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Abstract

The standard treatment for the cancer is the radiotherapy where the organs nearby the target volumes get affected during
treatment called the Organs-at-risk. Segmentation of Organs-at-risk is crucial but important for the proper planning of
radiotherapy treatment. Manual segmentation is time consuming and tedious in regular practices and results may vary from
experts to experts. The automatic segmentation will produce robust results with precise accuracy. The aim of this systematic
review is to study various techniques for the automatic segmentation of organs-at-risk in thoracic computed tomography
images and to discuss the best technique which give the higher accuracy in terms of segmentation among all other techniques
proposed in the literature. PRISMA guidelines had been used to conduct this systematic review. Three online databases had
been used for the identification of the related papers and a query had been formed for the search purpose. The papers were
shortlisted based on the various inclusion and exclusion criteria. Four research questions had been designed and answers of
those were explored. After reviewing all the techniques, the best technique had been selected and discussed in detail which
gave the precise accuracy based on Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). Both DSC and HD
were used in the literature to evaluate the performance of their proposed technique for the automatic segmentation of four
organs (esophagus, heart, trachea and aorta). However, the value of these parameters vary as per the validation sample size.
Consequently, various challenges faced by the researchers had been listed. This paper includes the summary of the various
automatic segmentation techniques for the Organs-at-risk in thoracic computed tomography images in terms of four research
questions. Different techniques, Datasets, Performance accuracy and various challenges had been discussed.

1 Introduction including OARs [7]. The radiation dose given to the target

volume kills the cells of the tumour so that it cannot grow

Organ-at-risk (OARs) mostly refer to healthy organs which
are located near the target volume and may get affected by
the radiation exposure during radiation therapy treatment.
(OARs) [1-3] are the healthy organs that may be harmed
during radiotherapy treatment. The radiotherapy treatment
is given to the tumorous organ called target volumes [4]. The
primary aim of radiotherapy [5] is to deliver a prescribed
dose [6] to the target volume while protecting normal tissue
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further. The high radiation dosages (> 50 Gy) are utilized
for the treatment of malignant tissues in radiotherapy (RT).
However, in the case of benign tissues, low to intermedi-
ate dose (3—50 Gy) is used to control the growth of tissues
effectively [8]. The risk of damage relies upon the size, num-
ber and recurrence of radiation divisions, irradiated tissue
volume, the span of treatment, and strategy for radiation
conveyance [9]. Irradiation can cause pathological changes
in the ordinary tissue of OAR with irreversible functional
outcomes. Therefore, the amount and plan of radiation dose
[10, 11] along with precise delivery must be weighted in the
treatment planning [12]. It is fundamental to incorporate the
resistance dose of the organs-at-risk in the treatment tech-
nique [13]. Organs with a low resistance to radiations must
be delineated regardless of whether they are not situated in
the prompt region of the target volume.
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Lung, breast or esophagus cancer [14-21] affects the
Organs-at-Risk in the thorax region most frequently [22, 23].
Table 1 is showing the different cancerous organs in human
body with affected Organs at risk during radiotherapy treat-
ment. It is vital to detect the organs which are at a risk in the
human body. Computed Tomography (CT) scan images are
used to detect the malignant organs due to the uncontrolled
growth of abnormal tissue, which affects the normal work-
ing of the human body. Segmentation of Organs-at-risk is
crucial but important for the proper planning of radiotherapy
treatment [24-26]. In routine clinical practices, segmenta-
tion is performed by the experts manually for the planning
of radiotherapy treatment. In doing so, reliability, repro-
ducibility, and repeatability of the manual segmentation
results depend on the process of learning or the experience
of the operator. Also, this manual process is likewise time-
consuming and tedious in regular practices [27]. Inter and
intra-observer variability is a common issue encountered in
manual segmentation [28].

Automatic segmentation techniques provide efficient and
precise results that can be used [29]. It will help the expert to
exploit the anatomy in lesser time with more accuracy. The
experts can effectively analyze the amount of dose needed
to be given to the target volumes during radiotherapy treat-
ment so that the nearby organs should be less affected by the
radiations [30-33].

The automatic segmentation will produce more accu-
rate and robust results. But achieving precise accuracy in
automatic segmentation of organs through CT images is a
quite challenging task [34] because of a few factors such as
soft-tissue organ images having low contrast, variable size
of organs from patient to patient, the likeness between the
shapes of organs and overfitting [35] towards organs with
high intensity or better-structured organs [36]. So, consid-
ering all the factors, various techniques have been reported
in the literature [37-39] that automatically segment the

Table 1 Cancerous organs affecting organs-at-risk in different parts
of the human body during radiotherapy treatment

S.no Cancerous organs  Organ-at-risk

1. Lung cancer Heart, trachea, aorta, esophagus

2. Breast cancer Lungs, heart, trachea, aorta, esophagus,
liver

3. Stomach cancer Livers, kidneys, spleen, prostate, rectum

Brain cancer The brain stem, eyes, mandible, tempo-
romandibular joints, parotid glands,

spinal cord, and skin
5. Cervical cancer Lungs, liver, bladder, vagina, and rectum

Gallbladder cancer Eyes, tongue and skin
(uncommon)
Mouth cancer Jaws, throat, and ears

Ovarian cancer Intestines, liver, and stomach
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organs-at-risk in thoracic images. However, these techniques
were implemented on different datasets of different chal-
lenges of the same organs. There are several variabilities
in all the experiments conducted by the researchers which
are based on the techniques, datasets, performance param-
eters, results, and challenges. The objective of the systematic
review was to analyze the different techniques along with
their datasets, performance parameters, results and chal-
lenges for the automatic segmentation of Organ-at-Risk
in thoracic CT images. Accordingly, recommendations are
provided for potential researchers in the field for the further
development of the improved techniques.

