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Abstract
Applications of Machine Learning (ML) algorithms in Structural Health Monitoring (SHM) have become of great interest in 
recent years owing to their superior ability to detect damage and deficiencies in civil engineering structures. With the advent 
of the Internet of Things, big data and the colossal and complex backlog of aging civil infrastructure assets, such applications 
will increase very rapidly. ML can efficiently perform several analyses of clustering, regression and classification of damage 
in diverse structures, including bridges, buildings, dams, tunnels, wind turbines, etc. In this systematic review, the diverse 
ML algorithms used in this domain have been classified into two major subfields: vibration-based SHM and image-based 
SHM. The efficacy of deploying ML algorithms in SHM has been discussed and detailed critical analysis of ML applica-
tions in SHM has been provided. Accordingly, practical recommendations have been made and current knowledge gaps and 
future research needs have been outlined.

1 Introduction

Civil structures and infrastructures occupy a major position 
in the economy and play a vital role in facilitating daily life 
for the world population. These assets have been incurring 
premature damage and approaching the end of their service 
lives [9]. Replacing such structures would be costly, labor 
intensive and will exceed available financial and human 
resources. Hence, engineers have developed various tech-
niques to enhance the safety and structural integrity of those 
constructions [64] and to mitigate possible financial and life 
losses associated with their failure. Figure 1 illustrates dif-
ferent damage detection disciplines in SHM.

This paper focuses on Structural Health Monitoring 
(SHM) as a damage detection process. SHM consists of 
implementing a scheme of monitoring the structure, for 
instance, using periodically spaced dynamic response meas-
urements, and extracting sensitive features related to dam-
age through these measures and their statistical analyses 
to assess the actual health of the system [17]. Long-term 
SHM is the result of periodically updated information with 
respect to the ability of the structure to continue serving 

in the presence of other influencing factors, such as deg-
radation and aging. Consider for example a sudden blast 
loading [132] or a severe seismic event [77]. SHM could 
be proposed to provide information on the performance of 
the structural system during the load event and to assess its 
structural integrity thereafter (also termed Rapid Condition 
Screening) [3]. Indeed, SHM can appraise the current state 
and behavior of a structure via automatically analyzing data 
acquired by tailored devices and sensors installed in engi-
neered locations across the structure. Hence, anomalies can 
be duly detected, allowing to instantly assess the reliability 
of the structure after the catastrophic event, and identifying 
corrective measures before the damage escalates to more 
costly or riskier levels.

Considering such advantages of SHM, related research 
has been rapidly escalating and gaining growing attention 
of diverse stakeholders. Accordingly, several SHM systems 
have emerged and been implemented in bridges [2], high-
rise buildings [98], towers [89], dams [91], tunnels [80] and 
so forth. This has led to acquiring big data, which requires 
powerful, intelligent and sophisticated computational tech-
niques and has opened the door to deploying Artificial Intel-
ligence (AI) in SHM problems.

Artificial Intelligence emerged between the 1950s and 
1970s in the field of computer science and achieved sub-
stantial success in various subfields such as robotics [14, 
15], data mining [130], pattern recognition [94], knowledge 
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representation [14, 15] and agent systems [128]. Conversely, 
AI has attracted the attention of civil engineering experts 
only recently. For instance, it has been used to perform 
several tasks in SHM applications dealing with knowledge-
based systems [38], fuzzy logic algorithms [92] and artificial 
neural networks [7]. The increasing number of AI applica-
tions has led scientists and engineers to train more complex 
models and create more robust AI tools. Machine Learning 
(ML) has more recently emerged as a strong contender to 
deal with this need. It is defined as a subset of AI that uses 
statistical models to improve the accuracy of machines by 
understanding the structure of data and then fitting it into 
models [38].

A machine could learn via supervised, unsupervised 
or reinforcement learning (Fig. 2). Supervised learning 
(SL) uses labels or captions so the machine can know the 

features of the objects added to the labels that are com-
bined with those features. SL provides a learning scheme 
with labeled data to deal with regression, and classifica-
tion problems. In the SHM domain, SL can be used for 
instance to detect the type and severity of damage [117]. 
Conversely, unsupervised learning is the process of learn-
ing with unlabeled data, i.e. via datasets with unspecified 
outputs that fit a general rule and can be grouped together 
following a certain trend. This can be used for example to 
detect the existence of damage through clustering struc-
tural response data. As shown in Fig. 3, ML is a straight-
forward process, starting from the input (Database), pass-
ing through the selected algorithm, getting the output, then 
deciding to either stop or restart the process by providing 
some feedback. The end of the process is marked by get-
ting an accurate and well predicted result.

Fig. 1  Damage detection 
disciplines

Fig. 2  ML taxonomy
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2  Hierarchy of ML Algorithms

For the sake of clarity, a brief guideline on how to manipu-
late each of the ML steps of the general process is provided 
below.

2.1  Input Configuration

Starting at the input stage, a better understanding of the 
data can help in selecting the appropriate algorithm to use. 

Some algorithms can perform well with smaller sample sets, 
while others require very large samples. Also, some work 
better with a certain type of data than others. As illustrated 
in Fig. 4, data need to be well understood and manipulated 
using mathematical tools such as data statistics and data 
visualization, before using any machine learning algo-
rithm. In data statistics, percentiles are used to identify the 
range, average and median of data to describe the central 
tendency and correlations, besides acquiring knowledge of 
how the data is linked together [60]. However, in data visu-
alization, density plots and histograms are used to show the 

Fig. 3  ML life cycle

Fig. 4  Input configuration
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distribution of data, along with box plots to identify prob-
lems like outliers [107]. Then, data need to be ‘cleaned’ 
which involves dealing with missing values and outliers that 
can be a concern for some algorithms, decreasing output 
predictive accuracy. Finally, the data can be augmented or 
enriched to make the models easier to interpret, reduce data 
redundancy and dimensionality, capture complex relation-
ships, and rescale some variables.

