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Abstract
The study is dedicated to the problem of uncertainty in the analysis of accident situations in road traffic. The term “uncer-
tainty” is generally known when used with reference to measurement techniques, but its application to the analyses of accident 
situations in road traffic, including accident reconstruction, is a relatively new field of knowledge. The objectives of this 
work include the presentation and examination of selected aspects related to the taking of uncertainty into account when 
analysing the course of an accident and making the necessary calculations. Apart from the scientific objectives, an important 
utilitarian goal may also be pointed out. The data and methods presented may be used by automotive technology experts in 
their accident reconstruction work. The paper shows seven methods that enable the taking into account of the uncertainty of 
the data used for calculations, i.e. extreme values method, total differential method, higher-order total differential method, 
finite-difference method, Gauss method, method based on the description of stochastic processes, and Monte-Carlo method. 
Apart from formal (mathematical) descriptions of the methods, an example of their use for the estimation of uncertainty of 
selected quantities that describe an accident situation has been demonstrated. The bad and good points of individual methods 
have been shown in the context of the application considered.

1  Introduction

1.1 � Purposes of Analysing Road Accidents

When road accidents and collisions are examined, they may 
be either treated as a mass phenomenon or analysed indi-
vidually. The examinations are carried out, above all, to get 
to know the nature of such incidents (whether considered in 
mass or individual terms) in order to identify their reasons 
and, afterwards, to take actions aimed at improving the road 
traffic safety in the future. The analyses of this kind are used 
by institutions responsible for the shaping of the transport 
safety system. A separate group of the examinations consists 
of the investigations carried out to ascertain the accident 
circumstances that would enable the identification of the 
perpetrators and those to blame for the accident. In this case, 

the analyses are chiefly used by law-enforcement authorities 
(prosecutors, courts, etc.).

One of the elements of the analysis of an accident (colli-
sion) that has taken place is the “accident reconstruction”, 
i.e. an attempt to reconstruct the course of what happened. 
The reconstruction results may be of crucial importance, 
especially for the participants in the incident. Such results 
provide grounds for the law-enforcement authorities to for-
mulate procedural motions as regards accident perpetrators 
and for the court to make a decision about the guilt and to 
pass a sentence. It should be stressed here that, intrinsically, 
the analysis is carried out after the incident has taken place. 
The forensic expert who prepares the opinion, using his/her 
knowledge and the trace evidence collected at the incident 
site (including the results of post-incident measurements), 
making definite assumptions regarding the values of the 
parameters that describe the incident, and using the meth-
ods available to him/her, carries out a series of operations in 
the form of calculations and inferences in order to determine 
the quantities that are important for identifying the acci-
dent reasons. Such quantities may describe the pre-incident 
behaviour of the participants, the motion of the vehicle or 
vehicles involved, or other important circumstances.
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Due to the purpose, the reliability of the expert’s opinion 
issued is essential. A matter of great importance is compe-
tence of the investigators, adequacy of the tools used for 
the accident reconstruction, and appropriate selection of the 
parameter values assumed. The uncertainty of the opinion 
is a somewhat different issue. Intrinsically, only approxi-
mate values of most parameters can be assumed. Therefore, 
a question arises about the accuracy of the parameter val-
ues determined in the accident reconstruction process or, in 
other words, about the uncertainty of determining the values 
of the quantities that are important in terms of the recon-
struction purposes. This is the basic thread of this work.

1.2 � The Notion of Uncertainty

The term “uncertainty” is used in many fields of science, 
where its meaning may be different. It is used in the decision 
theory, which is one of the branches of mathematics and 
finds application in very different areas, such as statistics, 
information science, engineering problems (optimization), 
psychology, sociology, economy (management), or medi-
cine. In general, the uncertainty is defined as a state (situa-
tion) where the decisions made may produce various effects, 
with the probabilities of such effects being unknown [15]. 
The term “uncertainty” is firmly established in the fields 
of metrology and measurement techniques. Here, this term 
may be considered in its broader sense, as a set of general 
doubts about measurement results. However, it is more often 
understood “in the narrower meaning”, i.e. as a parameter 
describing the limits of variation in measurement results. In 
the document Guide to expression of uncertainty in measure-
ment [16], the notion of uncertainty is defined as parameter, 
associated with the result of a measurement, that character-
izes the dispersion of the values that could reasonably be 
attributed to the measurand.

In the formulation of expert’s opinions about road acci-
dents, the uncertainty of calculation results will always be 
involved. This will be related to both the uncertainty of the 
data assumed and the uncertainty of the computing tools 
used. With some simplification, the uncertainty of results 
of accident reconstruction calculations may be considered 
as corresponding to the notion of uncertainty of an indi-
rect measurement in measurement technology. It may be 
assumed that the uncertainty of calculation results obtained 
during an analysis (reconstruction) of a road accident (or, in 
more general terms, accident situation) will be a parameter 
(or a set of parameters) describing the possible dispersion 
of values of the quantity (or quantities) determined by the 
calculations.

In terms of usefulness, the accident reconstruction uncer-
tainty is often associated with the reconstruction reliability. 
These two notions are not identical with each other. The 
uncertainty should be understood as defined above, while the 

reliability is related to the confidence that the reconstruction 
result (whether the uncertainty has or has not been deter-
mined) is correct. A formal description of determining the 
reliability has been proposed in [24], where the reliability 
has been defined, in most simplified terms, as the probability 
that the reconstruction is true, with using the probabilistic 
structure of the Bayes network.

