
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2021) 28:2977–3000 
https://doi.org/10.1007/s11831-020-09484-4

ORIGINAL PAPER

A Brief Review on the Application of Sound in Pavement Monitoring 
and Comparison of Tire/Road Noise Processing Methods for Pavement 
Macrotexture Assessment

Mohammad Reza Ganji1 · Ali Ghelmani2 · Amir Golroo1  · Hamid Sheikhzadeh2

Received: 2 February 2020 / Accepted: 21 August 2020 / Published online: 29 August 2020 
© CIMNE, Barcelona, Spain 2020

Abstract
Data acquisition and data processing are at the core of pavement management systems. Nowadays, traditional methods of data 
collection are rarely used in developed countries due to the considerable disadvantages of the traditional methods compared 
to the automated ones, such as the slow pace of data collection, endangering the safety of the human operators collecting 
the data, considerable cost, collecting data from only a limited section of road networks, and inconsistency among the data 
collected by different operators. In contrast, automated methods alleviate the majority of these problems. However, the main 
drawback of the automated methods is the high cost of purchase, implementation, and maintenance of the equipment, which 
has deterred their use in developing countries with limited financial resources. To address this problem, developing a new 
automated method that reduces the production costs while keeping the required accuracy and performance seems impera-
tive. The goal of this research is to investigate the use of microphones, as inexpensive equipment with acceptable accuracy, 
for collecting pavement macrotexture data, which is an input to the pavement management system. The proposed method 
is based on the tire/road interaction noise. To this end, a review of the previous researches on audio-based monitoring of 
various pavement features is presented. By considering the results of the related researches and the goals of this work, a new 
setup for data collection and an accompanying signal processing method is proposed. To develop and evaluate the proposed 
method, data from six standard road sections of a test field are collected. To process the collected data, PCA, Cepstrum, 
LPC, LSF, PSD, and Wavelet methods are employed. The SVM and KNN classification methods are used to evaluate the 
results of the signal processing step, which is performed in various frequency bands. The best results are obtained by using 
the Cepstrum signal processing method along with the SVM classifier in the 3000–5000 Hz frequency band resulting in an 
accuracy of 95% on the test data and the precision error of 1%.

1 Introduction

Road pavements are one of the main parts of the pub-
lic infrastructure and are designed to have long service 
life while providing a safe and smooth surface in various 
weather conditions. To maintain these conditions and meet 
the needs of the transportation system, regular monitoring 
and maintenance is a necessity.

The equipment used to evaluate and monitor the road 
surface conditions have been improving at a fast pace. This 
equipment has been improved from simple visual inspec-
tion to novel, sophisticated automated methods. The chal-
lenges associated with the performance and outcomes of 
such equipment have also been diminished over time. The 
constant need for improved performance has been the driv-
ing force behind the development of complicated systems 
with the ability to collect various road features in on passing 
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by using high precision and inexpensive sensors and pro-
cessing the collected data using various signal processing 
techniques [1].

In general, road surface condition data are used for the 
following purposes:

• Evaluating the quality of the constructed road
• Assessing the present-day quality
• Assessing the change in performance over time and esti-

mating the future state of the road surface
• Providing metrics for evaluating the performance of the 

road network
• Assessing the performance of road construction compa-

nies
• Providing data for optimum road maintenance and repair 

planning

There are various metrics for evaluating road surface 
condition. Some of the most important of these metrics 
are Pavement Condition Index (PCI), Mean Texture Depth 
(MTD), Mean Profile Depth (MPD), Estimated Texture 
Depth (ETD), International Roughness Index (IRI), Rut 
Depth, Friction Index and Structural Index.

Pavement macrotexture is a technical parameter of the 
road surface, which is used for developing various impor-
tant indexes related to different road features such as road 
safety (road surface friction), environmental effects (tire/
road interaction noise), construction and maintenance of 
the road (assessing the quality after construction and dur-
ing service life by using MTD).

On the other hand, pavement defects have consider-
able effects on the number of car accidents. One of the most 
important defects is the road surface slipperiness. Resistance 
to slipperiness is affected by various factors such as traffic, 
road surface, vehicle, and environment, with the road surface 
being the most important. Road pavement is studied on both 
micro and macro scales. A combination of both scales in the 
asphalt mixture provides the necessary resistance to friction for 
a vehicle under various conditions [2]. Pavement macrotexture 
plays a significant role in providing road safety and preventing 
accidents due to the slipperiness of the road surface in rainy 
weather, and as a result, is one of the most important factors in 
evaluating the safety of the wet surface of the road [3].

Evaluating the friction of the road surface, detecting low 
friction sections, and implementing methods for increasing 
the needed sections friction result in increased road safety. 
One of the friction assessment methods is to evaluate the 
texture of the pavement and the resistance to slipperiness 
[2]. The road safety enhancement road through mainte-
nance treatment allocation is of significant importance from 
an economic perspective. Every year a portion of fatal car 
accidents which occur during the rainy weather, which in 
part is due to the slipperiness of the wet surface of the road 

[4]. Hence it is imperative to evaluate the pavement tex-
ture, which is not only an important factor in determining 
the safety of the road but also an important indicator of the 
quality and homogeneity of the constructed pavement [3]. 
The most common indexes used for quantifying road surface 
texture are MTD and MPD [1]. Other, less common, indexes 
based on the analysis of the spectrum of the texture ampli-
tude have also been used in the literature [1].

The technology used for data collection, and especially 
the pavement macrotexture data in the pavement manage-
ment systems and safety management systems, has been 
advancing at a significant pace. Development and imple-
mentation of data collection systems based on technologies 
such as laser sensors, ultrasound beam, high precision cam-
eras, high precision microphones, and computers with high 
processing speed have played a significant role in improving 
the quality and relevance of the collected data. In general, 
the methods used for collecting the pavement macrotexture 
data can be divided into static and dynamic methods [3]. 
The most common static data collection methods are the 
sand patch method and the circular texture meter method [3]. 
Dynamic data collection is usually performed at high speeds 
of the collecting vehicle (80 to 100 km/h), with the most 
common method being the profilometer, which is equipped 
with laser sensors. Besides these methods, other less com-
mon methods such as outflow meter, image processing based 
methods, and profilometers with 3D lasers have also been 
implemented for evaluating the pavement macrotexture [1].

2  Audio‑based Pavement Evaluation

One of the main approaches for evaluating the pavement 
texture is an audio-based method that applies a microphone 
to collect data. Evaluating the pavement texture comprises 
of determining the pavement characteristics such as the con-
dition of the road surface (e.g., dry, wet, and moist), char-
acteristics of the road surface (e.g., texture, roughness, and 
cracking), and depth characteristics (e.g., thickness, layer 
conditions). To evaluate these various characteristics, differ-
ent data collection systems have been developed, a summary 
of which is presented herein.