2 Materials and Methods

This systematic review was conducted under the guidelines
of PRISMA [40]. For the identification of concerned papers,
a detailed search has been carried out on three different
electronic databases i.e. Google scholar, PubMed, and Jurn
during 23-25 August 2019. Google Scholar is an openly
available web index that lists the full content or metadata of
academic writing over a variety of distributed configurations
and controls. PubMed is a free internet searcher getting to
essentially the MEDLINE database of references and digests
on life sciences and biomedical points. Jurn is a free online
quest device for the finding and downloading of free full-
message insightful works. It was set up in an open online
open beta form in February 2009, at first for discovering
open-access electronic diary articles in expressions of the
human experience and humanities. A hand search of the
related papers is also included in this study.

Search was carried out by using the query “(((Segmenta-
tion) or (automatic segmentation)) AND ((Organ-at-risk) or
(thoracic organ-at-risk) or (heart organ-at-risk) or (esopha-
gus organ-at-risk) or (trachea organ-at-risk)or (aorta organ-
at-risk) or (multiple organ-at-risk)) AND ((CT)))”. Papers
related to the automatic segmentation of Organs-at-risk in
thoracic CT images only were included. The total number of
searched papers was accepted and rejected based on the vari-
ous inclusion and exclusion principles as given in Table 2.
The detailed screening of the collected papers is carried out
according to the PRISMA flowchart given in Fig. 1 at differ-
ent stages. A total of 370 papers was searched in three search
engines including hand search also.

At the first stage of screening, all the duplicate papers
and papers published before 2011 were eliminated and 263
papers were selected for the second stage of screening. In
the second stage, 227 papers were eliminated based on titles
and abstract reading. 36 papers were left out after the second
screening stage. In the eligibility stage further 12 papers
were eliminated based on full-text reading and finding vari-
ous reasons for the exclusion of those reasons as mentioned
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Table 2 Inclusion and exclusion criterion used for shortlisting articles

S.no.  Parameters Inclusion criteria Exclusion criteria
Time period Papers published from the year 2011-2019 Papers published before 2011
2. Interventions/  Studies including the segmentation of the human body  Studies including the segmentation of the animal’s body
investigation
3. Comparator Studies concentrating on the segmentation of the thorax Studies including the segmentation of other than thorax part
part (heart, throat, trachea, aorta) of the human body
Modality type  Studies including CT modality segmentation Studies including other than CT segmentation
5. Study design Studies involving experimental results Studies including treatment and surgery of different organs

Reviews, case study, Patent
Language other than English

Fig. 1 Flowchart of the search ()
- . Papers identified through electronic Additional Papers identified through hand
process along with inclusion c . .
d lusi iteri o database searching Google scholar-80, searching -4
and exclusion criteria g PubMed-190, Jurn-100
=
: I l
c
]
=
Total Papers identified (374)
)
—
Papers identified after removing duplicates and published before the year 2011 (263)
00
=
c
o
o Papers excluded
= Papers screened based on titles and abstract using eligibilit; (n=227)
n p g elig y |
criteria N=36 Not relevant to the
segmentation
— Animal study
Modality other than CT
Review papers
P Treatment and surgery
A Language other than
- Full-text articles assessed for eligibility English
£ (n=24)
8
2 Papers excluded
W (n=12)
Study of organs other than
Thorax part
No experimental results
A4 Papers of segmentation
— Studies included in the techniques
qualitative synthesis
(n=24)
-]
7]
-]
g |
]
S Studies included in
systematic analysis
n=24
—J

in the PRISMA flowchart in Fig. 1. In the inclusion and
final stage, 24 papers were finally selected for this systematic
review considering all the inclusion criteria.

2.1 Quality Assessment
All the 24 papers were selected considering the vari-

ous quality parameters. The relevancy to the topic was
evaluated based on the inclusion and exclusion criteria.

Each shortlisted paper comprises a technique for the auto-
matic segmentation of Organ-at-risk using CT images.
All papers included in the review have an empirical study
and their results are shown in the next sections in tabular
form based on different parameters as per the description
of designed research questions.

@ Springer



3248

M. Ashok, A. Gupta

2.2 Literature Review

Various techniques have been developed using different
frameworks (Deep learning-based [41-44], Model-based
[45-47], Atlas-based [48—51]), etc. to segment the OARs
efficiently. This systematic review aims to find out the
answers to the following research questions.

RQI What are the various automatic segmentation tech-
niques used for organ-at-risk in thoracic CT images?
RQ2 Which automatic technique gives the precise accu-
racy or improved performance in organ-at-risk segmen-
tation?

RQ3 What are the minimum and maximum size of the
dataset used for the organ-at-risk segmentation?

RQO4 What are the various challenges faced by the authors
in organ-at-risk segmentation?

Tables 3 and 4 demonstrated the analysis of all the short-
listed 24 papers accepted for the review. Table 4 contains 12
articles that were based on the SegTHOR competition plus
1 paper of the organizing members while Table 3 contains
the other articles.

The authors had proposed different methods to segment
the different organs in the thorax part as shown in Table 3.
In every paper at least one of the four organs (heart, trachea,
aorta, and esophagus) was segmented automatically using
a different technique. The esophagus organ in a CT image
is the most difficult to segment due to its low contrast [63]
compared to other organs in the image. Kurugol et al. [52]
proposed a model-based 3D level set technique for esopha-
gus segmentation where PCT (Principle Curve Tracing)
algorithm was used to detect the centerline of the esopha-
gus. Segmentation error was reduced from 2.6 +2.1 mm to
2.1+ 1.9 mm using PCT. Meyer et al. [53], in the same year,
proposed another method using a model-based segmenta-
tion framework to segment the three organs trachea, esopha-
gus, and heart. The authors used the prior shape knowledge
[64], which was an advantage for segmenting the low con-
trast esophagus. Grosgeorge et al. [54], proposed a method
to segment the esophagus using two approaches: the first
step includes the segmentation using graph cut with prior
knowledge of skeleton [65] and the second step includes 2D
propagation [66].Comparing with the manual ground truth,
the results improved remarkably by achieving accuracy of
0.61 +0.06 using Dice Metric (DM) as a comparison param-
eter. Fechter et al. [57] used a deep learning architecture
i.e. 3D fully convolution Neural Network to segment the
esophagus from CT images. CNN [67] was used to develop
a feature map followed by the Active Contour Model which
was used to find the location of the esophagus and the
result was computed through the implementation of both
the techniques sequentially. Using a deformable registration

