
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2021) 28:3245–3267 
https://doi.org/10.1007/s11831-020-09497-z

ORIGINAL PAPER

A Systematic Review of the Techniques for the Automatic 
Segmentation of Organs‑at‑Risk in Thoracic Computed Tomography 
Images

Malvika Ashok1 · Abhishek Gupta1 

Received: 17 February 2020 / Accepted: 13 September 2020 / Published online: 23 September 2020 
© CIMNE, Barcelona, Spain 2020

Abstract
The standard treatment for the cancer is the radiotherapy where the organs nearby the target volumes get affected during 
treatment called the Organs-at-risk. Segmentation of Organs-at-risk is crucial but important for the proper planning of 
radiotherapy treatment. Manual segmentation is time consuming and tedious in regular practices and results may vary from 
experts to experts. The automatic segmentation will produce robust results with precise accuracy. The aim of this systematic 
review is to study various techniques for the automatic segmentation of organs-at-risk in thoracic computed tomography 
images and to discuss the best technique which give the higher accuracy in terms of segmentation among all other techniques 
proposed in the literature. PRISMA guidelines had been used to conduct this systematic review. Three online databases had 
been used for the identification of the related papers and a query had been formed for the search purpose. The papers were 
shortlisted based on the various inclusion and exclusion criteria. Four research questions had been designed and answers of 
those were explored. After reviewing all the techniques, the best technique had been selected and discussed in detail which 
gave the precise accuracy based on Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). Both DSC and HD 
were used in the literature to evaluate the performance of their proposed technique for the automatic segmentation of four 
organs (esophagus, heart, trachea and aorta). However, the value of these parameters vary as per the validation sample size. 
Consequently, various challenges faced by the researchers had been listed. This paper includes the summary of the various 
automatic segmentation techniques for the Organs-at-risk in thoracic computed tomography images in terms of four research 
questions. Different techniques, Datasets, Performance accuracy and various challenges had been discussed.

1 Introduction

Organ-at-risk (OARs) mostly refer to healthy organs which 
are located near the target volume and may get affected by 
the radiation exposure during radiation therapy treatment. 
(OARs) [1–3] are the healthy organs that may be harmed 
during radiotherapy treatment. The radiotherapy treatment 
is given to the tumorous organ called target volumes [4]. The 
primary aim of radiotherapy [5] is to deliver a prescribed 
dose [6] to the target volume while protecting normal tissue 

including OARs [7]. The radiation dose given to the target 
volume kills the cells of the tumour so that it cannot grow 
further. The high radiation dosages (> 50 Gy) are utilized 
for the treatment of malignant tissues in radiotherapy (RT). 
However, in the case of benign tissues, low to intermedi-
ate dose (3–50 Gy) is used to control the growth of tissues 
effectively [8]. The risk of damage relies upon the size, num-
ber and recurrence of radiation divisions, irradiated tissue 
volume, the span of treatment, and strategy for radiation 
conveyance [9]. Irradiation can cause pathological changes 
in the ordinary tissue of OAR with irreversible functional 
outcomes. Therefore, the amount and plan of radiation dose 
[10, 11] along with precise delivery must be weighted in the 
treatment planning [12]. It is fundamental to incorporate the 
resistance dose of the organs-at-risk in the treatment tech-
nique [13]. Organs with a low resistance to radiations must 
be delineated regardless of whether they are not situated in 
the prompt region of the target volume.
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Lung, breast or esophagus cancer [14–21] affects the 
Organs-at-Risk in the thorax region most frequently [22, 23]. 
Table 1 is showing the different cancerous organs in human 
body with affected Organs at risk during radiotherapy treat-
ment. It is vital to detect the organs which are at a risk in the 
human body. Computed Tomography (CT) scan images are 
used to detect the malignant organs due to the uncontrolled 
growth of abnormal tissue, which affects the normal work-
ing of the human body. Segmentation of Organs-at-risk is 
crucial but important for the proper planning of radiotherapy 
treatment [24–26]. In routine clinical practices, segmenta-
tion is performed by the experts manually for the planning 
of radiotherapy treatment. In doing so, reliability, repro-
ducibility, and repeatability of the manual segmentation 
results depend on the process of learning or the experience 
of the operator. Also, this manual process is likewise time-
consuming and tedious in regular practices [27]. Inter and 
intra-observer variability is a common issue encountered in 
manual segmentation [28].

Automatic segmentation techniques provide efficient and 
precise results that can be used [29]. It will help the expert to 
exploit the anatomy in lesser time with more accuracy. The 
experts can effectively analyze the amount of dose needed 
to be given to the target volumes during radiotherapy treat-
ment so that the nearby organs should be less affected by the 
radiations [30–33].

The automatic segmentation will produce more accu-
rate and robust results. But achieving precise accuracy in 
automatic segmentation of organs through CT images is a 
quite challenging task [34] because of a few factors such as 
soft-tissue organ images having low contrast, variable size 
of organs from patient to patient, the likeness between the 
shapes of organs and overfitting [35] towards organs with 
high intensity or better-structured organs [36]. So, consid-
ering all the factors, various techniques have been reported 
in the literature [37–39] that automatically segment the 

organs-at-risk in thoracic images. However, these techniques 
were implemented on different datasets of different chal-
lenges of the same organs. There are several variabilities 
in all the experiments conducted by the researchers which 
are based on the techniques, datasets, performance param-
eters, results, and challenges. The objective of the systematic 
review was to analyze the different techniques along with 
their datasets, performance parameters, results and chal-
lenges for the automatic segmentation of Organ-at-Risk 
in thoracic CT images. Accordingly, recommendations are 
provided for potential researchers in the field for the further 
development of the improved techniques.