1.3 � Objective and Scope of the Study

Limiting ourselves to the part related to purely computa-
tional problems, we may present this in the form of a simple 
diagram (Fig. 1): the expert has a set of data describing the 
accident under analysis (Data), runs calculations with using 
a method that is available or chosen in consideration of the 
nature of the incident and the actual purpose of the analy-
sis (Tools), and obtains a specific result (Results). As an 
example: if the problem under analysis is the vehicle braking 
process and the quantity to be found is the vehicle stopping 
distance Sz, the set of input data may consist of initial veloc-
ity of vehicle motion (V0), braking deceleration (ah), driver 
reaction and braking system response time (tr), and decelera-
tion rise time (tn). As the computing method, any method 
may be used that would be suitable for transforming the data 
set into the vehicle stopping distance Sz to be determined, 
e.g. the analytical formulas known from the fundamentals of 
the mechanics of vehicle motion (such as e.g. given by [20]).

From the analysis objective point of view, the most 
important issue is the final analysis result. It is burdened 
with a definite uncertainty, stemming from the uncertainty 
of the input data and from the uncertainty generated by the 
computing method used. As regards the data, the uncertainty 
may come from different sources. Some of the data may be 
taken from measurements carried out at the accident site 
and this is the case where classic measurement uncertainty, 
both of random and systematic type, is encountered. Some 
other data, however, are assumed by the expert who runs 
the calculations because either appropriate measurements 
are impracticable for technical, organizational or economic 
reasons or such data cannot be directly applied. A good 
example may be here the driver reaction time, because its 
value may vary within very wide limits depending on many 
diverse factors describing e.g. the complexity of the traffic 
situation, passing psychophysical condition of the driver, etc.

As regards the computing methods, the uncertainty arises 
from the models and other mathematical tools used, which 
represent the real phenomena only in a simplified way. Even 
if the true values of individual parameters of the computa-
tional model adopted are used, the result obtained is only an 
approximation of the true value to be found. Simultaneously, 
the uncertainty resulting from the use of a specific method is 
not necessarily correlated with the degree of complexity of 
the model employed. Here, expert’s knowledge and skills are 
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important for the appropriate selection and use of a model 
that would best suit the problem under analysis, in respect 
of the uncertainty as well.

In this study, attention will be focused on the first source 
of uncertainty and the considerations will be dedicated to the 
methods that would make it possible to take the uncertainty 
of the input data into account in the calculations.

2 � The Problem of Uncertainty 
in the Reconstruction of Road Accidents

2.1 � Road Accident Reconstruction Methods

In most general terms, the said methods may be divided into 
two categories:

•	 those using mathematical models of the man-vehicle-
environment system;

•	 those using data recorded by “black box” type devices, 
i.e. Event Data Recorders (EDR).

The former is the basic one. The methods of the other 
category were unavailable until quite recently. The first auto-
motive EDRs appeared in mid 1990s, but they still have not 
become widespread equipment of motor vehicles.

The models met at present are characterized by very 
different degrees of complexity, varying from simple ana-
lytical models to sophisticated systems where more or less 
complicated simulation programs must be used. In the com-
plex simulation programs, multiple partial models most 
frequently occur, which represent various subsystems or 
components of the man-vehicle-environment system, con-
stituting together a test environment designed for specific 
purposes.

2.2 � Sources of Uncertainty in the Reconstruction 
of Road Accidents

As shown in the schematic diagram in Fig. 1, the accident 
reconstruction calculations are carried out for a certain set 
of data. In the case of mathematical models being used, the 
input data are assumed by the expert; if EDR data are avail-
able, then the values recorded are often used as the input. 
Two basic sources of uncertainty of the input data may be 
distinguished:

•	 measurement uncertainty of the quantities measured;
•	 uncertainty of the parameter values assumed (referred to 

as statistical uncertainty).

For data measurement results, the uncertainty sources 
may be all the factors that are characteristic for the specific 

Fig. 1   Schematic diagram illustrating the main issues of the process of accident reconstruction
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measurement techniques (see e.g. [16]), i.e.: incomplete defi-
nition of the measurand, uncertainty related to the carrying 
out of the measurement (including errors of the method 
and measuring system used, non-representativeness, errors 
caused by environmental impact, reading errors, approxima-
tion and simplification errors), or uncertainty of measuring 
instruments.

However, the carrying out of full-scope measurements 
on all the objects involved, whether at the incident site or 
anywhere else, is hardly possible or actually impracticable. 
This is due to the scale of such a task, because the number 
of the quantities to be measured (e.g. the number of data to 
be introduced to simulation programs) may be of the order 
of several hundred or even more. The measurement of some 
parameters may be infeasible (as an example, this applies to 
many parameters that describe the collision process, such as 
the vehicle body stiffness curve or characteristics of other 
parts or objects damaged during the collision). The meas-
urement of many other parameters might be possible, but 
this would require a lot of complicated and costly work (an 
example might be such inertial parameters of a vehicle as 
the location of the centre of vehicle mass or the moments of 
inertia of vehicle body solid or road wheels). Therefore, a 
significant number of data are assumed by the expert, based 
on technical documentation of the vehicles involved, simpli-
fied models used to estimate the values of the quantities in 
question, expert’s experience, or specialized literature.

There is also a specific category of parameters that are 
measurable but actually cannot be measured or can be 
measured in exceptional situations only. Simultaneously, 
such parameters are often critical from the point of view 
of the course of the incident. As regards vehicle motion, 
two parameter groups should be pointed out here (this has 
already been mentioned in Sect. 1.3): one of them is related 
to characteristics of the tangential tyre-road interaction (in 
simplified terms, the tyre-road adhesion characteristics) and 
the other one is related to the description of human (vehicle 
driver or pedestrian’s) behaviour.

Another source of uncertainty is the tool used to trans-
form the set of input data into a set of the analysis results 
sought. In the case of classic calculations, such a tool is the 
computing method employed, i.e. the mathematical method 
of the phenomenon under analysis. This type of uncertainty 
is referred to as modelling uncertainty. Its estimation is 
based on the data obtained from validation or experimental 
verification of the model.