After manipulating the data, the problem needs to be cat-
egorized following an input–output process. For the input 
process, if the data is labeled, it will consist of a supervised 
learning problem. However, if it is unlabeled, the learning 
problem is considered unsupervised. On the other hand, the 
output process is categorized by task. If the output is a set of 
input groups, the problem shall be recognized as a cluster-
ing problem. Understanding the constraints of the problem 
is also a main task in selecting an appropriate algorithm.

Several kinds of constraints could be presented in a ML 
algorithm, starting from the awareness of the data stor-
age capacity. Furthermore, the time of prediction can play 
a major role in the selection process. For instance, some 
SHM problems need to be performed in a timely manner. 
For example, real-time object detection problems need to 
be super-fast to avoid wasting information during the pro-
cess of object recognition [30]. In addition, the model train-
ing process should learn rapidly in cases where it is rapidly 
exposed to new data and must instantly process it. To select 
the appropriate algorithm, other factors such as the accuracy 

and scale of the model, model pre-processing and complex-
ity in terms of features included to learn and predict more 
complex polynomial terms, interactions and more computa-
tional overhead, need to be considered. The commonly used 
ML algorithms in SHM applications are are summarized in 
Fig. 5.

2.2  Algorithm Manipulation

The most commonly used ML algorithms for SHM pur-
poses are outlined below. Support Vector Machine (SVM) 
is a supervised learning algorithm used for classification and 
regression problems, also called Support Vector Networks 
(SVN). A Support Vector Machine (SVM) algorithm sorts 
data into one of two categories, then outputs a map of the 
sorted data, maximizing the margins between the two. It 
performs both linear and non-linear classifications thanks to 
the use of kernel functions [19]. Its architecture is detailed 
in Fig. 6. Back Propagation Neural Networks (BPNNs) are 
supervised learning algorithm for training multi-layer per-
ceptrons. Its main use consists of finding the minimal value 
of the error function in the weight space using a gradient 
descent technique. The weight that minimizes the loss func-
tion is the solution for the learning problem [50]. K-Nearest 
Neighbors (K-NNs) are a set of classifiers used for pattern 
classification and ML [35]. For a set of inputs x of n points 
and a distance function, KNNs search for the closest points 
in x to a query point or set of points y to be found. Principal 

Fig. 5  List of ML algorithms applied to SHM
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Component Analysis (PCA) is a method within the data 
analysis family that consists of transforming correlated 
variables to uncorrelated ones, called principal variables. 
This technique helps the user reducing the size of variables 
and making the information less redundant [59]. Convolu-
tional Neural Network (CNN) is an architecture used in deep 
learning (DL), which is a subset of ML, to perform both 
descriptive and generative tasks dedicated mainly to image 
processing tasks using machine vision libraries that con-
tain image and video recognition scripts. The main differ-
ence between the ML and DL processes is the hidden layer 
located between the input and output for DL algorithms, as 
illustrated in Fig. 7. This layer can contain multiple convo-
lutional or deconvolutional layers, pooling, activation, fully 
connected and normalization layers, depending on the use.

2.3  Output Manipulation

The output of the SHM can vary from one problem to 
another such as settlement, damage detection, damage classi-
fication, object detection, temperature prediction and health 
index. The end of the process should be marked by an accu-
rate and precise output as otherwise feedback is provided to 

the machine, so it can learn from the experience and attempt 
to provide better results.

3  Structural Health Monitoring (SHM)

3.1  Bridge Health Monitoring (BHM)

BHM is the application of SHM and inspection techniques 
to bridge structures. Causes of degradation of bridge struc-
tures include materials aging [49], corrosion of metals [137] 
and structural supports [140], mechanical overloading and 
other damage mechanisms [24]. Bridge Health Monitoring 
(BHM) consists of collecting quantitative data from vari-
ous sensors located within or on the surface of the structure 
[48]. This Real-Time feedback creates a dataset monitoring 
system used to assess the condition of the bridge. Processing 
real-time complex big data has been a challenge in BHM. 
According to [95], BHM can be separated into three key 
aspects. First, the construction control (CC) stage, where 
engineers are responsible for monitoring construction pro-
gress. Second, the routine monitoring (RM) stage directly 
after constructing the bridge. In this period, a large amount 
of data acquired from the installed sensors is produced and 

Fig. 6  SVM classifier archi-
tecture

Fig. 7  Commonly used configu-
ration for CNN
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stored. To process this data, ML algorithms are being devel-
oped to provide real-time feedback for understanding the 
health condition of the bridge. Finally, the damage detection 
(DD) stage where engineers should assess the safety of the 
structure and detect any damage that develops.

3.2  Building Health Monitoring (BUHM)

Buildings are often exposed to damage from earthquakes, 
wind, overloading, vibration, impact, landslides, floods, 
aging and environmental action, and other damage mech-
anisms. Without adequate monitoring, maintenance and 
repair, this can lead to inadequate service and possible 
economic and life loss. Thus, understanding how build-
ings perform in real conditions can help engineers design-
ing and building more resilient, safer, reliable and more 
durable structures. In particular, there has been recently 
rapid growth in the construction of high-rise buildings that 
require smarter and more robust monitoring [5]. Monitoring 
the deformation of such buildings has long been a concern. 
More recently, experts have introduced ML algorithms to 
monitor the condition of high-rise buildings considering 
their proven effectiveness in other fields.