2  Materials and Methods

This systematic review was conducted under the guidelines 
of PRISMA [40]. For the identification of concerned papers, 
a detailed search has been carried out on three different 
electronic databases i.e. Google scholar, PubMed, and Jurn 
during 23–25 August 2019. Google Scholar is an openly 
available web index that lists the full content or metadata of 
academic writing over a variety of distributed configurations 
and controls. PubMed is a free internet searcher getting to 
essentially the MEDLINE database of references and digests 
on life sciences and biomedical points. Jurn is a free online 
quest device for the finding and downloading of free full-
message insightful works. It was set up in an open online 
open beta form in February 2009, at first for discovering 
open-access electronic diary articles in expressions of the 
human experience and humanities. A hand search of the 
related papers is also included in this study.

Search was carried out by using the query “(((Segmenta-
tion) or (automatic segmentation)) AND ((Organ-at-risk) or 
(thoracic organ-at-risk) or (heart organ-at-risk) or (esopha-
gus organ-at-risk) or (trachea organ-at-risk)or (aorta organ-
at-risk) or (multiple organ-at-risk)) AND ((CT)))”. Papers 
related to the automatic segmentation of Organs-at-risk in 
thoracic CT images only were included. The total number of 
searched papers was accepted and rejected based on the vari-
ous inclusion and exclusion principles as given in Table 2. 
The detailed screening of the collected papers is carried out 
according to the PRISMA flowchart given in Fig. 1 at differ-
ent stages. A total of 370 papers was searched in three search 
engines including hand search also.

At the first stage of screening, all the duplicate papers 
and papers published before 2011 were eliminated and 263 
papers were selected for the second stage of screening. In 
the second stage, 227 papers were eliminated based on titles 
and abstract reading. 36 papers were left out after the second 
screening stage. In the eligibility stage further 12 papers 
were eliminated based on full-text reading and finding vari-
ous reasons for the exclusion of those reasons as mentioned 

Table 1  Cancerous organs affecting organs-at-risk in different parts 
of the human body during radiotherapy treatment

S. no Cancerous organs Organ-at-risk

1. Lung cancer Heart, trachea, aorta, esophagus
2. Breast cancer Lungs, heart, trachea, aorta, esophagus, 

liver
3. Stomach cancer Livers, kidneys, spleen, prostate, rectum
4. Brain cancer The brain stem, eyes, mandible, tempo-

romandibular joints, parotid glands, 
spinal cord, and skin

5. Cervical cancer Lungs, liver, bladder, vagina, and rectum
6. Gallbladder cancer 

(uncommon)
Eyes, tongue and skin

7. Mouth cancer Jaws, throat, and ears
8. Ovarian cancer Intestines, liver, and stomach
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in the PRISMA flowchart in Fig. 1. In the inclusion and 
final stage, 24 papers were finally selected for this systematic 
review considering all the inclusion criteria.

2.1  Quality Assessment

All the 24 papers were selected considering the vari-
ous quality parameters. The relevancy to the topic was 
evaluated based on the inclusion and exclusion criteria. 

Each shortlisted paper comprises a technique for the auto-
matic segmentation of Organ-at-risk using CT images. 
All papers included in the review have an empirical study 
and their results are shown in the next sections in tabular 
form based on different parameters as per the description 
of designed research questions.

Table 2  Inclusion and exclusion criterion used for shortlisting articles

S. no. Parameters Inclusion criteria Exclusion criteria

1. Time period Papers published from the year 2011–2019 Papers published before 2011
2. Interventions/

investigation
Studies including the segmentation of the human body Studies including the segmentation of the animal’s body

3. Comparator Studies concentrating on the segmentation of the thorax 
part (heart, throat, trachea, aorta) of the human body

Studies including the segmentation of other than thorax part

4. Modality type Studies including CT modality segmentation Studies including other than CT segmentation
5. Study design Studies involving experimental results Studies including treatment and surgery of different organs

Reviews, case study, Patent
Language other than English

Fig. 1  Flowchart of the search 
process along with inclusion 
and exclusion criteria
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2.2  Literature Review

Various techniques have been developed using different 
frameworks (Deep learning-based [41–44], Model-based 
[45–47], Atlas-based [48–51]), etc. to segment the OARs 
efficiently. This systematic review aims to find out the 
answers to the following research questions.

RQ1 What are the various automatic segmentation tech-
niques used for organ-at-risk in thoracic CT images?
RQ2 Which automatic technique gives the precise accu-
racy or improved performance in organ-at-risk segmen-
tation?
RQ3 What are the minimum and maximum size of the 
dataset used for the organ-at-risk segmentation?
RQ4 What are the various challenges faced by the authors 
in organ-at-risk segmentation?

Tables 3 and 4 demonstrated the analysis of all the short-
listed 24 papers accepted for the review. Table 4 contains 12 
articles that were based on the SegTHOR competition plus 
1 paper of the organizing members while Table 3 contains 
the other articles.

The authors had proposed different methods to segment 
the different organs in the thorax part as shown in Table 3. 
In every paper at least one of the four organs (heart, trachea, 
aorta, and esophagus) was segmented automatically using 
a different technique. The esophagus organ in a CT image 
is the most difficult to segment due to its low contrast [63] 
compared to other organs in the image. Kurugol et al. [52] 
proposed a model-based 3D level set technique for esopha-
gus segmentation where PCT (Principle Curve Tracing) 
algorithm was used to detect the centerline of the esopha-
gus. Segmentation error was reduced from 2.6 ± 2.1 mm to 
2.1 ± 1.9 mm using PCT. Meyer et al. [53], in the same year, 
proposed another method using a model-based segmenta-
tion framework to segment the three organs trachea, esopha-
gus, and heart. The authors used the prior shape knowledge 
[64], which was an advantage for segmenting the low con-
trast esophagus. Grosgeorge et al. [54], proposed a method 
to segment the esophagus using two approaches: the first 
step includes the segmentation using graph cut with prior 
knowledge of skeleton [65] and the second step includes 2D 
propagation [66].Comparing with the manual ground truth, 
the results improved remarkably by achieving accuracy of 
0.61 ± 0.06 using Dice Metric (DM) as a comparison param-
eter. Fechter et al. [57] used a deep learning architecture 
i.e. 3D fully convolution Neural Network to segment the 
esophagus from CT images. CNN [67] was used to develop 
a feature map followed by the Active Contour Model which 
was used to find the location of the esophagus and the 
result was computed through the implementation of both 
the techniques sequentially. Using a deformable registration 