To recapitulate: the uncertainty of the calculation results 
obtained in an analysis of accident situations is a function 
of the uncertainty of the input data taken for the calcula-
tions (burdened with measurement uncertainty or uncer-
tainty stemming from specific attributes of the data) and the 
uncertainty of the computing tool. A separate problem is the 
method of transforming the uncertainty of the input data into 

the uncertainty of the calculation results to be found, i.e. the 
method of taking the data uncertainty into account. Depend-
ing on the selection of this method (including its applicabil-
ity to the specific computing method used to analyse the 
situation), different uncertainty of the calculation results 
may be obtained at the same uncertainty of the input data.

2.3 � Review of the Literature Dealing 
with Uncertainty in Road Accident Analysis 
and Objective of the Study

The problem of uncertainty in the analysis of road accidents, 
although encountered from the very outset of accident recon-
struction attempts, has actually been addressed in the scien-
tific literature for quite a short time. The first publications 
where reference is directly made to the issues of uncertainty 
in the field of analyses of accident situations in road traffic 
date back to the first half of 1990s. These were American 
works Uncertainty in Accident Reconstruction Calculation 
[5] and The Technique of Uncertainty Analysis as Applied to 
the Momentum Equation for Accident Reconstruction [22]. 
In both of them, some analytical methods that made it pos-
sible to determine the uncertainty of the results obtained 
and the applications of such methods to simple calculations 
related to the accident reconstruction (estimation of the stop-
ping distance, estimation of the pre-impact velocities) have 
been presented. An important item is the publication Uncer-
tainty Analysis for Forensic Science [8], where the authors 
present fundamentals of the uncertainty calculus (includ-
ing the probability theory and sensitivity analysis) from the 
point of view of the applicability of such a calculus to the 
preparation of forensic experts’ opinions, including those 
related to accident analysis.

To date, many publications have come out that raise these 
problems. Apart from the works mentioned above, various 
methods of taking the uncertainty of data into account have 
been considered. The use of the total differential method has 
been discussed e.g. in [25]. In [2], the finite-difference method 
has been used to estimate the uncertainty. Numerous publica-
tions have dealt with the use of the Monte-Carlo method [1, 9, 
10, 12, 17, 26, 27]. The technique where elements of the DoE 
(Design of Experiments) theory are used is also employed [6]. 
A probabilistic approach to uncertainty may be found in [11], 
where the uncertainty is defined as conditional probability. 
The publications [3, 13] cover the issue of measurement uncer-
tainty at the reconstruction of motor vehicle collisions. The 
estimation of uncertainty with employing “interval arithmet-
ics” and the technique where elements of the DoE theory are 
used is also considered in the literature [28]. In [18], the point 
estimation method has been presented as a probabilistic tool 
for determining the uncertain parameters of a vehicle collision. 
The issues concerning the uncertainty of accident reconstruc-
tion calculations have also been indirectly touched upon in 
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[21], where the sensitivity of the calculated values of the vehi-
cle velocity change (ΔV) to vehicle and impact parameters is 
discussed, or in [23], where the coherence of data recorded in 
the accident database is analysed. A reference to this problem 
has also been made in [4], where a method has been presented 
that makes it possible to reduce the uncertainty of the esti-
mated velocity of a pedestrian crossing the road.

The above shows that there are many methods of determin-
ing the uncertainty of calculations. Hence, a question arises 
about the comparability of results of such calculations. A dis-
cussion about this matter has already been presented in [19]. 
In this study, the authors return to this issue, with increasing 
the number of the methods considered. With reference to the 
schematic diagram shown in Fig. 1 herein:

•	 seven useful methods of transforming the uncertainty of 
input data into the uncertainty of calculation results have 
been presented, together with formal descriptions;

•	 an example of their use has been demonstrated, with com-
paring the uncertainties obtained by different methods.

3 � Computing Methods in the Analysis 
of Uncertainty of Accident Reconstruction

3.1 � Theoretical Foundations of the Seven Methods

First, let us assume that an adequate data set and a tool (math-
ematical model) making it possible to calculate the quantities 
to be found is available. To generalize, let us adopt a matrix 
notation as a more convenient form, with treating the set of 
input data as a data vector and the set of calculation results as 
a result vector:

where x = [x1, x2, …, xm]T—data vector, known; y = [y1, y2, 
…, yn]T—result vector, to be found; f = [f1, f2, …, fn]T—
functional vector, describing the relation between x and y 
(a mathematical model).

Let us assume that the uncertainties of the input data are 
also known:

Δx = [Δx1, Δx2, …, Δxm]T—vector of uncertainty of the 
estimation of vector components.

The following vectors are to be found:
y = [y1, y2, …, yn]T and Δy = [Δy1, Δy2, …, Δyn]T; the latter 

is the vector of absolute uncertainty of the estimation of vector 
y components.

When the absolute uncertainty is normalized in relation to 
the nominal value, a relative uncertainty is obtained:

(1)y = f (x)

(2)

�xrel = [�x1∕x1,�x2∕x2,… ,�xm∕xm]
T and

�yrel = [�y1∕y1,�y2∕y2,… ,�yn∕yn]
T

In the measurement uncertainty theory, two basic 
approaches are discerned, where the uncertainty is determined 
with using:

•	 a deterministic model, also referred to as “interval model”, 
where the notion of probability is not involved and the 
uncertainty value (Δyi, i = 1, …, n) having been determined 
is the uncertainty bound (maximum);

•	 a probabilistic (or statistical) model, where the result 
(yi, i = 1, …, n) is intrinsically a random variable and its 
uncertainty is measured by the dispersion of its distribu-
tion; in most cases, the parameters used as measures are 
standard deviation (“standard uncertainty”) or its multiple 
(“expanded uncertainty”).

