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Abstract
Reinforced concrete structures and structural members used in strategic infrastructures such as highway bridges, high-rise 
buildings, etc. are inherently subjected to lateral impact loads arising from the collision of vehicles, vessels, falling rocks, 
and rigid objects having different impact geometries, weights, and velocities. Due to the brittle nature of concrete materials, 
both localized and overall failure modes are very likely to occur in concrete structures under dynamic and impulsive loads. 
Hence, many attempts have been carried out in the literature to recognize the failure behaviors and to assess the vulnerability 
of concrete structure under lateral impact loads. This paper presents a comprehensive state-of-the-art review on the responses 
and failure behaviors of various types of concrete structures and structural members subjected to lateral impact loads based 
on analytical, numerical, and experimental studies carried out by the previous research works. In addition, the influences of 
various structural- and load-related parameters on the impact resistance and failure behaviors of different concrete structures 
under lateral impact loads are reviewed.

1  Introduction

Owing to rapidly increasing the construction of reinforced 
concrete (RC) structures all over the world, the need for 
recognizing the responses of such structures exposed to 
dynamic and extreme loading conditions such as impact and 
blast loads is a very topic of importance. RC structures may 
be subjected to lateral impact loads arising from the falling 
of heavy rocks and objects, collision of vehicles and ves-
sels, or from the high-velocity impacts of relatively lighter 
projectiles and rockets. Impact loading is a dynamic and 
extreme loading type which its duration may reach 1000 
times shorter than earthquakes. Impact loads can be charac-
terized into three types based on their intensity and duration 
(td). These types are: (1) quasi-static loading in which the 
structure reaches its maximum response before ending of the 
impact duration; (2) dynamic loading in which the structure 

reaches its maximum response almost at the same time with 
the ending of the impact duration; (3) impulsive loading in 
which impact duration ends before reaching the structure 
its maximum response. Accordingly, structural components 
can demonstrate different behaviors under concentrate lateral 
impact loads including localized and overall responses as 
shown in Fig. 1. When a structural member is subjected to 
high-rate impact loading with very short duration relative to 
the structure natural period (T), the stress wave propagation 
and inertia resistance of the structure is predominant on the 
responses. Under this loading condition, it is more expected 
to observe localized failure in the structure. However, when 
this ratio (td/T) is large, the structural responses and failure 
modes are dependent on the stiffness of the structure and the 
structure tends to fail in overall modes [1].

Another classification of impact loadings based on 
their dissipative mechanism was proposed by Eurocode 
[3] including: (1) hard impact in which the initial kinetic 
energy was dissipated by striking objects such as colliding 
of vessels and vehicles with deformable bows with con-
crete structures, and (2) soft impact in which the major part 
of the initial kinetic energy was dissipated by the impacted 
structure such as impacting the rocks and rigid objects 
on concrete structures. Two simplified approaches using 
single-degree-of-freedom (SDOF), and two-degree-of-
freedom (2-DOF) models were recommended by Eurocode 
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[3] to formulate and identify the overall responses of con-
crete structures under soft and hard impacts as shown in 
Fig. 2. In the proposed SDOF model, a partial mass of the 
impacted member exposed to a distributed (non-concen-
trated) impact load is idealized with a mass point element 
connected to a discrete (i.e., spring) element representing 
the global stiffness of the member under an equal concen-
trated dynamic load. However, the stiffness of both global 
and local structural responses are idealized connected to 
the relevant partial masses.

Although many simplified approaches exist in the cur-
rent design codes to predict the responses of RC structures 
under impact loads, they are not able to obtain the brittle 
damage behaviors of concrete structures during high-rate 
and impulsive impact loads. Concrete structures might suf-
fer localized failure modes and damages such as brittle 
spalling, scabbing, perforation, and punching shear fail-
ure [5, 6] under high-rate impact loads, or overall failure 

modes under rather low-rate impact loads as shown in 
Fig. 3.

Generally, several design codes define the estimation of 
impact loads and the simplified responses of structures sub-
jected to different types of lateral impact loads especially 
those arising from vessels [7–9] and vehicles [8, 10–12] 
collisions using equivalent static and quasi-static analyses. 
However, the amplification dynamic effects such as inertia 
and strain rate effects have not been taken into account by 
these guidelines. Table 1 summarizes the impact load provi-
sions considered by several design guidelines.

Studying the impact responses of structures under 
impact loads is possible through the main three approaches 
including simplified analytical, finite element (FE) numer-
ical simulation, and experimental tests. In general, there 
exist some limitations in the use of simplified analytical 
approaches. As such, these techniques not only omit the 
structural dynamic behaviors such as inertia and strain rate 

Fig. 1   Impact response modes 
of RC beams [2]

Fig. 2   Simplified models recommended by Eurocode [3] for the design of structures under impact loads [4]

Fig. 3   Typical failure modes of concrete structures under different impact loads [5, 6]
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effects of the materials but also they are not able to cap-
ture the brittle failures and damage behaviors of structures 
under extreme loads. Besides, although the experimental 
tests give chances for accurately and reasonably evaluat-
ing the structural responses in the real world, conducting 
such tests needs notable professional equipment and eco-
nomical resources. Compared to experimental approaches, 
FE numerical methods provide appropriate alternatives to 
conduct the test scenarios by reducing the time and costs 
along with obtaining accurate and reasonable results. 
There are many available commercial software codes such 
as LS-DYNA [16], and ABAQUS [17] to numerically sim-
ulate impact tests by adopting various contact algorithms 
between the striking and stuck components.

Impact loading tests can be also simulated in laboratory 
scales using different designed experimental facilities as 
follows:

•	 Drop weight impact facility The impactor with a cer-
tain mass is vertically released from a specified height 
regarding the desired impact energy as shown in 
Fig. 4a. [2]. This facility is the most common experi-
mental method used to study the impact responses of 
concrete members placed horizontally such as beams 
[2, 18–20], and slabs [21, 22].

•	 Pendulum impact facility The impactor can be released 
from different angles in order to generate different ini-
tial impact energy as shown in Fig. 4b. [23, 24].

•	 Horizontal impact facility The impactor collides with 
the structure horizontally with a specified initial veloc-
ity as shown in Fig. 4c. [25, 26].

This paper aims to presents a state-of-the-art review 
on the responses and failure behaviors of various types of 
concrete structures and structural members including col-
umns, bridge piers, beams, and slabs under different types of 
impact loads arising from the collision of rigid objects (i.e., 
soft impacts), or vehicles and vessels (i.e., hard impacts). 
The influences of different structural- and loading-related 
parameters on the impact resistance concrete structures are 
reviewed. In addition, the theoretical background, current 
design guidelines, and existing approaches for analyzing 
structures under impact loadings are reviewed.

2 � Bridge Piers Subjected to Impact Loads

Columns are mainly axial load-carrying structural members 
that are commonly used in large-scale civil structures and 
infrastructures such as high-rise buildings, highway bridges, 
subways, etc. Impact loads arising from the collision of ves-
sels or vehicles with RC columns used in bridges, low-rise 
buildings, and isolated traffic structures can be taken place 
during accidental events or intentional terrorist attacks. 
There exist many research works in the literature investi-
gating the responses of RC bridge piers subjected to lat-
eral impact loads from the collisions of vehicles [8, 10–12, 
27–51], vessels [7–9, 52–67], shipping objects [68], and 
falling rocks [69, 70]. Due to the significant discrepancies 
between the force–deformation behaviors of striking vehi-
cles and vessels, and also different structural characteristics 
of impacted bridge piers (e.g., pier size and dimensions, 
substructure, boundary conditions, etc.), it is expected to 

Table 1   Summary of current guidelines considering impact loading

Guideline Loading Remarks and notes

AASHTO [7, 10] Vessel collision Equivalent static load based on deformation-force data and kinetic energy of head-on vessel 
collisions

Vehicle collision Equivalent static impact force full-scale crash tests of tractor-trailers/truck-barriers collisions 
(derived not directly from head-on impact tests). Considering a 1800-kN static force applied 
to the height of 1.35 m from the column base

JSCE [13] Rock falls Performance-based design structures under especially falling objects (e.g., rock falls) using the 
equivalent mean impact forces and absorbed energy

AS 1170.1 [14] Vehicle collision Equivalent static impact load based on the kinetic energy of vehicles with masses between the 
ranges 1500–2000 kg

CEN [3, 8] Vehicle collision Equivalent static force with considering the effects of impact velocity, impact angle, mass dis-
tribution, deformation behavior and damping characteristics of both impact and the structure 
(ranges of maximum impact forces: 1000 kN for tuck, and 500 kN for car impacts)

Vessel collision Equivalent static force based on deformation energy of the vessel with considering the influ-
ences impact angle

UK’s highways agency [15] Vehicle collision Equivalent nominal loads applying horizontally on bridge piers based on experimental tests 
(between the ranges 250 kN and 1000 kN)

CMR [9] Vessel collision Equivalent static load based on the kinetic energy of impacting ships (with considering impact 
angle)
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capture relatively different dynamic responses under vehicle 
collisions compared to those from vessel collisions. Hence, 
it is focused in this section on the review of existing analysis 
approaches and previous studies on the impact responses of 
RC bridge piers under vehicle and vessel collisions.

