the displacement gradient at a face, between two cells, 
is discontinuous; to resolve this, the standard cell-centred 
approach expresses the displacement gradient at a face (�u)f  
as a weighted mean of the displacement gradient at the two 
adjacent cell-centres:

where subscript P indicates a quantity at the current cell-
centre, subscript Nf  indicates a quantity at the neigh-
bour cell-centre adjacent to face f, and 0 < 𝛾f < 1 is the 

(6)∫Ω

�f b dΩ ≈ �f bPΩP

(7)
∮Γ

n ⋅

[
��u + �(�u)T + � tr(�u)�

]
dΓ

=

nFaces∑
f=1

∫Γf

n ⋅

[
��u + �(�u)T + � tr(�u)�

]
dΓ

(8)

nFaces∑
f=1

∫Γf

n ⋅

[
��u + �(�u)T + � tr(�u)�

]
dΓ

≈

nFaces∑
f=1

nf ⋅
[
�(�u)f + �(�u)T

f
+ � tr

[
(�u)f

]
�

]
|�f |

(9)(�u)f ≈ �f (�u)P + (1 − �f )(�u)Nf
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interpolation weight. Typically, the interpolation weight is 
calculated using an inverse distance method:

In addition to the standard cell-centred method for approxi-
mating the face centre displacement gradient given in 
Eq. (9), a number of alternative methods have also been 
examined, for example, temporary elements with isopara-
metric formulations [204] or using a compact stencil for 
the normal gradient as in the original discretisation of 
Demirdžić et al. [2]; in this compact stencil form, the normal 
component is calculated using central differencing:

where nf = �f∕|�f | are the face unit normals, and:

At this point, it is worth noting the locally conservative 
nature of the discretisation: adjacent cells share integra-
tion points at the face centres, resulting in the force at cell 
faces being locally and hence globally conserved. This is 
a characteristic shared by all finite volume methods.

To complete the discretisation of the surface force in 
terms of displacement u , the cell-centred displacement 
gradients need to be expressed in terms of the cell-centred 
displacements. For its accuracy on unstructured grids and 
ease of implementation, the least-squares method is the 
most popular:

As shown previously in Fig. 8, vector df  joins cell-centre P 
to the neighbour cell-centre Nf  . The scalar weighting func-
tion can be taken as unity ( wf = 1 ) [29] or as the inverse 
distance ( wf = 1∕|df | ) [194]. Alternative gradient calculation 

(10)�f =
|xNf

− xf |
|(xf − xP) + (xNf

− xf )|

(11)

(�u)f ≈ nf

[|�f |
|�f |

uNf
− uP

|df | +
�f − �f

|�f | ⋅ (�u)f

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
normal component

+ (� − nfnf ) ⋅
[
�f (�u)P + (1 − �f )(�u)Nf

]
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df
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uNf
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)]

methods, such as the Gauss divergence method or point 
Gauss divergence method [208] have also been proposed. 
With respect to the Gauss divergence method of gradient 
calculation, this approach stems from the Lawrence Liver-
more Laboratory ‘hydrocodes’ of the 1960s developed by 
Wilkins [399, 400]. Zienkiewicz and Oñate [6, 12] claimed 
this Gauss divergence cell-gradient method to be “an early 
attempt to use FV concepts in CSM”; this link is, however, 
tenuous; the Gauss divergence cell-gradient calculation is 
not a core postulate of the finite volume method and is in fact 
not required. For descriptions of subsequent finite difference 
developments based on the original Wilkins [399] approach, 
the interested reader is referred to [401, 402].

Although the discretisation of the surface force in terms 
of displacement u is complete, the presented discretisation is 
unstable and known to suffer from so-called checker-board-
ing errors. Without an appropriate stabilisation term, oscilla-
tions in the displacement field, which are twice the period of 
the cell size, will go unnoticed. These unstable oscillations 
are analogous to the spurious singular modes that appear in 
reduced-integration finite element discretisations, also known 
as zero-energy modes or hourglassing. Typically the implicit 
cell-centred approach adds the so-called Rhie–Chow stabili-
sation term to the discretised divergence of stress (Eq. 8), as 
introduced to solid mechanics by Demirdžić and Muzaferija 
[29]:

This third-order diffusion term corresponds to the differ-
ence between two ways of calculating the normal gradient 
of displacement at a face, resulting in an ability to ‘sense’ 
high-frequency oscillations in u . The approach was first 
proposed by Rhie and Chow [403] in the context of cell-
centred finite volume methods for incompressible fluid flow, 
and is commonly used in cell-centred finite volume fluid 
formulations. The Kf  coefficient controls the magnitude of 
the smoothing effect and is typically taken as Kf = � [29], 
Kf = � + � [194] or Kf = 2� + � [30]. The third-order dif-
fusion term also serves a purpose towards choice of implicit 
components within the segregated solution algorithm: this 
is discussed further below. Alternative forms of diffusion/
smoothing terms have been also been proposed, for exam-
ple, the fourth-order Jameson–Schmidt–Turkel [404] term 
employed in Godunov-type approaches [31, 237], which 
takes the form of a Laplacian of a Laplacian:

(14)
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The scalar coefficient KJST gives the correct dimension to the 
dissipation as well as controlling its magnitude.

The final discretised form of the governing momentum 
equation, employing the Rhie–Chow form of stabilisation and 
Kf = 2� + � , is expressed as:

where the face displacement gradients (�u)f  are calculated 
using Eqs. (9), (10) and (13). The primitive unknown vari-
ables are the cell-centre displacement vectors uP at time t 
(time index [m]).

Boundary conditions are incorporated through appropriate 
modification of the surface force term discretisation at faces 
coinciding with the boundary of the solution domain. In the 
case of a displacement condition ub (Dirichlet boundary con-
dition), the face displacement gradients are calculated at the 
face, while in the case of a traction condition Tb (Neumann 
boundary condition), the specified traction directly replaces 
the surface stress expression. Initial conditions, in the form of 
the displacement field at t = 0 , t = −Δt , and t = −2Δt , must 
also be specified.

3.2.4 � Solution Algorithm

In order to solve the discretised governing equation (Eq. 16) 
for the unknown displacement vector, the typical cell-centre 
approach uses a segregated solution procedure, where the 
central -dif ferencing component  in  Eq.   (16) , 
(2� + �)|�f |(uNf

− uP)∕|df | , and �
(
uP∕Δt

2
)
ΩP within the 

inertia term are treated implicitly; all other terms are calculated 
explicitly using the latest available displacement field. The 
purpose of the segregated approach is to temporarily decouple/
segregate the three scalar components of the vector momentum 
equation so that they can be solved sequentially; outer fixed-
point/Gauss–Seidel/Picard iterations provide the necessary 
coupling, where the displacement gradient terms are explicitly 
updated each outer iteration using the latest available displace-
ment field. Employing this implicit–explicit split, the discre-
tised equation for each cell can be written in the form of a 
linear algebraic equation:

(15)

(16)

�
uP − 2u

[m−1]

P
+ u

[m−2]

P

Δt2
ΩP

=

nFaces∑
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nf ⋅
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�(�u)f + �(�u)T

f
+ � tr
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(�u)f

]
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]
|�f |

+
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f=1

(2� + �)

[
|�f |

uNf
− uP

|df | − �f ⋅ (�u)f

]

+ �f bPΩP

where

In contrast, typical implicit vertex-centred and implicit finite 
element solution algorithms treat the entire divergence of 
stress term implicitly within the linear system matrix, or a 
linearisation of it when nonlinearities are present. This so-
called block-coupled approach has also been proposed for 
the cell-centred approach [25, 59]: in this case, aP and aNf

 in 
Eq. (17) are second-order tensors.

The algebraic equations (Eq. 17) can be assembled for 
all M cells in the domain into the form of three decoupled 
linear systems:

where [K] is a M ×M sparse matrix with diagonal coeffi-
cients aP and off-diagonal coefficients aNf

 , [U] is a vector of 
the unknown cell-centre displacement vectors, and [F] is the 
source vector containing contributions from bP . In finite ele-
ment parlance, [K] is the global stiffness matrix and [F] is the 
global force vector. The segregated cell-centred discretisa-
tion ensures that matrix [K] has the following properties 
[29]:

•	 It is sparse with the number of non-zero elements in 
each row equal to the number of nearest neighbours cells 
(those sharing a face with the cell) plus one;

•	 It is symmetric;
•	 It is positive definite;
•	 It is diagonally dominant ( �aP� ≥ ∑nFaces

f=1
�aNf

� ), which 
makes the linear system efficiently solved by a number 
of iterative methods, which retain the sparsity of matrix 
[K] : this results in significantly lower memory require-

(17)aP uP −
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= bP
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(21)[K][U] = [F]
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ments than equivalent direct linear solvers, for example, 
see [25]. The most common iterative method used is the 
conjugate gradient method with incomplete Cholesky 
preconditioning [405].

It is worth noting that the segregated solution algorithm 
has been shown to suffer from slow convergence for slen-
der geometry undergoing bending [25]; in that case, a 
block-coupled algorithm is significantly faster [25] and 
[K] is a M ×M sparse matrix, where each coefficient is a 
second-order tensor.

For the segregated approach, the linear system (Eq. 21) 
need not be solved to a tight tolerance as coefficients and 
source terms are approximated from the previous outer 
iteration; instead, a reduction in the residuals of one order 
of magnitude is typically sufficient. Outer iterations are 
performed until the predefined solution tolerance has 
been achieved. Under-relaxation of the displacement 
field and/or the linear system may improve convergence, 
depending on the boundary conditions and mesh. Accel-
eration of the approach can be achieved through geomet-
ric multi-grid procedures [86, 120, 197], block-coupled 
algorithms [30, 188, 189, 199], Aitken acceleration [78, 
160, 199], and/or parallelisation on distributed memory 
clusters [88, 194]. A favourable characteristic of the solu-
tion procedure is the straightforward extension to nonlin-
earity: nonlinear terms (material, geometric or boundary 
conditions) are resolved on the fly; after each outer itera-
tion the coefficients and the source terms are updated and 
the procedure continues as in the linear case, for example, 
compare the linear elasticity approach of Jasak and Weller 
[194] with the finite strain elasto-plastic frictional contact 
procedure of Cardiff et al. [30].

In addition to the displacement-based approach 
described above, alternative solution algorithms, where 

pressure and displacement are the primary variables, have 
been proposed by Bijelonja et al. [95, 97, 100] and Fowler 
and Yee [200]; the benefit of such approaches is their 
ability to deal with incompressible and quasi-incompress-
ible solids in a straightforward manner, while avoiding 
pressure instabilities.

3.3 � Implicit Vertex‑Centred Approach

3.3.1 � Discretisation of Space

Like the other approaches, the vertex-centred approach 
divides the spatial domain into a finite number of contiguous 
cells that do not overlap and fill the space completely. When 
compared with the typical cell-centred approach, there are 
two key differences related to the mesh arrangement:

•	 The vertex-centred approach integrates the governing 
equations over cells in a secondary-grid, with cells that 
are typically constructed around the vertices/points in the 
primary grid (Fig. 9). The resulting secondary grid cells 
may not preserve convexity;

•	 The primitive unknowns are stored at the vertices/points 
of the primary grid, corresponding to the approximate, 
but not necessarily exact, centre of the secondary-grid 
cells.

However, in essence vertex-centred approaches can be 
viewed as a form of cell-centred method integrated over a 
secondary mesh.

In principal, the primary mesh can consist of arbitrary 
convex polyhedral cells; however, depending on the chosen 
discretisation (for example, if shape functions are used), the 
method may be limited to triangular/quadrilateral meshes 
in 2-D and tetrahedral/hexahedral meshes in 3-D; in fact, no 

Fig. 9   2-D vertex-centred grid 
showing the (a) primary mesh, 
(b) secondary-grid used to inte-
grate the governing equations. 
Figure adapted from Hassan 
[406]. (Color figure online)
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vertex-centred solid mechanics examples using polyhedral 
meshes were found when preparing this article.