algorithm in the proposed multi-atlas segmentation [68, 69] 
with an online atlas selection approach [58], the esophagus 
was automatically segmented from CT scans of 21 head and 
neck patients and 15 thoracic cancer patients. The segmenta-
tion accuracy achieved on the 56% of the test set had a DSC 
value equal or greater to 0.7 and HD value equal or greater to 
0.3 mm in 86% of the test set. Using data augmentation and 
sharp mask architecture in FCN, Trullo et al. [59] achieved 
0.72 ± 0.07 segmentation accuracy for the esophagus meas-
ured using DSC with standard deviation.

For the segmentation of the heart, Larrey-Ruiz et al. 
[55], proposed a method using image-based segmentation. 
But the technique can segment only the left heart being its 
limitation. The precise segmentation of the left heart is per-
formed employing the Isodata algorithm [70] which take the 
advantage of histogram containing two main clusters of gray 
levels, one for oxygenated blood and other for non-oxygen-
ated contained in the resulting images after pre-processing. 
Schreibman et al. [56] segment the organs in thoracic part 
by matching the suitable atlases with the patient’s datasets 
using deformable registration [71], deduced a most probable 
shape using STAPLE algorithm [72] and using customized 
level set-based algorithms [73] to produce a highly accurate 
segmentation. Dong et al. [61], proposed a novel technique 
to automatically segment the esophagus and heart from 
CT scan. They used U-Net-generative adversarial network 
(U-Net-GAN) to efficiently train the deep neural network 
to accurately perform the segmentation of the esophagus 
and heart from the given dataset. GAN-based segmenta-
tion model consists of a generator network to produce the 
segmentation maps of the images of multiple organs and 
a discriminator network as FCN to discriminate between 
the ground truth and the actual segmented OARs generated 
by the generator. In the year 2019, another novel technique 
based on deep CNN was proposed by Feng et al. [62], to 
segment the thoracic organs-at-risk in CT images. Firstly, 
the 3D thoracic images were cropped to patches of smaller 
sizes each containing only one organ. Then the organs were 
segmented from each cropped patch using a separate CNN 
network. The final results were produced by resampling and 
merging of the individual segmented organs. Noothout et al. 
[60], performed automatic segmentation of the ascending 
aorta, aortic arms and descending aorta in low dose chest 
CT scan using dilated CNN and two-fold cross-validation 
was performed to evaluate the performance of the proposed 
technique. Employment of dilated CNN enables the large 
receptive field analysis while keeping the network param-
eters low. The accurate detection of the aorta is allowed by 
large receptive fields based on context information. Also, the 
network can analyze images of variable sizes because of its 
purely convolutional nature.

The automatic segmentation of Organ-at-risk is crucial 
and important for proper planning of Radiotherapy treatment 
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of cancer in the thorax part. Trullo et al. [37], used a CNN 
[84] in combination with sharp mask [85, 86] and condi-
tional random field, implemented as recurrent neural net-
work architecture for the automatic segmentation of Organs-
at-risk in Thoracic CT images. In the April month of the 
year 2019, a competition SegTHOR was organized by Trullo 
et al. on the topic “Automatic segmentation of Organ-at-risk 
in Thoracic CT images”. The provided dataset consists of 
CT scans of a total of 60 patients, 40 for training purposes 
and 20 for testing purposes. Different novel techniques had 
been proposed in the SegTHOR for the automatic segment 
the Organ-at-risk in Thoracic CT images. The performance 
of the techniques was measured using two parameters, Dice 
Similarity Coefficient (DSC) and Hausdorff Distance (HD). 
This systematic review included all the papers published in 
the current year on the same topic. 12 papers published with 
different techniques mostly based on deep learning frame-
works [87] for the automatic segmentation of OARs had 
been found which participated in the competition includ-
ing 1 paper of the organizing team as shown in Table 4. 
All the authors used the same dataset and the same param-
eters Dice coefficient (DSC) and Hausdorff Distance (HD)
were calculated to evaluate the accuracy of their proposed 
technique. Satya et al. [36], proposed a technique based on 
Dilated U-Net with 14 layers for the automatic segmentation 
of OARs. To overcome the overlapping of organ regions in 
the output results, the authors applied post-processing inte-
grated with the model which further improved the overall 
accuracy of segmentation results. Another technique using 
the 2D dilated residual Network was proposed by Vesal et al. 
[75] to precisely perform the segmentation of OARs. Using 
the dilated convolutions, the receptive field was expanded 
in the lowest level of the network enabling the technique to 
use both local and global information without any increase 
in the network complexity. Louis et al. [74], proposed their 
technique which was the combination of 2D and 3D Convo-
lutional Neural Network (CNN) to produce the segmenta-
tion results. The 3D network was an FCNN [88, 89] using 
residual blocks allowing the network to focus on detailed 
local information whereas the 2D network contained dilated 
convolutions that allow large receptive fields while inputting 
the images.