In four sub-items below, deterministic methods will be pre-
sented, i.e. upper and lower bounds method (or extreme values 
method—EVM), first-order and second-order total differential 
method (TDM and TDM2, respectively), and finite-difference 
method (FDM); three probabilistic methods, i.e. Gauss method 
(PrM), method based on the description of stochastic processes 
(PrStM), and Monte-Carlo method (MCM), will be described 
in the next sub-items.

3.2 � Description of the Seven Methods

3.2.1 � Upper and Lower Bounds Method (EVM)

In the upper and lower bounds method (or extreme values 
method), an assumption is made that the value of the quan-
tity to be found, i.e. the value of a component of vector y, 
lies between the minimum and maximum values obtained by 
substitution of the minimum and maximum values of vector 
x components.

where xmin = [x1min, x2min, …, xmmin]T, xmax = [x1max, x2max, 
…, xmmax]T (e.g.: xjmin = xj − Δxj, xjmax = xj + Δxj, j = 1, …, 
m).

A measure of the uncertainty of the quantity y to be found 
is the difference:

A graphic interpretation of the uncertainty determined by 
means of the extreme values method has been shown in Fig. 2, 
based on an example with a function of a single variable.

An important assumption made in this method is the 
requirement of monotonicity of function yi= fi(xj) on the 
interval of vector x component values under analysis (this 
is a prerequisite for the truth of the statement about the 
extreme values of vector y components at the ends of the 

(3)�min∕�max = �
(
�min∕max

)

(4)
�y = ||ymax − ymin,

|| or, better, a half of it, i.e.: �y = ||ymax − ymin,
||∕2
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intervals defined by the xmin/max values). Depending on the 
monotonicity type, yimin/max will be treated as a function 
of xjmin or xjmax:

If the function yi= fi(xj) is not monotonic on the intervals 
defined by the xmin/max values, local extremums must be iden-
tified for the ymin/ymax extreme values to be determined.

3.2.2 � Total Differential Method (TDM)

Here, the nominal values of vector x components 
(x(0)= [x1(0), x2(0), …, xm(0)]T) and the Δx uncertainty values 
(Δx = [Δx1, Δx2, …, Δxm]T) are known. The y = [y1, y2, …, 
yn]T values to be found are directly defined by Eq. (1) for 
the set of nominal x(0) values.

In the total differential method, the uncertainty of deter-
mining vector y components can be found by using the 
notion of first-order sensitivity coefficient and the total 
differential:

(5)
𝜕yi

𝜕xj
> 0 ⇒ yimin∕max = fi

(
xjmin∕max

)

(6)
𝜕yi

𝜕xj
< 0 ⇒ yimin ∕max = fi

(
xjmax∕min

)

In the matrix notation, this may be written as follows:

A graphic interpretation of the uncertainty determined by 
means of the total differential method has been illustrated 
in Fig. 3. It should be noted that in this method, the uncer-
tainty is determined by linearization of function fi(x1, …, 
xm), i = 1, …, n.

The uncertainty vector Δy = [Δy1, Δy2, …, Δyn]T defines 
the maximum values of errors in estimating vector y compo-
nents, i.e. the uncertainty bound. For linear models yi= fi(xj), 
this method becomes identical with the extreme values 
method.

This method is convenient, but it only produces good 
results when relations fi(xj) are characterized by relatively 
small changes in the sensitivity coefficient Wij in the interval 
xj±Δ xj under interest. Its basic good point is the fact that 
it directly includes elements of sensitivity analysis, which 
makes it possible to identify the parameters whose impact 
on calculation results is more or less considerable.

One of the weak points of determining the uncertainty 
with the use of formulas (7) or (8) may be the unreason-
ably “extended” uncertainty range, hindering its practical 
use in estimating the uncertainty (this will be demonstrated 

(7)

Δyi =

m∑
j=1

|||Wij ⋅ Δxj
||| where Wij =

�yi

�xj

|||||xj=xj(0)
, i = 1,… , n

(8)�� = � ⋅ �� =

⎡⎢⎢⎣

��W11
�� ⋯ ��W1m

��
⋮ ⋱ ⋮

��Wn1
�� ⋯ ��Wnm

��

⎤⎥⎥⎦
⋅

⎡⎢⎢⎣

Δx1
⋮

Δxm

⎤⎥⎥⎦

Fig. 2   Illustration of uncertainty in the extreme values method (sub-
script “0” indicates the nominal value) Fig. 3   Illustration of uncertainty in the total differential method
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in a calculation example; however, the same may be said 
about the EVM). This applies in particular to the situations 
where many data xj are burdened with uncertainty and the 
“effects” of individual uncertainties (formulas (7) or (8)) are 
summed up due to the nature of the method. As mentioned 
previously, this method determines the uncertainty bound if 
an assumption is made that the situation where all the data 
take the values at the ends of their intervals can occur with 
a probability identical to that of any other situation. In prac-
tice, such a case is hardly realistic. Therefore, to determine 
the uncertainty by this method, a procedure is sometimes 
run that is similar to that adopted for complex measure-
ment uncertainties and a statistical model. In such a case, 
the uncertainty is assumed as a vector sum of uncertainty 
components and this is a “combined standard uncertainty” 
determined in accordance with the “law of propagation of 
uncertainty” (also referred to as “uncertainty propagation 
rule”) [8, 16]:

Sometimes, the uncertainty thus determined is called 
“mean square uncertainty”, e.g. in [26]. To differentiate, 
the uncertainty defined by (7) or (8) will be denoted here by 
TDMM (“maximum uncertainty” or “uncertainty bound”) 
while that defined by (9) will be denoted by TDMS (“mean 
square uncertainty”).

3.2.3 � Higher‑Order Total Differential Method (TDM2)

In the classic total differential method described above, the 
function y = f(x) is linearized. In the case of non-linear rela-
tions, when considerable changes in the sensitivity coeffi-
cient Wij occur in the interval xj±Δ xj under interest (at a 
significant non-linearity), the uncertainty determined will 
be burdened with an error (cf. Figs. 2 and 3).