3.3  Dam Health Monitoring (DHM)

Dams play a key role providing drinking and irrigation 
water, flood defense, power generation, water storage and 
so forth. Their deterioration can led to massive financial 
losses and possibly a disastrous number of casualties [16]. 
Thus, safe operation of dams is needed, and any anomalous 
behavior should be detected in its early stages to avoid any 
failure or mis-operation. Dam Health Monitoring (DHM) 
is a discipline that is often based on traditional visual 
inspection and other monitoring of the dam and foundation 
[28]. This requires robust analysis of dam monitoring data 
obtained from the installed sensors in the short- and long-
term. For short term monitoring, the engineer is responsi-
ble for comparing the measured data with reference values 
that correspond to the response of the dam to loads in a 
normal or safe condition. The detection of anomalies is 
marked by the localization of predicted intervals located 
either above or below the reference values. However, for 
long-term monitoring, analysis of the behavior models and 
the observed data is needed to assess the performance of 
the dam in terms of loads and observed output [61]. DHM 
can also consist of static and dynamic monitoring aspects. 
Statically, many features could be monitored including res-
ervoir storage levels, cracks, displacements, strains and 
stresses. Dynamically, other parameters could be identified 
like the stiffness, damping ratio and mode shapes caused 
by wind, water waves and ground motions [40]. Struc-
tural behavior of dams has complicated relationships with 

environmental factors, hydraulics (e.g. water level) and 
geo-mechanisms (e.g. pore pressure, rock deformability) 
[46]. To illustrate the behavior of the concrete dams based 
on real time monitoring, several mathematical models 
have been proposed, including statistic, deterministic and 
hybrid models. Such models serve to assess the behavior 
of dams by analyzing real time data, considering hydro-
static pressure, environmental temperature and time effects 
to be the main variables [121]. Due to uncertainties in 
using this kind of approach, several AI techniques have 
been implemented, making fusion between conventional 
models and heuristic algorithms, and leading to hybrid 
models. In recent years, ML has become a new accurate 
tool in DHM.

3.4  Wind Turbine Health Monitoring (WTHM)

To limit the need for traditional sources of energy such as 
fossil fuels, ecofriendly sources of energy that can mitigate 
climate change are being sought after [47]. Wind Turbines 
(WT) have gained acceptance owing to the maturity of 
their technology. Larger size WT emerged to harvest more 
wind energy, seeking efficiency and productivity. How-
ever, this reason has complicated maintenance and repair 
works for facility managers. Several attempts to monitor 
the structural integrity of WT have been reported. For 
instance, different problems faced by wind turbine blades 
(WTB) during their lifecycle [27], and methods used to 
detect damage in WT, including acoustic emission event 
detection [122], thermal imaging [8], ultrasonic methods 
[119], modal based approaches [116], fiber optics [123], 
laser doppler vibrometer [81], electrical resistance-based 
damage detection [83], strain memory alloy [125], X-radi-
oscopy [119], eddy current [45] and other methods have 
been reported. Accordingly, big data have been cumulated. 
Data science is needed for classification and prediction of 
WT damage, hence the need for ML.

4  DL and ML Applications in SHM

This section surveys different ML and DL approaches and 
algorithms used in SHM problems. Various algorithms 
were used in SHM applications for the last 10  years, 
including Back Propagation (BP) algorithm, Support Vec-
tor Machine (SVM), Neural Networks (NNs), K-Nearest 
Neighbors, Convolutional Neural Networks (CNNs). Uses 
of those algorithms in several applications including SHM 
of bridges, high-rise buildings, dams, and wind turbines 
are outlined below.
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4.1  Artificial Neural Networks (ANNs)

4.1.1  Feed Forward Neural Networks (NNs)

Gonzalez et al. [44] presented a damage identification 
method for steel moment frame structures. The method 
uses NNs and first flexural modes (frequencies and mode 
shapes obtained by a finite element model for a five-story 
office building) as input. Their method was based on two 
main approaches. The first is to calibrate the healthy struc-
ture, while the second was intended to identify the dam-
aged structure after a seismic event. They predicted the 
mass and stiffness of the structure to provide a damage 
index at each story and indicated robust model prediction 
of damage. More recently, Chang et al. [22] developed 
this approach and applied it not only to detect damage, 
but also to localize it and predict its severity for appraising 
the remaining performance of the damaged members. Two 
critical structures were studied: (1) a seven-story build-
ing with single and multiple damaged columns, and (2) 
a scaled twin tower with weak braces installed in some 
floors.

To detect damage (DD) in bridges, three different algo-
rithms were applied. The NN technique was used in the 
Jamboree road over-crossing, Irvine, California to assess 
parameters including aging, long-term structural parameters, 
stiffness and mass [120]. Many applications have used this 
algorithm owing to its simplicity and accuracy compared to 
traditional methods. For instance, it was used to determine 
radial dam displacements with different sets of inputs [31, 
63, 82, 104, 105]. Other uses were reported in [88, 100, 
101, 114] to detect the pore pressure in dams, to predict 
the tangential displacement [96] and to monitor the leakage 
flow [112]. A summary of the used algorithms is provided 
in Table 1.

4.1.2  Back Propagation Neural Networks (BPNNs)

BP algorithm was applied during the early stages of con-
struction of the Yangtze river bridge in China to track girder 
elevation changes during the construction phase using 
input parameters like cable tension deflection parameters 
and deflection of the deck. Another study [95] employed 
a BP algorithm to track variation of the deflection of the 

Table 1  Summary of the different NN applications in SHM

T_air, air temperature; T_amb, ambient temperature; H_up, upstream pool level; H_dn, downstream pool level; T_Conc, Concrete temperature; 
Precip, precipitation; lag(.), lagged variable; OL, output lag; ∂(.), derivative of time; Ux, radial displacement

References Structure Input Algorithm Output

González and Zapico [44] Five story steel office building Frequencies and mode shapes NN Mass and stiffness degradation 
for damage index detection

Chang et al. [22] 1- Seven story building with 
single and multiple damaged 
column(s).