In addition to this form of the vertex-centred approach, 
a variant exists where the primary mesh cells around a 
vertex are used to perform the integration, for example, as 
discussed by Oñate et al. [12]; this produces overlapping 
regions of integration, where neighbouring vertices share 
part of their integrated volume. Secondary-grid cells can 
also be created by joining the mesh cell centres together 
[249], rather than joining the cell-centres to the face-centres 
as per the classic vertex-based method.

3.3.2 � Discretisation of the Mathematical Model Equations

The vertex-centred approach starts from the strong integral 
form of the governing momentum equation (Eq. 1), which 
is integrated over a secondary-grid [5]. The vertex-centred 
approach discretises each term of the governing equation 
over the cells in the secondary-grid. An example second-
ary-grid cell is shown in Fig. 10, where each vertex i in 
the primary grid is uniquely associated with a cell in the 
secondary-grid.

As with the cell-centred variant, the discretisation of each 
of the three terms (inertia, surface forces, body forces) in the 
governing conservation law (Eq. 1) will now be discussed 
in turn.

To approximate the volume integral temporal term, the 
displacement u within each secondary-grid cell is assumed 
to be constant [24, 240, 273]. Consequently, for a volume 
about vertex i, the term may be approximated in terms of the 
acceleration at vertex i and the secondary-grid cell volume 
Ωi about vertex i:

As with other finite volume approaches, the acceleration 
term �2u∕�t2 may be discretised in time using any appropri-
ate finite difference scheme. For example, Slone et al. [273] 
employed the Newmark finite difference scheme, which is 
popular in the finite element community. For ease of com-
parison with the cell-centred approach (Eq. 5), a first-order 
Euler scheme is assumed here, giving the final discretised 
term as:

Comparing this expression with the equivalent cell-centred 
expression (Eq. 5), the only difference is the mesh location 
where the unknown displacement is stored. A conceptual 
difference comes from the fact that vertex i is not in gen-
eral situated at the centre of the secondary-grid cell volume 
Ωi ; consequently, in the approximation of the inertia term, 
the cell-centred approach allows a local linear displacement 
distribution, whereas the vertex-centred approach requires 
a constant displacement distribution.

The volume integral body force term is discretised in a 
similar manner to the temporal term, where the body force 
f b is assumed to be constant within each secondary-grid cell 
and equal to the value at vertex i:

Once again the discretised term differs from the the equiva-
lent cell-centred term in that a constant rather than a linear 
local variation is assumed. In the case that vertex i does lie 
at the centroid of the control volume, then the vertex-centred 
and cell-centred terms are the same.

To discretise the surface force term, the closed surface 
integral in Eq. (1) is converted into a sum of surface inte-
grals over the faces of the secondary-grid cell, taking the 
same form as Eq. (7). Approximation of the stress term at 
each face requires an assumption about the local displace-
ment distribution. In contrast to the standard cell-centred 
approach, most vertex-centred approaches explicitly use 
shape functions to describe the local displacement field vari-
ation. Following the standard finite element notation, these 
shape (or interpolation) functions refer to the displacement 
within each cell of the primary mesh:

where nVertices is the number of vertices in the primary 
mesh cell of interest, Ni(x) is the shape function associated 

(22)∫Ω

�
�2u

�t2
dΩ ≈ �

(
�2u

�t2

)

i

Ωi

(23)∫Ω

�
�2u

�t2
dΩ ≈ �

ui − 2u
[m−1]

i
+ u

[m−2]

i

Δt2
Ωi

(24)∫Ω

�f b dΩ ≈ �f biΩi

(25)u(x) =

nVertices∑
i=1

Ni(x)ui = [N][u]

Fig. 10   A typical control volume constructed around vertex i, with 
a volume Ω

i
 . The solid lines show the primary grid and the dashed 

lines show the secondary-grid. When calculating the momentum bal-
ance for a secondary-grid cell (shaded), the displacement gradient 
is calculated at the boundary edge centres (boundary face centres in 
3-D) of the secondary-grid cell (marked by “x”). Figure adapted from 
Bailey and Cross [24]. (Color figure online)
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with vertex i within the cell, ui is the displacement at ver-
tex i, and [N] and [u] represent a vector of all shape func-
tions and nodal displacements within the cell respectively. 
It should be emphasised that these shape functions refer to 
the vertices and cells of the primary mesh, as opposed to of 
the secondary mesh cells.

As is standard in the conventional continuous Bub-
nov–Galerkin finite element method, the shape functions, 
which are defined in the reference domain and mapped 
to the physical domain, approximate the displacement 
field as a continuous piecewise distribution. As the shape 
functions describe the displacement distribution between 
the vertices on the primary mesh, this allows convenient 
calculation of the displacement gradients at the second-
ary-grid cell boundaries when applying the momentum 
balance (Fig. 10). Although shape functions are a key 
characteristic of the vertex-centred approaches presented 
in literature, they are not essential. As shown by Tsui 
et al. [249], it is possible to develop a vertex-centred finite 
volume approach that does not directly use shape func-
tions; similar to many cell-centred approaches, Tsui et al. 
[249] applied the Gauss divergence theorem to calculate 
secondary-grid cell displacement gradients; these gradi-
ents were then interpolated to secondary-grid cell faces. 
In the cell-centred approach, the truncated Taylor series 
expansion about the cell centres (Eq. 2) fulfills the role of 
shape functions. As shape functions are specific to the cell 
geometry (e.g. triangle, quadrilateral, tetrahedral), shape 
function based approaches are limited in their choice of 
element shape, whereas all convex polyhedral meshes are 
valid for cell-centred approaches.

To approximate the stress at the faces of a secondary-
grid cell, the gradient of displacement must be calculated. 
The use of shape functions allows this spatial gradient of 
displacement to be conveniently calculated as:

where [B] is a vector of the shape functions gradients. Sub-
stituting Eq. (26) into Eq. (7) allows the surface force term 
to be expressed in terms of the unknown displacements at 
the primary mesh vertices:

where nVertices refers to the number of vertices in the pri-
mary-grid cell in which the secondary-grid face f is situated; 
Nvf  refers to the corresponding shape function for vertex 

(26)�u ≈

nVertices∑
i=1

�Ni(x)ui = [B][u]

(27)

nFaces∑
f=1

∫Γi

n ⋅

[
��u + �(�u)T + � tr(�u)�

]
dΓ

≈

nFaces∑
f=1

nVertices∑
v=1

nf ⋅
[
��Nvfuv + �uv�Nvf + � tr(�Nvfuv)�

]

v within the primary-gird cell. Consequently, the surface 
force term for a secondary-grid cell surrounding vertex v 
will be a function of the displacement at vertex v as well 
as the displacement at all vertices that share a primary-grid 
cell with vertex v. For example, for the secondary-grid cell 
shown in Fig. 10, the surface force term will be a function of 
the displacements at all vertices shown except for the vertex 
in the top-right.

The final discretised form of the governing momentum 
equation for the vertex-centred approach is expressed for a 
secondary-grid cell as:

As with the other finite volume approaches, boundary condi-
tions are incorporated through appropriate modification of 
the surface force term, and initial conditions must be speci-
fied for dynamic cases.

3.3.3 � Solution Algorithm

The discretised equation for each secondary-grid cell can be 
written in the form of an algebraic equation:

where ui is the displacement at the primary-grid vertex asso-
ciated with the secondary-grid cell, and nVertices indicates 
all vertices which share a primary-grid cell with vertex i. 
Ai and Av are the corresponding block coefficients (second-
order tensors in 3-D).

In earlier publications [5], the vertex-centred approach 
followed a similar solution algorithm to the standard cell-
centred approach, where the surface force term was parti-
tioned into implicit and explicit components and a segre-
gated solution algorithm was employed. In later publications 
[24], a block-coupled solution procedure is used, where the 
entire surface force term is discretised implicitly. As noted 
previously, similar coupled solution algorithms were later 
proposed for the cell-centred variant by Das et al. [188] and 
Cardiff et al. [25].

Following the block-coupled approach, the algebraic 
equations (Eq. 29) can be assembled for all M secondary-
grid cells (primary-grid vertices) in the domain to form a 
system of linear equations:

(28)

�
ui − 2u

[m−1]

i
+ u

[m−2]

i

Δt2
Ωi

=

nFaces∑
f=1

nVertices∑
v=1

nf

⋅

[
��Nvfuv + �uv�Nvf + � tr(�Nvfuv)�

]

+ �f bvΩv

(29)Ai ⋅ ui −

nVertices∑
v=1

Av ⋅ uv = bi
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where the M ×M global stiffness matrix [K] is sparse with 
block diagonal coefficients Ai and off-diagonal block coeffi-
cients Av , [U] is a vector of the unknown primary-grid vertex 
displacement vectors, and the global force source vector [F] 
contains contributions from bi.

This linear system can then be solved using direct or itera-
tive linear solvers, where iterative conjugate gradient solvers 
with diagonal/Jacobi scaling have been favoured in literature, 
for example, [5, 24]. Parallelisation on distributed memory 
supercomputers has been addressed by McManus et al. [303, 
304], and mixed displacement-rotation approaches have also 
been employed [300–302].

3.4 � Explicit Cell‑Centred Godunov‑Type Approach

Godunov-type procedures are specialised approaches for anal-
ysis of problems that involve wave propagation, shocks and 
solution discontinuities. Features that distinguish this variant 
of finite volume approach from the others are the use of acous-
tic Riemann solvers, solution reconstruction procedures, slope 
limiters for gradient calculations, occasionally nodal integra-
tion, as well as representing the governing equations as a cou-
pled system of first-order equations; in addition, explicit time 
marching solution algorithms are employed.

3.4.1 � Discretisation of Space

The majority of Godunov-type approaches are spatially dis-
cretised using cell-centred approaches, for example, [26–28, 
196, 220, 222, 223, 225–229, 231–236]; consequently, this 
section will focus on such approaches; however, Godunov-
type approaches have also used vertex-centred [31, 237], 
staggered grid [224, 228] and face-centred [20, 21] formula-
tions. To-date, many of the developments have been limited 
to one and two dimensions, but in general the procedures 
can be extended to three dimensions. Like the implicit cell-
centred approach described in Sect. 3.2, the solution spatial 
domain is divided into a finite number of contiguous con-
vex polyhedral cells bounded by polygonal faces that do not 
overlap and fill the space completely.

3.4.2 � Discretisation of the Mathematical Model Equations

In a notable deviation from the other finite volume variants, 
Godunov-type approaches portray the second-order govern-
ing momentum equation (Eq. 1) as a coupled system of first-
order equations:

(30)[K][U] = [F]

(31)∫Ω

�
�v

�t
dΩ =∮Γ

n ⋅ � d� + ∫Ω

�f b dΩ

where v is the velocity vector and the deformation gradient, 
F , defines the local deformation as:

Equation (32) is obtained by taking the time-derivative of 
Eq. (33) and employing the Gauss divergence theorem.

To ensure the compatibility conditions are satisfied, the 
deformation gradient at the initial time should be curl free:

In addition, the discrete evolution of F (or �u ) should not 
allow curl errors to escalate. For further discussion of this 
point, see [27, 28, 40, 214, 225]. It is also possible to employ 
the evolution of the displacement gradient �u directly rather 
than the deformation gradient, as shown by Trangenstein 
and Colella [40]; however, this is less popular in literature.