Formulas (7) and (8) may be derived by expanding the 
function y = f(x) into a Taylor series:

(9)Δyi =

√√√√ m∑
j=1

(
Wij ⋅ Δxj

)2

(10)

fi(x1 + Δx1, x2 + Δx2,… , xm + Δxm) = fi(x1, x2,… , xm) +
�fi

�x1
Δx1 +

�fi

�x2
Δx2 +⋯ +

�fi

�xm
Δxm

+
�
2fi

�x2
1

⋅

(
Δx1

)2
2!

+
�
2fi

�x2
2

⋅

(
Δx2

)2
2!

+⋯ +
�
2fi

�x2
m

⋅

(
Δxm

)2
2!

+ 2 ⋅
�
2fi

�x1�x2
⋅
Δx1Δx2

2!
+ 2 ⋅

�
2fi

�x1�x3
⋅
Δx1Δx3

2!
+⋯ + 2 ⋅

�
2fi

�x1�xm
⋅
Δx1Δxm

2!

+ 2 ⋅
�
2fi

�x2�x3
⋅
Δx2Δx3

2!
+⋯ + 2 ⋅

�
2fi

�x2�xm
⋅
Δx2Δxm

2!
+⋯ 2 ⋅

�
2fi

�xm−1�xm
⋅
Δxm−1Δxm

2!
+⋯

Hence, the following will be obtained:

If only the term with the first-order derivative is taken 
into account then, after absolute values are introduced to 
make individual equation terms independent of the sign of 
the derivative values, a relation described by formula (7) 
will be obtained. If the terms with the second-order deriva-
tives are also taken into account then an equation defining 
the uncertainty by the second-order total differential method 
TDM2 will be formulated:

(11)

Δyi = fi(x1 + Δx1, x2 + Δx2,… , xm + Δxm) − fi(x1, x2,… , xm)

=

m∑
j=1

𝜕fi

𝜕xj
Δxj +

1

2

m∑
j=1

𝜕
2fi

𝜕x2
j

⋅
(
Δxj

)2
+

m∑
j=1,k=2
k>j

𝜕
2fi

𝜕xj𝜕xk
⋅ ΔxjΔxk +⋯

(12)

Δyi =

m∑
j=1

|||Wij ⋅ Δxj
||| +

1

2

m∑
j=1

|||W
(2)

ijj
⋅ Δx2

j

||| +
m∑

j=1,k=2
k>j

|||W
(2)

ijk
⋅ Δxj ⋅ Δxk

|||

Fig. 4   Illustration of the difference between uncertainties determined 
by the total differential methods TDM and TDM2
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where W (2)

ijk
=

�
2yi

�xj�xk

||||xj=xj(0),xk=xk(0)
 , i = 1, …, n and j, k = 1, …, 

m.
Coefficients W (2)

ijk
 are coefficients of the second-order sen-

sitivity of the ith quantity to the jth and kth parameter. In 
qualitative terms, the difference between the TDM and 
TDM2 methods has been illustrated in Fig. 4. For linear 
models yi= fi(xj), this method becomes identical with the 
extreme values method and the first-order total differential 
method.

Equation (10) may also be used to derive formulas for 
determining uncertainty with taking into account the higher-
order terms. However, this is of limited practical importance 
in real applications. For functions of multiple variables, 
the number of partial derivatives (sensitivity coefficients) 
becomes very big. As an example: two first-order and three 
second-order sensitivity coefficients have to be determined 
for a function of two variables, while for a function of six 
variables, the numbers of such coefficients will rise to 6 and 
21, respectively (the number of the second-order coefficients 
will be equal to the number of 2-combination with repeti-
tions on an m-element set). It should also be noted that if 
the uncertainty is determined by such a method with using 
total differentials of an order higher than 1 (one) then the 
uncertainty value obtained will always be raised and this 
will considerably reduce the usefulness of the said method.

3.2.4 � Finite‑Difference Method (FDM)

The finite-difference method of uncertainty calculation is in 
practice a simplified version of the total differential method. 
Here, the partial derivatives do not have to be determined 
in analytical form. As it is in the TDM case, the uncertainty 
formula is derived by expanding the function into a Taylor 
series (see Eq. 10), with the series being confined to first-
order terms only. The partial derivative (sensitivity coeffi-
cient) values are estimated with using a difference quotient 
and replacing the derivative with the ratio of increments:

where δxj—sufficiently small increment of the xj value; δyj—
increment of the function value caused by δxj.

The uncertainty formula has a form similar to that of (7):

For linear models yi= fi(xj), this method intrinsically 
becomes identical with the methods presented previously.

(13)
�yi

�xj
≈

�yi

�xj
=

fi(xj + �xj) − fi(xj)

�xj

(14)

Δyi =

m∑
j=1

|||W
�

ij
⋅ Δxj

||| where W�

ij
=

�yi

�xj

|||||xj=xj(0)
, i = 1,… , n

Here, the option of determining the uncertainty as a vec-
tor sum of uncertainty components is also used, as it is in 
the TDM case:

The δxj value is arbitrarily selected (therefore, adequate 
experience of the person who runs the calculations would be 
welcome). It should be such that the partial derivative value 
could be satisfactorily approximated. According to [8], the 
δxj value should be initially assumed as about 0.01xj(0) and 
then gradually reduced, if necessary, until it no longer affects 
the uncertainty level Δyj obtained.

3.2.5 � Gauss Probabilistic Method (PrM)

The uncertainty determination methods described above are 
categorized as deterministic. In such an approach, any com-
bination of values xj falling into intervals xj(0) ±Δ xj, j = 1, 
…, m is considered as equally probable. In consequence, the 
uncertainty of calculations may be overestimated. To take 
into account the fact that some variants of such combinations 
(e.g. a situation that all the xj values would be at the ends of 
intervals xj(0)±Δ xj) may occur with a low probability, the 
probabilistic nature of the quantities under analysis should 
be regarded.