2- Experimental model of a 
scaled twin-tower building 
with weak braces in some 
floors

Modal properties of the struc-
ture under ambient vibrations

NN Damage patterns in terms of 
stiffness reduction after critical 
events

Soyoz and Feng [120] Jamboree Road over-crossing, 
Irvine, California, USA

Modal parameters: Frequencies, 
Mode Shapes

NN Aging and Long-term structural, 
parameters,

Salazar et al. [105] Arch Dam, La Baells, Spain H_up, T_air, ∂(H_up), Season, 
Time, Precip

NN Rad_Disp, Tan_Disp, Leakage 
flow

Riquelme et al. [104] Arch Dam, La Baells, Spain H_up, T_amb, OL NN Rad_Disp
Kao and Loh [63] Arch Dam, Fei-Tsui, Taiwan H_up, T_Conc NN Rad_Disp
Demirkaya and Balcilar [31] Arch Dam, Schelegeis, Austria H_up, T_air, T_conc, lag 

(T_air), lag (T_conc)
NN Rad_Disp

Simon et al. [114] Arch Dam, Pareloup, France H_up, Season, T_amb, T_air NN stiffness, mass, Rad_Disp
Ranković et al. [100, 101] (Earth fill + Gravity Arch) Dam, 

Iron Gate 2, Serbia/Romania
H_dn, lag (H_dn) NN Pore pressure

Nourani and Babakhani [88] Earth fill Dam, Sahand, Iran H_up, H_dn, Precip, lag 
(Precip)

NN Pore pressure

Popovici et al. [96] Buttress Dam, Gura Raului, 
Romania

Time, H_up, T_air NN Rad_Disp and Tan_Disp

Santillán et al. [112] Arch Dam, La Baells, Spain H_up, T_air, ∂(H_up), ∂(T_air) NN Leakage flow
Mata [82] Arch Dam, Alto-Rabagao, 

Portugal
H_up, Season NN Rad_Disp
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Hubei Danjiangkou bridge deck throughout the Construction 
Control (CC) phase, using inputs including temperature, the 
value of deflection of the deck after stretching and height of 
the stretched section. Other uses of the BP algorithm were 
in the Routine Monitoring (RM) stage. For instance, pile set-
tlement was predicted as a function of the pile displacement 
sequence [95] and to track the normality of points accord-
ing to their deflection [133]. The Kentucky Louisville truss 
bridge in the USA was exposed to an extensive campaign 
to measure parameters like frequency, mode shapes and the 
number of degrees of freedom to serve as inputs for measur-
ing the damage potential of truss joints [41, 84]. The Yang-
tze River Bridge was also monitored to track girder elevation 
changes based on cable tension and deflection parameters 
using BPNN, as illustrated in [136]. Four distinct uses of 
ML to detect damage and identify its degree for the main 
structural elements of a building using the BP algorithm 
were reported in [37]. The first consisted of identifying the 
damage of a reinforced concrete frame structure using the 
changing ratio of modal strain energy, which is taken as the 
damage location factor. The second explored damage loca-
tion and degree in a simply supported beam, coupled with 
finite element simulation to calculate the first two natural 
frequencies of the structure using curvature mode of some 
critical points highlighted in the frame. The third applica-
tion identified the damage degree in a scaled four-story steel 
frame structure where the inputs of the algorithm consisted 
of ratios of natural frequency, while the applied load was 
simulated to wind load. Finally, a damage identification 

method was applied to the Kewitte single-layer spherical 
reticulated shell. The above methods achieved adequate 
accuracy in detecting damage for different kinds of struc-
tures (Table 2).

4.1.3  Convolutional Neural Networks (CNNs)

More recently, Deep Learning [71] has emerged as a sophis-
ticated subset of AI. It has been proposed to perform more 
advanced tasks using innovative algorithms. Its main appli-
cation for structural health monitoring is detecting defects 
such as cracks, efflorescence, steel exposure, rust staining, 
scaling, spalling of concrete structures based on surface 
images, fatigue in steel structures, bolts loosening, potholes 
and holes in asphalt pavement, etc. ML allows detecting 
cracks in civil engineering structures in a fast and reliable 
way, determining the type of the crack, its distribution along 
the section, and its width and length. Thus, engineers can 
assess the load carrying capacity and degradation level of 
structures [113]. This procedure has often been conducted 
by experts [32] based on rather subjective opinions in assess-
ing the health of structures [42] and predicting remaining 
service, which is compounded by difficulty accessing hard 
to reach areas. Thus, there is need for automated and intel-
ligent crack detection methods that do not rely on subjective 
operator expertise and opinion.

Image-based crack detection is currently among the most 
advanced and active research fields in SHM. It is still evolv-
ing to address difficulties such as the random shapes and 

Table 2  Summary of the different BPNN applications in SHM

References Structure Input Algorithm Output

Peng et al. [95] Hubei Danjiangkou Bridge Temperature, Deflection after 
stretching, Height of stretched 
section

BPNN Deflection variation

Peng et al. [95] Beijing-Shanghai High Valence 
Kunshan Iron Bridge

Pile Settlement Displacement 
Sequence

BPNN Prediction of pile settlement

Yang et al. [133] Masangxi Bridge Deflection of points
Deflection of points

BPNN Normality of points

Mehrjoo et al. [84], 
Frangopol and Soli-
man [41]

Kentucky Louisville Bridge Natural frequency BPNN Damage Potentials
Number of modes
Number of the measured Degree 

of Freedom
Fan et al. [37] Steel Frame Changing ratio of modal strain 

energy MSECR
BPNN Damage detection of frame 

structures
Fan et al. [37] Finite element simulation of the 

first mode shapes
Vibration signals, Natural fre-

quencies, Mode Shapes
BPNN Damage position and degree for 

simply supported beam
Fan et al. [37] Four story steel frame structure 

experimental 3D model
Natural frequency change ratios, 

simulated Wind load
BPNN Damage degree identification

Fan et al. [37] Spherical reticulated Shell 
structure

Modal Density, Number of 
degrees of freedom

BPNN Damage degree identification

Yuansong et al. [136] Yangtze River Bridge Cable tension deflection param-
eters, Deck deflection

BPNN Girder elevation Changes
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irregular sizes of cracks, concerns with lighting conditions, 
shading, blemishes and concrete spalling in the obtained 
images. Recently, a new technology of automatic crack 
detection using Deep Learning (DL) has emerged. New opti-
mization of pre-trained networks such as GoogleNet [115], 
AlexNet [6], ResNet [131], VGG-16 [1], YOLO object 
detection [102] are frequently reported. Yet, from Input or 
dataset to output, parameters need to be carefully consid-
ered. A summary of the most recent applications of CNNs 
to detect damage in concrete and non-concrete structures is 
provide in Table 3 and described below.