The governing system of coupled first-order equations 
(Eqs. 31, 32) can be expressed concisely as:

where U is the primary unknown vector, Fn is the flux vec-
tor, and S is the source vector, given as:

and the traction vector, t , gives the stress on a plane as 
t = n ⋅ � . To close the system, we give the constitutive rela-
tion (Hooke’s law) in terms of the deformation gradient:

We next describe the discretisation of the three terms in 
Eq. (35): the time derivative term, the diffusion term and 
the body force term.

Assuming the primary unknowns ( v and F ) vary lin-
early within each cell according to Eq. (2), the volume 
integrals can be expressed in terms of the cell-centre val-
ues (subscript P) and the surface integral becomes a sum 
over the face-centre values (subscript f); consequently, Eq. 
(35) becomes:

Similar to the other approaches, discretisation of the time-
rate term can be achieved using a variety of finite differ-
ence methods. Here we assume a first-order forward Euler 

(32)∫Ω

�F

�t
dΩ =∮Γ

vn d�

(33)F = � + (�u)T

(34)� × F[m=0] = 0

(35)∫Ω

�U

�t
dΩ = ∮Γ

Fn d� + ∫Ω

S dΩ

(36)U =

(
v

F

)
, Fn =

(
t∕�

vn

)
, S =

(
f b
0

)

(37)� = �FT + �F + � tr(F)� − (2� + 3�)�

(38)
�UP

�t
ΩP =

nFaces∑
f=1

Fnf
|�f | + SPΩP



3738	 P. Cardiff, I. Demirdžić 

1 3

discretisation to allow straight-forward comparison with the 
other methods:

where, as before, m is the time-step counter, which for brev-
ity has been dropped on the unknown current time value. 
Of course, as an explicit time-marching solution algorithm 
will be employed, the time step size is limited by the Cou-
rant–Friedrichs–Lewy constraint [34]; this condition is 
necessary for stability but is not sufficient. It is also neces-
sary that the time integrator avoids the creation of new local 
extrema, known as the total variation diminishing property 
or the local maximum principle; the first-order forward Euler 
approach is one such method that obeys this condition.

Alternatively, the flux calculation in Eq. (39), which sums 
over the cell faces, can be expressed as a sum over the cell 
points/vertices according to:

where the calculation of the point/vertex/nodal area vector, 
Cv , is given in Carré et al. [221] and Kluth and Després [26] 
or equivalently in Maire et al. [222].

Up to this point, the presented discretisation coincides 
with the cell-centred approach described in Sect. 3.2, apart 
from the introduction of a system of first-order conservation 
equation and the use of the forward Euler method as opposed 
to the backward Euler method; however, in the discretisation 
of the face flux, Fn , Godunov-type methods deviate from 
the other approaches. As a result of the assumed piecewise 
linear distribution (Eq. 2), there is a discontinuity at the cell 
internal faces. A distinguishing characteristic of Godunov-
type methods is the acknowledgement of this discontinuity 
in the solution field, known as a Riemann problem, and the 
development of appropriate methods (Riemann solvers) to 
deal with the propagation of this discontinuity. Accordingly, 
the face flux, Fn , is defined as a function of the solution vari-
able at either side of the interface:

The solution at either side of the interface ( UPf
 and UNf

 ) is 
determined via extrapolation from the adjacent cell 
centres:

where GP is the gradient of U  within cell P, and GN 
is the gradient within cell N. A critical component of 

(39)
UP − U

[m−1]

P

Δt
ΩP =

nFaces∑
f=1

F
[m−1]
nf

|�f | + SPΩP

(40)
UP − U

[m−1]

P

Δt
ΩP =

nVertices∑
v=1

F
[m−1]
nv

|Cv| + SPΩP

(41)Fnf
= f (UPf ,UNf )

(42)
UPf

= UP + GP ⋅ (xf − xP)

UNf
= UN + GN ⋅ (xf − xN)

Godunov-type methods is the definition of this solution 
reconstruction, such that the local maximum principle is 
preserved i.e. the value of U at face f should not be greater 
than the value at adjacent cell centres P and N. There are a 
number of ways to define such discrete gradients; here, as a 
typical example, the monotone upstream scheme for conser-
vation law (MUSCL) scheme is described [27]. The MUSCL 
approach consists of two steps: first, the gradient is predicted 
based on local neighbouring values, then this gradient is 
corrected/limited to respect the local maximum principle.

To predict the gradient, the second-order least-squares 
method described in Sect. 3.2 can be used; this approach does 
not prohibit overshoots and undershoots at the faces, and hence 
does not satisfy the local maximum principle. To remedy this, 
a so-called slope limiter is used to restrict the value of the gra-
dient, G . The slope limiter is included through modification 
of the reconstruction expression (Eq. 42):

where 0 ≤ � ≤ 1 is a scalar slope limiter. When � = 1 , 
no limiting is applied, whereas when � = 0 , full limiting 
is applied and the value near the face is assumed equal to 
the cell-centre value. Choosing the value of � is a balance 
between stability (lower value of � ) and accuracy (higher 
value of � ). For the MUSCL procedure, � is determined as 
described by Lee et al. [27]: 

1.	 Find the smallest and largest values among the current 
and adjacent cells: 

 where UNi represents the values at neighbour cells, 
which share an internal face with cell P.

2.	 Calculate the un-restricted reconstructed value UPf  with 
�P = 1 at each internal face within cell P.

3.	 Find the maximum allowable value of �Pf  for each face 
in cell P: 

4.	 Select �P = minf (�Pf )

5.	 Calculate the reconstructed value at each internal face 
using �P determined in step 4 and Eq. 43.

To complete the discretisation, all that remains is to express 
the flux vector, Fnf

 , in terms of the solution vector, U . To 

(43)
UPf

= UP + �PGP ⋅ (xf − xP)

UNf
= UN + �NGN ⋅ (xf − xN)

(44)U
min = min(UP,UNi), U

max = max(UP,UNi)

𝜙Pf =

⎧
⎪⎪⎨⎪⎪⎩

min

�
1,

U
max−UP

UPf
−UP

�
, if UPf

− UP > 0

min

�
1,

U
min−UP

UPf
−UP

�
, if UPf

− UP < 0

1, if UPf
− UP = 0
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achieve this, the Rankine–Hugoniot jump conditions [32] are 
employed. These jump conditions describe the relationship 
between the states on both sides of a shock wave. The jump 
conditions corresponding to Eqs. 31 and 32 are [27]:

where the operator [[⋅]] represents the jump across the shock, 
for example, [[Uf ]] = UNf

− UPf
 . The wave speed is indicated 

by U. Using Eqs. (45) and (46) and assuming a constant 
wave speed, the face flux can be expressed as the sum of an 
average flux and a stabilisation flux [27, 28]:

where the average flux is:

and the so-called upwinding stabilisation term is:

The volumetric and shear wave speeds are indicated by cp 
and cs . Jameson–Schmidt–Turkel stabilisation has been used 
as an alternative to this upwinding stabilisation, and in prin-
ciple Rhie–Chow stabilisation could also be used.

The final discretised governing equations, given 
in terms of unknowns v[m]

P
 and F[m]

P
 at time-step m, are 

expressed as:

(45)U[[v]] = −(1∕�)n ⋅ [[�]]

(46)U[[F]] = −[[v]]n

(47)Fnf
= F
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nf

+F
stab
nf

(48)F
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+ f bP ΩP

where the m − 1 time index on F and v has been omitted for 
brevity i.e. F ≡ F[m−1] and v ≡ v[m−1] . The stress either side 
of a face is calculated according to Eq. (37).

3.4.3 � Solution Algorithm

The solution of the governing discretised equations (Eqs. 50, 
51) proceeds in an explicit manner as follows: 

1.	 Increase the total time by Δt = �CFL
hmin

cp

 , according to the 

Courant–Friedrichs–Lewy [34] condition, where hmin is 
the shortest length within the mesh and �CFL is typically 
chosen to be less than 1∕2

2.	 Store the old-time solution values: v[m−1] ← v[m] and 
F[m−1]

← F[m]

3.	 Calculate the reconstructed solution values, vNf
 , vPf

 , FNf
 

and FPf
 , at each cell face according to Eq. (43)

4.	 Solve Eq. (50) for v[m]
5.	 Solve Eq. (51) for F[m]

6.	 Repeat steps 1–5 until the end time has been reached

Like all explicit methods, this approach does not require 
the solution of an implicit linear system of equations and 
hence each time-step can be evaluated more rapidly than 
in the previously discussed implicit methods; however, the 
time-step size limit essentially restricts explicit methods to 
hyperbolic-style problems. Finally, the explicit nature of the 
algorithm allows straight-forward and efficient parallelisa-
tion on distributed memory supercomputers.

3.5 � Discussion

The field of finite volume solid mechanics comprises 
more approaches than those presented above, however, the 
selected three variants capture the primary differences in the 
approaches. It can be seen that the distinction between the 
variants can be narrowed down to four components: 

1.	 Control volume construction;
2.	 Face gradient calculation;
3.	 Stabilisation approach;
4.	 Solution methodology.

(51)
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Each of these components is briefly reviewed below, fol-
lowed by the natural definition of a unified approach linking 
all variants.

3.5.1 � Control Volume Construction

There are predominantly four ways to construct control 
volumes (Fig. 11): (1) cell-centred, (2) vertex-centred with 
non-overlapping volumes; (3) vertex-centred with overlap-
ping control volumes, (4) and a staggered-grid. In terms of 
the relative merits of the different approaches, a number of 
observations can be made: 

1.	 The staggered-grid is restricted to structured quadrilat-
eral/hexahedral meshes in 2-D/3-D;

2.	 The vertex-centred approach with non-overlapping con-
trol volumes requires the construction and storage of a 
second mesh;

3.	 The vertex-centred approach has nodes on the boundary, 
whereas the cell-centre approach typically does not;

4.	 The cell-centred approach allows convenient approxima-
tion of the face normal gradients but requires interpola-
tion to approximate the tangential gradients;

5.	 In contrast, the vertex-centred approach with overlap-
ping volumes allows convenient approximation of the 
tangential gradients but requires interpolation to approx-
imate the normal gradients.

3.5.2 � Face Gradient Calculation

Once the control volume is constructed, all approaches 
must approximate the traction at each control volume 
face. To achieve this, the gradient of displacement at 
the face (�u)f  is approximated in terms of the nodal dis-
placement values. Neglecting any additional stabilisation 
terms (addressed in the next section), the most common 
approaches are: 

1.	 Interpolate the gradient from the adjacent cell-centres: 

 where df  is the vector from the centre of cell P to the 
centre of cell N, dPf  is the vector from the centre of 
cell P to the centre of face f, and dNf  is the vector from 
the centre of cell N to the centre of face f. These inter-
polation weights may differ depending on the specific 
approach.

2.	 Calculate the normal gradient using central-differencing, 
and interpolate the tangential gradient from the adjacent 
cell-centres: 

3.	 Calculate the normal gradient using central-differencing, 
and calculate the tangential gradient using the point or 
edge values. In the case of a staggered-grid, these point 
or edge values correspond to nodes and no interpolation 
is necessary. For the cell-centred approach, these point 
or edge values are interpolated from the cell-centred 
nodes, and an appropriate face tangential gradient calcu-
lation method used; for example, the face-Gauss method 
[25, 208] is a generalisation of the approach used in the 
original Demirdžić et al. [2] approach: 

 where me is the outward-facing bi-normal at edge e, 
Le is the length of edge e, and ue is the displacement at 
the centre of edge e, which has been interpolated from 
adjacent cell-centres.