@ Springer

algorithm in the proposed multi-atlas segmentation [68, 69]
with an online atlas selection approach [58], the esophagus
was automatically segmented from CT scans of 21 head and
neck patients and 15 thoracic cancer patients. The segmenta-
tion accuracy achieved on the 56% of the test set had a DSC
value equal or greater to 0.7 and HD value equal or greater to
0.3 mm in 86% of the test set. Using data augmentation and
sharp mask architecture in FCN, Trullo et al. [59] achieved
0.72 +0.07 segmentation accuracy for the esophagus meas-
ured using DSC with standard deviation.

For the segmentation of the heart, Larrey-Ruiz et al.
[55], proposed a method using image-based segmentation.
But the technique can segment only the left heart being its
limitation. The precise segmentation of the left heart is per-
formed employing the Isodata algorithm [70] which take the
advantage of histogram containing two main clusters of gray
levels, one for oxygenated blood and other for non-oxygen-
ated contained in the resulting images after pre-processing.
Schreibman et al. [56] segment the organs in thoracic part
by matching the suitable atlases with the patient’s datasets
using deformable registration [71], deduced a most probable
shape using STAPLE algorithm [72] and using customized
level set-based algorithms [73] to produce a highly accurate
segmentation. Dong et al. [61], proposed a novel technique
to automatically segment the esophagus and heart from
CT scan. They used U-Net-generative adversarial network
(U-Net-GAN) to efficiently train the deep neural network
to accurately perform the segmentation of the esophagus
and heart from the given dataset. GAN-based segmenta-
tion model consists of a generator network to produce the
segmentation maps of the images of multiple organs and
a discriminator network as FCN to discriminate between
the ground truth and the actual segmented OARs generated
by the generator. In the year 2019, another novel technique
based on deep CNN was proposed by Feng et al. [62], to
segment the thoracic organs-at-risk in CT images. Firstly,
the 3D thoracic images were cropped to patches of smaller
sizes each containing only one organ. Then the organs were
segmented from each cropped patch using a separate CNN
network. The final results were produced by resampling and
merging of the individual segmented organs. Noothout et al.
[60], performed automatic segmentation of the ascending
aorta, aortic arms and descending aorta in low dose chest
CT scan using dilated CNN and two-fold cross-validation
was performed to evaluate the performance of the proposed
technique. Employment of dilated CNN enables the large
receptive field analysis while keeping the network param-
eters low. The accurate detection of the aorta is allowed by
large receptive fields based on context information. Also, the
network can analyze images of variable sizes because of its
purely convolutional nature.

The automatic segmentation of Organ-at-risk is crucial
and important for proper planning of Radiotherapy treatment
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Table 3 (continued)

Remarks

Conclusion

Results

Techniques

Features extraction

Objectives Sample size

References

S. no.

11.

Low-quality images

A novel technique

Dice Score
Esopha-

Deep CNN using
cropped 3D

images

Voxel Spacing,

Segmentation of CT 60 Thoracic CT scans,

thoracic organs

Feng et al. [62]

suffer poor segmen-

tation

was developed to

intensity

dividing into three

efficiently segment
the organ at risk

gus-0.726 +0.094
Heart-0.925 +0.015

parts: 36 training cases,

Hausdorff Distance

Esopha-

12 offline test cases, 12

online test cases

in thorax part by
achieving good

performance and
less cost

gus-8.714 +10.588
Heart-6.570+1.501

of cancer in the thorax part. Trullo et al. [37], used a CNN
[84] in combination with sharp mask [85, 86] and condi-
tional random field, implemented as recurrent neural net-
work architecture for the automatic segmentation of Organs-
at-risk in Thoracic CT images. In the April month of the
year 2019, a competition SegTHOR was organized by Trullo
et al. on the topic “Automatic segmentation of Organ-at-risk
in Thoracic CT images”. The provided dataset consists of
CT scans of a total of 60 patients, 40 for training purposes
and 20 for testing purposes. Different novel techniques had
been proposed in the SegTHOR for the automatic segment
the Organ-at-risk in Thoracic CT images. The performance
of the techniques was measured using two parameters, Dice
Similarity Coefficient (DSC) and Hausdorff Distance (HD).
This systematic review included all the papers published in
the current year on the same topic. 12 papers published with
different techniques mostly based on deep learning frame-
works [87] for the automatic segmentation of OARs had
been found which participated in the competition includ-
ing 1 paper of the organizing team as shown in Table 4.
All the authors used the same dataset and the same param-
eters Dice coefficient (DSC) and Hausdorff Distance (HD)
were calculated to evaluate the accuracy of their proposed
technique. Satya et al. [36], proposed a technique based on
Dilated U-Net with 14 layers for the automatic segmentation
of OARs. To overcome the overlapping of organ regions in
the output results, the authors applied post-processing inte-
grated with the model which further improved the overall
accuracy of segmentation results. Another technique using
the 2D dilated residual Network was proposed by Vesal et al.
[75] to precisely perform the segmentation of OARs. Using
the dilated convolutions, the receptive field was expanded
in the lowest level of the network enabling the technique to
use both local and global information without any increase
in the network complexity. Louis et al. [74], proposed their
technique which was the combination of 2D and 3D Convo-
lutional Neural Network (CNN) to produce the segmenta-
tion results. The 3D network was an FCNN [88, 89] using
residual blocks allowing the network to focus on detailed
local information whereas the 2D network contained dilated
convolutions that allow large receptive fields while inputting
the images.