It is widely accepted that the larger and more comprehen-
sive is the data set, the more successful can be AI models 
using such data. Thus, some techniques such as data aug-
mentation [39] have been proposed to solve problems of 
lack of data, and to reduce overfitting caused by limited and 
imbalanced training datasets. Another promising technique 
that helped increasing prediction accuracy is the dropout 
technique, which consists of randomly and temporarily 
ignoring in calculations some units of the neural network. 
Also, to obtain higher accuracy in image data processing, 
several parameters should be considered, such as uncon-
trolled image shooting distance [118], lighting conditions 
[126], shot angle and blurriness conditions.

Most relevant studies have focused on classifying struc-
tures as damaged or not damaged through the presence of 
cracks. One of the earliest applications of CNNs used differ-
ent layout and architectures, varying the number of convolu-
tional blocks, pooling layers, fully connected layers, adding 
some features to the available pre-trained networks Transfer 
Learning (TL) in order to detect cracks in concrete structures 
and asphalt pavements [134].

Different configurations have been proposed to optimize 
crack detection in defective structures. Recently, a new 
robust concept based on transfer learning to early detect 
fatigue cracks in gusset plate joints of steel bridges was pro-
posed in [36] as an alternative for training a neural network. 
They used the output features of the VGG16 network archi-
tecture previously trained using a dataset called ImageNet, 
then they fine-tuned the top layer of VGG16, which helped 
achieving best precision. This affirmed that fine-tuning a 
well-trained fully connected layer with the top convolutional 
layer of the VGG16, in combination with data augmentation, 
is among the best performing combinations for detecting 
cracks in structures. Numerous applications have been pro-
posed in the literature looking for the most robust algorithm 
for cracks detection [34, 67, 68, 72, 74, 78, 85, 97, 126, 
127, 139] through varying the architecture of the used CNN, 
changing the number of convolutional blocks, which var-
ied between two [36] and eleven [74] convolutional blocks, 
introducing more pooling at the end of each convolutional 
block, more activation layers and normalization, etc.

Other research efforts did not limit their scope to the 
binary classifications of structure (cracked, or not). More 
innovative and useful ideas for monitoring tasks, for instance 
to detect efflorescence and spalling [56, 74]; bolts loosen-
ing [139], rutting of asphalt pavements and potholes [79], 
typology of cracks, their length and width [134] have been 
explored. For instance, [56] proposed a three-staged concrete 
defect classifier that can classify unhealthy defected bridge 
areas and determine their specific defect type compared to 
inspection guidelines. The process consisted of finetuning 
three separate pre-trained networks on a multi-source dataset 
for concrete walls, beams, columns, etc.

Another successful application of CNN was discussed in 
[43], which proposed a baseline recognition task that deter-
mines the component type, checks the spalling condition, 
evaluates damage in percentage (no damage, minor dam-
age, medium to severe damage, collapse) and predicts the 
mechanical source of damage; e.g. if the crack is horizontal, 
the mechanical force that initiated it is an axial (tensile or 
compressive) force; however, if the crack is slightly vertical, 
a bending moment could be the main cause; and finally if 
the crack is inclined, shear force would be the main cause. 
accordingly, a dataset composed of 10,000 images was col-
lected from a platform called ImageNet and then labeled 
manually for specified recognition tasks. To avoid overfit-
ting, TL based on VGGNet was applied using two differ-
ent strategies called finetuning and feature extraction. Two 
sets of experiments were done to find the relative optimal 
model parameters and hyperparameters including learning 
rate, mini-batch size, number of epochs, initial weights, etc. 
Both strategies proved effective in recognition applications.

Similarly, a study conducted by [76] proposed a three-
level image-based approach for post-disaster monitoring 
of reinforced concrete bridges using image classification, 
object detection and semantic segmentation, respectively 
to assess failure of the overall system, detect the structural 
element (Deck, Column, Beam, Wall) where the damage 
persists and then zoom to the exact location on that element 
to localize the damage. This study achieved over 90% accu-
racy for the three deep learning models, which confirms the 
necessity of research in order to propose new solutions for 
these kinds of problems.

Deep learning and CNN scholars did not limit their scope 
in the field of image recognition, and attempted diverse 
applications to detect crack damage in real time for instance 
using unmanned aerial vehicles or drones, as illustrated in 
[23, 67–69, 79]. Collecting images and labelling it manu-
ally can be a repetitive and a time-consuming task. For this 
reason, different methods have been used in the literature to 
save time and provide an alternative solution, such as the use 
of Scrapebox proposed in [66], which scrapes images from a 
search engine site (e.g., Google Images, Baidu Images, etc.) 
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1 3

for a keyword (e.g., concrete crack), and LabelImg used as a 
graphical image annotation tool (in [12].

Only few applications of CNNs have quantified detected 
cracks on images by calculating its width and length. For 
instance, (R-CNN)-based transfer learning was applied to a 
384 collected images (in [70]. Those images were cropped 
to regions where the crack had been located. To quantify 
cracks, the exact pixel size in the image and the focal dis-
tance were attributed using GPS data of Unmanned Aerial 
Vehicle (UAV) system. The crack quantification algorithm 
was verified in a small-scale laboratory test that provided 
a relative error of 1–2%. Another application (in [86] pro-
posed a DL-enabled quantitative crack width measurement 
method. The study presented a novel crack width estimation 
method based on the use of Zernike moment operator, which 
achieved high accuracy for thin cracks.

4.2  Support Vector Machine (SVM)

SVM has been widely used in BHM applications, for 
instance to determine damage in the Hangzhou bridge 
using strain vibration, distortion, and cable tension [26]. 
For the Flushing 149st bridge in New-York, Impact Echo 
(IE) data was collected to classify damage of the deck using 
SVM [73]. Moreover, an attempt was made to use SVM 
for crack detection in the Sydney Harbor bridge, Australia 
using inputs including force, acceleration and time histo-
ries recorded during normal bridge operation [4]. The SVM 
algorithm was used in the RM stage, for example in the 
Humboldt bay middle channel bridge to evaluate the cor-
rect position of the pier using some pier features. To predict 
scour depth near the bridge piers of the Taiwan High-Speed 
Rail System Bridge, features like pile length, young’s modu-
lus of soil and natural frequency of the bridge were used 
with an SVM algorithm [65].