As can be seen in Table  1, various researches have 
employed microphones and audio signals to evaluate differ-
ent pavement characteristics. One of these characteristics 
that has been considered in various researches is pavement 
macrotexture. Various data collection and signal processing 
methods have been developed for collecting the pavement 
macrotexture data; however, only the method developed by 
Ganji et al. [10] has been able to distinguish surfaces with 
close macrotexture characteristics. To this end, Ganji et al. 
[10] have developed a piece of custom equipment for col-
lecting the tire/road interaction noise. However, the main 



2979A Brief Review on the Application of Sound in Pavement Monitoring and Comparison of Tire/Road…

1 3

Ta
bl

e 
1 

 A
ud

io
-b

as
ed

 p
av

em
en

t e
va

lu
at

io
n 

m
et

ho
ds

Re
fe

re
nc

es
M

ea
su

re
m

en
t d

ev
ic

e
M

ea
su

re
m

en
t t

yp
e

Pr
oc

es
si

ng
 m

et
ho

d
D

ev
el

op
ed

 m
od

el
Ev

al
ua

te
d 

ch
ar

ac
te

ris
tic

Sa
yk

in
 e

t a
l. 

[5
]

V
O

TE
R

S
D

yn
am

ic
Si

gn
al

 e
ne

rg
y 

co
rr

el
at

io
n

Li
ne

ar
 re

gr
es

si
on

M
TD

Zh
an

g 
et

 a
l. 

[6
]

V
O

TE
R

S
D

yn
am

ic
PC

A
Ph

as
e 

an
gl

e
M

TD
M

as
in

o 
et

 a
l. 

[7
]

Ti
re

 c
av

ity
 m

ea
su

rin
g 

de
vi

ce
D

yn
am

ic
FF

T
A

rti
fic

ia
l n

eu
ra

l n
et

w
or

k
M

TD
M

as
in

o 
et

 a
l. 

[8
]

Ti
re

 c
av

ity
 m

ea
su

rin
g 

de
vi

ce
D

yn
am

ic
PS

D
Su

pp
or

t v
ec

to
r m

ac
hi

ne
M

TD
M

en
de

s e
t a

l. 
[9

]
C

PX
D

yn
am

ic
C

PX
 In

de
x

Re
gr

es
si

on
M

ac
ro

te
xt

ur
e

G
an

ji 
et

 a
l. 

[1
0]

C
us

to
m

 d
ev

el
op

ed
 d

ev
ic

e
D

yn
am

ic
C

ep
str

um
G

M
M

M
PD

G
an

ji 
et

 a
l. 

[1
1]

C
us

to
m

 d
ev

el
op

ed
 d

ev
ic

e
D

yn
am

ic
C

ep
str

um
SV

M
M

PD
Zh

an
g 

et
 a

l. 
[1

2]
V

O
TE

R
S

D
yn

am
ic

PC
A

-E
ne

rg
y

Ta
yl

or
 e

xp
an

si
on

PC
I

Zh
ao

 e
t a

l. 
[1

3]
V

O
TE

R
S

D
yn

am
ic

PD
F

–
PC

I
R

am
os

-ro
m

er
o 

et
 a

l. 
[1

4]
M

ic
ro

ph
on

e 
be

hi
nd

 ti
re

D
yn

am
ic

1/
3 

O
ct

av
e 

B
an

d
K

N
N

4 
di

ffe
re

nt
 p

av
em

en
t c

la
ss

es
M

ed
ni

s e
t a

l. 
[1

5]
M

ic
ro

ph
on

e 
be

hi
nd

 ti
re

D
yn

am
ic

A
m

pl
itu

de
 th

re
sh

ol
di

ng
–

Po
th

ol
e

M
as

in
o 

et
 a

l. 
[1

6]
M

ic
ro

ph
on

e 
in

si
de

 ti
re

, t
w

o 
ac

ce
le

ro
m

et
er

s
D

yn
am

ic
SP

L
SV

R
5 

D
iff

er
en

t P
av

em
en

t C
la

ss
es

Fe
de

le
 e

t a
l. 

[1
7]

M
ic

ro
ph

on
e 

in
si

de
 a

sp
ha

lt 
la

ye
r

St
at

ic
PS

D
Re

gr
es

si
on

C
ra

ck
in

g 
St

at
e

Pa
je

 e
t a

l. 
[1

8]
C

PX
D

yn
am

ic
SP

L,
 P

SD
–

Ro
le

 o
f t

he
 ti

re
/ro

ad
 in

te
ra

ct
io

n 
no

is
e 

in
 P

M
S

Pa
ul

o 
et

 a
l. 

[1
9]

C
PX

D
yn

am
ic

Sp
ec

tra
l f

ea
tu

re
 e

xt
ra

ct
io

n
Q

ua
dr

at
ic

 d
is

cr
im

in
an

t C
la

s-
si

fic
at

io
n

D
iff

er
en

t r
oa

d 
cl

as
se

s

K
on

gr
at

ta
na

pr
as

er
t e

t a
l. 

[2
0]

M
ic

ro
ph

on
e 

al
on

gs
id

e 
th

e 
ro

ad
St

at
ic

D
ist

rib
ut

io
n 

an
al

ys
is

, a
ut

oc
or

-
re

la
tio

n 
fu

nc
tio

n 
(A

C
F)

N
eu

ra
l n

et
w

or
k

D
et

er
m

in
in

g 
ro

ad
 su

rfa
ce

 
co

nd
iti

on
s (

W
et

, D
ry

, R
ai

ny
, 

Sn
ow

y)
Y

un
ha

 e
t a

l. 
[2

1]
M

ic
ro

ph
on

e 
al

on
gs

id
e 

th
e 

tir
e

D
yn

am
ic

FF
T

Th
re

sh
ol

di
ng

D
ist

in
gu

is
hi

ng
 w

et
 a

nd
 d

ry
 

su
rfa

ce
s

A
lo

ns
o 

et
 a

l. 
[2

2]
M

ic
ro

ph
on

e 
be

hi
nd

 th
e 

tir
e

D
yn

am
ic

1/
3 

O
ct

av
e 

B
an

d
SV

M
D

ist
in

gu
is

hi
ng

 w
et

 a
nd

 d
ry

 
su

rfa
ce

s
Is

hi
ha

m
a 

et
 a

l. 
[2

3]
M

ic
ro

ph
on

e 
in

si
de

 th
e 

tir
e

D
yn

am
ic

PS
D

–
Pa

ve
m

en
t t

yp
e 

(A
sp

ha
lt,

 B
itu

-
m

en
, …

)
D

og
an

 e
t a

l. 
[2

4]
M

ic
ro

ph
on

e 
be

hi
nd

 th
e 

tir
e

D
yn

am
ic

M
FC

C
, L

PC
, P

SC
SV

M
Pa

ve
m

en
t t

yp
e 

(A
sp

ha
lt,

 S
an

d,
 

…
)

H
au

w
er

m
ei

re
n 

et
 a

l. 
[2

5]
M

ic
ro

ph
on

e 
an

d 
ac

ce
le

ro
m

-
et

er
D

yn
am

ic
1/

3 
O

ct
av

e 
ba

nd
G

en
er

al
iz

ed
 a

dd
iti

ve
 m

od
el

s
Pa

ve
m

en
t t

yp
e 

su
ch

 a
s S

M
A

D
og

an
 e

t a
l. 