A two-stage cascaded network was used by Kim et al.
[76] for the segmentation of thoracic organs. The two-step
included: first the selection of slices and the second was the
segmentation using the segmentation network with ensemble
technique. But this technique gave the least accuracy among
all other proposed techniques especially for the esophagus
because of its small size. A 3D 3-stage multi-scale network
was used by Wang et al. [39] to segment the four thoracic
organs and their results show improvement for all organs.
U-Net inspired network comprises a context pathway and
a localization pathway was used by Chan et al. [77], to
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Table 4 (continued)

Remarks

Sample Size Techniques Results Conclusion

Objectives

References

S. no.

Efficient in terms of

Segmentation of CT 60 CT scans, resolution ~ Multi-resolution VB- Dice metric The proposed technique

thoracic organs

Han et al. [83]

memory and time con-

sumption

reduces the cost of

Ensemble: Eso—0.8651,
Heart—0.9536,

nets

512x512, voxel size

the GPU memory and

varying between 0.90

also maintain the high

accuracy

Trachea—0.9276,
Aorta-0.9464

and 1.37 mm per pixel

Hausdorff distance

Ensemble: Eso—0.2590,
Heart—0.1272,

Trachea—0.1453,
Aorta-0.1209

perform the segmentation. A multi-test step was added fur-
ther on the esophagus to improve its performance. Another
U-like architecture was abstracted from the U-Net by He
et al. [78], used a uniform encoder-decoder architecture,
involving Res-Net by eliminating the linearly connected
layers. Due to the dependent organ occurrence, they used
the multi-task learning for the thoracic organ’s segmenta-
tion to give the best result and achieved the second rank
in the competition. Kondratenko et al. [79], used 2d T-Net
architecture for the organ segmentation. Random slices were
selected to train the model using batch size 8. Then 5-cross
validation was performed on size 22. Different mean dice
score values were obtained on the test set collected from the
training data. Using the proposed technique, they stood 24th
in the competition. Another competitor Zhang et al. [80],
proposed a deep neural network combining coarse and fine
networks. The coarse network was used to find a region of
interest localization, then the features were used to get fine
segmentation. A fully convolution Neural Network archi-
tecture based on U-Net was used by Lachinovet et al. [81],
to complete the task by exploring two concepts: attention
mechanism and pixel shuffle as an upsampling operator.
The no of feature channels used at the starting was equal
to 16. Their proposed method produced notable results for
the segmentation. A simplified Dense V-Net with input size
128% was used by Feng et al. [82] to achieve a better result
comparing with the baseline [37].The final competitor and
winner of the competition are the Han et al. [83]. They pro-
posed a multi-resolution VB-Net framework to achieve the
best results and ranked 1st in the competition. Their pro-
posed method reduced the computation cost while maintain-
ing high segmentation accuracy for the esophagus, heart,
trachea and aorta organs.

Various techniques have been mentioned in Table 5 that
had been used in the different papers on different datasets to
automatically segment the four thoracic organs (esophagus,
heart, aorta, and trachea). Convolutional Neural Network-
based techniques were used in 8 papers and the accuracy of
the technique of these papers was compared using the same
parameter i.e. Dice coefficient.

2.2.1 Automatic Segmentation Techniques Based
on Different Frameworks Proposed in the Literature

Deep learning-based networks like CNN had been imple-
mented in the literature as shown in Table 5 and it has
outperformed in the zone of medical image segmentation.
Among all the CNN based proposed techniques, van Harten
et al. [74], achieved the highest value for DSC and HD for
the esophagus, heart, trachea, and aorta with the combina-
tion of 2D and 3D CNN. Both the network contains dif-
ferent architectures. The 3D network performed the multi-
label segmentation whereas the 2D network performed the

@ Springer
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Table 5 Different Automatic Segmentation Techniques based on different frameworks proposed by the various papers and showing the best
accuracy among four OAR taking Dice Score Coefficient as the parameter

S.no. Networks Techniques References Accuracy (DSC) Remarks
1. Convolutional Neural Fully Convolution Neural Fechter et al. [57] Esophagus: 76%
Network (CNN) Network (FCNN) and
Active Contour Model
(ACM)
Sharp Mask architecture ~ Trullo et al. [59] Esophagus: 72%
CNN with dilated convo-  Noothout et al. [60] Thoracic aorta: 89%
lutions
Deep CNN using cropped Feng et al. [62] Esophagus: 72.6%
3D images Heart: 92.5%
Sharp Mask architecture ~ Trullo et al. [37] Esophagus: 67%
and Conditional random Heart: 90%
field Trachea: 82%
Aorta: 86%
Combination of 2D and van Harten et al. [74] Esophagus: 84% The best accuracy for
3D CNN Heart: 94% the esophagus, heart,
Trachea: 91% trachea and aorta
Aorta: 93%
Encoder-Decoder based Kim et al. [76] Esophagus: 75.1%
CNN Heart: 93.2%

Trachea: 88.8%
Aorta: 89.1%

T-Net architecture in CNN Kondratenko et al. [79] Esophagus: 80%
Heart: 93%
Trachea: 89%
Aorta: 92%

2. U-Net based framework ~ U-NET Generative adver- Dong et al. [61] Esophagus
sarial network (GAN) DSC: 75%
Heart
DSC: 87%+0.05

Dilated U-Net Manoj et al. [36] Esophagus—64.25%
Heart—385.95%,
Aorta 85.37%
Trachea 46.94%

2D dilated Residual U-Net Vesal et al. [75] Esophagus 85.8% Best accuracy for the
Heart 94.1% Trachea
Trachea 92.6%
Aorta 93.8%

Extension of 3D U-shaped Chan et al. [77] Esophagus 81.66%
Neural Network Heart 93.29%
Trachea 89.10%
Aorta 92.32%

U-Net with extensions He et al. [78] Esophagus—=85.94% Best accuracy for the
Heart—95.00% esophagus& Heart&
Trachea—92.01% Aorta