To detect and localize damage, two potential applica-
tions for SVM have been reported. The first [75] used radial 
basis function for regressing and optimizing the input (mode 
curvature change). Good accuracy and generalization abil-
ity along with noise resistance from the surrounding envi-
ronment were achieved. In the second, [90] applied SVM 
algorithm to vibration signals from sensors installed on a 
wooden brace inside a wooden house (Timber Health Moni-
toring) to track the degradation of wood, assess and localize 
damage, then compare results to that of k-Nearest Neigh-
bors algorithm. SVM was found more accurate and gave 
more precise results than the K-NN algorithm for this kind 
of application. Two main other applications consisted of cal-
culating tangential displacements of the Iron Gate two dams 
between Serbia and Romania using the downstream height, 
upstream height, their lags and the lag of the output itself 
for next iterations [100, 101]. This was intended to predict 
radial displacements (Rad-Disp) and uplift pressure [25]. 

Also, an evaluation of the correct position of piers installed 
in the Humboldt bay middle channel California bridge was 
illustrated (in [18]. The various SVM applications are sum-
marized in Table 4.

4.3  Other Algorithms

Table 5 lists various algorithm applications in SHM. The 
Principal Component Analysis (PCA) algorithm was used 
for DD purposes in BHM, for instance in Japan’s Hayakawa 
truss Bridge (Fig. 8), where data acquired from sensors 
installed on the bridge were deployed in the PCA algorithm 
combined with an Auto-Regressive (AR) model to detect 
damage [124]. Another application of this algorithm was 
in Taiwan’s prestressed concrete Hanxi bridge, where data 
from single channel deflection signals were used to detect 
deflection of concrete, shrinkage and creep strains and pre-
stress loss.

One application of the Tree-structured Gaussian Process 
(TGP) algorithm was during the RM stage of BHM, where 
important features related to the Tamar bridge in the UK 
were extracted, including its natural frequency, traffic load-
ing applied to the bridge, wind direction and speed. Those 
features were introduced to the TGP algorithm to study the 
effects of wind conditions on the behavior of the main struc-
tural elements of the bridge. A second application was in 
Switzerland’s Z24 Bridge, where modal parameters, air and 
soil temperature, and soil humidity data were used to assess 
several parameters such as the settlement of the pier, land-
slide prediction, concrete spalling, concrete hinge failure, 
anchor head failure and the tendons rupture [129].

A methodology to detect local and global health condi-
tions of structural systems using ambient vibration response 
of structures collected by installed sensors was proposed 
[99]. Unsupervised deep Boltzmann machine (DBM) was 
combined with numerical methods such as wavelet and Fast 
Fourier transform to extract features from the frequency 
domain of the recorded signals and create a classification 
index for the local and global health of the structure using 
a probability density function. The algorithm was validated 
through a verification test case using actual experimental 
data obtained on a 1:20 scaled residential 42-story concrete 
building in Hong- Kong (Fig. 9). A Hybrid Multi Objective 
Optimization (HMOO) algorithm was proposed to detect 
damage by solving the inverse problem of limiting change of 
modified modal strain energy in structural elements [21]. A 
scaled model of the building was designed and then numeri-
cally modeled by Finite Element Analysis to assess the per-
formance of the algorithm. The approach was compared to 
other traditional methods using a single-objective Genetic 
Algorithm (GA). HMOO achieved better performance in 
detecting multiple minor damages, which had little effect 
on changing the modal properties of the structure. Moreover, 
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the proposed method demonstrated ability to mitigate dif-
ficulties of measuring rotational components of each mode 
shape using incomplete mode shapes that incorporated only 
global translational components.

The K-means clustering algorithm was also applied to 
detect and localize damage in joints of the Sydney Harbor 
bridge, Australia [33]. Moreover, Bayesian Networks (BN) 
were deployed to rate the condition and structural reliabil-
ity of the Albert railway bridge in Brisbane, Australia [46]. 
Another approach [106] used Boosted Regression Trees 
BRT combined with a 100-m finite element numerical model 
to detect anomalies in a dam (Rad_Disp) (Fig. 10). This 
algorithm was effective compared to casual (only consider-
ing external variables, e.g., reservoir level) and non-casual 
models (including both internal and lagged variables as 
predictors). However, [61, 62] compared four sets of algo-
rithms, namely BPNNs, Multiple Linear Regression (MLR), 
Step Wise Multiple Regression (SWMR) and Extreme 
Learning Machine (ELM) applied on a dataset obtained on 
the Fengman Dam in China and found that ELM was the 
most accurate algorithm.

A technique called Pitch and Catch was used to detect ice 
thickness on blades using a combination of Guided Ultra-
sonic Waves (GUW) and supervised ML algorithm. Sev-
eral case studies of ice on WTB surface have been used to 
test and validate the approach. The data needed to be well 
processed before running the algorithm, using four feature 
extraction methods, linear (Autoregressive (AR) and PCA) 
and nonlinear (nonlinear-AR exogenous and Hierarchical 
non-linear PCA), the feature selection was done by NCA. 
Twenty ML classifiers were used including DT, DA, SVM, 
K-NN and EC. The results were reasonably accurate and 
were verified in single frequency and multi-frequency modes 
[57, 58]. A different study [57, 58] used the same technique 
with similar features to catch dirt and mud layers on WTB. 
The same supervised machine learning (pattern recognition) 
algorithm was used to classify signals based on the fault. 
Another application to detect damage on WTB was proposed 
in [103] using an acoustic method based on Linear Regres-
sion (LR) and SVM algorithms combined with optimal fea-
ture selection to make accurate decisions. A laboratory-scale 
wind turbine was built having an external microphone to 
monitor blade damage, while being internally ensonified by 
wireless speakers.