[2
6]

M
ic

ro
ph

on
e 

be
hi

nd
 th

e 
tir

e
D

yn
am

ic
LP

C
, P

SD
, C

ep
str

um
A

N
N

, S
V

M
Pa

ve
m

en
t t

yp
e 

(A
sp

ha
lt,

 S
an

d,
 

…
)

A
tib

i e
t a

l. 
[2

7]
M

ic
ro

ph
on

e 
be

hi
nd

 th
e 

tir
e

D
yn

am
ic

M
FC

C
, D

W
T

A
N

N
Pa

ve
m

en
t t

yp
e 

(A
sp

ha
lt,

 S
an

d,
 

…
)

H
ay

as
hi

 e
t a

l. 
[2

8]
M

ic
ro

ph
on

e 
in

si
de

 th
e 

tir
e

D
yn

am
ic

D
W

T
Th

re
sh

ol
di

ng
C

la
ss

ify
in

g 
4 

Pa
ve

m
en

t T
yp

es
 

(S
of

t H
ar

d,
 S

to
ne

 P
av

ed
, W

et
)



2980 M. R. Ganji et al.

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Re
fe

re
nc

es
M

ea
su

re
m

en
t d

ev
ic

e
M

ea
su

re
m

en
t t

yp
e

Pr
oc

es
si

ng
 m

et
ho

d
D

ev
el

op
ed

 m
od

el
Ev

al
ua

te
d 

ch
ar

ac
te

ris
tic

A
ka

m
a 

et
 a

l. 
[2

9]
M

ic
ro

ph
on

e 
be

hi
nd

 th
e 

tir
e

D
yn

am
ic

PS
D

B
ay

es
 E

sti
m

at
or

4 
Pa

ve
m

en
t T

yp
es

 (D
ry

 
A

sp
ha

lt,
 W

et
 A

sp
ha

lt,
 S

an
dy

 
Ro

ad
)

Zo
fk

a 
et

 a
l. 

[3
0]

M
ic

ro
ph

on
e 

al
on

gs
id

e 
th

e 
tir

e 
(O

B
SI

 se
tu

p)
D

yn
am

ic
O

B
SI

e
O

B
SI

e 
Eq

ui
va

le
nt

 N
oi

se
 

Le
ve

l
Pa

ve
m

en
t T

yp
e 

(S
M

A
, B

itu
-

m
en

, S
to

ne
 P

av
ed

)
Jo

hn
so

n 
et

 a
l. 

[3
1]

M
ic

ro
ph

on
es

 in
 fr

on
t o

f t
he

 
tir

e 
an

d 
in

si
de

 th
e 

ve
hi

cl
e,

 
ac

ce
le

ro
m

et
er

s i
ns

id
e 

an
d 

ou
ts

id
e 

of
 th

e 
ve

hi
cl

e

D
yn

am
ic

O
ct

av
e 

ba
nd

D
ist

an
ce

Pa
ve

m
en

t T
yp

e

B
oy

ra
z 

et
 a

l. 
[3

2]
M

ic
ro

ph
on

e 
be

hi
nd

 th
e 

tir
e

D
yn

am
ic

PS
C

, M
FC

C
, L

PC
A

N
N

Pa
ve

m
en

t T
yp

e
Zh

ao
 e

t a
l. 

[3
3]

V
O

TE
R

S
D

yn
am

ic
Pr

ob
ab

ili
ty

 d
en

si
ty

 fu
nc

tio
ns

Re
gr

es
si

on
IR

I
A

m
br

os
in

i e
t a

l. 
[3

4]
M

ic
ro

ph
on

e 
be

hi
nd

 th
e 

tir
e 

an
d 

in
si

de
 th

e 
ve

hi
cl

e
D

yn
am

ic
M

FC
C

C
N

N
Tw

o 
C

la
ss

 R
oa

d 
Su

rfa
ce

 C
la

ss
i-

fie
r (

Sm
oo

th
, R

ou
gh

)
Lu

 e
t a

l. 
[3

5]
M

ic
ro

ph
on

es
 c

lo
se

 to
 su

rfa
ce

 
an

d 
an

 im
pa

ct
or

D
yn

am
ic

 w
ith

 w
al

ki
ng

 sp
ee

d
A

ir-
C

ou
pl

ed
 S

A
SW

–
Su

b-
Su

rfa
ce

 C
ha

ra
ct

er
ist

ic
s

Ib
ar

ra
 e

t a
l. 

[3
6]

A
n 

au
di

o 
pl

ay
er

 a
nd

 a
 m

ic
ro

-
ph

on
e

D
yn

am
ic

–
B

as
ed

 M
od

el
 T

he
or

et
ic

al
Im

pe
da

nc
e 

of
 th

e 
G

ro
un

d 
Su

rfa
ce

G
ro

sc
hu

p 
et

 a
l. 

[3
7]

M
ic

ro
ph

on
e 

ar
ra

y
D

yn
am

ic
 w

ith
 w

al
ki

ng
 sp

ee
d

FF
T

–
Su

b-
Su

rfa
ce

 C
ha

ra
ct

er
ist

ic
s

M
og

ha
da

s N
ej

ad
 e

t a
l. 

[3
8]

A
 d

ev
el

op
ed

 e
qu

ip
m

en
t c

om
-

pr
is

in
g 

of
 a

 m
ic

ro
ph

on
e 

an
d 

an
 im

pa
ct

or

St
at

ic
D

W
T

A
N

N
La

ye
r d

en
si

ty

Ry
de

n 
et

 a
l. 

[3
9]

M
ic

ro
ph

on
e 

ar
ra

y
D

yn
am

ic
 w

ith
 W

al
ki

ng
 S

pe
ed

M
ul

tic
ha

nn
el

 a
na

ly
si

s o
f S

ur
-

fa
ce

 w
av

es
 (M

A
SW

)
–

Ev
al

ua
tin

g 
th

e 
Po

ss
ib

ili
ty

 o
f 

us
in

g 
m

ic
ro

ph
on

es
 fo

r d
et

er
-

m
in

in
g 

la
ye

r c
ha

ra
ct

er
ist

ic
s

B
ju

rs
trö

m
 e

t a
l. 