Aorta—94.84%

Deep learning with pixel ~ Lachinov et al. [81] Es0o—383.03%
shuffle Heart—93.81%
Trachea—90.88%
Aorta—93.53%

@ Springer
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Table 5 (continued)

S.no. Networks Techniques

References

Accuracy (DSC) Remarks

3. Model-based segmenta-  Principle Curve Tracing  Kurugol et al. [52] Esophagus: Point-wise
tion algorithm mean
error: 2.6 +2.1 mm
Shape-constrained model- Meyer et al. [53] Model: trachea only*
based segmentation trachea—€ ., —1.92
heart+ trachea: tra-
chea—€,,,—1.48
Esophagus only*: esopha-
gus — €. —4.01
4. Atlas-based segmentation Atlas registration algo- Schreibmann et al. [56] Heart 78.8% Best and highest accuracy
rithm Trachea 86.9% for Aorta
STAPLE algorithm Aorta 97.1%
Multi-atlas segmentation ~ Yang et al. [58] Heart 73%
(MAS-AS)
5. Image-based segmenta- Multi-thresholding, image Larrey-Ruiz et al. [55] Heart:
tion cleaning, mathematical Mean error—1.22%
morphology, and image Stdev—0.68%
filtering method
6. Skelton-shape model Graph cut method Grosgeorge et al. [54]  Esophagus 61%
7. V-Net framework SIMPLIFIEDDENSEV-  Feng et al. [82] Esophagus—=85.97%
NET Heart—94.59%
Trachea—92.17%
Aorta—94.33%
3D enhanced multi-scale =~ Wang et al. [39] Esophagus 77.34%
network (EMSN) Heart 94.14%
Trachea 89.27%
Aorta 92.33%
Multi-resolution VB-nets  Han et al. [83] Eso—86.51% Best accuracy for esopha-
Heart—95.36% gus, heart, trachea and
Trachea—92.76 aorta
Aorta—94.64%
8. Coarse and Fine segmen- — Zhang et al. [80] Esophagus—77.32%
tation Heart—93.84%

Trachea—89.39%
Aorta—92.32%

multi-class segmentation in their respective output layer and
this distinction in the network promotes the additional diver-
sity. Dilated Convolution [90] in the 2D network allows large
receptive fields as the input to layers that help the network to
extract high-level features. The advantage of using both the
network is that it does not increase the computational cost.
So, it can be used for performing the larger segmentation.
Another deep learning-based network was the U-Net
based techniques that were used in 6 papers to perform
automatic segmentation of thoracic organs. U-Net contains
the up-sampling layers instead of pooling which increases
the resolution in the output layer. The precise accuracy in
terms of Dice Similarity Coefficient using U-Net based tech-
niques was achieved by He et al. [78] for the esophagus,
heart, and aorta. The multi-task learning scheme used in
the network helps discover the dependencies among organs
and the transfer learning in training boosted the performance
of the network. Vesal et al. [75], achieved the highest value

of DSC for the aorta due to its high contrast, regular shape
and large size compared to other organs using dilated U-Net
based method. Dilated convolution expanded the receptive
fields to efficiently extract the features of the objects without
increasing the network complexity. Residual connections in
U-Net incorporated global context and dense information
which was the reason for the precise segmentation of the
organ among all other U-Net based papers.

Model-based segmentation is characterized as the assign-
ment of labels to pixels or voxels by matching the a priori
known object model to the image data. Labels may have
probabilities expressing their uncertainty [45]. Techniques
based on this type of segmentation was used in two paper
Kurugol et al. [52] and Meyer et al. [53] to segment esopha-
gus, heart, and trachea. But the parameters on which the
accuracy of their proposed techniques was measured were
different. Schreibmann et al. [56] and J. Yang et al. [58]
used Atlas-based segmentation for the segmentation of the

@ Springer



3258

M. Ashok, A. Gupta

heart, trachea, and aorta. The highest accuracy in terms of
DSC value for the aorta was achieved by [56]. Atlas regis-
tration algorithm [91-93] and STAPLE algorithm [94] were
used to achieve accurate segmentation. To exclude unnec-
essary regions from the metric calculation, a mask of the
atlas segmentation with a margin is used for the moving
image to calculate the deformation only in voxels within
defined organs. To adjust for variability among individual
atlas results, STAPLE algorithm was used.

Larrey-Ruiz et al. [55] used an image-based segmentation
method to segment the heart and used stdev and mean error
as the parameters to calculate the accuracy of their proposed
technique.

Feng et al. [82], Wang et al. [39] and Han et al. [83] used
V-Net framework to segment the four organs. The accuracy
was measured as dice coefficient value. Among the dis-
cussed three studies, precise accuracy for the esophagus,
heart, trachea & aorta was achieved by [83]. Coarse and
Fine segmentation was used by Zhang et al. [80] only and
computed dice coefficient accuracy for the four organs. The
distribution of different techniques used in the literature also
shown in the Fig. 2 with the Pie-chart representation.

2.2.2 Precise Accuracy Achieved Among All the Proposed
Techniques for the Automatic Segmentation
of the Esophagus, Heart, Trachea, and Aorta

The Common parameters that were used in the literature
are the Dice similarity coefficient (DSC) and the Haus-
dorff Distance. They were used to calculate the accuracy of
the segmented part by comparing it with the ground truth

Fig.2 Distribution of the differ-
ent techniques used among the
literature

@ Springer

No of Papers

values. Dice Score coefficients and Hausdorff Distance
(HD) calculated for the four thoracic OARs by the differ-
ent proposed techniques in the literature are represented in
the form of graphs given in Figs. 3 and 4 In the case of the
Dice similarity coefficient (DSC), the more the value of
DSC, the more accurate the technique would be whereas,
in the case of Hausdorff Distance, the less the value of HD,
the technique would be more efficient.