4.	 Extrapolate the gradient from each adjacent cell-centre, 
and take the average: 

(52)(�u)f =
|dPf |(�u)P + |dNf |(�u)N

|df |

(53)

(�u)f = nf
uN − uP

|df | +

(
� − nfnf

)
⋅

|dPf |(�u)P + |dNf |(�u)N
|df |

(54)(�u)f = nf
uN − uP

|d|f +

nEdges∑
e=1

me ue Le

(55)
(�u)f =

(�u)P + dPf ⋅ �(�u)P + (�u)N + dNf ⋅ �(�u)N

2

Fig. 11   Illustration of the four ways to construct control volumes 
on a primary mesh: (1) cell-centred (green); (2) vertex-centred with 
non-overlapping control volumes (blue); (3) vertex-centred with over-
lapping control volumes (red); and (4) staggered-grid (purple). The 
nodal locations are indicated by filled circles. (Color figure online)
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5.	 For each of the previous face gradient calculation meth-
ods, a limiter can be applied to preserve the local maxi-
mum principle, as discussed in Sect. 3.4.

6.	 Use shape functions to evaluate the face gradient. As an 
example, taking a vertex-based method and a 2-D trian-
gular grid with linear shape functions, the face gradient 
is given in Voigt notation as: 

 where subscripts 1, 2 and 3 refer to the three nodes in 
the triangle, and the relative coordinates are given as 
xab = xa − xb . Here we are referring to the vertex-centred 
method, however, shape functions could in principle be 
used with any control volume construction.

7.	 Use a higher-order approach, for example, the fourth-
order approach proposed by Demirdžić [203].

To provide additional insight, let us consider the face 
gradient calculations on a simple grid. Taking a uniform 
quadrilateral mesh (Fig. 12), we will calculate the gradi-
ent at a face using the most popular of the methods above. 
The discretised governing equation for the cell in Fig. 12 
can be written in the form of a tensor algebraic equation:

(56)

�
(�u)f

�
=

⎡
⎢⎢⎢⎣

�ux∕�x

�uy∕�y

�ux∕�y

�uy∕�x

⎤
⎥⎥⎥⎦

=
1

x13y23 − x23y13

⎡
⎢⎢⎢⎣

y23 0 y31 0 y12 0

0 x32 0 x13 0 x21
x32 0 x13 0 x21 0

0 y23 0 y31 0 y12

⎤
⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Derivative of shape functions

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

ux1
uy1
ux2
uy2
ux3
uy3

⎤⎥⎥⎥⎥⎥⎥⎦

which corresponds to a block row in the resulting stiffness 
matrix, assuming a block-coupled solution methodology 
is used. It is possible to present the coefficients Ai of this 
equation graphically to allow direct comparison between 
the different face gradient calculation approaches: Fig. 13 
compares the resulting coefficients from using methods 1, 
2, 3 and 6, neglecting any stabilisation terms. Noting that 
boundary conditions have not been considered, a number of 
observations can be made:

•	 Methods 2, 3 and 6 employ the same compact computa-
tional stencil, whereas method 1 (interpolated gradient) 
uses a larger stencil, including second face-neighbours;

•	 All coefficients are symmetric;
•	 All methods show geometric symmetries, for example, 

the top-right coefficient is equal to the bottom-left coeffi-
cient; this is a consequence of the momentum/force being 
conserved between nodes;

•	 In methods 1, 2, and 3, the normal forces are calculated 
entirely from the central cell displacement as well as the 
left, right, top and bottom cell displacements (far-left/
right/top/bottom cells in the case of method 1). Similarly, 
the shear forces are calculated entirely from the top-left, 
top-right, bottom-left and bottom-right cell displacements;

•	 Methods 2 (interpolated tangential gradient) and 3 (tan-
gential gradient calculated at the face) are equivalent for 
this simple grid. For meshes including skewness and 
non-orthogonality, this may not be the case;

•	 Method 1 differs from methods 2 and 3 in only one way: 
the left, right, top and bottom cell coefficients have been 
moved to a more distant neighbour and scaled in magni-

(57)
i=13∑
i=1

Ai ⋅ ui = 0

Fig. 12   Local integration 
domain (shaded orange) and 
computational stencil (white-
filled dots) for a node (black-
filled dot) in a 2-D quadrilateral 
mesh. All methods include 
close neighbours (white-filled 
dots with black border) within 
their stencil, while method 1 
additionally includes distant 
neighbours (white-filled dots 
with orange border). (Color 
figure online)
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tude; in addition, the central coefficient has been scaled 
in magnitude. This corresponds to the normal component 
being calculated using a larger stencil (interpolated gra-
dient) in method 1 vs. methods 2 and 3 (central differenc-
ing at the face);

•	 Method 6 (shape functions) requires the force to be inte-
grated over 8 faces compared with 4 faces for methods 
1, 2 and 3; this comes from the way in which the mesh is 
constructed from a primary mesh;

•	 Half the components of the corner coefficients are zero 
for methods 1, 2 and 3, while they are all non-zero for 
method 6.

It should be noted that the coefficients that appear in 
the linear system matrix depend on the chosen solution 
algorithm; for block-coupled approaches, the coefficients 
will be as shown, whereas for segregated approaches, the 

(a) Method 1: Interpolate gradients from adjacent
cell-centres

(b) Method 2: Calculate the normal gradient at the face
using central-differencing, and interpolate the
tangential gradient from the adjacent cell-centres

(c) Method 3: Calculate the normal gradient at the face
using central-differencing, and calculate the tangential
gradient at the face using the point or edge values

(d) Method 6: Use shape functions with reduced
integration
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Fig. 13   A comparison of the block coefficients in the stiffness matrix for the centre node/cell, where different face gradient calculation methods 
are employed. A unit thickness is assumed and stabilisation terms have been disregarded. (Color figure online)
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coefficients will be more sparse and will not contain inter-
component couplings (the off-diagonal components of the 
coefficients will be zero). For example, the matrix coeffi-
cients corresponding to method 2 (and equivalently method 
3) are given for the segregated approach in Fig. 14. In con-
trast to the coefficients given in Fig. 13b, the segregated 
coefficients (Fig. 14) differ in the following ways:

•	 As noted, all inter-component coupling is zero i.e. all 
block off-diagonal coefficients are zero; this allows the 
two scalar displacement equations to be solved sepa-
rately;

•	 The matrix has greater sparsity that the other approaches, 
leading to reduced memory requirements;

•	 The coefficients produce a matrix which is weakly 
diagonally dominant: the magnitude of the centre node 
coefficient is equal to the sum of the magnitudes of the 
other nodes. Such a weakly diagonally dominant system 
(which becomes strongly diagonally dominant with the 
inclusion of Dirichlet/essential boundary conditions) pro-
motes the convergence of iterative linear solvers.

3.5.3 � Stabilisation Approach

For the discretisations that require stabilisation, three dis-
tinct forms of stabilisation term can be found; these can be 
expressed as a stabilisation traction tstab applied at the control 
volume face:

where �stab is a user-defined scaling factor, the pressure wave 
speed of sound is cp =

√
2�+�

�
 , and the shear wave speed of 

sound is cs =
√

�

�
.

In Eq. (58), Jameson–Schmidt–Turkel and Godunov-
upwinding terms are given in a form that is only suitable for 
dynamic problems; however, it is possible to define similar 
stabilisation terms for quasi-static analyses:

(58)tstab =

⎧
⎪⎪⎨⎪⎪⎩

�stabKf

�
uN − uP

�df � − nf ⋅
�dNf ��uN + �dPf ��uP

�df �
�
��f � Rhie−Chow

−�stab� cp �df �2
�
�
2vN − �

2vP
� ��f � Jameson−Schmidt−Turkel

�
�
cs� + (cp − cs)nfnf

�
⋅

vN + dNf ⋅ �vN − vP − dPf ⋅ �vP

2
��f � Godunov upwinding

(59)tstab =

⎧⎪⎪⎨⎪⎪⎩

�stabKf

�
uN − uP

�df � − nf ⋅
�dNf ��uN + �dPf ��uP

�df �
�
��f � Rhie−Chow

−�stabKf �df �
�
�
2uN − �

2uP
� ��f � Jameson−Schmidt−Turkel

�stab
Kf

2

uN + dNf ⋅ �uN − uP − dPf ⋅ �uP

�df � ��f � Godunov upwinding

where the Rhie–Chow term is given for comparison. A user-
defined scaling factor �stab is added to the Godunov-type 
term in 59, as this form of the term does not have the same 
physical significance as the dynamic term in Eq. (58). After 
some algebraic manipulation, where we include the (1∕2) 
factor in �stab and note that dNf = −|dNf |nf  , the Godunov 
upwinding-type stabilisation term is seen to be identical to 
Rhie–Chow stabilisation. This shows that even in its origi-
nal dynamic form (Eq. 58), it is in fact just a scaled version 
of Rhie–Chow stabilisation, and is equivalent for a specific 
choice of scaling parameters.

Using the 2-D square grid (Fig. 12) as before, the compu-
tational stencil and coefficients resulting from the Rhie–Chow 
and Jameson–Schmidt–Turkel stabilisation terms can be 
graphed (Fig. 15). Scale factors of �stab = (1∕4) for the Jame-
son–Schmidt–Turkel term and �stab = 1 for the Rhie–Chow 
term are chosen so that the magnitude of the terms are similar. 
For this grid, both approaches produce similar coefficients, 
however, the Jameson–Schmidt–Turkel approach differs in 
that it includes additional coupling in the corner coefficients. 
It can also be seen that both approaches require a large com-
putational stencil, in that second face-neighbours are needed. 
When either of these stabilisation approaches are combined 
with one of the face gradient calculations methods discussed 
above, the stencil of coefficients are summed. For example, 
the computational stencil and coefficients from face gradient 
calculation method 1 with Rhie–Chow stabilisation are shown 
in Fig. 16a, and from face gradient calculation method 2 with 

Jameson–Schmidt–Turkel stabilisation in Fig. 16b. 
Within literature, a number of authors have described stabi-

lisation techniques, however, stability analysis of finite volume 
discretisations for solid mechanics is not common. Of course, 
the stability of a formulation quickly becomes apparent in 
use, however, we can also take inspiration from finite element 
approaches [407] and analyse the stiffness matrix eigenvalues. 
Taking a single unconstrained finite element, the number of 

zero eigenvalues of the stiffness matrix indicates the number 
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of zero energy modes. For a stable formulation, the number of 
zero valued eigenvalues is equal to the number of rigid degrees 
of freedom; in 3-D, there are three rigid translations and three 
rigid rotations, whereas in 2-D there are two rigid translations 
and one rigid rotation. For an unstable formulation, there will 
be additional zero valued eigenvalues, where the corresponding 

eigenvector indicates the unstable mode. For the finite volume 
method, an equivalent analysis of an individual cell/element 
is less obvious. One such approach is to consider a periodic 
patch of finite volume cells, containing a central cell and all 
neighbour cells within its computational stencil (Fig. 17), and 
analyse the eigenvalues of its (block-coupled) global stiffness 
matrix. In this case, as there are 9 cells, each with 2 degrees 
of freedom, the global stiffness matrix is 18 × 18 . As each cell 
contains all eight other cells in their stencil (due to the periodic 
conditions), the stiffness matrix is fully dense (no zero block 
entries). In this case, using face gradient calculation method 2, 
the stiffness matrix contains 2 zero eigenvalues, corresponding 
to the two rigid translation directions; the periodic conditions 
prohibit rigid rotation; this indicates that the discretisation is 
stable in this configuration. In addition to analysing a periodic 
patch of internal cells, it may also be necessary to examine 
a patch of cells adjacent to a boundary. The discretisation at 
boundary faces is typically different than at internal faces, and 
so boundaries may quell or excite spatial instabilities.