In the probabilistic methods, an assumption is made 
that the components of vector x: xj, j = 1, …, m are random 
variables with known probability distributions. In conse-
quence, the components of vector y: yi, i = 1, …, n defined 
by a functional relation y = f(x) are also random variables 
and the probability distribution of vector x determines the 
distribution of vector y. However, the analytical determina-
tion of the latter when the numbers of components of vectors 
x and y exceed 2 and the functional vector f is non-linear 
is a complicated problem, solvable in some specific cases 
only. In the applications under consideration, therefore, it is 
justified to use a simplified method, which may be found in 
the literature items dealing with measurement uncertainty, 
including [16], or analyses of accident situations, such as [7] 
or [8], in the calculus of errors, such a method is referred to 
as “Gauss method” or just “statistical method”.

The said method is based on the following assumption: 
if the quantity to be found is a function of vector x: y = f(x) 
and the components of vector x: xj, j = 1, …, m are described 
as independent random variables with normal probability 
distribution Nxj(x̄j, 𝜎xj) , where x̄ is the mean value and �x is 
the standard deviation, then yi, i = 1, …, n is a random vari-
able with normal probability distribution Nyi(ȳi, 𝜎yi) and the 
mean value ȳi is a function of the mean values of vector x 
components:

(15)Δyi =

√√√√ m∑
j=1

(
W�

ij
⋅ Δxj

)2
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The standard deviation �yi may be expressed by the fol-
lowing formula (identical with the formula of combined 
standard uncertainty [16]:

The uncertainty of the quantity to be found may be deter-
mined for any confidence level.

3.2.6 � Method Based on the Description of stochastic 
processes (PrStM)

This method is a generalization of the PrM method. It may 
be employed when the mathematical model is explicitly 
dependent on time. In general terms, such a model is a sys-
tem of differential equations having the following general 
form:

where y = [y1, y2, y3, …, yn]T—vector of state coordinates; 
F = [f1, f2, f3, …, fn]T—functional vector.

When stochastic processes are introduced to the model, 
Eq. (18) may take a general form:

where � =

⎡⎢⎢⎣

g11 ⋯ g1m
⋮ ⋱ ⋮

gn1 ⋯ gnm

⎤⎥⎥⎦
 , gij= gi(yj,t) and Xt= [Xt1, Xt2, Xt3, 

…, Xtm]T—vector of an m-dimensional stochastic process.
The equation solving methods depend on the equation 

form and the nature of the stochastic processes. A good 
point of the approach presented is the fact that the results are 
obtained in the form of complete probabilistic characteristics 
of the parameters sought, determined for any instant that 
may be freely chosen. On the other hand, the difficulty of 
obtaining an analytical solution makes a serious limitation; 
significant simplifications (linearization methods, simplifi-
cations of the nature of the stochastic processes) are often 
indispensable even for models that are not very complicated. 
A necessity also arises to determine characteristics of the 
stochastic process. In the case of processes compatible with 
the correlation theory of stochastic processes, the function 
describing the expected value and the correlation function 
should be known, while the latter is generally very difficult 
to be determined. Therefore, the applications of this method 
to the problems under consideration are very restricted 
(nevertheless, an example application will be presented in 
Sect. 4).

(16)ȳi = fi(x̄1, x̄2,… , x̄m), i = 1,… , n

(17)𝜎yi =

√√√√ m∑
j=1

(
𝜕yi

𝜕xj
⋅ 𝜎xj

)2

for xj = x̄j

(18)�̇ = �(�, t)

(19)�̇ = �(�, t) +�(�, t) ⋅ �t

3.2.7 � Monte‑Carlo Method (MCM)

The Monte-Carlo technique is now one of the most powerful 
computing tools used in analyses of the phenomena and pro-
cesses that cannot be described by analytical models due to 
their complexity. It works very well especially in the compu-
tational problems where random phenomena should be taken 
into account. In general terms, its essence lies in repeating 
an experiment many times with test parameter values being 
changed at random within a range defined by the specific 
type of the experiment and the phenomenon examined. Due 
to the iterative nature of this technique, it is counted among 
simulation methods. For this reason, the term “Monte-Carlo 
simulation” can often be found in the literature (see e.g. [8, 
9, 26]).

For the issues in question, this method makes it possi-
ble to find the probability distributions sought, with using a 
model predetermined as a function y = f(x), representing the 
phenomenon under analysis. The components of vector x: xj, 
j = 1, …, m are assumed to be random variables with known 
characteristics (determined theoretically or empirically).

The random variables yi, i = 1, …, n are determined by 
multiple numerical calculations made according to the pre-
determined relation y = f(x) for computer-generated pseu-
dorandom numbers xj in accordance with appropriate dis-
tributions of the specific quantities. This method may also 
be employed when simulation models are used. With this 
objective in view, multiple simulations are carried out for 
randomly generated values of individual model parameters. 
The possible range of solutions yi is obtained on the grounds 
of pseudorandom statistical distributions of variables yi, gen-
erated as described above. The uncertainty measures are the 
measures of dispersion of the statistical pseudo-distributions 
of yi, thus obtained.

This method makes it possible to avoid the difficulties 
mentioned in sub-items 3.2.5 and 3.2.6. A considerable 
impact on the correctness of the results obtained is exerted 
by the quality of the pseudorandom-number generators 
(measured by the finite quantity of numbers in the genera-
tor cycle). Noteworthy is also the fact that, in a degenerated 
form i.e. in calculations carried out only for the extreme val-
ues of xj distributions and at an assumption of monotonicity 
of yi= f(xj), this method is equivalent to the extreme values 
method (EVM).