The overall Precise accuracy for the four thoracic
organs (esophagus, heart, aorta, and trachea) of the pro-
posed techniques among 24 papers using the parameter
Dice coefficient and Hausdorff Distance was achieved by
Han et al. [83] who were also the winner of the competi-
tion sector. The result can be visualized from the graph in
Figs. 3 and 4. They introduced a multi-resolution VB-Net
framework to achieve the 1%'rank and accurate segmenta-
tion for the four organs. They trained the VB-Net in the
coarse resolution to roughly locate the region of interest
(ROI) for each organ and in the fine resolution, the organ
boundaries were correctly delineated within the marked
ROL

Multi-resolution VB-NET:

Han et al. [83] proposed a new architecture using the
V-Net framework and they called it VB-Net. B stands
for a bottleneck in the network. The bottleneck structure
which replaces the conventional layers in the existing net-
work inside the down block and up blocks. The network
was divided into two main parts. The left side of the net-
work called the contraction path is used to extract the high-
level features of the image by performing convolution and
downsampling.

Techniques used in
different no of
papers

m CNN
U-Net
= Model-Based
Atlas-Based
m Image-Based
m Skelton-shape model
mV-Net

m Coarse and Fine
segmentation
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Fig. 3 Dice similarity coefficient (DSC) calculated by different techniques for the four Thoracic organ-at-risk
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The right side of the network called the expansion path
is used to expand the feature map to gather and assemble
necessary information to output to five-channel volumetric
segmentation.

There is a horizontal connection between the two paths
that are used to transfer the features extracted on the left side
of the network to the right side of the network. It will help in
providing location information to the right path and improve
the quality of the final output.

The authors gave the network name as a bottleneck
because in the bottleneck structure the size of the input block
is reduced first to lower down the computational cost and
again the size of the block is restored to its original size.

Multi-resolution Strategy:

As dealing with 3D medical images that are of large
size (512x512%300), processing it on CNN will con-
sume a lot of GPU memory and also computation time.
The advantage of using VB-Net was to perform the

segmentation task and to solve the above problem. The
authors used two VB-Nets to achieve the precise accuracy
for segmenting the OARs (Esophagus, Heart, Trachea and
Aorta).

First VB-Net was used to get the Volume of interest(VOI)
from each image by reducing the size of the input for the
second network. The second VB-Net was used to accurately
delineate the organ boundary from the detected VOI.

In the proposed architecture the downsampling is per-
formed using different no of filters in the different layers of
the VB-Net starting from the 16 filters in the first layer to
256 filters in the last layer of the left side of the network. As
the no of filters increases in the network down the layers,
the no of feature maps also increases with reduced size of
the output blocks. The upsampling was performed by taking
the no of filters in the reverse order. The upsampling layer
increases the size of the input channel without adding extra
information into it. The final segmented result was in the
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same size as of the input image after performing the upsam-
pling on the right side of the network.

2.2.3 Minimum and Maximum Size of the Dataset

A varying number of Datasets was being used in the selected
24 papers shown in Table 6 and all of them were captured
through the same type of modality i.e. Computed Tomogra-
phy. The Table 6 is arranged in the ascending order (mini-
mum to maximum) of the no of the datasets used in different
papers.

All the given datasets in Table 6 are of the thorax region.
Most of the images of CT scans have a size of 512x512 pix-
els, slice thickness varying from O to 2.5 mm. It contained
the images of patients from different planes: axial, coronal
and sagittal. The dataset used by the SegTHOR competitors
was downloaded from the Coda Lab website https://codal
ab.org/ which is the largest number of datasets used for the
segmentation purpose among all the selected papers. The
minimum no of the dataset used was a CT scan of 6 patients
[54].The Table 7 listed Datasets downloaded from various
sources or sites used in the literature. In a research study,
it has been found that training on a large amount of data-
set generate more accurate and efficient results [62, 78, 83]
and also provide € validation of the developed techniques.
Pre-and post-processing of the datasets had been performed
according to the need for the different techniques being
implemented for the segmentation which was the key step
in the network performance. Using a dataset of bigger size
in deep learning frameworks increases the computational
cost and memory utilization. So, dimension reduction in the
dataset was performed by many researchers before giving
the image as input. Although the reduction in pixel dimen-
sion could also lead to a loss of information that happened
in deep learning networks. That’s why post-processing was
being done after the final segmentation outputs to enhance
the results. The Fig. 5 shows the Pie-chart representing the
different Dataset utilization among different papers.

2.2.4 Various Challenges Faced by the Authors While
Segmenting the Organs in CT Images

Segmentation is the crucial and important step in radio-
therapy treatment planning as said earlier. Performing the
segmentation with the respective proposed techniques by the
various authors, several challenges are encountered.

1. Low contrast images As we have considered the study
of Computed Tomography images only so the very first
challenge that all the authors faced is the dataset con-
taining low contrast images or organs. Low contrast in
CT usually refers to 4-10 HU difference indicate that the
objects are barely differentiable from the background.

@ Springer

So, it becomes difficult for the doctors, researchers or
clinicians to accurately identify object boundaries or to
separate object and background. The CT contains high
contrast for hard tissues like bone and low contrast for
soft tissues. The automatic segmentation of the esopha-
gus is exceptionally challenging: the boundaries in CT
images are almost invisible due to its low contrast. The
shape is also irregular.

2. Computational time Most of the proposed techniques are
based on deep learning as it has performed tremendous
work in medical image segmentation than other tech-
niques. But using deep learning-based frameworks like
CNN or RCNN takes much time and memory in pro-
cessing of the high-resolution medical images. Depend-
ing upon the no of layers being used in the Convolu-
tional Neural Networks, the complexity of the technique
is measured.

3. Reduction of the spatial resolution of feature maps
Methods involving deep learning framework gives better
segmentation accuracy. But as the no of layers increases
in CNN to get more feature maps, the size of the input
image decreases resulting in low spatial resolution.
It’s the common challenge faced by many authors in
using deep learning-based architecture. Although many
authors have efficiently handled this challenge by mak-
ing changes in the existing architecture and by adding
additional features in it like up-sampling, increasing the
stride no in the kernel.