3.5.4 � Solution Methodology

Like other popular numerical methods, the finite volume 
method can employ implicit or explicit solution algorithms. 
The relative merits of implicit vs explicit approaches are 
independent of the finite volume method; the interested 
reader can find numerous textbooks addressing this topic, 
for example, [407–409].
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Fig. 14   Stiffness matrix coefficients for methods 2 and 3 when a 
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terms are included via the source vector in a deferred correction man-
ner. (Color figure online)
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3.5.5 � A Generalised Finite Volume Method for Solid 
Mechanics

Based on these four components, it is possible to describe a 
generalised approach encompassing all individual variants, 
as shown in Fig. 18. Common approaches are indicated by 
the coloured lines: implicit cell-centred (green), implicit 
vertex-centred (blue), explicit Godunov-type (red), and 

staggered-grid (purple). This figure allows the relationship 
between the variants to be concisely expressed. What is also 
apparent from this figure is that there are avenues that have 
yet to be fully explored.

4 � Comparing of the Finite Volume Method 
for Computational Solid Mechanics 
with the Finite Element Method

Within this section, the finite volume method for solids 
mechanics is compared with the “standard” continuous 
Bubnov–Galerkin finite element method, for example, as 
described by Bathe [408], Zienkiewicz and Taylor [410], 
and Belytschko et al. [407]. Following the approach taken 
in the previous section, the finite element method will 
be compared to the finite volume method in terms of: (a) 
discretisation of space and time; (b) discretisation of the 
mathematical model equations; and (c) solution algorithm.

4.1 � Discretisation of Time and Space

Like the finite volume method, the finite element method 
follows the standard time-marching temporal discretisation 
approach. Similarly, the solution domain space is divided 
into a finite number of convex cells (or elements) that do 
not overlap and fill the space completely. With regard to the 
mesh, the following differences can be noted between the 
finite element method and each of the finite volume variants:
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Fig. 16   The effect on the stiffness matrix coefficients by including stabilisation terms. (Color figure online)

Fig. 17   A periodic patch of finite volume cells, containing a central cell 
(cell 5) and all neighbour cells within its computational stencil. The 
periodic/cyclic neighbours are indicated as cells in grey numbering. 
(Color figure online)
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•	 The cell-centred approach and vertex-centred approaches 
which do not use shape functions are applicable to gen-
eral convex polyhedra in 3-D and general polygons in 
2-D, whereas the standard finite element method is 
limited to standard element shapes, such as hexahedra/
tetrahedra in 3-D and quadrilaterals/triangles in 2-D. A 
consequence of this it that ‘hanging nodes’ (Fig. 19) are 
common in finite volume analyses but not directly pos-
sible with the standard finite element method;

•	 The vertex-centred (and hypothetically cell-centred) 
approaches which do use shape function are limited to 
the same types of meshes used by the standard finite ele-
ment method.

4.2 � Discretisation of the Mathematical Model 
Equations

In Sect. 3.1, the conservation of linear momentum in strong 
integral form (Eq. 1) was taken as the starting point for the 
finite volume discretisation. In contrast, the finite element 
method requires the weak form of the governing equation, 
and hence begins with the strong differential form:

This form is then multiplied by an arbitrary continuous 
weighting function � and integrated over the material vol-
ume to give the conservation of momentum in weak form:

Unsurprisingly a finite volume method is recovered if the 
weighting functions � are taken as unity within the control 
volumes and zero elsewhere.

To derive the finite element method, the weak form 
(Eq. 61) is rearranged using integration by parts combined 
with the Gauss divergence theorem:

where ΓT is the region of the domain boundary where trac-
tions TΓ are applied. In the second term on the left-hand 
side of Eq. (62), the differential operator now acts on the 

(60)�
�2u

�t2
=� ⋅

[
��u + �(�u)T + � tr(�u)�

]
+ �f b

(61)
∫Ω

� ⋅

{
�
�2u

�t2
− � ⋅

[
��u + �(�u)T + � tr(�u)�

]
− �f b

}
dΩ = 0

(62)
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�� ⋅ f b dΩ

Fig. 18   Generalisation of 
the finite volume method for 
solid mechanics, allowing the 
creation of any scheme through 
appropriate selection of four key 
components: (1) control volume 
construction method, (2) face 
gradient calculation approach, 
(3) stabilisation technique, and 
(4) solution methodology. Com-
mon approaches are indicated 
by the coloured lines: implicit 
cell-centred (green), implicit 
vertex-centred (blue), explicit 
Godunov-type (red), and 
staggered-grid (purple). (Color 
figure online)

Fig. 19   2-D quadrilateral mesh 
of a beam, where ‘hanging 
nodes’ are shown as black dots. 
(Color figure online)
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weighting function � , in contrast to Eq.  (1) where it acts 
on the stress tensor � . It is assumed that the weighting func-
tions, also known as test functions, satisfy the following 
requirements [407]:

•	 They are not functions of time;
•	 They are C0 continuous;
•	 They vanish on displacement boundaries.

Interpreting the weighting functions � as virtual displace-
ments allows Eq. (62) to be viewed as the principle of virtual 
work. In this way, the original problem of trying to find a 
displacement field which satisfies the conservation of linear 
momentum can be reinterpreted as trying to find a displace-
ment field which minimises the total energy.

The finite element method then assumes the displacement 
u within each mesh element to vary according to shape func-
tions, as presented previously in Eq. (25). The standard Bub-
nov–Galerkin form of the finite element method is achieved 
by assuming that the weighting functions � in Eq. (62) are 
approximated using the same shape functions as the displace-
ment field:

where 𝝎̄A represents the discrete weighting function value at 
vertex A; uppercase letter A is used as an index for vertices 
to avoid confusion with index notation i, j and k.

Combining Eqs. 25 (displacement shape functions), 63 
and 62, the finite element equations are expressed as [411]:

(63)𝝎 =

nVertices∑
A=1

NA𝝎̄A

(64)

∫Ω

�

nVertices∑
A=1

NA𝝎̄A ⋅

nVertices∑
B=1

NB

�2uB
�t2

dΩ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Inertial force term

+ ∫Ω

nVertices∑
A=1

�NA𝝎̄A ∶

[
�

nVertices∑
B=1

�NBuB + �

nVertices∑
B=1

uB�NB + � tr

(
nVertices∑
B=1

�NBuB

)
�

]
dΩ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Internal force term

= ∮ΓT

nVertices∑
A=1

NA𝝎̄A ⋅ TΓ dΓ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
External (surface) force term

+ ∫Ω

nVertices∑
A=1

NA𝝎̄A ⋅ �f b dΩ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
External (body) force term

To proceed, we will switch to index notation, not refer-
ring to spatial directions i and j or nodes A and B, but instead 
to the degrees of freedom [411]. For this, the index for a 
global degree of freedom P can be given uniquely in terms 
of the spatial index and node index:

Examining Eq. (64) term by term and using both index 
notation and degree of freedom notation, the inertial force 
term can be expanded as:

where nDims is the number of spatial dimensions, �ij is the 
Kronecker delta, and nDoF = nDims × nVertices is the num-
ber of global degrees of freedom. Matrix MPQ is known as 
the mass matrix and is given as:

(65)P = f (i,A)

(66)

∫Ω

𝜌

nVertices∑
A=1

NA𝝎̄A ⋅

nVertices∑
B=1

NB

𝜕2uB
𝜕t2

dΩ

=

nVertices∑
A=1

nDims∑
i=1

∫Ω

𝜌NA𝜔̄iA

nVertices∑
B=1

NB

𝜕2UiB

𝜕t2
dΩ

=

nVertices∑
A=1

nDims∑
i=1

𝜔̄iA

nVertices∑
B=1

nDims∑
j=1

∫Ω

𝜌NA𝛿ijNB

𝜕2UiB

𝜕t2
dΩ

=

nDoF∑
P=1

𝜔̄P

nDoF∑
Q=1

MPQ

𝜕2UQ

𝜕t2
dΩ
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The volume integral can be calculated (or approximated) 
using Gaussian/numerical quadrature:

where nQuadPoints is the number of quadrature points, w 
is the quadrature weight, and � is the quadrature location 
within the element. For example, using one-point quadra-
ture, the quadrature locations are situated at the centroids 
of the elements; in that case, the density and the derivative 
of the shape functions are evaluated at element centroids.

Unlike finite volume approaches, the resulting mass matrix 
will not in general be diagonal; however, diagonalisation or 
lumping of the mass matrix is common, although often ad 
hoc [407]; for example, the row-sum technique calculates the 
diagonal elements as the sum of the coefficients for that row.

The internal force term in Eq. (64) can be simplified as:

where matrix KPQ is known as the stiffness matrix:

The integral can once again be evaluated using Gaussian/
numerical quadrature:

Evaluating this integral exactly (using sufficient quadra-
ture points) would naively appear to be the best approach; 
however, formulations that use full integration tend to suffer 

(67)MPQ = ∫Ω

�NA�ijNB dΩ

(68)MPQ ≈

nQuadPoints∑
p=1

wp �(�p)NA(�p) �ij NB(�p)

(69)

∫Ω

nVertices∑
A=1

�NA𝝎̄A ∶

[
𝜇

nVertices∑
B=1

�NBuB + 𝜇

nVertices∑
B=1

uB�NB + 𝜆 tr

(
nVertices∑
B=1

�NBuB

)
�

]
dΩ

= ∫Ω

nVertices∑
A=1

nDims∑
i=1

nDims∑
j=1

NA,j𝜔̄iA

(
𝜇NB,jUiB + 𝜇NB,iUjB + 𝜆NB,kUkB𝛿ij

)
dΩ

=

nDoF∑
P=1

𝜔̄PKPQUQ

(70)KPQ = ∫Ω

nDims∑
j=1

NA,j

[
�NB,j + �NB,i + �NB,i�ij

]
dΩ

(71)KPQ ≈

nQuadPoints∑
p=1

nDims∑
j=1

wp NA,j(�p)
[
�(�p)NB,j(�p) + �(�p)NB,i(�p) + �(�p)NB,i(�p) �ij

]

from locking [407], which can be described as an overly stiff 
behaviour in bending. Consequently, reduced integration is 
often favoured, where the local field is under-integrated. This 
reduced integration has the benefit of relieving this locking 
phenomena as well as reducing the computational time, due 
to the lower number of integration points.

A downside of reduced integration is the introduction of 
spatial instabilities into the discretisation. In essence, the ele-
ment is capable of deforming in certain modes which offer no 
resistance. These spurious singular or zero energy modes pro-
duce an accordion-like deformation pattern known as hour-
glassing. Similar to the finite volume method, a stabilisation 
term is included in the formulation to suppress such spatial 
instabilities. For the finite element method, this hourglass sta-
bilisation is incorporated through the inclusion of a stabilisa-
tion stiffness within the element stiffness matrix, or a viscous 
stabilisation term for dynamic problems [407]. For static prob-
lems a variety of stabilisation methods have been proposed, 
but typically a stabilisation stiffness term Kstab

PQ
 is added to the 

element stiffness matrix of the form [407, 412]:

where Nstab
A∕B,j

 represents the gradient interpolators used to 
define the hourglass deformation modes. The �stab is a scal-
ing factor typically set between 0.005 and 0.1 [407, 412], 
depending on the form of Nstab

A,j
 . For volumetric spatial insta-

bilities, � is replaced by the bulk modulus, � = (2∕3)� + � , 

and Nstab
A,j

 represents the gradient interpolators for the volu-
metric/pressure hourglass mode.