[4
0]

M
ic

ro
ph

on
e 

ar
ra

y
D

yn
am

ic
 w

ith
 w

al
ki

ng
 sp

ee
d

M
ul

tic
ha

nn
el

 a
na

ly
si

s o
f 

su
rfa

ce
 w

av
es

 (M
A

SW
)

–
St

iff
ne

ss

M
io

du
sz

ew
sk

i e
t a

l. 
[4

1]
C

PX
D

yn
am

ic
SP

L
SC

PX
Se

ct
io

n 
ho

m
og

en
ei

ty



2981A Brief Review on the Application of Sound in Pavement Monitoring and Comparison of Tire/Road…

1 3

drawback of the developed equipment is that data collection 
has to be performed at relatively low vehicle speed.

3  Problem Definition

The purpose of this work is to develop equipment with high 
vehicle speed and assessing various combinations of dif-
ferent signal processing and modeling techniques, to dis-
tinguish surfaces with close macrotexture characteristics 
using the tire/road interaction noise. Doing so will not only 
increase the data collection speed compared to the work 
done in [10] but also further increase the possibility of 
using microphones as an inexpensive sensor in the auto-
mated data collection equipment. To this end, by considering 
the various processing methods presented in the literature, 
the PSD, Wavelet, Cepstrum, LPC, PCA, and LSF methods 
were selected. Also, the SVM and KNN methods were con-
sidered as classifiers. The scope of this work is limited to 
non-porous asphaltic pavements with no defects.

4  Methodology

In this work, as a first step, various data collection meth-
ods based on the tire/road interaction noise were identified. 
By considering the drawbacks of the existing methods, new 
audio-based equipment for evaluating the pavement mac-
rotexture was developed. Standard road sections were used 
for collecting the interaction noise. The collected interaction 

noise data were first preprocessed, and then the DWT, LPC, 
LSF, Cepstrum, PCA, and PSD signal processing methods 
were employed to extract macrotexture data. After the pro-
cessing step, and to select the best method, the SVM and 
KNN classifiers were applied. The flowchart of the approach 
presented in this work is shown in Fig. 1.

5  Developing the Equipment

There are various methods for measuring the tire/road inter-
action noise, which in general can be divided into three main 
categories: (1) on-board measurement (2) measurement from 
the side of the road (3) measurement in the laboratory.

Given that the goal of this research is to measure pave-
ment macrotexture dynamically, the onboard measurement 
methods were considered. The CPX and OBSI methods are 
the two standard onboard measurement methods in practice. 
The setup and configuration of these two standards are pre-
sented in Table 2.

Besides the two aforementioned standard methods, vari-
ous other onboard methods have also been presented by 
researchers. A summary of which is expressed in Table 3.

Having assessed the mechanisms affecting the interaction 
noise and the present methods, it was decided to develop 
new equipment with an associated microphone set up to be 
able to collect the interaction noise at a higher quality, which 
has been presented in [11]. To this end, some modifications 
to the microphone array relative to the CPX standard were 
performed. In this setup, microphones (Beyerdynamic TG 

SVM KNN

Developing the
Equipment

Collecting
Interaction Noise

CepstrumDWT PSD LPC LSF

Preprocessing Data

Assessing Various
Methods

Signal Processing
Step

Selecting
Section for Data

Collection

Measuring
Macrotexture
Related Indexes
of the Selected
Pavements

Selecting the Best
Method

PCA

Fig. 1  The employed research method
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I53c) are closer to the tire and further apart from each other, 
and are also directed towards the tire/road interaction sur-
face. This modified setup can better capture the tire/road 
interaction noise [11]. The vehicle on which this setup was 
mounted is compatible with the ISO/DIS 11819-2 standard.

To be able to evaluate the interaction noise in different 
directions, three microphones were utilized. The first micro-
phone was placed near to the front of the tire, the second one 
was located in the center of the tire, and the third microphone 
was positioned near to the back of the tire. The reason for this 
placement is that in each direction, some noise mechanisms 
can be better monitored. The mechanisms involved in the pro-
duction of the tire/road interaction noise are depicted in Fig. 2.

There are various mechanisms responsible for the pro-
duction and emission of the interaction noise, which can be 
divided into two general categories: noise generation and 
noise amplification. Noise generation mechanisms include 
stick-snap, slip-stick, air pumping, and tread impact, while 
noise amplification mechanisms encompass horn effect, 
organ pipes, Helmholtz resonators, carcass vibration, 
mechanical impedance, and cavity resonance.

Based on the nature of the source of the generated noise, 
noise generation mechanisms can be divided into two cat-
egories of vibration and air pumping. Each of these mecha-
nisms are effective in a different frequency band. The effec-
tive frequency range of these mechanisms is shown in Fig. 3 
[47]. The vibration-based mechanisms are effective in the 
frequency range of below 1000 Hz, while the air pumping 
based mechanisms are most effective in the frequency range 
of 1000–2500 Hz [48].

In the majority of the researches conducted on the pave-
ment macrotexture using interaction noise, the selected 
frequency band has been below 2000 Hz, and the results 
obtained show that the developed methods are not capable of 
differentiating between pavements with close macrotexture 
levels. In this work, various frequency bands with various 
signal processing methods were considered to evaluate the 
possibility of using interaction noise to differentiate pave-
ments with close macrotexture levels. The reason for select-
ing various frequency bands is to observe various mecha-
nisms active in the frequency band of above 2000 Hz, which 
have not been considered in previous works.

6  Data Collection and Experiment Design

Six pavement sections with almost similar macrotexture 
levels from the BAREZ test track were selected. The road/
tire interaction noise of these sections was collected. The 
macrotexture of these sections is shown in Fig. 4. The MTD 
of these pavements was measured by using the sand patch 
method according to the ASTM E965 standard, and the 
results are presented in Table 4.

In the experiment design, the pavement macrotexture, 
vehicle speed, and the ambient temperature were chosen 
as parameters/factors, while the other relevant factors were 
tried to be constant such as tire pressure, wind speed, tire 
type, ambient moisture, and vehicle operator. The descrip-
tions/levels for each factor are expressed in Table 5.

Table 2  The standard onboard measurement methods for the interaction noise

Measurement Method Apparatus Ref Configuration Ref

CPX [42] [43]

OBSI [44] [44]
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Table 3  Non-standard onboard 
interaction noise measurement 
methods developed by various 
researchers

Measurement Method Apparatus Ref Configuration Ref

Saykin et al. [5] [5]

Alonso et al. [22] Not Available

Massino et al. [7] [45]

Ganji et al. [10] [10]

Yunha et al. [21] [21]

Ramos-Romeo et al. [14] Not Available

Boyraz and Dogan [32] [26]

Ganji et al. [11] [11]
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7  Signal Processing

As mentioned in the literature review, various signal pro-
cessing methods have been used on the audio data for evalu-
ating the pavement surface. However, the range of signal 
processing methods employed in the area of pavement mac-
rotexture monitoring by using interaction noise has been 
relatively limited. As a result, in this section, the signal pro-
cessing methods used on the audio data have been tried to 
find the best method for obtaining macrotexture related data. 
To process the interaction noise, first, a preprocessing step, 
which is comprised of bandpass filtering, was performed on 
the audio signal. The filtered signal was then processed by 

PCA, DWT, PSD, LPC, LSF, and Cepstrum signal process-
ing methods in various frequency bands. After processing 
the SVM and KNN classifiers were employed to evaluate the 
extracted features. To this end, 80% of the collected data was 
used for training the classifiers, and 20% was deployed for 
testing the trained models (Fig. 5).