2.1 � Bridge Piers Subjected to Vehicle Collisions

From the review study on the failure causes of 114 bridges 
by Harik et al. [71] during a 38-year period from 1951 to 
1988 in the USA, it was found that 15% of these failures 
occurred due to truck collisions. In addition, based on a 
report by Wardhana and Hadipriono [72], about 3% of 503 
bridges in the USA were failed due to vehicle collision dur-
ing an 11-year period from 1989 to 2000 in the USA. Two 

examples of bridge pier and superstructure failures are illus-
trated in Fig. 5.

The influences of various structural- and loading related 
parameters on the vehicle collision force and the structural 
responses of the impacted pier have been widely evaluated 
in the literature.

A parametric study was done by Zhou et al. [41] on the 
impact responses of RC bridge piers varying in terms of sev-
eral parameters including impact velocity, impact mass, and 
the strengths of the pier concrete and steel reinforcements. 
Compared to the marginal influences of the concrete strength 
on the magnitude and duration of impact force, and the pier 
global deformations, the strength of steel reinforcements 
had substantial effects on the pier deformations. In addi-
tion, three performance levels including the local damage, 
flexural-shear failure, and cross-sectional fracture with shear 

Fig. 4   Impact loading test facilities
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failure of the pier from the FE simulations. Furthermore, a 
damage index based on the ratio of impact force to the shear 
capacity of bridge piers was proposed by Zhou and Li [42] 
using FE numerical simulations to describe different damage 
levels of bridge piers subjected to vehicle collisions.

Abdelkarim and ElGawady [34] carried out an extensive 
parametric study of RC bridge piers numerically by under 
different the collision of different vehicles, the positive influ-
ences of reinforcement ratio, column cross-sectional dimen-
sions, axial load level, material strain rate effects, and impact 
velocity and weight of vehicle were found on the peak value 
of impact force. However, it was not affected by the vari-
ability of concrete strength, pier boundary condition, and 
the depth of soil surrounding the pier base.

Compared to several proposed simplified models of the 
vehicle-pier collision system proposed by Al-Thairy and 
Wang [74], Milner et al. [75], and Vrouwenvelder [76], Chen 
et al. [37] proposed a more sophisticated system using a 
reduced coupled mass-spring-damper (CMSD) model. 
From the evolution of different parameters, it was revealed 
that except the marginal effects of vehicle weight, other 
parameters including impact velocity, pier geometry, and 
the material properties of the pier had significant influences 
on the impact force results. Afterwards, the proposed sim-
plified CMSD model utilized by Chen et al. [38] to assess 
the validation of a proposed spectrum-based design method 
in the prediction of impact responses of piers. In addition, 
an equivalent frame model (scaled model) of a large-size 
truck was designed by Chen et al. [39] to use in collision 
with RC bridge piers experimentally. The experimental test 
results revealed the significant influences of impact velocity 
and mass on the structural and impact responses. The influ-
ences of cross-sectional shape and dimensions of RC piers, 
striking truck cargo weight, impact velocity, impact posi-
tion, and vehicle type were numerically evaluated by Chen 

et al. [45] on the impact force results during heavy truck 
collisions with RC bridge piers. It was obtained that the 
first peak of impact force was more sensitive to the impact 
velocity, while the following peaks were more sensitive to 
the impact weight. In addition, the shape and diameter of 
the impacted pier had marginal influences on the impact 
force results. Yi et al. [47] concluded that RC columns with 
circular cross-sectional shape suffered larger displacements 
and more severe damage levels under tuck collision rather 
than those with square shape. Moreover, from a sensitivity 
analysis of column impact resistance to the axial load ratio 
and the concrete strength, no influence trend of these param-
eters was obtained.

Fan et al. [28] numerically studied the impact responses 
and the performance of ultra-high-performance fiber-rein-
forced concrete (UHPFRC)-strengthened bridge piers com-
pared to those with normal concrete in the presence of super-
structure load subjected to vehicle collisions. The influence 
of superstructure axial load and the top boundary conditions 
on the pier impact responses were evaluated by developing 
different simplified pier models in the forms of single col-
umns under equivalent axial load, and the pier-bent model 
(with multi-columns) in the presence of the superstructure 
equivalent mass. The importance of the stress initialization 
analysis phase to reach an equilibrium state of the bridge 
under the bridge self-weight prior to the transient impact 
loading phase was revealed. More reasonable results were 
captured from the pier-bent model rather than those of single 
piers. Moreover, a parametric study in assessing the influ-
ences of different parameters including reinforcement ratios, 
UHPFRC strength, the thickness of UHPFRC jacket, and the 
impact velocity was carried out. The thickness of UHPFRC 
was realized as the most effective factor in the impact resist-
ance of piers rather than others when the impact velocity 
was rather low.

Fig. 5   a Failure of bridge column due to truck collision [73], b collapse of bridge superstructure after colliding a tractor-trailer [27]
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In spite of the studies above focused on the impact force 
and global deformation of piers, the damage mechanisms 
and failure behaviors (including both local and global fail-
ures) of RC bridge piers were evaluated by several research 
works. Different damage states and failure mechanisms of 
RC bridge piers under a truck collision (with a weight of 
66 kN, a velocity of 31.3 m/s, and an impact angle of 20°) 
was numerically evaluated by Agrawal et al. [35] as shown 
in Fig. 6. According to this classification, the pier suffered 
spalling damages in the concrete cover immediately after the 
onset of collision. Afterwards, with progressing the damages 
to the concrete core, the pier endured the rebar severance, 
breakage at the impact level, concrete erosion at the footing, 
and the formation of plastic hinges at both top and bottom 
end of the pier, respectively.

Auyeung and Alipour [36] numerically evaluated the fail-
ure behaviors of RC bridge piers by varying vehicle mass, 

velocity, pier diameter, and transverse reinforcement. Fig-
ure 7a–c illustrates different example failure modes of bridge 
columns such as pure flexure, combined shear-flexure, and 
pure shear, respectively. While the pier diameter governed 
the global failure modes, the levels of local failure modes 
were extremely sensitive to transverse reinforcements. 
Thereafter, Auyeung et al. [43] proposed a damage index 
based on the structural characteristics of the bridge pier 
and the kinetic energy of colliding vehicles to investigate 
different performance levels of the piers responses under 
the vehicle collisions. From a parametric study, the vehicle 
impact velocity was recognized as the most effective loading 
parameter on the impact and the pier shear forces.

Since the transferring time of shear forces due to applying 
impact loads arising from vehicle collisions are very short, 
recognizing the local shear failure mechanisms and the 
effectiveness of some key dynamic factors such as the pier 

Fig. 6   Different damage behav-
iors of RC piers under vehicle 
collision [35]

Fig. 7   Failures of bridge piers with different diameters (D) under vehicle collision [36]
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inertia on the impact responses is very necessary from the 
design point of view. However, omitting the damage states 
which are profoundly dependent on the severity of impact 
loadings and the dynamic shear capacity of RC piers, is a 
very notable gap of the current design codes. Hence, several 
attempts have been carried out by the previous works to pre-
sent some efficient design frameworks considering the shear 
failure mechanisms of RC piers under vehicles.

As an improvement in the existing methodologies, 
Sharma et al. [48] proposed an approach to estimate the 
shear force capacities of RC bridge piers subjected to differ-
ent vehicle collisions for different damage states and perfor-
mance levels as shown in Fig. 8. Table 2 presents the damage 
states in the corresponding performance levels of RC col-
umns under vehicle collision. It was found that the dynamic 
shear force capacities estimated by the proposed method 
were more than those calculated by ACI-318 [77]. In addi-
tion, compared to the assumption by Tsang and Lam [40] in 
which the time required to full contact was larger than the 
duration of shear wave velocity, while it was revealed by 
Sharma et al. [48] that these durations were almost similar. 
Afterwards, the fragility of RC columns was assessed by 
Sharma et al. [29] using a proposed probabilistic method 
based on the shear capacity of columns. Shear capacities of 

RC columns were modeled based on the performance levels 
to use in a probabilistic assessment by Sharma et al. [50] in 
terms of different loading and structural uncertainties.