Finally, the two external force terms in Eq.  (64) are 
expressed as:

(72)Kstab
PQ

= �stab �Nstab
A,j

Nstab
B,j

Ω

(73)∮ΓT

nVertices∑
A=1

NA𝝎̄A ⋅ TΓ dΓ + ∫Ω

nVertices∑
A=1

NA𝝎̄A ⋅ 𝜌f b dΩ =

nDoF∑
P=1

𝜔̄PFP
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where vector FP is known as the global force vector:

and once again the integrals are evaluated using quadrature.
Equation (64) can now be expressed as:

where the global vectors of dimension nDoF × 1 are:

and global matrices of dimension nDoF × nDoF are:

As Eq. (75) is satisfied for all values of 𝝎̄ , this requires 
that the bracketed term is equal to zero. This gives the 
semi-discrete form (discrete in space, not in time) of the 
finite element equations:

To complete the discretisation, the acceleration term 
�2U

�t2
 is discretised using a finite difference scheme. Simi-

lar to the finite volume approaches, many finite difference 
schemes can be used, where Newmark schemes are popu-
lar. The simple Euler backward scheme is given here for 
comparative purposes:

Boundary tractions/forces have already been included 
in F via the external (surface) force term in Eq. (64). For 
the incorporation of displacement conditions, this signifies 
that some of the degrees of freedom in U are known; these 
equations can hence be disregarded. As in the case with 
the finite volume methods, initial conditions, in the form 
of the displacement field at t = 0 , t = −Δt , and t = −2Δt , 
must also be specified.

4.3 � Solution Algorithm

Once known degrees of freedom have been incorporated, Eq. 
(79) represents a system of nDoF − nKnownDof  linear alge-
braic equations, where nKnownDof is the number of known 
degrees of freedom. Similar to the analogous matrices in 
the finite volume method, the mass matrix is a function of 
the density and element geometry; the stiffness matrix is a 
function of the mechanical properties and element geom-
etry; and the force vector F contains surface and body force 

(74)FP = ∮ΓT

nVertices∑
A=1

NATiΓ dΓ + ∫Ω

nVertices∑
A=1

�NAfib dΩ

(75)𝝎̄
T

(
M

�2U

�t2
+ KU − F

)
= 0

(76)𝝎̄ = [𝜔̄P], U = [UP], F = [FP]

(77)M = [MP], K = [KP]

(78)M
�2U

�t2
+ KU = F

(79)M
U − 2U[m−1] + U[m−2]

Δt2
+ KU = F

contributions as well as inertial terms and non-zero known 
degree of freedom contributions. Like the finite volume 
approaches, this system of algebraic equations can be solved 
using either an implicit or explicit time marching procedure.

For implicit approaches, Eq. (79) can be rearranged and 
solved for U:

Assuming a stable discretisation, the matrix of the linear 
system 

(
1

Δt2
M + K

)
 (or K for quasi-static) has the following 

properties:

•	 It is sparse with the number of non-zero elements in each 
row equal to the number of vertices which share an ele-
ment with the current vertex, plus one;

•	 It is symmetric;
•	 It is positive definite;
•	 In general, unlike for the cell-centred finite volume 

approaches where a segregated algorithm is used, it is 
not diagonally dominant; however, finite volume discre-
tisations that employed block-coupled solution method-
ologies will produce a similar non-diagonally dominant 
matrix.

To solve Eq. (80), typically a direct linear solver is employed, 
for example, Gaussian elimination, LU decomposition or 
multi-frontal methods; however, iterative methods such as 
preconditioned conjugate gradient are also possible [408].

4.4 � Discussion

4.4.1 � Overview

Given the close relationship between the finite volume 
and finite element methods, it is not surprising that both 
have been compared previously: some notable dissections 
include those from Oñate, Zienkiewicz, Idelsohn [6, 8, 11, 
12, 413–416], Lahrmann [417], Perré and Passard [293], 
Harrild and Henriquez [418], Zarrabi and Basu [55], Fang 
et al. [419], Yamamoto et al. [420], Jacquemet and Hen-
riquez [421, 422], Vaz Jr. et al. [37], Filippini et al. [423], 
and recently Demirdžić [424]. The general consensus is that 
both methods share the same data structure and general strat-
egy to assemble the corresponding characteristic matrices, 
with the main conceptual difference being in the local inte-
gration domain and local integration method. Although a 
number of authors have claimed superior accuracy of one 
method over the other [37, 417, 418], the majority of authors 
have found both methods to produce similar predictions with 
no significant differences [293, 419, 420, 422].

(80)
(

1

Δt2
M + K

)
U = F +M

2U[m−1] − U[m−2]

Δt2
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One generally accepted appeal of the finite volume 
method is the ease with which it can be followed and imple-
mented: the finite volume method is simply based on balanc-
ing forces acting on a volume, requiring no knowledge of 
advanced mathematical frameworks. Comparing the deri-
vations in Sects. 3.2 and 4.2, the finite element approach 
would appear to be more mathematically involved; however, 
proponents of the finite element method claim that the prin-
ciple of virtual work and energy minimisation techniques 
are as equally interpretable as the balance equation form.

4.4.2 � Weak Vs. Strong Forms of the Conservation Law 
and the Implications

As discussed, finite volume and finite element methods 
differ is their philosophy: where the finite volume method 
deals with the strong balance form of the governing law, the 
finite element method deals with the equivalent weak virtual 
energy form. One consequence of this is the manner in which 
local conservation is enforced. As finite volume approaches 
discretise surface integrals at the (typically non-overlapping) 
control volume boundaries, strong local conservation is 
achieved: forces are equal and opposite at cell boundaries. 
As a consequence of this local conservation, global con-
servation within the domain is automatically achieved. In 
contrast, finite element methods discretise the surface force 
term as a volume integral using locally overlapping integra-
tion domains: this results in local conservation in an average 
sense, rather than directly for each element. Global conser-
vation is ensured in an average sense, assuming there are 
sufficient numbers of elements. An additional consequence 
of these contrasting approaches is how each method treats 

Neumann/natural boundary conditions: considering traction 
conditions, finite volume methods satisfy these conditions 
exactly regardless of the mesh density; whereas finite ele-
ment approaches satisfy them in an approximate sense, and 
as the mesh is refined strong enforcement is approached.

As noted by a number of authors, for example, [11, 12, 
24], by choosing unity weighting functions in the weak 
form of the governing equation (Eq. 62), it is possible to 
recover the finite volume method. Spalding [321] alludes to 
this point by referring to finite volume approaches as unity-
weighting function methods and to finite element approaches 
as non-unity weighting function methods.

4.4.3 � Geometric Flexibility

As standard finite element methods use shape functions to 
define a continuous displacement distribution, this limits 
their application to meshes containing standard element 
shapes. Concretely, only standard shapes such as triangles 
and quadrilaterals are allowed in 2-D, and tetrahedra and 
hexahedra in 3-D. Similarly, finite volume approaches that 
explicitly use shape functions are constrained in the same 
way. More commonly finite volume methods describe the 
local solution distribution using a truncated Taylor expan-
sion, resulting in discontinuous jumps at the cell interfaces. 
An outcome of this is the ability of finite volume approaches 
to deal with general convex polyhedral meshes. In this way, 
finite volume approaches are more flexible in terms of mesh 
generation and dynamic remeshing. In addition to hang-
ing nodes, typical finite volume discretisations can deal 
with overset/chimera and immersed boundary meshes in a 
straight-forward manner.

Fig. 20   Uniform 2-D triangular grid showing the local integration 
domains and computational stencils for the finite element and finite 
volume methods. The centre node is shown as a black dot and all 

neighbouring nodes are shown as white-filled dots, where nodes are 
vertices in the finite element method, and are cell-centres in the finite 
volume method. (Color figure online)
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4.4.4 � Mass Matrix and Stiffness Matrix Properties

A desirable property of final volume methods for explicit 
implementation and parallelisation is that the mass matrix is 
automatically diagonal. For finite element methods, the lack 
of a diagonal consistent mass matrix results in the use of so-
called mass lumping approaches, which are often ad-hoc, as 
noted previously. The stiffness matrix, however, bares many 
similarities between the methods.

To allow direct comparison, let us consider finite volume 
and finite element discretisations on a uniform equilateral-
triangular grid (Fig. 20). We will consider a typical domain 
of integration around a node, where a node represents a 
vertex in the finite element method and a cell-centre in the 
finite volume method. For ease of comparison, the dual mesh 
is used for the finite volume method. In the finite element 
case (Fig. 20a), the local integration domain (shaded in 

orange) consists of all elements adjacent to the centre node 
(black-filled dot). Consequently, the computational stencil 
for the centre vertex consists of the six neighbouring verti-
ces (indicated by white-filled dots), which share an element 
with the centre node. In the finite volume case (Fig. 20b), 
the local integration domain (shaded in orange) is the cell 
itself containing the node at its centre (black-filled dot); the 
computational stencil includes all neighbouring cell-centres 
(white-filled dots). In this case, as both methods share the 
same computational stencil, the resulting stiffness matrices 
will share the same structure and sparsity, assuming that the 
same solution strategy is used, for example, block-coupled 
or segregated. For a triangular grid, either the nodal loca-
tions or the orientation of the local integration domains can 
be aligned between the methods, but not both; as such, the 
comparison of coefficients from both methods is not entirely 
direct, however, it does still provide insight. Here it was 
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Fig. 21   Block coefficients for a row in the mass matrix corresponding to the centre node, where LΔ is the triangle side-length, a unit thickness is 
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chosen to align the nodal locations rather than the local inte-
gration domains: the finite volume cell can be seen to be 
rotated 90◦ relative to the finite element cell, as well as being 
one third the area.

It is important to mention that the size and shape of the 
computational stencil in the finite volume method depend 
on the approach used to calculate the displacement gradients 
at the cell faces. Here face gradient calculation method 2 
in Sect. 3.5 has been employed. Alternative face gradient 
calculation methods can result in the second cell-neighbours 
being included in the stencil; in contrast, a characteristic of 
the finite element method is that the integration domain is 
fixed regardless of local discretisation.

An additional observation is that the local integration 
domains overlap in the finite element method, but do not 

in the typical finite volume method i.e. integration domains 
for neighbouring finite element nodes overlap. An overlap-
ping version of the vertex-centred finite volume method has 
been considered by Oñate et al. [12] but has not received 
significant attention.

Referring to the node numbering given in Fig. 20, the 
block row for the centre node in the global mass matrix is 
given for the finite element method [407], consistent and 
lumped, as well as the finite volume method in Fig. 21. 
The finite element mass-lumped approach can be seen to 
coincide with the finite volume approach; from this, we 
can see that the finite element lumped approach is essen-
tially assigning the mass of the hexagon surrounding a 
node to the node itself, corresponding with the integration 
domain of the finite volume approach.
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segregated solution algorithm

Fig. 22   Block coefficients for a row in the stiffness matrix corresponding to the centre node, where LΔ is the triangle side-length and a unit thick-
ness is assumed. (Color figure online)
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Considering next the stiffness matrix. Once again tak-
ing the same uniform 2-D triangular grid given in Fig. 20, 
the block row for the centre node in the global stiffness 
matrix for the finite element method [407] is compared 
with the equivalent row from the finite volume method in 
Fig. 22. For the finite volume method, the matrix using a 
block-coupled solution algorithm is given, as well as for 
the segregated approach. Examining the general structure 
of the coefficients for all three methods (Fig. 22a–c), the 
following observations can be made:

•	 All three methods employ the same computational sten-
cil;

•	 The coefficients are symmetric in all three cases, albeit 
the effect of boundary conditions has not been considered 
here;

•	 As expected, all three methods show geometric symme-
tries, for example, the top-right coefficient is equal to the 
bottom-left coefficient;

•	 The finite element and coupled finite volume approaches 
show the same sparsity structure i.e. there are zeros in 
the same locations; in addition, the coefficients have the 
same signs and show similar magnitudes, but do not have 
the same value, apart from for the central node;

•	 The segregated finite volume approach differs from the 
others by removing all inter-component coupling from 
the coefficients, as discussed in Sect. 3.5;

•	 The segregated finite volume approach produces a row of 
coefficients which is weakly diagonally dominant, also 
discussed in Sect. 3.5;

•	 The momentum/force between nodes is conserved for 
all three methods (based on the symmetry of the coef-
ficients), however, conservation of momentum/force 
between elements/cells is not directly enforced for the 
finite element method, whereas it is for the finite volume 
method.