7.1  Preprocessing

Since different mechanisms perform differently at various 
frequency bands are affected by macrotexture, it is impera-
tive to process the audio signal at different frequency bands. 
To implement bandpass filtering, first, the upper and lower 

Fig. 2  Noise interaction mecha-
nisms[ [10], [46] ]

Fig. 3  The effective frequency 
range of noise generation 
mechanisms [47]
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cutoff frequency ranges were determined. The wind noise 
and the macrotexture effects are the most important factors 
in the lower cutoff range. Given that the physical principle 
behind the sound transmission and microphone performance 
is sound pressure, the wind blowing in the data collection 
environment or the wind pressure produced due to the speed 
of the moving vehicle can have negative effects on the qual-
ity of the recorded data. Having analyzed the data collected 

in this research and also by considering the results obtained 
in [33], it was understood that the main effects of wind blow-
ing and wind pressure are in the lower frequency ranges, 
and they don’t have significant components in the middle 
and higher frequency ranges. Having considered these two 
effects and observed the experimental results (maximum 
distinguishability between pavements), the lower frequency 
range of 500 Hz was selected.

Macrotexture characteristics also play an important role 
in determining the upper cutoff frequency range. The effects 
of these characteristics, in this case, are similar to their 
effects in determining the lower cutoff frequency range, i.e., 
the interaction noise generated due to macrotexture charac-
teristics has limited effective frequency range and does not 
have significant components in very high-frequency ranges. 
The other important factor in determining the upper cut-
off frequency range is the thermal noise. Thermal noise is 
an inherent phenomenon present in all electronic devices 
such as microphones and amplifiers and has almost equal 
components in a very wide frequency range. As a result, 
regarding the fact that the recorded interaction noise does 
not have significant components in higher frequency ranges, 
the signal to noise ratio becomes very low in these frequen-
cies. If it is not filtered out, it can have degrading effects 
on the relevance of the extracted features in the processing 
step and on the overall performance of the proposed system. 
Regarding these two effects and observing the experimental 
results (maximum distinguishability between pavements), 
the upper-frequency range of 5000 Hz was chosen.

To analyze the effects of the mechanisms involved in 
the interaction noise generation, the frequency band of 
500–5000 Hz was divided into three smaller regions. These 
regions which were selected based on the effective frequency 

Fig. 4  Macrotexture of the 
selected pavement sections

Table 4  MTD results of the selected pavement sections

Section Section Length(m) Macrotexture-
MTD (mm)

a 250 0.62
b 250 0.73
c 150 0.43
d 300 2.18
e 300 1.56
f 300 0.96

Table 5  Description of the considered variables

Parameter Description

Pavement surface temperature 27° C and 41° C with 1.1° C 
deviation

Pavement macrotexture 6 homogenous pavements with 
textures between 0.6 and 2.2 mm

Vehicle speed 60, 70, 80 km/h
Tire pressure 30 psi
Wind speed < 5 km/h
Other parameters (Tire, Mois-

ture, Operators, …)
Constant during data collection
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ranges of the involved mechanisms are (1) 500–1500 Hz 
in which vibration is the dominant mechanism, (2) 
1500–3000  Hz in which air pumping is the dominant 
mechanism, and (3) 3000–5000 Hz in which the slipping 

mechanism is dominant. A sample of the raw audio data and 
the filtering results are shown in Fig. 6.

For each of the frequency, as mentioned above, ranges, the 
signal processing, and model training steps were performed. 

Raw Data

Bandpass Filter

Input Buffer

Inverse Fourier
Transform

Logarithm

DCT

Re2+Im2

Liftering

Hamming Window

SVM KNN

Confusion Matrix

Model Evaluation

Selecting the Best
Model

LPC LSF Wavelet
Sub-band Signal

Energy

PCA

Extracting the
First Principle

Component

LPC
Coefficients

Vector

LSF
Coefficients

Vector

Feature
Extraction

PSD

Feature
Extraction

Fig. 5  Flowchart of the Processing methods

Fig. 6  A sample of raw audio data and the spectrum of the filtered results
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However, it should be noted that for the wavelet case, due 
to the inherently applied filter bank, the 500–5000 Hz audio 
data has been employed as input.

8  Signal Processing and Model 
Development

Given the variety of tested signal processing and classifica-
tion methods, several models were obtained. For every sig-
nal processing method, 18 models were trained, which is the 
result of training over three microphones in three different 
frequency bands using two classifiers. The precision error 
was used for evaluating the resulting models, the formula of 
which is given in Eq. 1.

If the precision error calculated using Eq. 1 is exceeding 
100%, it is replaced with the value of 100%. The difference 
between the two measurements of the same homogenous 
pavement section using the sand patch method can vary by 
as much as 27% [49]. Given the prevalence of using laser 
devices for measuring MPD, some relations for estimating 
MTD using MPD were proposed, which resulted in dynamic 
MTD measurements and were called ETD relations. Accord-
ing to the ISO 13473-1 standard [50], which is one of the 
main standards for estimating MPD, for a given 150-meter-
long section, the difference between MPD of various data 
collections can vary by as much as 20% of the mean value. 
This error can result from software errors, operator errors, 
and the fact that data are collected from different lines dur-
ing different data collection replications. It is quite hard to 
track the same line on the pavement during every data collec-
tion replication. By considering the above standard, the 20% 
threshold was considered for the precision error results and 
the acceptability of the trained models. In the following sec-
tions, the accuracy and the precision error of the trained mod-
els are presented, which can be used to compare the results of 
different models. For training the models, data with different 
speed and temperature conditions were utilized, reducing the 
sensitivity of the trained model to such variations.

8.1  Classification using SVM

Support vector machines are one of the supervised learn-
ing methods which can be used for both classification and 
regression purposes. In the training phase of this method, 
the aim was to find a hyperplane that separated the existing 
classes as much as possible. This training was carried out 
by trying to find a hyperplane that had the maximum pos-
sible distance from existing classes. During the classification 

(1)
Precison Error =

1

n
×

∑n

i=1
��EstimatedMTDi − realMTD��

realMTD
× 100%

phase, new data was assigned to a class based on which side 
of the hyperplane it fell. The optimization problem formu-
lated for finding the best hyperplane is as follows

In the above equations, C is a tuning parameter and �i are 
called the stack variables. Together, they determine the sen-
sitivity of the trained hyperplane to outliers in the data. By 
solving the above equations, the � parameters were obtained, 
which were then applied to classify new data by using the 
relation given in Eq. 3 [51].