4 � Example Application of the Methods

4.1 � Calculation of the Uncertainty of Estimation 
of the Vehicle Stopping Distance

The calculations will be made for one of the standard 
problems in accident situation analyses, i.e. for the vehicle 
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braking process. This example has also other good points: 
it may be described by a simple analytical and, simultane-
ously, good mathematical model. On the other hand, the 
parameters of this model describe all the components of the 
man-vehicle-road system and their values are taken, in a sig-
nificant part, from literature knowledge (they are burdened 
with statistical uncertainty).

The work with the mathematical model is started from 
a simplified time history of the process of vehicle braking 
on an even horizontal road, as shown in Fig. 5. Assuming 
additionally that the vehicle is braked with the tyre-road 
adhesion forces being fully utilized, we may state that the 
maximum braking deceleration value ahm is:

where μ [–]—tyre-road adhesion coefficient (peak or slid-
ing); g ≅ 9.81 m/s2—acceleration of gravity.

If the initial braking speed V0 (m/s) (the vehicle speed at 
the instant t0= 0) and the tr, tn, and ahm values (see Fig. 5) 

(20)ahm = � ⋅ g

are known then the stopping distance may be expressed by 
a simplified formula:

Thus, a functional relation y = f(x) has been obtained, 
where x = [x1, x2, x3, x4]T≡ [V0, μ, tr, tn]T and y = [y1] ≡ [Sz]; 
f = [f1], f1 = x1·(x3+ x4/2)+ x1

2/(2gx2) (with an assumption 
adopted that the g value is certain). The calculations are 
made to determine the stopping distance y = [y1] ≡ [Sz] and 
the uncertainty of determining its value Δy = [Δy1] ≡ [ΔSz], 
with an assumption adopted that the uncertainty values 
Δx = [Δx1, Δx2, Δx3, Δx4]T≡ [ΔV0, Δah, Δtr, Δtn]T are known.

The uncertainty will be calculated with using the 7 methods 
described previously, i.e. EVM, TDM, TDM2, FDM, PrM, 
PrStM, and MCM for a common data set. The data set adopted 
has been given in Table 1. It represents typical road conditions, 
described below. The initial braking speed has been assumed 
as equal to the speed limit applicable to built-up areas, with a 

(21)Sz = V0 ⋅

(
tr +

tn

2

)
+

V2
0

2 ⋅ � ⋅ g

Fig. 5   Simplified time history of the rectilinear vehicle braking

Table 1   The set of nominal 
parameter values and their 
uncertainties adopted for the 
calculations

Parameter xj Nominal value xj(0) Uncertainty value adopted

Symbol Absolute Δxj Relative 
Δxj/xj (%)

x1 Initial braking speed V0 (m/s) 13.9 (50 km/h) ΔV0 1.39 (5 km/h) 10
x2 Tyre-road adhesion coefficient μ (–) 0.7 Δμ 0.05 7.1
x3 Total system response time tr (s) 1.3 Δtr 0.3 23.1
x4 Braking deceleration rise time tn (s) 0.3 Δtn 0.1 33.3
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10% tolerance (as an allowance for e.g. accuracy of speedom-
eter readings and driver’s errors in taking the readings). The 
tyre-road adhesion coefficient value μ assumed corresponds 
to dry asphalt road surface; in this case, the uncertainty has 
been assumed as being quite low—see the data given in the 
literature dealing with the mechanics of motor vehicle motion 
and accident reconstruction, e.g. [7, 20]. As regards the total 
system response time and the braking deceleration rise time, 
the data have been adopted in a similar way and the parameter 
values and their uncertainties are at a realistic level.

In three methods (TDM, TDM2, PrM), appropriate partial 
derivatives (sensitivity coefficients) must be determined. For 
the mathematical model described by Eq. (21), they will 
have the form as given in Table 2.

4.1.1 � Upper and Lower Bounds Method (EVM)

According to Eq. (3), the extreme values may be determined 
from the following formulas (thanks to the simple form of 
function Sz= f(V0, μ, t0, tn), its monotonicity is known):

(22a)Szmin = V0min ⋅

(
trmin +

tnmin

2

)
+

V2
0min

2 ⋅ �max ⋅ g

(22b)Szmax = V0max ⋅

(
trmax +

tnmax

2

)
+

V2
0max

2 ⋅ �min ⋅ g

where in terms of symbols: xjmin= xj(0) −Δ xj, xjmax= xj(0)+Δ xj.
For the comparability with the other methods to be main-

tained, the uncertainty has been assumed as a half of the 
difference between Szmax and Szmin:

The relative uncertainty is the ratio of (23) to the arith-
metic average of Szmax and Szmin:

4.1.2 � Total Differential Method (TDM)

Here, the following relations hold:
Nominal value:

Maximum uncertainty (TDMM):

(23)ΔSz =
(
Szmax− Szmin

)
∕2

(24)
ΔSz

Sz
=

ΔSz
1

2

(
Szmax + Szmin

) =

(
Szmax − Szmin

)
(
Szmax + Szmin

)

(25)Sz(0) = V0(0) ⋅

(
tr(0) +

tn(0)

2

)
+

V2
0(0)

2 ⋅ �(0) ⋅ g

(26)

ΔSz =
||||
�Sz

�V0

⋅ ΔV0

|||| +
||||
�Sz

��
⋅ Δ�

|||| +
||||
�Sz

�tr
⋅ Δtr

|||| +
||||
�Sz

�tn
⋅ Δtn

||||

Table 2   Sensitivity coefficients 
of the 1st order ( WSzj

 ) and 2nd 
order ( W (2)

Szjk
 ) and their values for 

the nominal set of parameters

a According to Schwarz’s theorem, mixed partial derivatives do not depend on the differentiation order 
(they have an identical form): ∂2f/∂xj∂xk= ∂2f/∂xk∂xj. Therefore, they are only determined for the pairs j, k 
such that k > j. The occurrence of such a pair of derivatives is reflected in Eq. (10) by multiplier “2” in the 
terms with mixed derivatives

j 1st-order sensitivity coefficients k 2nd-order sensitivity coefficientsa

WSzj
Value for the set of 
nominal data

W
(2)