Do et al. [24] investigated the impact responses and fail-
ure behaviors of RC bridge columns subjected to vehicle col-
lision using FE simulations in LS-DYNA. While the initial 
peak impact force was profoundly affected by the engine, the 
following peaks were more sensitive to the total mass of the 
vehicle (mostly contains cargo weight). Also, it was revealed 
that the mass of the engine has a key role in the determina-
tion of the pier failure modes and the value of the impact 
force. In addition, the influence of the pier axial load on the 
peak impact forces and the failure behaviors was evaluated 
through different pier-superstructure interaction models. In 
a mutual action, the substantial positive influences of impact 
forces on the axial force of the pier were concluded. From a 
series of the FE simulations of vehicle-pier collisions, vari-
ous failure behaviors were observed for the piers including 
flexural failure, shear failure, and punching shear damage 
which successfully represented the numerical models of 
those observed in real impact events given in [78] as shown 
in Fig. 9a–c. Furthermore, two catastrophic flexural and 
shear failures of bridge columns at the mid-height leading 
to the collapse of bridge piers, are illustrated in Fig. 10a, b, 
respectively [78].

Similar to the conclusion of the study done by Do et al. 
[24], the dependency of the highest peak impact force on 
the truck’s engine block was also concluded by Cao et al. 
[31] from a series of FE simulations of a heavy truck colli-
sion with bridge piers. However, the catastrophic pier fail-
ure was observed during the secondary impact of the truck 
trailer. In addition, a simplified impact loading function (i.e., 
the impact loading profile) as given in Eq. (1) based on the 
FE simulation data of colliding truck weight, velocity, and 
impacted pier cross-sectional dimensions was proposed by 
Cao et al. [32] to use in the design of bridge piers against the 
collision of heavy trucks. Then, the performance levels of 
different bridge piers under the proposed pulse model were 
evaluated by Cao et al. [33]. The proposed impact pulse 
model by Cao et al. [32] and the application heights of the 
pulse model are shown in Fig. 11a, b. This model includes Fig. 8   FE simulation of different vehicle collisions with RC columns 

with shear failures [48]

Table 2   Performance levels of RC columns subjected to vehicle collision [48]

Damage level Damage description Performance 
level

Performance level description

D1 Insignificant damage P1 Fully operational with no damage
D2 Minor spalling of concrete, yielding of longitudinal steel P2 Operational structure with damage
D3 Significant cracking of concrete, Spiral and longitudinal bar 

exposed, buckling of bars
P3 Total collapse of the structure

D4 Loss of axial load capacity, longitudinal bar fracture
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three pulses generated due to the impacts of the bumper 
(Pulse1), engine (Pulse2), and trailer (Pulse3).

where Fi denotes the peak force. α, β, γ, and ε are regression 
parameters. V and W are the truck impact velocity (km/h) 
and weight (kN). b denotes the pier width (mm).

Afterwards, Do et al. [50] numerically studied the profile 
of impact forces from pier-vehicle collisions with respect to 
various structural- and loading-related parameters. Com-
pared to the impact loading model proposed by Cao et al. 

(1)Fi = f

{

�(V)�(W)�
(

b

900

)�
}

[32], a simplified impact force model was proposed with 
considering the pier shear capacity as illustrated in Fig. 12a, 
b. According to this model, the first impact phase (P1) is 
dependent on the length between the bumper and the engine, 
the truck velocity, the column width. During this phase, the 
peak impact force (PIF) (i.e., F1) can be calculated using the 
engine’s mass and the impact velocity as given in Eq. (2). 
The pier endures a punching shear failure when PIF reaches 
the maximum dynamic shear capacity ( Pmax

dyn
 ) as calculated 

by Eq. (3). The second phase (P2) was taken equal to 1290 
kN.

where me is the mass of the engine (ton), and V is the truck 
impact velocity.

where DIFc and DIFs are the dynamic increase factors of the 
concrete and steel material strength in the diagonal section, 
respectively. Vc and Vs are the contribution of the concrete 
and the steel reinforcement to resist the shear force, respec-
tively. m and a are the mass and acceleration of the shear 
plug, respectively.

From the vast majority of pier-vehicle collision stud-
ies as summarized in Table 3, the significant influences of 
the impacting vehicle characteristics such as vehicle type 
(including the variability of the bow configuration), impact 
velocity, and vehicle weight (including the mass of both 
engine and cargo portions) were concluded. However, the 
design collision force provided by AASHTO specifica-
tions does not consider the effects of dynamic vehicle-pier 

(2)
F1(kN) = 969.3

√

0.5meV
2 − 7345.9 ≤ Pmax

dyn
(16.7 m/s < V < 40 m/s)

(3)Pmax
dyn

= 2(DIFc × Vc + DIFs × Vs) +
∑

ma

Fig. 9   Different failure behaviors of RC bridge piers under vehicle collision obtained FE simulations done by Do et al. [24] compared to those 
observed in real events [78]

Fig. 10   Typical failures occurred in bridge columns at the mid-height 
under vehicle collisions [78]
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interactions, impact velocity, vehicle weight and characteris-
tics. From an FE numerical study of truck collision with dif-
ferent bridge piers by El-Tawil et al. [27], it was concluded 
that dynamic peak impact forces could be larger than those 
predicted by AASSHTO-LRFD [10] and design approach 
proposed by this design code could be unconservative.

Compared to the extensive investigation on the effects 
of various structural parameters, the influences of the axial 
load parameter have not been comprehensively explored. 
Besides, most of the previously concluded the positive influ-
ences of this parameter on the impact resistance of bridge 
piers when it was in its service levels. Therefore, more 
attempts are needed to explore the sensitivity levels of the 

impact responses of bridge piers to the axial load parameter 
in future works.

According to the conclusions of several works investigat-
ing precast concrete segmental bridge columns (PCSBC), 
such types of columns can provide more ductility and suf-
fer fewer damages under lateral impact loads compared to 
conventional RC bridge piers [46, 51, 79, 80]. The perfor-
mance of precast segmental columns under vehicle colli-
sions was numerically assessed by Do et al. [49] varying in 
prestressing level, number of segments, concrete strength, 
and vehicle velocity. It was found that the number of seg-
ments and initial prestressing level had marginal influences 
on the impact force, while they significantly affected the 
residual displacements and the damage behaviors. Moreover, 

Fig. 11   a The impact pulse model proposed by Cao et al. [32], b application heights of the pulses

Fig. 12   a Simplified model of the impact force, b the mechanism of punching shear failure [50]



2486	 C. Zhang et al.

1 3

Table 3   Summary of the influences of various parameters on the impact responses of RC bridge piers to vehicle collisions

Study Analysis Parameter Effectiveness

Zhou et al. [41] Numerical Impact velocity Substantial positive on the peak impact force
Impact mass
Concrete strength Marginal negative on the pier global deformations
Reinforcements strength Substantial negative on the pier global deformations

Abdelkarim and ElGawady [34] Numerical Concrete strength No effect on the peak impact force
Reinforcement ratio Positive on the peak impact force
Column cross-sectional dimensions Positive on the peak impact force
Axial load
Impact velocity
Impact weight
Material strain rate
Pier boundary condition No effect on the peak impact force
Depth of soil surrounding pier substructure

Chen et al. [37] Analytical impact velocity Substantial positive on the peak impact force
Pier cross-sectional dimensions
Pier material properties

Chen et al. [39] Experimental Impact velocity Significant positive on the peak impact force
Impact mass

Chen et al. [45] Numerical Pier cross-sectional shape and dimensions Marginal effects on the impact force
Impact velocity Significant effects on the first peak impact force
Cargo weight Significant effect on the following peaks of impact 

force

Impact position Significant positive on the peak impact force
Vehicle type

Yi et al. [47] Cross-sectional shape More severe damages and displacements for Round-
shape piers than square-shape

Axial load No influence on impact resistance
Concrete strength

Fan et al. [28] Axial load Positive in the service level for small deformations; 
Negative for large deformations

Reinforcement ratios Marginal positive on the pier resistance
UHPFRC strength
UHPFRC thickness Substantial positive on the pier lateral impact 

resistance and axial load capacity for low-velocity 
impacts

Impact velocity Significant positive on the pier damage level
Auyeung and Alipour [36] Numerical Impact mass Substantial positive on the peak impact force

Impact velocity
Pier diameter Substantial negative on the pier global failure modes 

(i.e., governed the global failures)