To detect integral health of wind turbines, [138] imple-
mented a method to extract numeral characteristics and pre-
dict the health condition from data stream acquired from 
sensors as illustrated in Fig. 11. The SVM algorithm clas-
sifies the health condition of the WTB online in both time 
and frequency domains based on a stream of data received 
from sensors installed on a WT in China. The algorithm 
proved ability to detect online vibration and predict the 
health condition. Another application [10] proposed a 

method to classify the operating regimes from coarse reso-
lution to Supervisory Control and Data Acquisition systems 
(SCADA) recorded by the turbine supervisory controller to 
finally classify damage of WT using K-NN algorithm with 
PCA to treat the data. Furthermore, a mix between nonlinear 
curve method and other ML algorithms (SVM with different 
kernel functions and BPNNs) has been set to detect scouring 
conditions along pipelines for thermometry based Tunnel 
Health Monitoring (THM) [141]. SVM model with radial 
basis function was found to be best classifier for scour moni-
toring, reaching 99.9% and 98.9% for accuracy for train-
ing and testing sets, respectively. Other references, such as 
[20] measured the vibration of gearbox, rack and pinion, 
and motor to detect damage in a movable bridge. Moreover, 
Ye et al. [135] used single channel deflection signal for a 
prestressed concrete bridge employing PCA and Ensem-
ble Empirical Modal Decomposition (EEMD) to detect the 
deflection of the girder, concrete shrinkage, creep and pre-
stress loss. Other ML algorithms and its corresponding uses 
are summarized in Table 5.

5  Analysis and Discussion

Tables 1, 2, 3 and 4 present a summary of different appli-
cations of machine learning and deep learning algorithms 
in the field of SHM. Based on the comprehensive review 
provided above, different applications, their advantages and 
drawbacks, along with knowledge gaps research needs of 
the different algorithms of ML in SHM have been identified 
and summarized.

PCA was primarily used to reduce the dimensions of 
data, which helps reducing computational cost and obtain-
ing higher accuracy in most cases. However, the problem 
of calculation time remains a drawback. PCA was used 
in [29] to model the vibration response of a stand in the 
Giuseppe-Meazza stadium and Fig. 12 displays an outline 
of the installed sensors. The aim was to illustrate the state 
of the structure in 2D or 3D space principal directions, and 
to interpret how this data processing considers the different 
effects of operational and environmental conditions. The 
results showed good agreement with actual temperature 
and humidity values and so are a good simulation for the 
behavior of the structure during major events like concerts 
and football matches.

NNs can work with so-called “incomplete knowledge”, 
where it can produce output even with incomplete informa-
tion after successful training. NNs perform very well with 
repetitive events, so it can learn and make decisions based 
on similar tasks already done (supervised learning). Another 
key point is that NNs are tolerant to a certain point if one or 
more cells of the NN is corrupted, but this will not prevent 
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Fig. 8  3D Model of the Hay-
akawa Bridge, Japan

Fig. 9  a 3D model of the 
Hong-Kong 42 story High-rise 
Building. b Scaled prototype of 
the substructures and location 
of sensors along the height of 
the building

Fig. 10  a A disposition of the installed sensors in a dam. b Flow diagram of DM data analysis
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it from having an output. Most applications in the open lit-
erature were in the field of DHM, because of the simplicity 
and accuracy of NN compared to traditional statistical and 
heuristic models. Despite their great success in some areas 
of research, NNs are now outdated in SHM applications. 
More advanced ML algorithms are being implemented to 
achieve a balance between the performance of the network 
and its computational time.

BPNNs can be easily distracted in the case of noisy data 
and can lead to erroneous results, including overfitting and 
drastic deterioration of the classification or regression task. 
However, BPNNs performed very well in bridge and build-
ing health monitoring as mentioned in Sect. 4.1.2. One of the 

greatest advantages of BPNN is that it simplifies the network 
structure by removing the unnecessary weighted links that 
do not have valuable effect on the trained network.

More recently, CNNs have proved their great success 
with deep learning tasks and especially computer vision-
based applications. CNNs outperformed traditional neural 
networks on conventional image recognition, classification 
and segmentation tasks. Another key parameter of CNNs in 
image recognition, compared to conventional image process-
ing techniques and other artificial neural networks, is that the 
features of the images are automatically extracted and do not 
require manual handling. Furthermore, CNNs are very effi-
cient in pre-training tasks and can reduce the computational 
time and then save the memory since the network does not 
have to be trained each time from scratch. Only the classifier 
must be trained based on the provided labels.

CNNs were first applied in SHM problems about five 
years ago. The major application was aimed to detecting 
cracks as first indicator of structural damage in sidewalks, 
asphalt pavements, concrete and steel structures. Several 
sub-models employing CNNs are rapidly evolving, includ-
ing Inception V2 and V3, ResNet 50 and 100 and many oth-
ers. However, these kinds of networks need powerful com-
putational configuration features (GPU) and massive data 
for training, otherwise the network will overfit and lead to 
erroneous results.

SVM proved its effectiveness in binary classifications, 
training, building and regression tasks. For instance, SVM 
algorithm has one important feature called “L2 Regulari-
zation”, which is characterized by superior generaliza-
tion capability. Another, characteristic of SVM is that 

Fig. 11  Sensors for WTHM

Fig. 12  Sensors installed in Giuseppe Mazzei Stadium, Italy
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it performs very well in non-linear data from different 
sensors installed on structures. The processing of data 
has presented an obstacle for other kinds of neural net-
works especially when there is a certain change in the 
data. On the contrary, SVM showed great stability since 
such change does not affect the hyperplane. However, the 
use of SVM algorithm can be challenging since the filter 
or the kernel need to be appropriately chosen to handle 
non-linear data and this can lead to generating too many 
support vectors, which will lead to more calculation time. 
Moreover, the data obtained from sensors need first to be 
scaled manually, which reduces the time to effectively 
obtain classification and regression results. SVM has been 
attributed to almost every kind of structure given its great 
accuracy when dealing with the problem of having a clear 
margin of separation between classes (safe structure and 
damaged one), but its application is still dependent on the 
computation time, which is one of the most important fac-
tors in AI tasks.