A two-stage cascaded network was used by Kim et al. 
[76] for the segmentation of thoracic organs. The two-step 
included: first the selection of slices and the second was the 
segmentation using the segmentation network with ensemble 
technique. But this technique gave the least accuracy among 
all other proposed techniques especially for the esophagus 
because of its small size. A 3D 3-stage multi-scale network 
was used by Wang et al. [39] to segment the four thoracic 
organs and their results show improvement for all organs. 
U-Net inspired network comprises a context pathway and 
a localization pathway was used by Chan et al. [77], to Ta
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perform the segmentation. A multi-test step was added fur-
ther on the esophagus to improve its performance. Another 
U-like architecture was abstracted from the U-Net by He 
et al. [78], used a uniform encoder-decoder architecture, 
involving Res-Net by eliminating the linearly connected 
layers. Due to the dependent organ occurrence, they used 
the multi-task learning for the thoracic organ’s segmenta-
tion to give the best result and achieved the second rank 
in the competition. Kondratenko et al. [79], used 2d T-Net 
architecture for the organ segmentation. Random slices were 
selected to train the model using batch size 8. Then 5-cross 
validation was performed on size 22. Different mean dice 
score values were obtained on the test set collected from the 
training data. Using the proposed technique, they stood 24th 
in the competition. Another competitor Zhang et al. [80], 
proposed a deep neural network combining coarse and fine 
networks. The coarse network was used to find a region of 
interest localization, then the features were used to get fine 
segmentation. A fully convolution Neural Network archi-
tecture based on U-Net was used by Lachinovet et al. [81], 
to complete the task by exploring two concepts: attention 
mechanism and pixel shuffle as an upsampling operator. 
The no of feature channels used at the starting was equal 
to 16. Their proposed method produced notable results for 
the segmentation. A simplified Dense V-Net with input size 
 1283 was used by Feng et al. [82] to achieve a better result 
comparing with the baseline [37].The final competitor and 
winner of the competition are the Han et al. [83]. They pro-
posed a multi-resolution VB-Net framework to achieve the 
best results and ranked 1st in the competition. Their pro-
posed method reduced the computation cost while maintain-
ing high segmentation accuracy for the esophagus, heart, 
trachea and aorta organs.

Various techniques have been mentioned in Table 5 that 
had been used in the different papers on different datasets to 
automatically segment the four thoracic organs (esophagus, 
heart, aorta, and trachea). Convolutional Neural Network-
based techniques were used in 8 papers and the accuracy of 
the technique of these papers was compared using the same 
parameter i.e. Dice coefficient.

2.2.1  Automatic Segmentation Techniques Based 
on Different Frameworks Proposed in the Literature

Deep learning-based networks like CNN had been imple-
mented in the literature as shown in Table 5 and it has 
outperformed in the zone of medical image segmentation. 
Among all the CNN based proposed techniques, van Harten 
et al. [74], achieved the highest value for DSC and HD for 
the esophagus, heart, trachea, and aorta with the combina-
tion of 2D and 3D CNN. Both the network contains dif-
ferent architectures. The 3D network performed the multi-
label segmentation whereas the 2D network performed the Ta
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e 
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Table 5  Different Automatic Segmentation Techniques based on different frameworks proposed by the various papers and showing the best 
accuracy among four OAR taking Dice Score Coefficient as the parameter

S. no. Networks Techniques References Accuracy (DSC) Remarks

1. Convolutional Neural 
Network (CNN)

Fully Convolution Neural 
Network (FCNN) and 
Active Contour Model 
(ACM)

Fechter et al. [57] Esophagus: 76%

Sharp Mask architecture Trullo et al. [59] Esophagus: 72%
CNN with dilated convo-

lutions
Noothout et al. [60] Thoracic aorta: 89%

Deep CNN using cropped 
3D images

Feng et al. [62] Esophagus: 72.6%
Heart: 92.5%

Sharp Mask architecture 
and Conditional random 
field

Trullo et al. [37] Esophagus: 67%
Heart: 90%
Trachea: 82%
Aorta: 86%

Combination of 2D and 
3D CNN

van Harten et al. [74] Esophagus: 84%
Heart: 94%
Trachea: 91%
Aorta: 93%

The best accuracy for 
the esophagus, heart, 
trachea and aorta

Encoder-Decoder based 
CNN

Kim et al. [76] Esophagus: 75.1%
Heart: 93.2%
Trachea: 88.8%
Aorta: 89.1%

T-Net architecture in CNN Kondratenko et al. [79] Esophagus: 80%
Heart: 93%
Trachea: 89%
Aorta: 92%

2. U-Net based framework U-NET Generative adver-
sarial network (GAN)

Dong et al. [61] Esophagus
DSC: 75%
Heart
DSC: 87% ± 0.05

Dilated U-Net Manoj et al. [36] Esophagus—64.25%
Heart—85.95%,
Aorta 85.37%
Trachea 46.94%

2D dilated Residual U-Net Vesal et al. [75] Esophagus 85.8%
Heart 94.1%
Trachea 92.6%
Aorta 93.8%

Best accuracy for the 
Trachea

Extension of 3D U-shaped 
Neural Network

Chan et al. [77] Esophagus 81.66%
Heart 93.29%
Trachea 89.10%
Aorta 92.32%

U-Net with extensions He et al. [78] Esophagus—85.94%
Heart—95.00%
Trachea—92.01%
Aorta—94.84%

Best accuracy for the 
esophagus& Heart& 
Aorta

Deep learning with pixel 
shuffle

Lachinov et al. [81] Eso—83.03%
Heart—93.81%
Trachea—90.88%
Aorta—93.53%



3257A Systematic Review of the Techniques for the Automatic Segmentation of Organs-at-Risk in…

1 3

multi-class segmentation in their respective output layer and 
this distinction in the network promotes the additional diver-
sity. Dilated Convolution [90] in the 2D network allows large 
receptive fields as the input to layers that help the network to 
extract high-level features. The advantage of using both the 
network is that it does not increase the computational cost. 
So, it can be used for performing the larger segmentation.