The original SVM method was introduced for two classes: 
the one-versus-one and one-versus-all [51]. Both methods 
were tested for training an SVM model, and the best result 
was reported. 80% of the available data were used for train-
ing the models, while 20% of the data were used for testing 
the performance of the trained models.

8.2  Classification using KNN

The k nearest neighbor method is a classification algo-
rithm that classifies new inputs based on the majority vot-
ing amongst the class labels of the k nearest neighbors of 
this input. As a result, the output function is only computed 
locally, and during the classification step, this type of learn-
ing is also referred to as lazy learning in computer science 
literature.

During the training phase, the input feature space is par-
titioned into regions in which one class is dominant. The 
partitioned regions vary based on the selected value for k. 
For a given test, inputs are calculated using the conditional 
probability formula given in Eq. 4.

Similar to the SVM case, 80% of the available data were 
employed for training the models, while 20% were used for 
testing the performance of the trained models.

(2)
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8.3  Wavelet

The wavelet transform is a method for obtaining signal 
representations in the time–frequency domain. The main 
difference between this method and the Fourier transform 
is that in the wavelet transform, the length of the applied 
window is dependent on the central frequency. The continu-
ous wavelet transform was proposed as an alternative to the 
STFT transform for solving the time–frequency resolution 
problem. To calculate the wavelet coefficients, the input sig-
nal is multiplied by a wavelet function, which is similar to 
the windowing function applied in the STFT method. The 
formula for calculating the continuous wavelet transform is 
given in Eq. 5 [27].

As can be seen from Eq. 5, the obtained coefficient is a 
parameter of the � and s variables, which are called the trans-
lation and dilation parameters, respectively. � (t) is the trans-
formation function and is also called the mother wavelet.

In practice, the dilation and translation parameters are 
discrete, which results in the discrete wavelet transform 
(DWT). In this case, the wavelet function is given by Eq. 6 
[52].

Similar to the CWT case, the DWT coefficients are also 
calculated using the inner product between the signal and 
the wavelet function, which results in the relation given in 
Eq. 7. In this equation, j and k are dilation and translation 
parameters, respectively.

DWT, in effect, divides the signal into two frequency 
regions recursively, which is shown in Fig. 7.

For developing models using the DWT method, after pre-
processing, the signal was decomposed into six levels using 

(5)CWT�
x
=

1√�s�
∫ x(t)� ∗

�
t − �

s

�
dt

(6)�j,k(t) = 2−
j

2�
(
2−jt − k

)

(7)dx(j, k) = x,�j,k

a one-dimensional DWT algorithm. For every level, the 
three parameters of mean value, power mean, and standard 
deviation were calculated for the obtained DWT coefficients 
resulted in 18 total parameters. These parameters were later 
fed as input to the two aforementioned classifiers. A sample 
of the obtained features is shown in Figs. 8 and 9. 

The results of testing the trained SVM and KNN models 
are presented in Table 6.

As can be seen in Table 6, the classification accuracy for 
the frontal microphone using the KNN classifier and the rear 
microphone using the SVM classifier are similar, which veri-
fies the difference like the received signal in these directions.

8.4  Cepstral Signal Processing

This processing method is used by Ganji et al. [11], and this 
method is used here to be compared with the other methods. 
The cepstral analysis is a very common processing method 
in audio signal processing due to possessing three useful 
features which are, data compression, separation of the audio 
source from the transmission channel in the cepstral space, 
and negligible correlation (reduced redundancy) between 
resulting cepstrum coefficients [53]. To obtain the cepstrum 
coefficients, the signal is first divided into small time frames 
using hamming windowing. After this step, the Fourier 
transform of each window is obtained, and then the loga-
rithm operator is applied to the amplitude of the resulting 
Fourier coefficients. The logarithm operator transforms the 
multiplication of the signal source and transmission channel 
in the frequency domain into addition to the cepstral domain. 
The formula for obtaining the cepstrum coefficients is pre-
sented in Eq. 8 [53].

The separation of the signal source and transmission 
channel in the cepstral domain is the result of applying the 
logarithm operator, and the reason for this is that in the 

(8)

cs(n) = FFT−1{log |FFT(s(n))|} =
1

N

N−1∑
k=0

log |S(k)|e j2�kn

N

Fig. 7  Decomposition using 
DWT
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audio case the signal source and the transmission channel 
occupy different cepstral ranges, which makes it possible 
to separate them in this space using the liftering operation 
easily. After the logarithm operator, coefficients are nor-
malized by removing the mean value; there are divided by 

their standards deviation. This step reduces the dependence 
of the final coefficients on the intensity levels of the input 
audio and helps increase the classification accuracy of the 
trained model. The last step is to apply the Discrete Cosine 

Fig. 8  Obtained wavelet 
features

Fig. 9  The separation of the obtained wavelet features for different sections
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Transform (DCT) on the normalized coefficients. The DCT 
transform relation is given in Eq. 9.

In Eq. 9, the x
[
j
]
 is the j th Fourier coefficient, i is the 

index of the cepstrum coefficient, and N is the number of 
data samples in each time frame. The compression and neg-
ligible correlation features of the cepstrum coefficients are 
the results of applying the DCT transform. After applying 
the above steps, the final cepstrum coefficients are obtained.

Through testing the accuracy of the trained models by 
changing the number of selected cepstrum coefficients and 
observing the decreasing trend in the amplitude of these 
coefficients, the first 50 cepstrum coefficients were selected. 
A sample of the resulting cepstrum coefficients are illumi-
nated in Figs. 10 and 11.

The results of testing the trained SVM and KNN models 
are shown in Table 7.

It can be observed in Table 7 that although all of the 
developed models using the cepstrum coefficients have 
acceptable performance, the best results were obtained in 
the 3000–5000 Hz frequency band. The reason for this was 
the presence of a slipping mechanism, which is a source of 

(9)Ci =

√
2

N

N∑
j=1

x
[
j
]
cos

(
�i

N
(j − 0.5)

)

interaction noise generation, in this frequency range, and 
the deconvolve property of the cepstrum coefficients. The 
result of the combination of these two effects was that the 
first few cepstrum coefficients represented the transmission 
channel, which in this case, was associated with the pave-
ment macrotexture, which also reduced the sensitivity of 
the model to the temperature and vehicle speed variations. 
For the models developed in other frequency ranges, due to 
the presence of low-frequency interaction noise generation 
mechanism, the separation in the cepstrum coefficients was 
not clear, resulting in their degraded performance.