Other algorithms like TGP, HMOO, K-NN, K-means 
clustering, and ELM were proposed in 0. Those algorithms 
were used in several applications of SHM but did not achieve 
the popularity of NNs and SVM. For example, ELM was 
first proposed by in [52–55] as a tool that is faster in the 
training phase, which may result in better interpolation, 
but did not necessarily produce more precise and accurate 
results. For ML problems, more importance is assigned to 
the accuracy of the algorithm. Thus, ELM was not as cred-
ible in SHM applications.

In the present critical review, such methods have been 
divided into two main categories, namely vibration-based 
and image-based algorithms. The strengths and weaknesses 
of those algorithms were investigated and critically dis-
cussed. It has been found that more dedicated studies need 
to be performed concerning the following aspects:

Vibration-based algorithms need to concentrate more on 
wind-induced vibrations, especially for high-rise buildings, 
bridges, and towers. Moreover, other sophisticated algo-
rithms can be applied in SHM of civil engineering struc-
tures since they have proved their applicability and high 
prediction accuracy in other fields, such as mechanical and 
aerospace engineering. These include Naïve Bayes (NB) 
classifier, Self-Organizing Maps (SOM) and k-means clus-
tering [87]. However, the main issue with the applicability 
of these algorithms is the accuracy of the selection of the 
structure concerning the number of layers and the combined 
algorithms with those classifiers.

For image recognition tasks using CNNs, more research 
is needed to maintain a robust algorithm with high accuracy 
using small datasets and a smaller number of convolutional 
blocks that can affect the computation time and need for high 
computational resources. Furthermore, this algorithm should 
take care of the different distortions that can happen because 

of lighting conditions, shooting metric distance, angle of 
shooting, etc.

Most algorithms that are available in the open literature 
are supervised learning algorithms that need to be labelled 
manually. There is need to implement unsupervised learning 
for monitoring tasks using clustering to broaden the scope 
of applications of CNNs. Of the existing applications, about 
95% have limited detection algorithms on the shallow scale 
of the distribution of cracks dealing with crack distribution, 
width, length, spalling, scaling and efflorescence. More 
advanced studies go beyond that scope to determine whether 
the reinforcement is exposed, the steel rebars are corroded, 
etc. However, in order to make algorithms more robust and 
therefore more appealing to the industry, researchers need to 
relate these concepts not only to the diagnosis level, but also 
to the damage mechanisms within concrete. For instance, 
several chemical mechanisms can occur underneath the con-
crete surface, while the exterior surface may appear integral 
and free of cracks and damage. accordingly, further research 
is needed to cover the following aspects:

Relating crack initiation to concrete mixture design, cur-
ing conditions, mechanical and environmental conditions 
of the structure, such as the chemistry of the pore solution, 
mechanical loading, seismicity of the area, temperature, 
humidity, etc. Some phenomena that are dependent on those 
conditions include carbonation of the concrete cover, cor-
rosion of steel reinforcement, freeze–thaw damage, sulfate 
attack, shrinkage strains and cracking, etc. While this is a 
major undertaking, it could be done by combining avail-
able algorithms with experimental data of techniques such 
as infrared thermography, radar, impact-echo and other 
ultrasonic techniques, half-cell potential and polarization 
scanning, etc. [93]. Some applications have related chemi-
cal, physical and mechanical testing conditions to associ-
ated damage. A proof-of-concept evaluation of using CNNs 
was performed [111]. The study aimed to identify damage 
features in images of concrete samples at a microscopic 
scale. This was based on a management protocol developed 
by Bérubé et al. [13]. Improved guidelines have then been 
proposed (in [108–110] to optimize testing protocols and 
models and explore numerous distress processes in concrete, 
such as Alkali-Aggregate Reaction (AAR), Delayed Ettrin-
gite Formation (DEF), and cyclic Freezing and Thawing 
(FT). The developed approach was based on three phases. 
The first succeeded to predict seven different Damage Rat-
ing Indices (DRI) features, but with an average accuracy of 
only 64%, due to the limited number of microscopic image 
dataset. The second, aimed to use the same explicit DRI 
formula that an expert petrographer would apply based on 
crack counts. The third was aimed to use the refined ML 
algorithm for assessing other damage mechanisms, such as 
external and internal sulfate attack, FT damage and steel cor-
rosion, to generate a comprehensive protocol that could be 
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used to assess critical aging infrastructure. Ongoing research 
is being carried out to improve the accuracy of phase 1 by 
conducting more experiments and then providing additional 
training data. Phase 2 was still being processed. Phase 3 did 
not start yet, till phase 2 has been successfully implemented 
for AAR cases.

Relating the cause of cracks to structural conditions, for 
example by detecting mechanical loads causing the cracks, 
application of fracture mechanics with possibility to predict 
the stress field around the crack [11, 51] and then assess-
ing the remaining stresses that the structural element could 
resist in the short and long-term. This could be broadened 
by empowering the algorithm to propose solutions for the 
diagnosed problems based on available resources, such as 
the knowledge of experts, international codes, etc. Another 
evolving research item in this field is real time concrete 
crack detection, which needs more consideration and greater 
efforts to transfer images to video rendering that could effi-
ciently detect cracks in a timely manner.

6  Conclusions

There has been rapid increase in the volume of research on 
applications of machine learning algorithms in the field of 
structural health monitoring. Such studies explore the impor-
tant benefits of ML, enhance its applicability and accuracy, 
and strive to reduce the associated computational effort. The 
application of ML algorithms to detect, assess, and possibly 
repair and rehabilitate damage in civil engineering structures 
is garnering increasing attention. We stand at the brink of a 
technological revolution where artificial intelligence could 
dominate what we do in structural health monitoring and 
the management of ageing civil infrastructure assets. In this 
paper, the main techniques and algorithms that have been 
deployed for this purpose in the open literature have been 
critically surveyed, discussed and analyzed. Detailed tables 
have been made to summarize the state-of-art and provide 
the reader with convenient access to the volume of work 
that has been conducted in this domain. The advantages 
and limitations of these techniques have been identified and 
best practice recommendations for their use have been for-
mulated. Knowledge gaps and future research needed have 
been outlined. This critical review should better position 
engineers for decision making regarding the use of machine 
learning and deep learning algorithms in the domain of 
structural health monitoring.
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