Another deep learning-based network was the U-Net 
based techniques that were used in 6 papers to perform 
automatic segmentation of thoracic organs. U-Net contains 
the up-sampling layers instead of pooling which increases 
the resolution in the output layer. The precise accuracy in 
terms of Dice Similarity Coefficient using U-Net based tech-
niques was achieved by He et al. [78] for the esophagus, 
heart, and aorta. The multi-task learning scheme used in 
the network helps discover the dependencies among organs 
and the transfer learning in training boosted the performance 
of the network. Vesal et al. [75], achieved the highest value 

of DSC for the aorta due to its high contrast, regular shape 
and large size compared to other organs using dilated U-Net 
based method. Dilated convolution expanded the receptive 
fields to efficiently extract the features of the objects without 
increasing the network complexity. Residual connections in 
U-Net incorporated global context and dense information 
which was the reason for the precise segmentation of the 
organ among all other U-Net based papers.

Model-based segmentation is characterized as the assign-
ment of labels to pixels or voxels by matching the a priori 
known object model to the image data. Labels may have 
probabilities expressing their uncertainty [45]. Techniques 
based on this type of segmentation was used in two paper 
Kurugol et al. [52] and Meyer et al. [53] to segment esopha-
gus, heart, and trachea. But the parameters on which the 
accuracy of their proposed techniques was measured were 
different. Schreibmann et al. [56] and J. Yang et al. [58] 
used Atlas-based segmentation for the segmentation of the 

Table 5  (continued)

S. no. Networks Techniques References Accuracy (DSC) Remarks

3. Model-based segmenta-
tion

Principle Curve Tracing 
algorithm

Kurugol et al. [52] Esophagus: Point-wise 
mean

error: 2.6 ± 2.1 mm

Shape-constrained model-
based segmentation

Meyer et al. [53] Model: trachea only* 
trachea − €mean − 1.92

heart + trachea: tra-
chea − €mean − 1.48

Esophagus only*: esopha-
gus − €mean − 4.01

4. Atlas-based segmentation Atlas registration algo-
rithm

STAPLE algorithm

Schreibmann et al. [56] Heart 78.8%
Trachea 86.9%
Aorta 97.1%

Best and highest accuracy 
for Aorta

Multi-atlas segmentation 
(MAS-AS)

Yang et al. [58] Heart 73%

5. Image-based segmenta-
tion

Multi-thresholding, image 
cleaning, mathematical 
morphology, and image 
filtering method

Larrey-Ruiz et al. [55] Heart:
Mean error—1.22%
Stdev—0.68%

6. Skelton-shape model Graph cut method Grosgeorge et al. [54] Esophagus 61%
7. V-Net framework SIMPLIFIEDDENSEV-

NET
Feng et al. [82] Esophagus—85.97%

Heart—94.59%
Trachea—92.17%
Aorta—94.33%

3D enhanced multi-scale 
network (EMSN)

Wang et al. [39] Esophagus 77.34%
Heart 94.14%
Trachea 89.27%
Aorta 92.33%

Multi-resolution VB-nets Han et al. [83] Eso—86.51%
Heart—95.36%
Trachea—92.76
Aorta—94.64%

Best accuracy for esopha-
gus, heart, trachea and 
aorta

8. Coarse and Fine segmen-
tation

– Zhang et al. [80] Esophagus—77.32%
Heart—93.84%
Trachea—89.39%
Aorta—92.32%
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heart, trachea, and aorta. The highest accuracy in terms of 
DSC value for the aorta was achieved by [56]. Atlas regis-
tration algorithm [91–93] and STAPLE algorithm [94] were 
used to achieve accurate segmentation. To exclude unnec-
essary regions from the metric calculation, a mask of the 
atlas segmentation with a margin is used for the moving 
image to calculate the deformation only in voxels within 
defined organs. To adjust for variability among individual 
atlas results, STAPLE algorithm was used.

Larrey-Ruiz et al. [55] used an image-based segmentation 
method to segment the heart and used stdev and mean error 
as the parameters to calculate the accuracy of their proposed 
technique.

Feng et al. [82], Wang et al. [39] and Han et al. [83] used 
V-Net framework to segment the four organs. The accuracy 
was measured as dice coefficient value. Among the dis-
cussed three studies, precise accuracy for the esophagus, 
heart, trachea & aorta was achieved by [83]. Coarse and 
Fine segmentation was used by Zhang et al. [80] only and 
computed dice coefficient accuracy for the four organs. The 
distribution of different techniques used in the literature also 
shown in the Fig. 2  with the Pie-chart representation.

2.2.2  Precise Accuracy Achieved Among All the Proposed 
Techniques for the Automatic Segmentation 
of the Esophagus, Heart, Trachea, and Aorta

The Common parameters that were used in the literature 
are the Dice similarity coefficient (DSC) and the Haus-
dorff Distance. They were used to calculate the accuracy of 
the segmented part by comparing it with the ground truth 

values. Dice Score coefficients and Hausdorff Distance 
(HD) calculated for the four thoracic OARs by the differ-
ent proposed techniques in the literature are represented in 
the form of graphs given in Figs. 3 and 4 In the case of the 
Dice similarity coefficient (DSC), the more the value of 
DSC, the more accurate the technique would be whereas, 
in the case of Hausdorff Distance, the less the value of HD, 
the technique would be more efficient.

The overall Precise accuracy for the four thoracic 
organs (esophagus, heart, aorta, and trachea) of the pro-
posed techniques among 24 papers using the parameter 
Dice coefficient and Hausdorff Distance was achieved by 
Han et al. [83] who were also the winner of the competi-
tion sector. The result can be visualized from the graph in 
Figs. 3 and 4. They introduced a multi-resolution VB-Net 
framework to achieve the  1strank and accurate segmenta-
tion for the four organs. They trained the VB-Net in the 
coarse resolution to roughly locate the region of interest 
(ROI) for each organ and in the fine resolution, the organ 
boundaries were correctly delineated within the marked 
ROI.