Transverse reinforcement Substantial negative on the pier local failure modes 
(i.e., governed the local failures)

Auyeung et al. [43] Numerical Impact velocity Significant positive on the impact and the pier shear 
forces

Do et al. [24] Numerical Vehicle engine’s mass Significant positive on the peak impact force, shear 
forces, and moment

Vehicle velocity Significant positive on the peak impact force
Cao et al. [31] Numerical Vehicle engine’s mass Significant positive on the highest peak impact force

Vehicle trailer’s mass Significant positive on the following peaks of impact 
force, and damage levels
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it was revealed that the impact velocity has not always abso-
lute positive influences on the impact force of segmental 
columns. In line with this study, impact behaviors of two 
different bridge piers including RC pier, precast modular 
pier were numerically evaluated by Chung et al. [46] sub-
jected to impact loading functions derived from a series 
of vehicle-pier collision simulations. Larger displacement 
and stresses were obtained in precast pier than those of RC 
piers under the same peak dynamic loading. Afterwards, 
Do et al. [80] carried out a comparative study between the 
impact performance of precast concrete segmental bridge 
columns (PCSBC) and monolithic bridge columns, better 
flexural and shear performances were obtained for PCSBC 
due to the existence of shear slippage and joint rocking 
between concrete segments. In addition, PCSBC columns 
suffered localized shear and compression damages limited to 
the impacted segments compared to the global flexural and 
shear damages observed in the monolithic columns. With 
the intent of reducing the stresses and relative displacements 
between the segments of the column under lateral impact 
loads, Zhang et al. [79] utilized a new shear design with 
smoothed curvature.

2.2 � Bridge Piers Subjected to Vessel Collisions

Bridge piers spanning across the navigable coastal channels 
are potentially at the risk of vessel collisions that can cause 
severe damages or even collapse of such structures [81–83]. 
Based on a report given by AASHTO [7], during a time 
period from 1960 to 2002, vessel collisions caused the col-
lapse of 31 bridges and 342 fatalities. Figure 13 shows the 
collapse of several bridges due to vessel collisions. Several 
design codes for bridges [7–9] include the vessel collision 
loads on the basis of static analysis methods considering the 
type of striking vessel and waterways. However, the provi-
sions provided by these guidelines are not able to accurately 
estimate the vessel collision loads due to omitting dynamic 
characteristics, and the geometry of both striking vessels and 
stuck bridge structures.

As a prominent and famous experimental study, Con-
solazio et al. [84] conducted a series of full-scale barge colli-
sion tests on the old piers of St. George Island Bridge. Many 
open-access technical reports were published based on the 
information from these experimental tests capturing novel 
insights in various aspects of the vessel-bridge collision 
event [85–92]. However, conducting full-scale experimental 
tests of vessel collisions with bridges requires special stra-
tegic plans and notable financial resources. Hence, analyti-
cal and numerical approaches using high fidelity computer 
software can be considered as a proper alternative to esti-
mate the responses of both vessels and impacted structures, 
accurately and reasonably.

Generally, the dynamic analysis of vessel-bridge pier col-
lision can be categorized into three techniques as follows:

•	 High-resolution finite element (FE) technique consists 
of a multiple-degree-of-freedom (MDOF) model of ves-
sel versus an MDOF model of bridge pier as shown in 
Fig. 14a.

•	 Medium-resolution technique consists of a single-degree-
of-freedom (SDOF) model of vessel versus MDOF 
model of a bridge pier as shown in Fig. 14b.

•	 The low-resolution technique consists of an SDOF model 
of a vessel versus an SDOF model of a bridge pier as 
shown in Fig. 14c.

In the first technique, the dynamic impact loads, the 
nonlinear dynamic responses and failure behaviors of both 
bridge structure and impacting vessel such as the crush 
deformations are quantified considering detailed collision 
mechanics and nonlinear interactions between the high-
resolution FE models of impacting vessel and bridge pier. 
However, adopting such techniques will not be appropriate 
for design applications because they require significant com-
putational costs and resources. In the second technique (i.e., 
medium-resolution), the stiffness (load-deformation) of the 
vessel bow is simplified using a nonlinear discrete element 
in the vessel SDOF system. Although this technique is not 
able to obtain the vessel crush behaviors, it can be properly 

Fig. 13   The collapse of several bridges in the USA due to vessel collisions
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used for design intents due to considering the high-resolu-
tion model and all structural characteristics of the impacted 
pier. Besides, low-resolution techniques representing the 
simplified models of vessel-pier collisions are particularly 
utilized to predict the dynamic impact loads as the prelimi-
nary stage of a design process.

There exist various analytical approaches in the literature 
simplifying the models of the striking vessel and impacted 
bridge. Consolazio and Cowan [94] proposed a coupled ves-
sel impact analysis (CVIA) method in which an SDOF ves-
sel model collides with an MDOF pier model (i.e., medium-
resolution technique). In this technique, various loading and 
structural-related parameters of vessel-pier collision system 
including vessel bow stiffness, vessel mass, impact veloc-
ity, impact angle, pier stiffness, pier mass, pier geometry, 
and soil conditions were taken into account to capture time 
history results of impact force, bridge displacements, and 

internal structural forces generated in bridge pier. The stiff-
ness of vessel bow modeled with a nonlinear spring repre-
sents the load-deformation crush relationships captured from 
the high-resolution analysis [95]. Thereafter, the proposed 
coupled CVIA used to analysis the dynamic responses of 
an equivalent one-pier, two-span (OPTS) simplified bridge 
model proposed by Consolazio and Davidson [96] in which 
the effects and characteristics of adjacent piers and spans 
were considered using a series of equivalent translational 
and rotational springs attached to a lumped mass of adjusted 
piers and spans as shown in Fig. 15. The capability of this 
model was concluded to successfully predict the pier impact 
responses considering the dynamic amplification character-
istics along with a significant reduction in the analysis time. 
Fan et al. [97] proposed a nonlinear dynamic macro-element 
model of bridge pier to quantify the pier demand subjected 
to ship collisions as shown in Fig. 16. In this model, the 

Fig. 14   Different dynamic analysis techniques of vessel-pier collision [93]

Fig. 15   Analytical model for 
bridge-ship collisions based on 
the proposed macro-element by 
Consolazio and Cowan [96]
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crush behavior of ship bow with considering the strain 
rate effects was modeled using the combination of an elas-
tic–plastic spring and a dashpot element attached to each 
other in parallel. The calculated results from the proposed 
method were agreed well with those from high-resolution 
analysis. Moreover, it was revealed that the design impact 
forces predicted by the current design codes can be underes-
timated due to neglecting the dynamic amplification factors 
such as the material strain rate effects.

A vast majority of vessel-bridge collision studies focused 
on investigating the force–deformation results of vessels 
considering the shape and size of the impacted pier under 
low to medium-rate [94, 95, 98–101], and high-rate impacts 
[102, 103]. Besides, many attempts were carried out to eval-
uate the structural responses of bridge piers using simplified 
analytical methods [62, 65, 96, 104, 105], and FE high-res-
olution techniques [52, 54, 59, 67, 106]. In addition, sev-
eral approaches were proposed to analyze the impact loads 
and bridge dynamic demands using shock spectrum analy-
sis [104, 107–109], structural reliability analysis [55, 63, 
110–114], and equivalent static analysis [115, 116] methods. 
Table 4 presents a summary of vessel-pier collisions with 
regard to the influences of various parameters.

In Table 4, it can be found that the impact forces and 
responses are affected not only by loading-related parameters 
including vessel mass, velocity, weight, bow configurations 
(stiffness-related), but also by structural-related parameters 
including the pier inertia, axial load ratio (superstructure 
inertia-related), geometry, and soil-structure interaction 
behavior. However, the force–deformation relationships pro-
vided by the current design codes such as AASHTO have 
not taken into account the key dynamic factors of both vessel 
and impact pier such as the strain rate effects of materials, 

geometry, shape, and size parameters. Hence, these deficien-
cies existing in the guidelines may lead to unconservative 
and inaccurate impact loads and structural responses. In 
addition, although the effectiveness of the pier superstruc-
ture inertia has been considered by several vessel-pier colli-
sion studies, except very limited works in the literature [52], 
the sensitivity of the impact resistances of bridge piers to 
axial load parameter has not been rigorously investigated.