4. Small no. of sample size Taking small no of the dataset
for training and testing does not validate the efficient
working of the proposed techniques. Training on small
and large datasets by the same technique.

5. Variability in patients organs Organ’s shape and posi-
tion differ greatly between patients. It is difficult for the
automatic algorithms to attain accurate and consistent
segmentation results. They can give varying accuracy
for different patients.

6. There is no standardized technique developed that will
give higher accuracy for the Organs at Risk in Thoracic
CT images as the size of the organs varies from patient
to patient so there will always be a scope of getting less
accuracy for any organ with the already developed tech-
niques.

7. Feature extraction does not ensure the correct training of
the model. Therefore, more work is needed to enhance
the technique required for the extraction of features.

3 Discussion
Following the PRISMA guidelines, a total of 24 research

papers were selected for the literature review. Figure 6 rep-
resents the year-wise distribution of the 24 papers focusing
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Table 6 List of different numbers of Datasets used in various papers to perform automatic segmentation of thoracic organs

S.no Datasets

Authors

References Results

Dice coefficient

Hausdorff distance (mm)

11.

6 patients
8 patients

23 cardiovascular CT angio-
graphic volumes

24 low dose chest CT scans
Training: 10

Test: 10

30 thoracic CT scans
Training: 25

Test: 5

32 Clinical Datasets

35 sets of thoracic CT images
Training:34 sets
Test:1 set

45 thoracic CT scans

20 clinical datasets,

30 publicly-available CTs
60 Thoracic CT scans
Training:36

Test:24

60 Thoracic CT scans
Training:40
Test:20

Damien Grosgeorge et al.
S. Kurugol et al.
Meyer et al.

J. Noothout et al.

Trullo, Roger et al.
Trullo et al.

J. Larrey-Ruiz et al.

Xue Dong et al.

J. Yang et al.
Tobias Fechter et al. (2019)

Xue Feng et al. (2019)

Manojet al. (2019)

Louis D. van Harten et al. (2019)

Vesal et al. (2019)

S. Kim et al. (2019)

Q. Wang et al. (2019)

[54]
(52]
(53]

(60]

[59]
(37]

[55]

[61]

(58]

[57]

[62]

(36]

[74]

(751

[76]

(39]

DM-0.61 +0.06
Mean error: 2.6 £2.1 mm

Model
trachea only: trachea— €

Thoracic aorta 0.89 +0.05

DSC: 0.72+0.07

DR =+ stdev

esophagus: 0.69 +0.05
heart: 0.90+0.03
trachea: 0.87 +0.02
aorta: 0.89 +£0.04

Left heart:

Mean error—1.22%
Stdev—0.68%
Esophagus

DSC: 0.75+0.08
MSD: 1.05+0.66
Heart

DSC: 0.87+£0.05
MSD: 1.49+0.85

DSC: 0.73+0.07
MSD (mm): 2.2+0.8

DSC: 0.76
ASSD: 1.36

Esophagus—0.726 +0.094
Heart-0.925+0.015

Esophagus—0.6425
Heart—0.8595
Trachea—0.4694
Aorta 0.8537

Eso—0.84 +0.05
Heart—0.94 +0.02
Trachea—0.91 +0.02
Aorta—0.93 +£0.01

Esophagus—0.858
Heart—0.941
Trachea—0.926
Aorta—0.938

Eso—0.7518
Heart—0.9328
Trachea—0.8885
Aorta—0.8919

Esophagus—0.8597
Heart 0.9459
Trachea 0.9217
Aorta 0.9433

mean
heart + trachea: trachea — €

esophagus only: esophagus — €

Not reported

-1.92
mean — 1.48

-4.01
Not reported

mean

Not reported
Not reported

Esophagus
4.52+3.81
Heart

4.58+3.67

16.9+8.9
HD: 11.6

Esophagus-8.714 +10.588
Heart-6.570 +1.501

Esophagus 2.8883
Heart—0.8930
Trachea—0.8930
Aorta, 1.4495

Eso—3.4+2.3
Heart—2.0+1.1
Trachea—2.1+1.0
Aorta-2.7+3.6

Esophagus—0.331
Heart—0.226
Trachea—0.193
Aorta—0.297

Es0—0.9267
Heart—0.2184
Trachea—0.6164
Aorta—1.1300

Esophagus—0.2883
Heart—0.1594
Trachea—0.2045
Aorta—0.1551
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Table 6 (continued)

S.no Datasets Authors

References Results

Dice coefficient

Hausdorff distance (mm)

Pan Chan et al. (2019)

Tao He et al. (2019)

V. Kondratenko et al. (2019)

Li Zhang et al. (2019)

D. Lachinov et al. (2019)

Ming Feng et al. (2019)

Miaofei Han et al. (2019)

[77] Esophagus: 0.8166 Esophagus—0.4914
Heart 0.9329 Heart—0.2417
Trachea 0.8910 Trachea—0.2746
Aorta 0.9232 Aorta—0.3081

[78] Esophagus—0.8594 Esophagus—0.2743
Heart—0.9500 Heart—0.1383
Trachea—0.9201 Trachea—0.1824
Aorta—0.9484 Aorta—0.1129

[79] Esophagus—0.80 Esophagus—0.62
Heart—0.93 Heart—0.30
Trachea—0.89 Trachea—0.81
Aorta—0.92 Aorta—0.27

[80] Esophagus—0.7732 Esophagus—1.6774
Heart—0.9384 Heart—0.2089
Trachea—0.8939 Trachea—0.2741
Aorta—0.9232 Aorta—0.3081

[81] Eso0—0.8303 Not reported
Heart—0.9381
Trachea—0.9088
Aorta—0.9353

[82] Eso—0.773450, Eso—0.640093
Heart—0.941403 Heart—0.182138
Trachea—0.892730 Trachea—0.307711
Aorta—0.923325 Aorta—0.235788

[83] Eso—0.8651 Es0—0.2590

Heart—0.9536
Trachea—0.9276
Aorta—0.9464

Heart-0.1272
Trachea—0.1453
Aorta—0.1209

on the automatic segmentation of OARs (esophagus, heart,
trachea, and aorta). The period selected was 2011-2019.
Maximum papers related to the topic fall in the year 2019
and that was 13 whereas we could not find any relevant paper
from the year 2015 and 2016.