Multi-resolution VB-NET:
Han et al. [83] proposed a new architecture using the 

V-Net framework and they called it VB-Net. B stands 
for a bottleneck in the network. The bottleneck structure 
which replaces the conventional layers in the existing net-
work inside the down block and up blocks. The network 
was divided into two main parts. The left side of the net-
work called the contraction path is used to extract the high-
level features of the image by performing convolution and 
downsampling.

Fig. 2  Distribution of the differ-
ent techniques used among the 
literature
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The right side of the network called the expansion path 
is used to expand the feature map to gather and assemble 
necessary information to output to five-channel volumetric 
segmentation.

There is a horizontal connection between the two paths 
that are used to transfer the features extracted on the left side 
of the network to the right side of the network. It will help in 
providing location information to the right path and improve 
the quality of the final output.

The authors gave the network name as a bottleneck 
because in the bottleneck structure the size of the input block 
is reduced first to lower down the computational cost and 
again the size of the block is restored to its original size.

Multi-resolution Strategy:
As dealing with 3D medical images that are of large 

size (512 × 512 × 300), processing it on CNN will con-
sume a lot of GPU memory and also computation time. 
The advantage of using VB-Net was to perform the 

segmentation task and to solve the above problem. The 
authors used two VB-Nets to achieve the precise accuracy 
for segmenting the OARs (Esophagus, Heart, Trachea and 
Aorta).

First VB-Net was used to get the Volume of interest(VOI) 
from each image by reducing the size of the input for the 
second network. The second VB-Net was used to accurately 
delineate the organ boundary from the detected VOI.

In the proposed architecture the downsampling is per-
formed using different no of filters in the different layers of 
the VB-Net starting from the 16 filters in the first layer to 
256 filters in the last layer of the left side of the network. As 
the no of filters increases in the network down the layers, 
the no of feature maps also increases with reduced size of 
the output blocks. The upsampling was performed by taking 
the no of filters in the reverse order. The upsampling layer 
increases the size of the input channel without adding extra 
information into it. The final segmented result was in the 

Fig. 3  Dice similarity coefficient (DSC) calculated by different techniques for the four Thoracic organ-at-risk

Fig. 4  Hausdorff Distance 
(HD) calculated by different 
techniques for the four Thoracic 
organ-at-risk
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same size as of the input image after performing the upsam-
pling on the right side of the network.

2.2.3  Minimum and Maximum Size of the Dataset

A varying number of Datasets was being used in the selected 
24 papers shown in Table 6 and all of them were captured 
through the same type of modality i.e. Computed Tomogra-
phy. The Table 6 is arranged in the ascending order (mini-
mum to maximum) of the no of the datasets used in different 
papers.

All the given datasets in Table 6 are of the thorax region. 
Most of the images of CT scans have a size of 512x512 pix-
els, slice thickness varying from 0 to 2.5 mm. It contained 
the images of patients from different planes: axial, coronal 
and sagittal. The dataset used by the SegTHOR competitors 
was downloaded from the Coda Lab website https ://codal 
ab.org/ which is the largest number of datasets used for the 
segmentation purpose among all the selected papers. The 
minimum no of the dataset used was a CT scan of 6 patients 
[54].The Table 7 listed Datasets downloaded from various 
sources or sites used in the literature. In a research study, 
it has been found that training on a large amount of data-
set generate more accurate and efficient results [62, 78, 83] 
and also provide € validation of the developed techniques. 
Pre-and post-processing of the datasets had been performed 
according to the need for the different techniques being 
implemented for the segmentation which was the key step 
in the network performance. Using a dataset of bigger size 
in deep learning frameworks increases the computational 
cost and memory utilization. So, dimension reduction in the 
dataset was performed by many researchers before giving 
the image as input. Although the reduction in pixel dimen-
sion could also lead to a loss of information that happened 
in deep learning networks. That’s why post-processing was 
being done after the final segmentation outputs to enhance 
the results. The Fig. 5 shows the Pie-chart representing the 
different Dataset utilization among different papers.

2.2.4  Various Challenges Faced by the Authors While 
Segmenting the Organs in CT Images

Segmentation is the crucial and important step in radio-
therapy treatment planning as said earlier. Performing the 
segmentation with the respective proposed techniques by the 
various authors, several challenges are encountered.

1. Low contrast images As we have considered the study 
of Computed Tomography images only so the very first 
challenge that all the authors faced is the dataset con-
taining low contrast images or organs. Low contrast in 
CT usually refers to 4–10 HU difference indicate that the 
objects are barely differentiable from the background. 

So, it becomes difficult for the doctors, researchers or 
clinicians to accurately identify object boundaries or to 
separate object and background. The CT contains high 
contrast for hard tissues like bone and low contrast for 
soft tissues. The automatic segmentation of the esopha-
gus is exceptionally challenging: the boundaries in CT 
images are almost invisible due to its low contrast. The 
shape is also irregular.

2. Computational time Most of the proposed techniques are 
based on deep learning as it has performed tremendous 
work in medical image segmentation than other tech-
niques. But using deep learning-based frameworks like 
CNN or RCNN takes much time and memory in pro-
cessing of the high-resolution medical images. Depend-
ing upon the no of layers being used in the Convolu-
tional Neural Networks, the complexity of the technique 
is measured.

3. Reduction of the spatial resolution of feature maps 
Methods involving deep learning framework gives better 
segmentation accuracy. But as the no of layers increases 
in CNN to get more feature maps, the size of the input 
image decreases resulting in low spatial resolution. 
It’s the common challenge faced by many authors in 
using deep learning-based architecture. Although many 
authors have efficiently handled this challenge by mak-
ing changes in the existing architecture and by adding 
additional features in it like up-sampling, increasing the 
stride no in the kernel.

4. Small no. of sample size Taking small no of the dataset 
for training and testing does not validate the efficient 
working of the proposed techniques. Training on small 
and large datasets by the same technique.