4.4.5 � Discretisation Stabilisation

As described in Sect. 4.2, finite element formulations which 
under-integrate the local domain require the inclusion of a 
stabilisation term, in the same way one is required in many 
finite volume formulations. In the finite element method, 
these spurious singular, zero energy modes produce an 
accordion-like deformation pattern known as hourglassing 
(Fig. 23a), named due to its visual similarity to an hourglass 
timing device. These spatial instabilities are equivalent to 
checkerboarding instabilities that occur in finite volume for-
mulations (Fig. 23b); these checkerboarding pressure-type 
instabilities are also possible in finite element formulations. 
The origin of these spatial instabilities in both finite element 
and finite volume formulations is a rank deficiency in their 
respective stiffness matrices. Essentially, a stable discretisa-
tion should not support any deformation modes which do not 
offer resistance, apart from rigid body translations and rota-
tions. More precisely, rank deficiency refers to the fact that 
the discretised stiffness matrix has zero-valued eigenvalues 
which are not related to rigid body motions (as discussed 
in Sect. 3.5). For example, considering a 3-D element/cell, 
the stiffness matrix for a full rank formulation has six zero 
valued eigenvalues: three rigid translations and three rigid 
rotations; for a rank deficient formulation, additional zero 
valued eigenvalues are present corresponding to zero energy 
instability modes.

To address these spatial instabilities, both finite element 
and finite volume approaches add a stabilisation term to the 
discretised governing equations. In both cases, there are two 
primary constraints on the form of this stabilisation term 
[407]:

Fig. 23   The equivalence of spatial instabilities in finite element and finite volume formulations. (Color figure online)
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•	 It should not significantly affect the accuracy of the dis-
cretisation, and

•	 It should not affect the linear completeness of the discre-
tisation; in other terms, the discretisation should still be 
able capable of describing a linear solution field exactly 
after the inclusion of the stabilisation term.

For both methods, a variety of techniques exist and the 
stabilisation force often takes a similar form:

where Cstab is some measure of mechanical property that 
gives an appropriate dimension to the dissipation, such as � , 
2� + � , � + � , or � , for quasi-static analyses, or a function 
of the speed of sound for dynamic analyses. The �stab factor 
allows the magnitude of the stabilisation to be scaled.

4.4.6 � Performance of the Methods

The differences in local integration domain and local inte-
gration method between the finite volume and finite ele-
ment methods has consequences for the robustness, accu-
racy and efficiency of the resulting methods. Particularly 
for nonlinear analysis, the ideal discretisation is unclear 
due to a variety of numerical challenges which are yet to 
be fully resolved, including [425]: (1) spurious hourglass-
ing and pressure checker-boarding, (2) bending difficulties, 
(3) shear and volumetric locking, (4) high frequency noise 
in the vicinity of shocks, (5) lower order of convergence 
for strains and stresses in comparison with displacements, 
and (6) sensitivity to mesh distortions. It is these chal-
lenges that finite volume discretisations can potentially 
solve in a novel way.

Apart from this, a major motivation for finite volume 
solid mechanics schemes is the challenge of multi-physics 
problems. As long as the finite volume method is promi-
nent in the world of computational fluid mechanics, there 
will be a demand for straight-forward finite volume solid 
mechanics implementations. These solid mechanics imple-
mentations can share the same computational framework, 
discretisation and solution methodologies as their fluid 
counterparts and can be integrated seamlessly into the 
code base.

Regarding accuracy and overly stiff behaviour, finite 
volume methods have not shown the same locking behav-
iour typical in fully integrated finite element methods. 
Given their similarity with reduced integrated finite 
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elements, it is perhaps not surprising that this is the 
case; however, like finite elements, the absolute accuracy 
depends on the details of the formulation. Concerning 
order of accuracy, an attractive property of most finite 
volume methods is that the error in the strain and stress 
reduces at a second-order rate, like the displacement [37, 
208]; this may not be the case for many finite element 
schemes, where the error in the strain and stress reduce at 
a rate closer to first order.

As models become larger and the availability of super-
computers and cloud computing increases, code paralleli-
sation is becoming critical. Due to the widespread use of 
iterative linear solvers, finite volume methods (fluid and 
solid) commonly exploit hundreds or thousands of CPU 
cores, for example, the OpenFOAM software. In contrast, 
as direct linear solvers have often been the chosen solution 
approach for finite element schemes, parallel efficiency 
is inherently limited (relative to iterative solvers) and the 
use of large numbers of CPU cores has been less common; 
however, there are a number of projects focussed on the 
application of finite element methods to supercomputers 
using iterative solvers, for example, ParaFEM [426]. Apart 
from the choice between direct and iterative linear solver, 
cell-centred finite volume approaches possess a convenient 
advantage over vertex-centred methods (such as the finite 
element method) when it comes to domain decomposition 
parallelisation: each node (cell-centre) is uniquely located on 
one CPU core domain. As a result, duplication of nodal data 
at processor-to-processor boundaries is not required. In con-
trast, in the finite element method, nodes (vertices) that lie 
on a processor-to-processor boundary are present on at least 
two processor domains, requiring the use of ghost elements 
or similar data duplication techniques. A final point related 
to parallelisation is the debate around open-source vs. com-
mercial software, which equally affects both finite volume 
and finite element methods. For many, the current per-CPU-
core pricing of some well known commercial codes may in 
fact be the greatest practical obstacle to parallel efficiency.

4.4.7 � Higher Order Discretisations

Apart from the size of the finite element solid mechanics 
community, arguably the next greatest advantage of the 
finite element method over the finite volume method is its 
straight-forward extension to higher-order discretisation. A 
key feature of the finite element method is that an element 
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is completely characterised by the coordinates and degrees 
of freedom associated with its nodes/vertices [411]. This 
compact computational stencil allows uncomplicated inclu-
sion of higher-order local distributions. As noted previously, 
higher-order finite volume approaches have been developed 
for solid mechanics [203], however, as the order increases, 
so does the size of the computational stencil; this introduces 
significant challenges for unstructured polyhedral grids, and 
as such, higher-order schemes are not as common as in the 
finite element field.

For linear analyses, the power of higher-order schemes 
is undeniable, notwithstanding challenges with locking 
behaviour, however, for nonlinear analysis such higher 
order schemes are not commonly used in practice. For 
example, considering an elasto-plastic analysis, as noted by 
Belytschko et al. [407], the stress may have discontinuous 
derivatives at the surface separating elastic and plastic mate-
rial. In this case, the errors in Gaussian quadrature of an 
element that contains an elastic–plastic interface are likely 
to be large; higher-order quadrature is not a solution as it 
often leads to stiff behaviour or locking. Additionally, finite 
element users are typically recommended to use lower order 
formulations for problems that include either contact, large 
strains or plasticity [412].

4.4.8 � Discontinuous Galerkin Methods

The standard continuous Bubnov–Galerkin finite element 
method, as presented above, assumes a continuous distri-
bution of the displacement between elements. In contrast, 
as shown in Fig. 24, the finite volume method typically 

assumes discontinuous jumps in the displacement field at the 
interfaces between cells (although it does not have to). There 
is, however, a class of finite element approaches known as 
discontinuous Galerkin methods, introduced by Reed and 
Hill [427], which assume similar jumps in the solution field 
across element boundaries. In this way, the local integra-
tion method adopted by the discontinuous Galerkin method 
combines features of the finite volume and finite element 
methods. In particular, discontinuous Galerkin schemes bare 
the following desirable finite volume properties [428]:

•	 They produce mass matrices that are block-diagonal;
•	 They easily handle irregular meshes with hanging nodes;
•	 They are locally conservative, which is a critical property 

for computational fluid dynamics.

In addition, a potential advantage of discontinuous Galerkin 
schemes over finite volume schemes is their ease of exten-
sion to higher orders, and the mixing of lower and higher 
order elements.

Discontinuous Galerkin methods are, however, typi-
cally implemented using explicit solution algorithms. The 
reason they are less suitable for implicit implementations 
(and analysis of quasi-static type problems) is they possess 
large numbers of globally-coupled degrees of freedom. 
To overcome this disadvantage, the so-called hybridisable 
discontinuous Galerkin (HDG) method was introduced by 
Cockburn et al. [429]. The key characteristic of the hybrid-
isable form was defining traces of field variables as single 
values at cell interfaces, allowing a significant reduction in 
the number of global unknowns. Detailed analysis of the 

Fig. 24   A comparison between the representation of the displacement field in the finite volume method (and discontinuous Galerkin finite ele-
ment method) and the finite element method. Adapted from Lee et al. [27]. (Color figure online)
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HDG method is outside the scope of the current article and 
readers are referred to recent articles on the application of 
HDG to solid mechanics [430–433].

5 � Applications of the Finite Volume Method 
for Computational Solid Mechanics

Some of the main areas where finite volume methods have 
been applied to solid mechanics are summarised below, 
including example images.

5.1 � Fluid–Solid Interaction

Example cases are shown in Fig. 25, and examples refer-
ences include: [29, 94, 96, 98, 99, 113, 120, 121, 138–140, 

142–145, 147, 149, 152–160, 162, 164, 199, 208, 216, 239, 
249, 268, 271, 272, 274–277, 277–280, 309, 434–467].

5.2 � Fracture and Adhesive Joints

Example cases are shown in Fig. 26, and examples ref-
erences include: [84, 119–132, 140, 380, 446, 457, 
468–500].

5.3 � Microstructure Analysis

Example cases are shown in Fig. 27, and examples refer-
ences include: [38, 49, 339–345, 347–354, 492–494, 496, 
497, 501–558].

Fig. 25   Fluid–solid interaction examples. (Color figure online)
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5.4 � Metal Forming and Casting

Example cases are shown in Fig. 28, and examples ref-
erences include: [30, 44, 46, 47, 50, 51, 51–54, 110, 
135–137, 276, 281, 285–287, 331, 334, 336, 385, 386, 
388, 389, 391, 559–567].

5.5 � Biomechanics

Example cases are shown in Fig. 29, and examples refer-
ences include: [60, 102, 105, 138, 156, 158, 196, 259, 278, 
337, 418, 421, 455, 458, 464, 465, 568–587].

5.6 � Screw Compressors

Example cases are shown in Fig. 30, and examples refer-
ences include: [147, 148, 151–153, 161, 588–594];

5.7 � Geomechanics and Poroelasticity

Example cases are shown in Fig. 31, and examples refer-
ences include: [78, 80–82, 84, 149, 307–313, 595].

6 � Softwares Employing the Finite Volume 
Method for Solid Mechanics

A number of software have, or previously have, implemented 
versions of the finite volume method for solid mechanics; 
these software, in alphabetical order, include:

•	 COMET/STAR-CD (commercial software) [29, 41, 44, 
46, 57, 58, 95, 97, 100, 120, 136, 137, 147, 148, 151–
153, 161, 197, 201, 588–593, 596, 597];

•	 FOAM/OpenFOAM (open-source software) [25, 28, 
30, 77, 78, 80, 83, 84, 88, 91, 94, 96, 98, 99, 101, 104, 
105, 113, 140, 155, 156, 158–160, 162, 164, 193, 194, 
196, 208, 446, 450, 451, 457, 461, 462, 466, 467, 487, 
489–493, 496, 553, 582];

•	 GTEA (in-house software) [297];
•	 MulPhys (in-house software) [260];
•	 NASIR (in-house software) [500, 598–606];
•	 PHOENICS (commercial software) [13–15, 17, 315–

321];
•	 PHYSICA (in-house software) [241, 265–267, 607];
•	 TRANSPORE (in-house software) [293].