The significant effects of the different boundary condi-
tions of impacted bridges at the top affected by the inertia 
of overlaying superstructures [54, 66] and at the bottom sur-
rounded by soil layer [53, 61, 64, 116–119] were explored 
in the literature. The substantial influences of bridge super-
structure on the impact responses and failure behaviors of 
the impacted pier especially on the location of plastic hinge 
formed in the pier columns were concluded by Gholipour 
et al. [52]. Figure 17 illustrates the influence of the bridge 
superstructure on the failure modes of the impacted pier. It 
is observed that the pier indicates different characteristics 
for the formed plastic hinges (PH) including their locations 
and the relative curvatures (a). Based on a study done by 
Davidson et al. [66], the amplification dynamic effects of 
bridge superstructures during a vessel collision event can 
be categorized into: (1) inertial resistance of superstructure 
amplification which is mobilized shortly after the onset of 
impact loading and causes maximum shear forces in bridge 
pier and (2) superstructure momentum driven-sway ampli-
fication due to increasing the velocity at the pier top which 
leads to producing maximum bending moments in the pier.

Despite many previous studies considering the effects 
of dynamic characteristics of both vessel and pier afore-
mentioned above, the material nonlinearity and structural 
damages have been taken into account in predicting impact 

Fig. 16   Macro-element model of bridge pier using spring and lumped mass elements [97]
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Table 4   Summary of the influences of various parameters on the impact responses of RC bridge piers to vessel collision

Study Analysis Parameter Effectiveness

Consolazio and Cowan [94] Numerical Barge mass Marginal positive influence on the pier 
demand and the peak impact force; 
Significant positive effects on the impact 
duration

Impact angle Marginal influence on the impact force; 
Significant negative effects on the pier 
deflection

Pier stiffness Marginal positive on the impact force and 
the pier resistancePier mass

Pier geometry Marginal positive on the impact force 
Significant effects on the pier deflection 
(Greater impact resistance by circular-
shaped columns than those of square-
shaped columns)

Consolazio et al. [95] Numerical Pier geometry Higher impact forces for Round-faced col-
umns than those for Flat-faced columns

Consolazio and Cowan [98] Numerical Pier width/diameter Marginal influence on the impact force
Pier geometry Significant effects on the impact forces 

(higher forces for Flat-faced columns 
than Round-faced columns)

Yuan and Harik [99] Numerical and Analytical Pier geometry Significant positive on the peak impact 
force of rectangular piers; Marginal posi-
tive on the peak impact force of circular 
piers

Pier width/diameter

Getter and Consolazio [100] Numerical Impact angle Significant negative on the bow force–
deformation relationship for impact on 
wide piers; Similar effectiveness for 
impact angles of 5o or more, when piers 
have less width

Fan and Yuan [101] Numerical Pile-cap depth Important role in quantifying impact 
demand of bridge piers

Kantrales et al. [102] Experimental and Analytical Pier geometry Larger impact forces were obtained for 
flat-faced piers than those for round-
faced piers

Luperi and Pinto [103] Numerical Pier width/diameter More significantly positive on the bow 
force–deformation relationships for flat-
faced piers than round-faced-piers

Pier geometry

Wang and Morgenthal [60] Numerical and analytical Barge mass Significant positive on the peak impact 
force until 25% loaded barge; Ascending 
positive on the pier deflection; Marginal 
on the pier moment

Impact velocity Significant positive on the peak impact 
force and the pier deflection

Height of impact location Marginal on the peak impact force; Sig-
nificant positive on the pier deflection

Column height Marginal on the peak impact force and the 
pier deflection

Diameter of longitudinal reinforcement Marginal on the peak impact force; Sig-
nificant negative on the pier deflection

Fan et al. [65] Numerical and analytical Strain rate of steel used for vessel bow Significant positive on the impact forces; 
Significant negative on the impact dura-
tion
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responses and failure behaviors of the impacted piers [52, 
55, 59, 67, 120]. With growing FE computer codes in recent 
years and feasibility of modeling the nonlinear behaviors 
of concrete materials considering strain rate effects, several 
studies were focused on investigating the damage and failure 
behaviors [23, 52, 57, 59, 62], and progressive collapse [67, 
117, 121, 122] bridges under vessel impact loads.

The nonlinear dynamic responses and progressive dam-
age process of a cable-stayed concrete bridge pier were 
numerically and analytically investigated by Gholipour 
et al. [120] under ship collision considering the nonlinear-
ity of concrete and steel materials. In addition, the strain 

rate effects of concrete and steel materials were formulated 
to use in a proposed two-degree-of-freedom simplified sys-
tem. It was found that the proposed simplified method could 
accurately estimate the impact force and pier displacement 
response compared to those from FE simulations. Moreover, 
among different damage indices proposed to describe the 
damage states of the impacted pier, a damage index based 
on pier deflection was captured more efficient approach 
than others. Besides, the progressive damage process of 
the impacted pier from the appearance of minor tensile and 
flexural cracks, developing shear damages, cross-sectional 
fracture, and consequently the formation of plastic hinges 

Table 4   (continued)

Study Analysis Parameter Effectiveness

Yuan et al. [105] Numerical and analytical Pier stiffness Significant effect on the peak impact 
forces; Marginal effect on the mean 
impact force

Number of barges in a flotilla Marginal effect on the mean impact force; 
Positive on the impact duration

Pier geometry Larger impact forces produced by square 
columns than those by a circular column

Pier width Significant positive on the impact forces

Kinetic impact energy Significant effect on the impact duration
Gholipour et al. [52] Numerical Axial load ratio Marginal positive on the peak impact 

force; Negative on the length of plastic 
hinges; Positive on the column resistance 
until a ratio of 0.5

Impact velocity Significant positive on the peak impact 
forces; Negative on the length of plastic 
hinges

Gholipour et al. [54] Numerical Superstructure to pier mass ratio Significant positive on the peak impact 
forces

Height of impact location Significant positive on the peak impact 
forces and the pier demand for ratios 
more than 1.0

Fan and Yuan [59] Numerical Pier concrete nonlinearity Significant effect on the impact force and 
barge crush depth

Impact velocity Significant positive on the peak impact 
forces and durations

Barge mass Marginal effect on the impact force for 
high-velocity impacts

Getter et al. [115] Numerical and Analytical Superstructure inertia Significant effect on the pier demand
Gholipour et al. [53] Soil-pier interaction Significant effect on the relatively light 

piers
Sha and Hao [57] Experimental and Numerical Impact velocity Significant effect on the peak impact 

forces
Vessel mass Significant effect on the impact durations
Pier height Marginal influences on the impact force
Superstructures mass
Height of impact location

Zhang et al. [61] Numerical Initial kinetic energy of collision Significant positive on the pier demand 
and the soil deformations

Soil damping surrounding the piles Negative effect on the pier demand
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Fig. 17   Failure behaviors of the bridge pier with and without the superstructure subjected to ship collision [52]

Fig. 18   Progressive damage process of the bridge pier under ship collision [120]



2493State‑of‑the‑Art Review on Responses of RC Structures Subjected to Lateral Impact Loads﻿	

1 3

in the pier columns were observed, respectively, as shown 
in Fig. 18.

Sha and Hao [57] experimentally studied the impact 
responses of scaled models of fixed-base (i.e., neglecting 
soil-structure interactions at the bottom boundary condition) 
circular bridge piers subjected to pendulum impact loading 
in the presence of the equivalent mass of the superstructure. 
Considering fixed base boundary conditions led to under-
estimate pier responses. In addition, influences of several 
parameters on the impact forces and the pier responses were 
evaluated through a parametric study based on the FE simu-
lations of vessel-pier collisions. Compared to the notable 
sensitivity of the peak impact forces to impact velocity, 
impact durations were more affected by vessel mass param-
eter. Besides, structural parameters including pier height, 
superstructures mass, and the height of impact location had 
marginal influences on the impact force. In addition, the 
performance of RC bridge piers subjected to ship collision 
was evaluated by Yunlei et al. [60] using experimental tests 
on scaled models, and FE simulations of ship-pier collision 
considering nonlinear material models. The significant influ-
ences of the material nonlinearity on the impact results and 
the pier responses were concluded when for high energy 
collision scenarios.

3 � Columns Subjected to Impact Loads

The vulnerability of relatively small-size RC columns com-
monly used in low- and medium-rise RC framed buildings 
subjected to lateral impact loads has been widely studied in 
the literature [26, 30, 52, 123–125].