5. Variability in patients organs Organ’s shape and posi-
tion differ greatly between patients. It is difficult for the 
automatic algorithms to attain accurate and consistent 
segmentation results. They can give varying accuracy 
for different patients.

6. There is no standardized technique developed that will 
give higher accuracy for the Organs at Risk in Thoracic 
CT images as the size of the organs varies from patient 
to patient so there will always be a scope of getting less 
accuracy for any organ with the already developed tech-
niques.

7. Feature extraction does not ensure the correct training of 
the model. Therefore, more work is needed to enhance 
the technique required for the extraction of features.

3  Discussion

Following the PRISMA guidelines, a total of 24 research 
papers were selected for the literature review. Figure 6 rep-
resents the year-wise distribution of the 24 papers focusing 

https://codalab.org/
https://codalab.org/
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Table 6  List of different numbers of Datasets used in various papers to perform automatic segmentation of thoracic organs

S. no Datasets Authors References Results

Dice coefficient Hausdorff distance (mm)

1. 6 patients Damien Grosgeorge et al. [54] DM-0.61 ± 0.06 Not reported
2. 8 patients S. Kurugol et al. [52] Mean error: 2.6 ± 2.1 mm
3. 23 cardiovascular CT angio-

graphic volumes
Meyer et al. [53] Model

 trachea only: trachea − €mean − 1.92
 heart + trachea: trachea − €mean − 1.48
 esophagus only: esophagus − €mean − 4.01

4. 24 low dose chest CT scans
Training: 10
Test: 10

J. Noothout et al. [60] Thoracic aorta 0.89 ± 0.05 Not reported

5. 30 thoracic CT scans
Training: 25
Test: 5

Trullo, Roger et al. [59] DSC: 0.72 ± 0.07 Not reported
Trullo et al. [37] DR ± stdev

esophagus: 0.69 ± 0.05
heart: 0.90 ± 0.03
trachea: 0.87 ± 0.02
aorta: 0.89 ± 0.04

Not reported

6. 32 Clinical Datasets J. Larrey-Ruiz et al. [55] Left heart:
Mean error—1.22%
Stdev—0.68%

7. 35 sets of thoracic CT images
Training:34 sets
Test:1 set

Xue Dong et al. [61] Esophagus
DSC: 0.75 ± 0.08
MSD: 1.05 ± 0.66
Heart
DSC: 0.87 ± 0.05
MSD: 1.49 ± 0.85

Esophagus
4.52 ± 3.81
Heart
4.58 ± 3.67

8. 45 thoracic CT scans J. Yang et al. [58] DSC: 0.73 ± 0.07
MSD (mm): 2.2 ± 0.8

16.9 ± 8.9

9. 20 clinical datasets,
30 publicly-available CTs

Tobias Fechter et al. (2019) [57] DSC: 0.76
ASSD: 1.36

HD: 11.6

10. 60 Thoracic CT scans
Training:36
Test:24

Xue Feng et al. (2019) [62] Esophagus—0.726 ± 0.094
Heart-0.925 ± 0.015

Esophagus-8.714 ± 10.588
Heart-6.570 ± 1.501

11. 60 Thoracic CT scans
Training:40
Test:20

Manojet al. (2019) [36] Esophagus—0.6425
Heart—0.8595
Trachea—0.4694
Aorta 0.8537

Esophagus 2.8883
Heart—0.8930
Trachea—0.8930
Aorta, 1.4495

Louis D. van Harten et al. (2019) [74] Eso—0.84 ± 0.05
Heart—0.94 ± 0.02
Trachea—0.91 ± 0.02
Aorta—0.93 ± 0.01

Eso—3.4 ± 2.3
Heart—2.0 ± 1.1
Trachea—2.1 ± 1.0
Aorta-2.7 ± 3.6

Vesal et al. (2019) [75] Esophagus—0.858
Heart—0.941
Trachea—0.926
Aorta—0.938

Esophagus—0.331
Heart—0.226
Trachea—0.193
Aorta—0.297

S. Kim et al. (2019) [76] Eso—0.7518
Heart—0.9328
Trachea—0.8885
Aorta—0.8919

Eso—0.9267
Heart—0.2184
Trachea—0.6164
Aorta—1.1300

Q. Wang et al. (2019) [39] Esophagus—0.8597
Heart 0.9459
Trachea 0.9217
Aorta 0.9433

Esophagus—0.2883
Heart—0.1594
Trachea—0.2045
Aorta—0.1551



3262 M. Ashok, A. Gupta 

1 3

on the automatic segmentation of OARs (esophagus, heart, 
trachea, and aorta). The period selected was 2011–2019. 
Maximum papers related to the topic fall in the year 2019 
and that was 13 whereas we could not find any relevant paper 
from the year 2015 and 2016.

As this review focused on the automatic segmentation of 
four thoracic organs, the Fig. 7 shows the organ-wise total no 
of papers selected from the year 2011–2019 containing the 
segmentation of the respective organs solely or combined. 
We did not find any paper of the year 2015–2016 which 

could match the eligibility criteria of paper inclusion. As 
depicted in the Fig. 7, most of the research on the topic 
“Automatic Segmentation of OARs in Thoracic CT images” 
was done in the year 2019. The interval 2019 contains a total 
of 14 papers containing the segmentation of the esophagus, 
heart, trachea, and aorta. Due to the SegTHOR competition 
organized by one of the researchers, 12 papers were of those 
researchers who took part in that competition.