8.5  Principle Component Analysis

This method is used by Saykin et al. [6], and this method is 
used here again to be compared with the other methods. The 
PCA method is mainly used for reducing the dimensionality 
of data. The PCA applies an orthogonal transformation on 
the input vector space to create a new vector space such that 
the variance of the data is the highest for the first component 
of the new vector space, second-highest for the second com-
ponent and so on. The reduction in dimension is the result 
of selecting only the first few components of the new vector 
space, which entail a fixed percentage of variations in the 
data as representative vectors for the input data. The first 

Table 6  Accuracy and precision 
error of the models trained on 
the wavelet features

Selected microphone KNN SVM

Training 
accuracy

Test accuracy Precision 
error

Training 
accuracy

Test accuracy Preci-
sion 
error

Frontal Microphone 100 89 4 82 81 7
Central Microphone 89 78 7 86 86 5
Rear Microphone 100 83 7 90 89 4

Fig. 10  A sample cepstrum 
coefficients
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principle component can be written as a normalized linear 
combination of the input vectors, as presented in Eq. 10.

in which

(10)PC1 = �11X1 + �21X2 +⋯ + �n1Xn The coefficients in Eq. 10 comprise the coefficients vector 
for the first principle component [51].

(11)
n∑
j=1

�2
j1
= 1

(12)�1 =
(
�11 �21 … �n1

)T

Fig. 11  The separation of the obtained cepstrum coefficients for different sections

Table 7  Accuracy and precision error of the models trained on the cepstrum coefficients

Frequency band (Hz) Selected microphone KNN SVM

Training 
accuracy

Test accuracy Precision 
error

Training 
accuracy

Test accuracy Preci-
sion 
error

500–1500 Frontal microphone 100 82 7 83 85 7
Central microphone 83 74 9 87 87 4
Rear microphone 100 78 9 83 84 6

1500–3000 Frontal microphone 100 83 5 82 76 7
Central microphone 87 86 4 88 83 5
Rear microphone 100 84 6 86 85 5

3000–5000 Frontal microphone 96 95 1 95 95 2
Central microphone 100 91 2 95 91 2
Rear microphone 100 91 3 94 93 1
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To apply the PCA method in determining the pavement 
macrotexture, after the preprocessing step, the input signal 
was divided into short time windows and the sub-band ener-
gies of each time window which resulted in the following 
matrix representation [6].

After forming the matrix in Eq. 13, the PCA was applied 
to obtain feature representations from the input signal. The 

(13)X =

⎡
⎢⎢⎢⎢⎢⎣

f1 … fn
↑

X11

…
↑

X1n

⋮

Xm1

⋱

…

⋮

Xmn

⎤
⎥⎥⎥⎥⎥⎦

m × n

Time window 1

⋅

⋅

⋅

Time window m

Fig. 12  Principle components 
for different sections

Fig. 13  The separation of the obtained principal components for different sections
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obtained principal components for a sample data from each 
pavement section type employed herein are illustrated in 
Figs. 12 and 13. Having considered the percentage of the 
variance covered by each principal component, the first prin-
ciple components were selected as signal representatives.

The results of testing the trained SVM and KNN models 
are presented in Table 8.

Table 8 expresses that the PCA results for all tested 
speeds and temperatures are out of the accepted range; 
hence, the PCA is not a suitable method for evaluating the 
pavement macrotexture.

8.6  Power Spectral Density

The power spectral density represents the energy spread of 
a signal in its comprising frequency components. In other 
words, the power spectral density represents how much 
power is in each frequency component of a signal. There are 
various methods for estimating the power spectral density of 
a given signal from its samples, such as the Periodogram or 
the Welch method. The Welch method, which is a common 
way of obtaining the PSD of a signal, was employed in this 
study, and a summary of it is described as follows [54].

In this method, for every section of length L of the input 
signal, a modified periodogram is calculated. To this end, 
the selected section is first multiplied by a window, and then 
the FFT of the results is obtained.

After the above step, the modified periodogram is derived 
as follows.

in which

(14)Ak(n) =
1

L

L−1∑
j=0

Xk(j)W(j)e−2kijn∕L

(15)Ik
(
fn
)
=

L

U
||Ak(n)

||2

and

After calculating the modified periodograms, the indi-
vidual periodograms are then averaged, which reduce the 
variance of the individual power measurements. The average 
result is the desired PSD using the Welch method.

The obtained PSD coefficients for a sample from each 
pavement section, are depicted in Figs. 14 and 15.

The results of testing the trained SVM and KNN models 
are presented in Table 9.

As observed in Table 9, the best results in this method are 
provided using the KNN classifier for the frequency range 
of 1500–3000 Hz.

8.7  Linear Predictive Coding [55]

The LPC method has been widely used in speech coding, 
speech synthesis, speech recognition, speaker recognition, 
speaker identification, and speech saving. The main idea in 
this method is to estimate the n th sample of the desired 
signal using the previous samples and the current and pre-
vious values of an input signal by using the relation given 
in Eq. 19.

(16)fn =
n

L
n = 0,… , L∕2

(17)U =
1

L

L−1∑
j=0

W2(j)

(18)p̂
(
fn
)
=

1

K

K∑
k=1

Ik
(
fn
)

(19)s(n) =

p∑
k=1

aks(n − k) + G

q∑
j=0

bju(n − j)

Table 8  Accuracy and precision error of the models trained using the principle components

Frequency band (Hz) Selected microphone KNN SVM

Training 
accuracy

Test accuracy Precision error Training 
accuracy

Test accuracy Precision error

500–1500 Frontal microphone 53 51 32 40 39 41
Central microphone 45 43 38 35 37 50
Rear microphone 49 44 34 39 39 43

1500–3000 Frontal microphone 53 47 22 39 36 32
Central microphone 53 37 33 37 35 41
Rear microphone 46 44 34 36 33 48

3000–5000 Frontal microphone 36 31 67 27 24 81
Central microphone 41 37 42 29 26 65
Rear microphone 32 26 82 26 20 82
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Fig. 14  PSD coefficients for 
different sections

Fig. 15  The separation of the obtained PSD coefficients for different sections
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where,

In Eq. 19, u(n) is the input signal, and G is the applied 
gain on the input. Taking the Z-transform of Eq. 19 results 
in:

Hence the transfer function of the above set of equations 
becomes:

1 ≤ k ≤ p, b0 = 1, 1 ≤ j ≤ q

(20)S(z) =

p∑
k=1

akz
−kS(z) + GU(z) + G

q∑
j=0

bjz
−jU(z)

(21)S(z)

[
1 −

p∑
k=1

akz
−k

]
= GU(z)

[
1 −

p∑
j=1

bjz
−j

]

Considering an all-pole model or, i.e., discarding the 
dependency in the past input values we have:

Equation 23 tries to estimate the current sample of the 
desired signal using its previous values and the current input 
value. The error of using this estimate is calculated using 
Eq. 25.