Liu et al. [123] experimentally and numerically carried 
out a series of low-velocity impact tests on the axially-
loaded circular RC columns. An improved FE method was 
proposed to overcome the drawbacks of existing conven-
tional FE modeling approaches in the prediction of impact 
responses of RC structures. In this method, the impact load-
ings were applied to RC columns which their concrete mate-
rials were modeled using a modified model providing proper 
confinement effects (by modifying soften behavior of the 
concrete), crack opening and closing (by modifying the con-
crete modulus), and bond-slip behaviors (by assigning dis-
crete elements along with the longitudinal reinforcements). 
In addition, from a parametric study, significant influences 
of the reinforcement ratios on both overall and local failures, 
and positive effects of the axial load on the column impact 
resistance for small deformations were concluded. However, 
no sensitivity level was determined for the positive effects of 
axial load. With the purpose of filling this gap existing in the 
previous studies, Gholipour et al. [52] carried out a paramet-
ric study on the impact responses, failure modes of square 
RC columns under different lateral impact loading varying 

in terms of axial load ratio, impact velocity, and the height 
of impact location. It was found that the ranges between 0.3 
and 0.5 for the axial load ratio caused a substantial increase 
in the impact resistance of the columns as shown in Fig. 19. 
In addition, reducing the height of impact location led to 
the increase of the peak impact force and changing of the 
column failure mode from a global flexural mode to local 
shear failures. In line with these studies, the vulnerability of 
RC columns varying in terms of shear reinforcement ratio 
and axial load level subjected to different-energy drop-
weight impact tests experimentally investigated by Yilmaz 
et al. [125]. Reducing the values of peak and residual dis-
placements, and the magnitude of the columns’ absorbed 
energy was obtained with the increase of the axial load level. 
Besides, although both shear and flexural capacities of the 
columns were increased by enhancing the axial load level 
until a balanced level identified using the moment-axial load 
interaction diagrams, the ductility and energy dissipation 
of RC columns were reduced. Beyond this level, the axial 
load had a negative influence on the resistance capacity of 
columns.

In assessing the shear mechanisms of RC columns, 
Demartino et al. [26] experimentally studied the impact-
induced responses of shear-deficient RC columns with dif-
ferent hoop spacing, and boundary conditions subjected to 
different-rate lateral impact loadings with velocities from 
2.25 m/s to 4.5 m/s. The governance of diagonal shear fail-
ures originated from the column base to the impact point was 
mostly observed as shown in Fig. 20. It was obtained that the 

Fig. 19   Failure behaviors of RC columns with different axial loads 
under middle-rate impact loading [52]
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initial impact phase was profoundly dependent on the inertial 
forces and characteristics of the contact surface. In addition, 
more severe damages were observed in columns with a fixed 
base. Similarly, from a series of dropping mass impact tests 
of shear-deficient axially-loaded RC columns conducted 
by Remennikov and Kaewunruen [124], the occurrence of 
brittle shear failures around the impact zone was mainly 
observed as shown in Fig. 21 due to the mobilization of 
inertial forces during the initial impact phase and reducing 
the bending moment at the mid-span.

Unlike the studies above, the predominance of flexural 
failure modes on the responses of square RC columns with 
different cross-sectional dimensions subjected to horizontal 
impact loads was obtained by Cai et al. [25] when the impact 
loads were applied to the top positions of columns (columns’ 
head). In addition, the influences of the columns’ slender-
ness ratio, impact weight, and velocity parameters were 
evaluated on the impact responses and damage patterns of 
the columns. The positive influences of the impacting weight 
on the average value of impact forces, the impact velocity on 
the impact durations, and the column cross-sectional dimen-
sion on the impact forces were concluded.

Despite many studies focused on the impact responses 
of RC columns, the vast majority of previous works have 

focused on the protective design, and investigating the per-
formance of retrofitted concrete columns using high-strength 
composite materials such as fiber-reinforced polymer (FRP) 
[126–129], carbon fiber-reinforced polymer (CFRP) [23, 
130–133], and ultra-high-performance fiber-reinforced 
concrete (UHPFRC) [28, 56, 134, 135], or using steel jack-
ets surrounding the core concrete such as concrete-filled 
steel tube (CFST) [136–146], concrete-filled double-skin 
steel tube (CFDST) [144–154] subjected to lateral impact 
loads. In some cases, the combinations of both approaches 
were adopted such as CFST-CFRP [133, 140, 155, 156] and 
CFST-FRP [157, 158] as a strengthening method. The posi-
tive effects of the aforementioned retrofitting techniques in 
the enhancement of impact resistance and mitigating the 
damage levels of concrete columns were mostly concluded 
in the previous works. However, the effectiveness of employ-
ing such approaches in enhancing the axial load carrying 
capacity of columns when they subjected to lateral impact 
loads has not been investigated in the literature. From the 
evaluation of the impact responses of axially-loaded CFDST 
columns, Aghdamy et al. [149] found initial peak impact 
force is most sensitive to initial impact velocity. Moreover, 
the duration of impact load was extremely dependent on 
the impact location, initial impact velocity, axial load ratio 
(limited to less than 0.3), and the impactor-to-column mass 
ratio. It was concluded that the axial load until a ratio of 0.3 
had positive influences on the magnitude of impact forces, 
the column flexural capacity, and negative effects on both 
the peak and residual values of the column displacements. 
Table 5 presents a summary of previous works studied the 
influences of various parameters on the impact responses of 
RC columns.

4 � Beams and Slabs Subjected to Impact 
Loads

Although applying of lateral impact loads arising from the 
collision of vehicles or vessels with columns is more likely 
than other structural members, beams or slabs utilized in 
framed buildings or bridges constructed in mountainous 

Fig. 20   The governance of shear failure on the responses of RC columns under lateral impact loads [26]

Fig. 21   Failure behavior of an RC column under mid-span impact 
load [124]
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areas may also be subjected to impact loads arising from 
the falling objects and rocks. Hence, many researchers have 
attempted in the literature investigating the impact forces, 
structural responses, and failure behaviors of RC beams ana-
lytically [2, 159–164], numerically [1, 165–176], and experi-
mentally [18, 20, 166, 177–187] under low-rate [1, 2, 171, 
175, 185, 187] and relatively high rate [188–191] impact 
loads by focusing on the influence of the structural-related 
parameters such as the beam inertia [170, 175, 176, 188, 
189], longitudinal [2] and transverse [18, 186, 192] rein-
forcements, and loading related parameters such as impact 
weight and velocity [185, 186]. A summary of previous stud-
ies investigating the effectiveness of various parameters on 
the impact responses of RC beams is presented in Table 6.

Fujikake et al. [2] experimentally and analytically stud-
ied the impact force and maximum mid-span deflection of 
RC beams varying in the ratio of longitudinal reinforce-
ments under different drop-weight impact loadings with 
low to medium ranges of the impact energy and velocity. 

With the purpose of evaluating the flexural failure modes 
of RC beams, they sufficiently reinforced with transverse 
reinforcements against shear failure modes. It was found that 
well-reinforced RC beams against shear failures can undergo 
overall response mode under low-rate impact loads, and 
localized response mode along with compressive damages 
in the concrete cover with increasing of the impact velocity. 
In addition, a simplified two-degree-of-freedom model was 
proposed to calculate both localized and overall response 
phases based on load–displacement responses of RC beams 
under impact loads as shown in Fig. 22.

Pham and Hao [1] numerically and analytically stud-
ied the effect of global stiffness of structure on the impact 
behavior of RC) beams. For impact velocities more than 
1 m/s, it was concluded that the initial impulse and peak 
impact force were not sensitive to the structure of global 
stiffness. While the global stiffness governed the following 
impact impulses during the free-vibration phase of the beam 
response. Delayed activation of the flexural stiffness in the 

Table 5   Summary of studies on the influence of various parameters on the impact resistance of column members

Study Analysis Parameter Effectiveness

Liu et al. [123] Experimental and Numerical Reinforcement ratios Significant effects on both overall and local failures
Axial load Positive effect on the impact resistance when the 

column deformations are small
Gholipour et al. [52] Numerical Axial load ratio Positive on the column resistance for the ratios 

between 0.3 and 0.5
Impact velocity Negative effect on the length of plastic hinges
Height of impact location Reducing the impact height changed the failure modes 

from global flexural mode to local shear failures
Yilmaz et al. [125] Experimental Shear reinforcement spacing Increased the maximum and the residual displacement 

values, the energy absorption capacities, and shear 
cracks

Axial load level Positive on the columns impact resistance for the 
levels less than a specific balanced level

Demartino et al. [26] Experimental Hoop spacing Significant effects on the column shear capacity
Boundary conditions More severe damage for fixed base columns
Contact surface Significant effects on the initial impact phase
Column Inertia

Cai et al. [25] Experimental Height of impact location Changing the column failure mode from shear to 
flexural failures with increasing the height of impact 
load

Column cross-sectional dimension Positive on the magnitude of impact forces
Impact weight Positive on the average values of impact forces
Impact velocity Positive on the impact durations