As this review focused on the automatic segmentation of
four thoracic organs, the Fig. 7 shows the organ-wise total no
of papers selected from the year 2011-2019 containing the
segmentation of the respective organs solely or combined.
We did not find any paper of the year 2015-2016 which

@ Springer

could match the eligibility criteria of paper inclusion. As
depicted in the Fig. 7, most of the research on the topic
“Automatic Segmentation of OARs in Thoracic CT images”
was done in the year 2019. The interval 2019 contains a total
of 14 papers containing the segmentation of the esophagus,
heart, trachea, and aorta. Due to the SegTHOR competition
organized by one of the researchers, 12 papers were of those
researchers who took part in that competition.

The performance evaluation [99] of the different tech-
niques proposed in different papers was done using different
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Table 7 Datasets downloaded from various sources or sites used in different papers for training and test purposes

S.no. Dataset Source/site
1. 23 cardiovascular CT angiographic volumes [53] Acquired from 16 to 64 slice Clinical CT scanner
2. 32 Clinical Datasets [55] Acquired on two different CT scanners (Siemens Sensation 64 and Toshiba

3. Datasets of the both abdominal and thoracic part [56]
4. 24 low dose chest CT scans [60]

5. 35 sets of thoracic CT images [61]

6 50 clinical datasets [57]

7. 60 Thoracic CT scans [62]

8. 60 Thoracic CT scans [37, 39, 74-83]

Aquilion)

Acquired from the institution scanner (LightSpeed RT 16; GE Medical Systems,
Waukesha, WI)

Acquired in the National Lung Screening Trial (NLST) [95]

Taken from 2017 AAPM Thoracic Auto-segmentation Challenges [96-98]

20: acquired on a Philips GEMINI TF Big Bore or a Siemens Emotion
30: “Multi-Atlas Labeling Beyond the Cranial Vault - Workshop and Challenge”
https://www.synapse.org/#!Synapse:syn3193805/wiki/89480

Obtained from three clinical sites: MD Anderson Cancer Center, Memorial
Sloan-Kettering Cancer Center and MAASTRO clinic

https://codalab.org/

N

Datasets used in
different no of

parameters [100, 101]. Table 8 contains the different param-
eters that were used by the researchers in calculating the
accuracy of their technique for the automatic segmentation

papers

- = Dataset-6

= Dataset-8

: Dataset-23
= Dataset-24
= Dataset-30
" = Dataset-32
= Dataset-35
. = Dataset-50
" = Dataset-60

Fig.5 Distribution of Datasets used in different papers

of organs focusing (esophagus, heart, trachea, and aorta).

4 Conclusion

This systematic review summarized the literature of 24
papers focusing on the automatic segmentation of Thoracic
OARs in CT images. The paper contained the overview of
the various techniques being proposed for the segmenta-
tion of four organs (Esophagus, heart, trachea and aorta),
the dataset used by the authors, the accuracy achieved by
them using different parameters. The various challenges
faced by the authors in segmenting the organs had been
discussed. Most of the techniques proposed in the different
papers were based on the deep learning framework and
provided excellent segmentation results. The highest accu-
racy in terms of Dice coefficient and Hausdorff distance

Fig.6 Year-wise topic related
selected papers
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Fig.7 Year-wise classification 16
of the papers based on the four
organs 14
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Table 8 Parameters used in different papers for calculating the accuracy of proposed automatic segmentation techniques [102, 103]

S.no Parameter Papers Description References
1. Dice similarity coefficient (DSC) 21 It is also known as the Dice index, Dice score, etc. It is calculated as twice the  [36, 37,
intersection of the automatic and ground truth value to the total value of the 39, 54,
automatic and ground truth 56-62,
DSC =2(|A| n|G/|A + G]) 74-83]
2. Hausdorff Distance (HD) 15 It is defined as the maximum distance from a point in Automatic segmentation  [36, 39,
to the minimum point in the Ground Truth or vice versa 57, 58,
HD =max, min, d (a, b) 61, 62,
74-80,
82, 83]
3. Average Symmetrical Surface 2 The distance b/w the boundary pixels of the segmented part and the ground [57, 60]
Distance (ASSD’s) truth. The average of these boundary pixel distances gives the Average Sym-
metrical Surface Distance
4. Correlation ratio 1 It is defined as the overlapping volume between the segmentation part and the ~ [55]
ground truth
5. Standard deviation 3 It is defined as the change in the segmented value and the ground truth [21, 25, 55]
Mean surface distance (MSD) 2 It is the distance of the surface’s b/w the automated segmentation and the [58, 61]
ground truth
7. Dice loss function 2 It is the pixel-wise cross-entropy used to examine each pixel separately compar- [30, 31]

ing the class predictions
8. Mean error (ME) 2 It is the term used to calculate the average of all the means b/w segmented and  [52, 55]
ground truth value

9. Euclidean distance mean 1 It is used to find whether the two points are similar or not b/w which the dis- [53]
tance is calculated
€, = V(@2 —al)® + (b2 — b1)?

was achieved by Han et al. [83] for the four organs. They Compliance with Ethical Standards

proposed a multi-resolution VB-Net framework to achieve

the accurate segmentation and ranked 1st in the SegTHOR Conflict of interest The authors declare that they have no conflict of
competition. The researchers who want to work or work- ~ erest

ing in the same field can explore the technique for further

modification so that the results of segmentation can be

enhanced.
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