The performance evaluation [99] of the different tech-
niques proposed in different papers was done using different 

Table 6  (continued)

S. no Datasets Authors References Results

Dice coefficient Hausdorff distance (mm)

Pan Chan et al. (2019) [77] Esophagus: 0.8166
Heart 0.9329
Trachea 0.8910
Aorta 0.9232

Esophagus—0.4914
Heart—0.2417
Trachea—0.2746
Aorta—0.3081

Tao He et al. (2019) [78] Esophagus—0.8594
Heart—0.9500
Trachea—0.9201
Aorta—0.9484

Esophagus—0.2743
Heart—0.1383
Trachea—0.1824
Aorta—0.1129

V. Kondratenko et al. (2019) [79] Esophagus—0.80
Heart—0.93
Trachea—0.89
Aorta—0.92

Esophagus—0.62
Heart—0.30
Trachea—0.81
Aorta—0.27

Li Zhang et al. (2019) [80] Esophagus—0.7732
Heart—0.9384
Trachea—0.8939
Aorta—0.9232

Esophagus—1.6774
Heart—0.2089
Trachea—0.2741
Aorta—0.3081

D. Lachinov et al. (2019) [81] Eso—0.8303
Heart—0.9381
Trachea—0.9088
Aorta—0.9353

Not reported

Ming Feng et al. (2019) [82] Eso—0.773450,
Heart—0.941403
Trachea—0.892730
Aorta—0.923325

Eso—0.640093
Heart—0.182138
Trachea—0.307711
Aorta—0.235788

Miaofei Han et al. (2019) [83] Eso—0.8651
Heart—0.9536
Trachea—0.9276
Aorta—0.9464

Eso—0.2590
Heart-0.1272
Trachea—0.1453
Aorta—0.1209
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parameters [100, 101]. Table 8 contains the different param-
eters that were used by the researchers in calculating the 
accuracy of their technique for the automatic segmentation 
of organs focusing (esophagus, heart, trachea, and aorta).

4  Conclusion

This systematic review summarized the literature of 24 
papers focusing on the automatic segmentation of Thoracic 
OARs in CT images. The paper contained the overview of 
the various techniques being proposed for the segmenta-
tion of four organs (Esophagus, heart, trachea and aorta), 
the dataset used by the authors, the accuracy achieved by 
them using different parameters. The various challenges 
faced by the authors in segmenting the organs had been 
discussed. Most of the techniques proposed in the different 
papers were based on the deep learning framework and 
provided excellent segmentation results. The highest accu-
racy in terms of Dice coefficient and Hausdorff distance 

Table 7  Datasets downloaded from various sources or sites used in different papers for training and test purposes

S. no. Dataset Source/site

1. 23 cardiovascular CT angiographic volumes [53] Acquired from 16 to 64 slice Clinical CT scanner
2. 32 Clinical Datasets [55] Acquired on two different CT scanners (Siemens Sensation 64 and Toshiba 

Aquilion)
3. Datasets of the both abdominal and thoracic part [56] Acquired from the institution scanner (LightSpeed RT 16; GE Medical Systems, 

Waukesha, WI)
4. 24 low dose chest CT scans [60] Acquired in the National Lung Screening Trial (NLST) [95]
5. 35 sets of thoracic CT images [61] Taken from 2017 AAPM Thoracic Auto-segmentation Challenges [96–98]
6. 50 clinical datasets [57] 20: acquired on a Philips GEMINI TF Big Bore or a Siemens Emotion

30: “Multi-Atlas Labeling Beyond the Cranial Vault - Workshop and Challenge”
https ://www.synap se.org/#!Synap se:syn31 93805 /wiki/89480 

7. 60 Thoracic CT scans [62] Obtained from three clinical sites: MD Anderson Cancer Center, Memorial 
Sloan-Kettering Cancer Center and MAASTRO clinic

8. 60 Thoracic CT scans [37, 39, 74–83] https ://codal ab.org/

Fig. 5  Distribution of Datasets used in different papers

Fig. 6  Year-wise topic related 
selected papers

https://www.synapse.org/#!Synapse:syn3193805/wiki/89480
https://codalab.org/
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was achieved by Han et al. [83] for the four organs. They 
proposed a multi-resolution VB-Net framework to achieve 
the accurate segmentation and ranked 1st in the SegTHOR 
competition. The researchers who want to work or work-
ing in the same field can explore the technique for further 
modification so that the results of segmentation can be 
enhanced.

Compliance with Ethical Standards 
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interest.

Fig. 7  Year-wise classification 
of the papers based on the four 
organs

Table 8  Parameters used in different papers for calculating the accuracy of proposed automatic segmentation techniques [102, 103]

S. no Parameter Papers Description References

1. Dice similarity coefficient (DSC) 21 It is also known as the Dice index, Dice score, etc. It is calculated as twice the 
intersection of the automatic and ground truth value to the total value of the 
automatic and ground truth

DSC = 2(|A| ∩ |G∕|A + G|)

[36, 37, 
39, 54, 
56–62, 
74–83]

2. Hausdorff Distance (HD) 15 It is defined as the maximum distance from a point in Automatic segmentation 
to the minimum point in the Ground Truth or vice versa

HD = maxa  minb d (a, b)

[36, 39, 
57, 58, 
61, 62, 
74–80, 
82, 83]

3. Average Symmetrical Surface 
Distance (ASSD’s)

2 The distance b/w the boundary pixels of the segmented part and the ground 
truth. The average of these boundary pixel distances gives the Average Sym-
metrical Surface Distance

[57, 60]

4. Correlation ratio 1 It is defined as the overlapping volume between the segmentation part and the 
ground truth

[55]

5. Standard deviation 3 It is defined as the change in the segmented value and the ground truth [21, 25, 55]
6. Mean surface distance (MSD) 2 It is the distance of the surface’s b/w the automated segmentation and the 

ground truth
[58, 61]

7. Dice loss function 2 It is the pixel-wise cross-entropy used to examine each pixel separately compar-
ing the class predictions

[30, 31]

8. Mean error (ME) 2 It is the term used to calculate the average of all the means b/w segmented and 
ground truth value

[52, 55]

9. Euclidean distance mean 1 It is used to find whether the two points are similar or not b/w which the dis-
tance is calculated

C
d
=
√
(a2 − a1)2 + (b2 − b1)2

[53]
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