Aghdamy et al. [149] Experimental and Numerical Impact location Significant effects on the impact duration
Impact velocity
Impactor-to-column mass ratio
Axial load ratio Significant positive on the impact forces, the column 

flexural capacity until a ratio of 0.3
Alam et al. [140] Numerical Axial load Positive on the column impact resistance
Alam et al. [156] Numerical Axial load Positive until 45% of the column capacity
Chen et al. [157] Experimental Axial load Positive on the column impact resistance
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Table 6   Summary of studies on the various parameters on the impact resistance of beam members obtained by various studies

Study Analysis Parameter Effectiveness

Pham and Hao [1] Numerical and analytical Beam’s global stiffness by the beam 
span and reinforcements

Significant on the impact responses and 
failure modes at later stages than initial 
impulse

Beam’s local stiffness Significant on the beam responses in the first 
impact impulse

Fujikake et al. [2] Experimental and analytical Drop height The beam failures tended to local failures 
with increasing the drop weight

Amount of longitudinal reinforcement Lower amount caused overall flexural fail-
ures, and higher amounts caused both local 
and overall failures

Gholipour et al. [168] Numerical Impact velocity The beams tended to local failures with 
increasing impact loading rate

Jin et al. [169] Experimental Stirrup ratio Significant effects on the local damage of 
concrete; marginal effects on the impact 
force and the beam deflections

Impactor’s mass Significant positive on the impact duration
Beam span length Significant negative on the peak impact 

force; Significant positive on the impact 
duration

Guo et al. [170] Numerical and analytical Relative mass of impactor to beam Significant positive on the peak impact force 
until a ratio of 1.0

Impact velocity Significant positive on the peak impact force
Li et al. [172] Numerical Impactor’s mass Significant positive the impact force and the 

beam displacementImpact velocity
Inclination angle of impactor Significant effects on the impact force; Mar-

ginal effects on the beam displacementsConcrete strength
Li et al. [174] Numerical Impactor geometry Flat-head impactor generates the highest 

peak impact force and shortest duration, 
and had marginal effects on the beam dis-
placements; Curve-head impactor caused 
more sever damages

The curvature radius of impactor’s head Significant positive on the peak impact force; 
Negative on the impact duration

Inclination angle of impactor Significant effects on the peak impact force 
generated by flat-head impactors

Pham and Hao [175] Numerical Plastic hinge Marginal on the impact force and duration; 
Significant on the beam residual displace-
ment and the damage levels

Boundary conditions

Concrete strength Significant effects on the beam failure 
modes; Marginal effects on the impact 
force and the beam displacement

Pham and Hao [176] Numerical Beam inertia Significant effects on the beam impact 
behavior and demandPlastic hinge position

Isaac et al. [181] Experimental Span/depth ratio Significant on the force wave propagation in 
the beamImpact velocity

Yan et al. [183] Experimental and Numerical Impact velocity Changing the beam failure mode from flex-
ural to shear mode with increasing impact 
velocity

Adhikary et al. [185] Experimental and Numerical Beam-to-impactor mass ratio Large mass impacting with low velocity 
caused smaller peak impact forces and 
larger peak deflections

Longitudinal reinforcement ratio Positive on the peak impact force and nega-
tive on the beam peak deflectionsConcrete strength

Boundary conditions Fixed-end beams endured more peak impact 
forces than pinned-end beams
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following impact phases was declared as the main cause of 
such a conclusion. In addition, it was revealed that the sec-
ondary peaks of impact forces are profoundly related to the 
stress wave propagation in the impactor and the impacted 
beam. Also, the negligible effects of several structural 
parameters such as the ratio of longitudinal rebars, the beam 
span length on the initial impact impulse were concluded. 
Besides, Pham and Hao [193] found that the impact force 
and the responses of RC beams are very sensitive to the 
contact stiffness and conditions between the impactor and 
the beam. Thereafter, the significant influences of the impac-
tor geometry and interlayer between the impactor and the 
beam were concluded from a numerical study of RC beams 
done by [174] under drop-weight impact loads. Accord-
ingly, the curvature radius of the impact had positive on the 

peak impact force, and the negative effect on the duration of 
impact force. Also, more severe damages were observed in 
the beam under hemispherical and curved impactors rather 
than those exposed to a flat-head impactor.

The influences of several structural-related param-
eters including the beam span length, cross-section area, 
shear span effective depth ratios, longitudinal and trans-
verse ratios, and shear to bending resistance ratios on the 
impact responses RC beams under low-rate impact loadings 
were evaluated by Adhikary et al. [185]. It was found that 
although the increase of longitudinal reinforcement ratio 
enhanced the flexural resistance of the beams through reduc-
ing the beam deflections, the predominance of shear failures 
was obtained by observing diagonal cracks and shear plug 
damages.

Table 6   (continued)

Study Analysis Parameter Effectiveness

Zhao et al. [186] Experimental and Numerical Beam span Positive on the predomination of stress wave 
propagation on the impact response

Transverse reinforcement ratio Positive on the shear resistance of beams

Impact velocity Positive on the occurrence of local shear 
failures

Cotsovos et al. [188] Experimental and Numerical loading rate Extremely related to the beam inertial forces; 
Negative effects on the length of plastic 
hinges

Ozbolt and Sharma [192] Numerical Amount of shear reinforcement Significantly affects the crack pattern
Loading rate Significant effects on the failure modes

Pham et al. [193] Experimental and Numerical Contact stiffness Significant effects on the peak impact, the 
beam demands force, and the impact 
duration; Marginal effects on the impact 
impulse, energy, and the beam displace-
ments

Fig. 22   Simplified two-degree-of-freedom model of the responses of RC beams under impact loads proposed by Fujikake et al. [2]
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In spite of the reviewed studies above investigating the 
behaviors of RC beams under low- and medium-rate impact 
loads, there exist many research works addressing the impact 
responses of RC beams under high-rate impact loads. Zhan 
et al. [191] experimentally investigated the failure behaviors 
of RC beams under high-rate impact loadings with impact 
velocities between 6 m/s and 13 m/s. Based on the results 
from a parametric study, two empirical formulas quantita-
tively describing the relationships between the impact load-
ing energy and the impact responses of beams such as deflec-
tion, and flexural load-carrying capacity were developed.

Understanding the mechanism of stress wave propagation 
in RC structures plays the most key role in the determination 
of their shear capacity [188], demands [176], and failure 
behaviors [194, 195]. The effects of stress wave propagation 
in evaluating the impact responses of RC beams were con-
sidered by Cotsovos [188] to calculate the shear resistance, 
by Pham and Hao [176] to estimate the shear force diagram, 
and by Zhao et al. [194] to assess the shear failure and dam-
ages. Cotsovos et al. [188] concluded that the responses and 
resistance capacity of RC structures under high-rate impact 
loading are profoundly affected by the inertia forces and 
stress wave propagation at initial response phase of the struc-
ture activated in a partial length of RC beam called “effec-
tive length” (Leff) which led to different bending moment 
diagrams compared to those achieved under low-rate impact 
loadings as shown in Fig. 23. Afterwards, the load-carrying 
capacity of RC beams under high-rate impact loads was 
investigated by Cotsovos [189] using a proposed simplified 
method based on the concept of stress wave propagation and 
its travel time in RC structures. According to this method, 
stress waves generated under high-rate impact loads do 
not necessarily reach the beam supports during the initial 
phase of the response. Under such loading conditions, the 

appearance of negative moments on the upper surface of 
the beam with a distance of Leff as shown in Fig. 23 is very 
likely. It was concluded that the length of Leff decreased with 
increasing the velocity of impact loading.

In line with the works carried out by Cotsovos et al. [188, 
189], Pham and Hao [176] investigated the position of plas-
tic hinges formed in RC beams, and the dynamic demand 
diagrams for the shear force and bending moment under 
impact loads by assuming the linear distribution of iner-
tia force along the beam. By assuming the mobilization of 
inertial forces in a partial length of the beam (i.e., effective 
length), the formation of plastic hinges was expected inside 
the effective length between the stationary points where 
the beam’s accelerations and inertia were zero as shown 
in Fig. 24. Besides, the influences of the plastic hinge and 
boundary conditions on the behavior of RC beams under 
low-rate impact loads were assessed by Pham and Hao [175]. 
Considering the location of plastic hinges in the determina-
tion of the equivalent stiffness of RC beams was extremely 
recommended. Also, it was obtained that the boundary con-
ditions had marginal effects on the peak value and the dura-
tion of the impact force.