Fig. 26   Fracture and adhesive 
joint examples. (Color figure 
online)
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7 � Conclusions and Challenges

The various finite volume approaches to solid mechanics 
can be seen to share many similarities, and in fact can all 
be described in a general unified manner (Sect. 3.5). When 
comparing the finite volume approach with the finite element 
approach, the likenesses are clear: both approaches adopt the 
same general strategy to discretise space into cells/elements, 
both use similar data storage structures, and both follow sim-
ilar approaches to assemble their corresponding characteris-
tic matrices. The main differences lie in how the local inte-
gration domains are constructed, how the local integration is 
performed, and their fundamental philosophy: finite volume 

approaches are rooted in balance laws, where the governing 
equation is enforced by summing forces/fluxes acting on a 
control volume; in contrast, finite element methods adopt a 
more mathematical approach, based on variational methods, 
where the weak form of the governing equation is imposed 
in a volumetrically-averaged sense.

To end this article, we state three main challenges we see 
for the development of finite volume solid mechanics, such 
that its strengths and weaknesses may be rigorously explored 
in the context of solid mechanics, and its merits, relative to 
other similar approaches, may become clear to the compu-
tational solid mechanics community at large: 

1.	 Awareness:

Fig. 27   Microstructure analysis examples. (Color figure online)
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Three decades after the first contributions to the field, 
there is still a general lack of awareness around the 
capabilities of the finite volume method in the sphere 
of solid mechanics; consequently, in the worst case, 
prestigious journals inadvertently assign inappropriate 
reviewers, reviewers who, having only limited knowl-
edge of the area, accept poor or reject good articles, for 
example, see [35], and authors are unaware of major 
developments in the field when surveying the litera-
ture.

2.	 Benchmarking:

As should be clear from this review, numerous differ-
ing finite volume formulations are possible; although 
some variants have been developed specifically for 
specialised applications, the comparison of the differ-
ing approaches on standard benchmarks is rare. With-
out such comparisons, in terms of efficiency, accuracy 
and robustness, it will not be possible to determine 

which approaches are optimal for certain classes of 
problems. Furthermore, given the trends in modern 
computing, the suitability of proposed approaches for 
execution on large-scale distributed memory clusters 
(> 1000 s CPU cores) should be further explored. 
Simulations using hundreds of millions of cells are 
commonplace at CFD conferences: clearly finite 
volume-based solid mechanics procedures have great 
potential. Similarly, finite volume variants should be 
benchmarked against alternative approaches, such as 
the finite element method, to determine relative merits, 
not just on academic standard cases but on complex 
industrial cases to test robustness. Processes such as 
round robin benchmarking series, for example [608], 
may offer one solution.

3.	 Code dissemination:

Where possible, code for published procedures should 
be shared for academic scrutiny: such distribution has 
the potential to: (a) accelerate academic progress, as 

Fig. 28   Metal forming and casting examples. (Color figure online)
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others learn from and build on methods, as well as aid-
ing in the discovery and resolution of errors; (b) facili-
tate ease of understanding and ease of implementation; 
(c) allow direct comparison of methods; (d) provide 
insight into the algorithm intricacies that may not be 
clear from academic articles; and (e) allow faster inte-
gration into commercial software and industrial use.

Appendix 1: Table of Most Cited Articles 
Related to the Finite Volume Method 
for Solid Mechanics

Table 1 lists the most cited articles related to the finite vol-
ume method for solid mechanics; the references have been 
listed in order of decreasing number of citations, and only 
articles with greater than fifty citations have been included, 

according to Google Scholar citations on 25th August 2018. 
As noted in the body of the article, care should be taken 
when interpreting the data, as the number of citations may 
not be directly proportional to impact on the field; for exam-
ple, Weller et al. [193] has by far the greatest number of 
citations; however, a significant percentage of its received 
citations are related to its computational fluid mechanics 
developments, rather than its solid mechanics contributions.

Appendix 2: Overview of the Discretisation 
Used in HOTFGM/HFGMC/FVDAM 
Approaches

There are a variety of related methods with finite volume 
attributes which have been designed for the analysis of het-
erogenous microstructures. The related methods include 
the higher-order theory for functionally graded material 

Fig. 29   Biomechanics exam-
ples. (Color figure online)
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(HOTFGM) [339], the high-fidelity generalised method 
of cells (HFGMC) [340–343], and the finite volume direct 
averaging micromechanics (FVDAM) theory [344, 345]. A 
brief summary of the methods is given here, and readers are 

referred to Aboudi et al. [339], Bansal and Pindera [345] and 
Cavalcante et al. [38] for further details.

The HOTFGM and HFGMC approaches start by spa-
tially discretising the solution domain into rectangular 

Fig. 30   Screw compressor examples. (Color figure online)

Fig. 31   Geomechanics and poroelasticity examples. (Color figure online)
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so-called generic cells, which are further split into a 
second discretisation level containing four rectangular 
sub-cells (Fig. 32); for brevity and clarity, the descrip-
tion here has been limited to two dimensions; however, 
the approaches have been extended to three dimensions, 
as described in Aboudi et al. [339]. As a consequence of 
the assumed orthogonal Cartesian mesh, curved interfaces 
between material phases are approximated in a castellated 
staircase manner, as shown in Fig. 32; this limitation was 
later removed by the FVDAM approach with extension 
to unstructured quadrilateral meshes. By considering the 
unit cell of a periodic material, the displacement field can 
be decomposed into average and fluctuating components, 
u = ū + u� , where the average displacement is determined 
from the specified macroscopic average strains, ū = �̄x . 
Within each sub-cell, the fluctuating displacement is then 
assumed to vary quadratically as a function of the local 
coordinates, ȳ2 and ȳ3:

where h and l are the width and height respectively of the 
sub-cell; W00 , W10 , W01 , W20 , and W02 are unknown vec-
tor displacement coefficients, each with three components; 
the W00 component corresponds to the unknown displace-
ment at the centre of the sub-cell, while the remaining coef-
ficients correspond to higher-order displacement contribu-
tions within the sub-cell. Accordingly, there are 5 × 3 = 15 
unknown displacement coefficients within each sub-cell and 
hence 4 × 15 = 60 within each generic cell; in three dimen-
sions, there are 168 unknown quantities. For brevity here, 
the (�) and (�) superscripts indicating the sub-cell have been 
dropped i.e. ȳ2 = ȳ

(𝛽)

2
 , ȳ3 = ȳ

(𝛾)

3
 , etc. It is also worth point-

ing out that although the approach has been developed for 
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Table 1   Most cited articles 
related to the finite volume 
method for solid mechanics 
from Google Scholar citations 
on 25th August 2018

Approaches for heterogeneous periodic microstructures are indicated by HFGMC/HOTFGM/FVDAM

Reference Formulation-type Number of 
citations

Weller et al. [193] Cell-centred 1988
Demirdžić and Muzaferija [29] Cell-centred 408
Idelsohn and Oñate [11] Vertex-centred and cell-centred 221
Demirdžić and Muzaferija [41] Cell-centred 189
Jasak and Weller [194] Cell-centred 185
Pindera et al. [351] HFGMC/HOTFGM/FVDAM 185
Demirdžić and Martinović [3] Cell-centred 172
Bailey and Cross [24] Vertex-centred 143
Oñate et al. [12] Vertex-centred and cell-centred 128
Fryer et al. [5] Vertex-centred 103
Slone et al. [272] Vertex-centred 101
Slone et al. [273] Vertex-centred 97
Bansal and Pindera [345] HFGMC/HOTFGM/FVDAM 94
Voller [609] Vertex-centred 91
Bijelonja et al. [97] Cell-centred 87
Taylor et al. [251] Vertex-centred 86
Cavalcante et al. [518] HFGMC/HOTFGM/FVDAM 80
Taylor et al. [241] Vertex-centred 70
Khatam and Pindera [530] HFGMC/HOTFGM/FVDAM 70
Fallah et al. [255] Vertex-centred 64
Ivanković et al. [119] Cell-centred 61
Karač et al. [132] Cell-centred 59
Taylor et al. [] Vertex-centred 58
Bailey et al. [267] Vertex-centred 57
Slone et al. [274] Vertex-centred 56
Murphy and Ivanković [128] Cell-centred 55
Tuković and Jasak [112] Cell-centred 54
Demirdžić et al. [197] Cell-centred 52
Bailey et al. [264] Vertex-centred 51
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periodic microstructures, the method can also be used for 
general structural stress analysis by assuming the average 
displacement ū to be zero.

To determine the unknown displacement coefficients, the 
0th, 1st and 2nd moments of momentum conservation are 
applied to each sub-cell, in addition to the enforcement of 
traction and displacement continuity between sub-cells and 
generic cells, and inclusion of boundary conditions. A char-
acteristic of the method, which is not possessed by the other 
finite volume variants, is the enforcement of these so-called 
moments of the governing equation. To achieve this, the gov-
erning equation (Eq. 1), where temporal and body force terms 
have been neglected, is written in terms of a so-called stress 
moment S:

with the stress moment defined as:

The exponents m and n indicate the order of the equation; for 
example, when m = n = 0 , the relation reduces to conserva-
tion of force; when m = 1 and n = 1 the relation represents 
conservation of angular momentum; while for m > 1 and 
n > 1 the relation represents conservation of higher stress 
moments. Note: m is not related to the time-step counter in 
Eq. (4).
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� ȳm

2
ȳn
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In this way, it is possible to assemble a system of 60N 
algebraic equations of the standard form, [K][U] = [F] , 
where N is the number of generic cells in the solution 
domain, [U] is a vector of unknown displacement coefficients 
W , the global stiffness matrix [K] is a function of the sub-cell 
dimensions and mechanical properties, and the global force 
vector [F] contains contributions from boundary conditions 
and nonlinear material stresses. The linear system is inverted 
to give the displacements distributions within the sub-cells.

The HOTFGM and HFGMC approaches described above 
provide the basis for the subsequent FVDAM approach; the 
FVDAM approach differs from the HOTFGM and HFGMC 
methods in a number of ways: 

(a)	 The two-level spatial domain decomposition (generic 
cells and sub-cells) of the HOTFGM/HFGMC methods 
is replaced by one-level of discretisation/cells;

(b)	 The displacement coefficients within each cell W are 
expressed in terms of surface-averaged displacements 
i.e. displacement averaged at each cell surface;

(c)	 Higher order moments of the equilibrium equation are 
not used;

(d)	 In the parametric form of the FVDAM, the use of par-
ametric mapping with a parent/reference cell allows 
the use of an unstructured mesh (similar to the finite 
element method), instead of the orthogonal Carte-
sian mesh of the HOTFGM/HFGMC approaches (see 
Fig. 32);

(e)	 In the assembled system of algebraic equations 
[K][U] = [F] , the solution vector [U] contains cell sur-

Fig. 32   a Unit cell of a periodic 
material with microstructure 
discretised into rectangular 
building blocks. b Two-level 
discretisation employed by 
HFGMC into (q, r) generic cells 
further subdivided into four 
(b, c) subcells. c Single-level 
discretisation employed in the 
FVDAM theory into stand-
alone (b, c) sub-volumes. Figure 
taken from Cavalcante et al. 
[38]. (Color figure online)
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face-averaged displacements, as opposed to sub-cell 
displacement coefficients.

Further technicals details of the HOTFGM, HFGMC and 
FVDAM methods can be found in Cavalcante et al. [38], 
Aboudi et al. [339], Aboudi [340], Aboudi et al. [341], Haj-
Ali and Aboudi [342, 343], Bansal and Pindera [344, 345] 
and Cavalcante and Pindera [349].
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