(22)H(z) =
S(z)

U(z)
= G

1 −
∑p

j=1
bjz

−j

1 −
∑p

k=1
akz

−k

(23)sn =

p∑
k=1

aksn−k + Gun

(24)H(z) =
S(z)

GU(z)
=

1

1 −
∑p

k=1
akz

−k
=

1

A(z)

Table 9  Accuracy and precision error of the models trained using the PSD coefficients

Frequency band (Hz) Selected microphone KNN SVM

Training 
accuracy

Test accuracy Precision
error

Training 
accuracy

Test accuracy Precision error

500–1500 Frontal microphone 100 86 6 75 74 10
Central microphone 91 85 5 80 73 11
Rear microphone 100 91 4 83 80 8

1500–3000 Frontal microphone 100 87 4 54 52 21
Central microphone 95 90 3 59 58 21
Rear microphone 100 93 3 67 63 19

3000–5000 Frontal microphone 100 88 3 17 16 100
Central microphone 100 85 5 19 16 100
Rear microphone 95 89 4 26 18 100

Fig. 16  LPC coefficients for 
different sections
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With the resulting error transfer function of

(25)en = sn − s̃n = sn −

p∑
k=1

aksn−k (26)A(z) =
E(z)

S(z)
= 1 −

p∑
k=1

akz
−k

Fig. 17  The separation of the obtained LPC coefficients for different sections

Table 10  Accuracy and precision error of the models trained using the LPC coefficients

Frequency Band (Hz) Selected Microphone KNN SVM

Training 
Accuracy

Test Accuracy Precision 
Error

Training 
Accuracy

Test Accuracy Preci-
sion 
Error

500–1500 Frontal Microphone 100 55 27 85 78 10
Central Microphone 58 46 29 81 75 8
Rear Microphone 70 65 14 87 83 6

1500–3000 Frontal Microphone 65 55 19 77 79 7
Central Microphone 71 54 19 77 76 7
Rear Microphone 100 59 19 78 76 7

3000–5000 Frontal Microphone 70 64 14 82 80 7
Central Microphone 64 56 20 81 75 10
Rear Microphone 63 60 26 80 70 13

Fig. 18  LSF decomposition 
procedure



2997A Brief Review on the Application of Sound in Pavement Monitoring and Comparison of Tire/Road…

1 3

The LPC method aims to find the ak coefficients to mini-
mize the error en . The most common number of considered 
past signal values in the speech processing literature is 
14. Therefore, 14 coefficients were also considered in this 
research. A sample of the obtained LPC coefficients is illus-
trated in Figs. 16 and 17.

The results of testing the trained SVM and KNN models 
are shown in Table 10.

It can be observed from Table 10 that the KNN classifier 
does not yield acceptable results for this method, while the 

SVM results are acceptable. The best result in this method 
is associated with the rear microphone and in the frequency 
range of 500–1500 Hz.

8.8  Line Spectral Frequencies

Line spectral frequencies are a representation for linear pre-
dictive coefficients. They are obtained by decomposing the 
LPC transfer function into symmetric and an antisymmet-
ric section, which correspond to vocal tract with the glottis 

Fig. 19  LSF coefficients for 
different sections

Fig. 20  The separation of the obtained LSF coefficients for different sections
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closed and with the glottis open, respectively (Fig. 18). The 
line spectral frequencies are computed as follows.

where

The roots of the P(z)and Q(z) and polynomials lie on the 
unit circle, which are the desired spectral frequencies. In 
this study, 10 LSF coefficients were deployed as signal rep-
resentatives. A sample of the obtained LSF coefficients is 
shown in Figs. 19 and 20.

The results of testing the trained SVM and KNN models 
are expressed in Table 11.

The line spectral frequencies represent the frequencies 
with peak values in the spectrum of the audio signal, and 
the interaction noise also has a peak value at around the fre-
quency of 1000 Hz. As a result, the best performance by this 
method is obtained in the frequency band of 500–1500 Hz. 
It should be noted that the results obtained by using the LSF 

(27)
P(z) = A(z) + z−(p+1)A

(
z−1

)

Q(z) = A(z) − z−(p+1)A
(
z−1

)

(28)A(z) = 1 +

p∑
i=1

aiz
−i

coefficients are acceptable in all frequency ranges using any 
of the microphones in either of the classifiers.

The best results for each signal processing method are 
expressed in Table 12. This table is a comparison table to 
compare all methods that have been used.

As can be seen, the best model was obtained using 
the cepstral signal processing in the frequency range of 
3000–5000 Hz. This result is due to the nature of the inter-
action noise in this frequency band and the inner workings 
of the applied processing method.

9  Conclusion

Using inexpensive equipment for measuring various pave-
ment characteristics in an automated manner is an optimal 
solution for developing countries. The focus of this research 
was to implement the microphones and tire/road interac-
tion noise to evaluate pavement macrotexture. According 
to recent related literature, present measurement methods 
were modified, and novel equipment was developed. In the 
processing step, the efficiency of various signal process-
ing methods in different frequency bands and using differ-
ent classifiers for evaluating pavement macrotexture were 

Table 11  Accuracy and precision error of the models trained using the LSF coefficients

Frequency band (Hz) Selected microphone KNN SVM

Training 
accuracy

Test accuracy Precision error Training 
accuracy

Test accuracy Precision error

500–1500 Frontal microphone 84 70 12 90 81 6
Central microphone 82 70 11 84 80 7
Rear microphone 83 76 10 94 90 3

1500–3000 Frontal microphone 83 73 8 84 81 5
Central microphone 100 75 7 86 84 5
Rear microphone 78 73 10 85 82 6

3000–5000 Frontal microphone 82 67 13 86 83 6
Central microphone 78 69 12 84 80 7
Rear microphone 72 67 18 78 76 10

Table 12  Comparison of the 
best model results for signal 
processing methods

Methods Best model Precision error Microphone 
position

Frequency band

Wavelet KNN 4 Frontal 500–5000
SVM 4 Rear 500–5000

Cepstral Signal processing SVM 1 Rear 3000–5000
KNN 1 Frontal 3000–5000

Principal component analysis KNN 32 Frontal 500–1500
Power spectral density KNN 3 Rear 1500–3000
Linear predictive coding SVM 6 Rear 500-1500
Line spectral frequencies SVM 3 Rear 500-1500
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assessed, and the best results were presented. The important 
achievements of this study can be summarized as follows.

• Using the developed equipment, it was possible to obtain 
the pavement macrotexture with high accuracy

• The cepstrum analysis was the best method for process-
ing the tire/road interaction noise

• The best model was obtained using the cepstrum coef-
ficients in the frequency range of 3000–5000 Hz. This 
result is due to the nature of the interaction noise in this 
frequency band and the inner workings of the applied 
processing method.

• Not only the cepstrum coefficients were suitable signal 
features for macrotexture analysis, but also, they had lit-
tle sensitivity to variations in the temperature and the 
vehicle speed.

• Different processing methods yielded different results in 
various frequency bands which were due to the different 
nature of the interaction noise in these bands
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