Fig. 23   Schematic of bending moment diagrams of the RC beam under a high-rate, b low-rate impact loads [188]

Fig. 24   Estimation of plastic hinge location in RC beams under 
impact load by Pham and Hao [52]
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Since beams are basically designed to fail in flexural 
modes, recognizing their shear mechanisms is the topic of 
importance which has been investigated by several previ-
ous studies experimentally [20, 181, 186], numerically [192, 
194], and analytically [195, 196]. The shear failure mecha-
nism of RC beams under drop-weight impact loading was 
experimentally and numerically studied by Zhao et al. [186] 
by varying various parameters including beam span, trans-
verse reinforcement ratio, impact mass, and impact velocity. 
It was mainly concluded that the beams tended to fail in 
shear modes through the occurrence of localized shear plug 
and diagonal cracks around the impact zone shortly after the 
onset of impact loading with increasing the impact veloc-
ity. Based on the experimental observations, shear failure 
modes were categorized into three types as shown in Fig. 25 
including: (1) diagonal cracks and shear plug failure around 
the impact zone under high-rate impact loading (Type I), 
(2) inclined flexural-shear cracks and damages propagated 
from the supports to the impact point under low-rate impact 
loading (Type II), (3) a combined failure mode (Type I + II).

The inability of existing simplified single-degree-of-free-
dom methods in assessing the shear failures of beams under 
impact loads motivated Yi et al. [195] to propose a simplified 
approach predicting the shear resistance and evaluating the 
occurrence probability of shear failures in an effective length 
of RC beams under impact loads considering the effects of 
stress wave propagation. Since the proposed method was 
only based on shear capacity and demand of beams without 
considering shear deformation, quantifying the shear dam-
age was not possible. Hence, Zhao et al. [194] improved 
their previous approach proposed in [186] to a simplified 

three-degree-of-freedom as shown in Fig. 26 by considering 
the beam deformations in both shear and flexural response 
modes. The positive influences of the beam span length on 
the duration of the impact forces were obtained compared to 
its negative effects on the mean of impact forces.

From an experimental investigation by Saatci and Vec-
chio [18] on the shear behaviors of RC beams varying in 
the ratio of shear reinforcements under high-rate impact 
loading with an impact velocity of 8 m/s, it was observed 
that all specimens with different shear resistances suffered 
severe shear cracks and shear plug failures. Moreover, by 
measuring the velocity of impact force wave propagating 
from the impact point to supports, it was revealed that the 
velocity of force wave could be significantly smaller than 
that of longitudinal and shear wave velocity with totally dif-
ferent inherent. From another experimental study done by 
Kishi et al. [20], failure behaviors of twenty-seven simply-
supported RC beams without shear rebar were investigated 
under drop-weight impact loading. The occurrence prob-
ability of flexural failure modes in the beams without shear 
rebar was concluded under low-rate impact loads. However, 
the beams tended to fail in shear modes by increasing the 
impact velocity. Figure 27 shows the typical failure modes 
including global and localized shear and flexural failures in 
RC beams with simple supports varying in shear and flex-
ural strengths under different-rate impact loads based on the 
information and observations from the previous works [2, 
20, 181, 185, 188]. It is observed that RC beams with low-
shear and low-flexural strengths under low- and middle-rate 
impact loads [20, 181, 185] suffer overall shear and flex-
ural failures. Moreover, beams with sufficient flexural-shear 

Fig. 25   Typical shear failure 
modes in RC beams under 
different-rate impact loadings 
[186]
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strength endure minor flexural cracks under low-rate impact 
and global flexural-shear damages under middle-rate impacts 
[2]. When RC beams are subjected to high-rate impact loads, 
compared to the formation of a plastic hinge in the beam 
with low flexural strength, the occurrence of localized shear 
plugs around the impact zone is observed in the beams with 
sufficient flexural strengths [20, 181].

With the purpose of protective design of RC structures 
against impact loads, several research works can be found in 
the literature investigating the performance of RC beams ret-
rofitted and reinforced by high-strength composite materials 
such FRP [197, 198], steel fiber reinforced concrete (SFRC) 
[199] CFRP laminates [200–202], UHPFRC [187], recycled 
aggregate concrete (RAC) [184], glass FRP (GFRP) rebars 
[203], engineered cementitious composites (ECC) contain-
ing polyvinyl alcohol (PVA) fibers [204], high strength steel 

wire mesh and high performance mortar (HSSWM-HPM) 
[182], coconut fibre reinforced concrete (CFRC) beams 
strengthened with flax fibre reinforced polymer (FFRP) 
[205], or strengthened by steel jackets [138, 205]. Also, 
there exist some limited numbers of research works study-
ing the performance of precast concrete beams under impact 
loads [172, 183].

Slabs are also one of the most common structural mem-
bers which are commonly used in connection with support-
ing beams. Many studies existing in the literature evaluating 
the dynamic responses, and failure behaviors of concrete 
slabs and plates under low- [206–212], moderate- [213] and 
high-rate [214] impact loads analytically [214–216], numeri-
cally [213, 215, 217–219], experimentally [22, 208, 211, 
218, 220, 221]. Generally, concrete slabs underwent two 
typical failure modes including globally distributed crack 

Fig. 26   The simplified three-degree-of-freedom model proposed by Zhao et al. [194]

Fig. 27   Typical failure modes of RC beams varying in shear and flexural strengths under different-rate impact loads [165]
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patterns [209, 211] under low-rate impact loads, and local-
ized failure and punching shear failure [22] under high-rate 
and projectile [222–229] impact loads and shown Fig. 28a, 
b. Like as those retrofitting approaches used to protect of 
concrete columns and beams against impact loads, several 
research works focused on investigating the performance of 
concrete slabs strengthened with composite materials such 
as steel fibers [206], FRP [212], CFRP [230], ultra-high per-
formance concrete (UHPC) [207], UHPFRC [208] slurry-
infiltrated fibrous concrete (SIFCON) [212], hybrid bamboo 
fiber (HBF) [231], coconut fibre [212, 232] and reinforced 
by FRP-bars [233].

The main objectives of utilizing these protective design 
techniques are to mitigate the brittle damages and enhanc-
ing both shear and flexural resistance of concrete structures 
in harsh environments or under extreme loadings. There-
fore, special recommendations should be considered in uti-
lizing these methods with regard to the applications of the 
structures. For instance, the use of excessive high-strength 
materials in the tensile surface of RC beams may lead to the 
occurrence of early shear failures in beams prior to flexural 
modes.

5 � Conclusion

This paper presents a state-of-the-art review of responses 
and behaviors of different concrete structures subjected to 
lateral impact loads. First, the basic theories of impact load-
ings and the response mechanisms of concrete structures to 
such extreme loads were introduced. Then, the specifications 
existing in the current design codes and guidelines regard-
ing impact loads and their limitations were discussed. In 
addition, the dynamic responses and failure behaviors of 

concrete structures including bridge piers subjected to vehi-
cle and vessel collisions, or isolated structural members such 
as concrete columns (commonly used in low- and medium-
rise buildings), beams, and slabs under lateral impact loads 
of rigid objects analyzed using simplified analytical, finite 
element simulations, and experimental methods were com-
prehensively reviewed. Moreover, the influences of vari-
ous load- and structural-related parameters on the impact 
responses of concrete structures were studied.

It was revealed that the impact loads predicted by the cur-
rent guidelines may be unconservative due to omitting the 
amplification dynamic effects such as inertia and strain rate 
effects. Also, despite many attempts in recognizing the fail-
ure modes and especially shear failures of RC bridge piers 
under vehicle collisions, there is no recommendation in the 
current design codes considering the damage states of the 
impacted structure in the prediction of equivalent impact 
loads.

From the review on the influences of various parameters 
on the impact responses of RC columns and piers under lat-
eral impact loads arising from vessel or vehicle collisions, it 
was obtained that the effectiveness of the axial load param-
eter has not been rigorously explored. However, most of the 
previous researches have studied the impact capacities of 
axially-loaded structures when they were exposed to their 
service levels of axial loads.

By reviewing vessel-pier collision studies, the vast major-
ity of these research works concluded the significant influ-
ences of the dynamic parameters of both striking vessels 
and struck structures such as the pier inertia, axial load ratio 
(superstructure inertia-related), geometry, and soil-structure 
interaction behavior on the impact responses of bridge piers. 
Hence, the inability of the current design codes in estimating 
accurate and reasonable impact loads and responses under 

Fig. 28   Typical failure modes of concrete slabs under different impact loads



2502	 C. Zhang et al.

1 3

vessel collisions was found due to neglecting the effects of 
these parameters.
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