Szjk
Value for the set 
of nominal data

1 �Sz

�V
0

= tr +
tn

2
+

V
0

�⋅g
3.43 s 1 �

2Sz

�V2

0

=
1

�⋅g

0.146 s2/m

2 �
2Sz

�V
0
��

= −
V
0

�2⋅g

− 2.89 s

3 �
2Sz

�V
0
�tr

= 1
1

4 �
2Sz

�V
0
�tn

=
1

2

0.5

2 �Sz

��
= −

V2

0

2⋅�2⋅g

− 20.1 m 2 �
2Sz

��2
=

V2

0

�3⋅g

− 40.1 m

3 �
2Sz

���tr
= 0

0

4 �
2Sz

���tn
= 0

0

3 �Sz

�tr
= V

0
13.9 m/s 3 �

2Sz

�t2
r

= 0
0

4 �
2Sz

�tr�tn
= 0

0

4 �Sz

�tn
=

V
0

2

6.94 m/s 4 �
2Sz

�t2
n

= 0
0
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Mean square uncertainty (TDMS):

4.1.3 � Second‑Order Total Differential Method (TDM2)

The nominal value is defined by formula (25). Based 
on (11), the uncertainty is described by the following 
equation:

4.1.4 � Finite‑Difference Method (FDM)

The nominal value is defined by formula (25). Based on 
(14) and (15), the uncertainty is described by the follow-
ing equations:

Maximum uncertainty (FDMM):

Mean square uncertainty (FDMS):

and

(the other parameters xk, k = 1, …, 4 and k ≠ j take nominal 
values xk(0)).

The values of increments δxj, j = 1, …, 4 have been 
assumed as recommended in [8], i.e. δxj= 0.01xj(0).

(27)ΔSz =

√(
�Sz

�V0

)2

⋅ ΔV2
0
+

(
�Sz

��

)2

⋅ Δ�2 +

(
�Sz

�t0

)2

⋅ Δt2
0
+

(
�Sz

�tn

)2

⋅ Δt2
n

(28)

ΔSz =
||||
�Sz

�V0

⋅ ΔV0

|||| +
||||
�Sz

��
⋅ Δ�

|||| +
||||
�Sz

�tr
⋅ Δtr

|||| +
||||
�Sz

�tn
⋅ Δtn

||||
+

1

2

(|||||
�
2Sz

�V2
0

⋅ ΔV2
0

|||||
+
|||||
�
2Sz

��2
⋅ Δ�2

|||||
+
|||||
�
2Sz

�t2
r

⋅ Δt2
r

|||||
+
|||||
�
2Sz

�t2
n

⋅ Δt2
n

|||||

)

+
|||||
�
2Sz

�V0��
⋅ ΔV0 ⋅ Δ�

|||||
+
|||||
�
2Sz

�V0�tr
⋅ ΔV0 ⋅ Δtr

|||||
+
|||||
�
2Sz

�V0�tn
⋅ ΔV0 ⋅ Δtn

|||||
+
|||||
�
2Sz

���tr
⋅ Δ� ⋅ Δtr

|||||
+
|||||
�
2Sz

���tn
⋅ Δ� ⋅ Δtn

|||||
+
|||||
�
2Sz

�tr�tn
⋅ Δtr ⋅ Δtn

|||||

(29)

ΔSz =
||||
�Sz

�V0

⋅ ΔV0

|||| +
||||
�Sz

��
⋅ Δ�

|||| +
||||
�Sz

�tr
⋅ Δtr

|||| +
||||
�Sz

�tn
⋅ Δtn

||||

(30)ΔSz =

√(
�Sz

�V0

)2

⋅ ΔV2
0
+

(
�Sz

��

)2

⋅ Δ�2 +

(
�Sz

�t0

)2

⋅ Δt2
0
+

(
�Sz

�tn

)2

⋅ Δt2
n

(31)
�Sz

�xj
=

Sz(xj(0) + �xj) − Sz(xj(0))

�xj
, j = 1,… , 4

4.1.5 � Gauss Method (PrM)

The mean value is as defined by formula (21):

where symbol “¯” indicates the average value 
of the distribution of the specific parameter, i.e. 
V0 = V0(0), � = �(0), tr = tr(0), tn = tn(0).

Based on (17), the standard deviation of random variable 
Sz is:

(32)Sz = V0 ⋅

(
t0 +

tn

2

)
+

V
2

0

2 ⋅ � ⋅ g

(33)
�Sz

=

√(
�Sz

�V0

)2

⋅ �
2
V0
+

(
�Sz

��

)2

⋅ �2
�
+

(
�Sz

�tr

)2

⋅ �
2
t0
+

(
�Sz

�tn

)2

⋅ �
2
tn

The standard deviations of random variables V0, μ, tr, and tn 
have been assumed as 1/3 of the uncertainties of these param-
eters, i.e. �V0

= ΔV0∕3, �� = Δ�∕3, �tr = Δtr∕3, �tn = Δtn∕3.
The absolute uncertainty and relative uncertainty are as fol-

lows (see also [16]):

(34)

ΔSz = 3 ⋅ �Sz at a confidence level of 99.7%;

ΔSz = 2 ⋅ �Sz at a confidence level of 95.4%;

ΔSz = �Sz
at a confidence level of 68.3%
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4.1.6 � Method Based on the Description of Stochastic 
Processes (PrStM)

The time history of the vehicle braking deceleration has 
been assumed as having a form similar to that adopted pre-
viously (see Fig. 6). Three characteristic phases have been 
discerned, taking place in the time intervals denoted by tr, 
tn, and ta, where ta represents the time of braking with the 
braking force being fully developed. It has been assumed 
that in the third phase, the braking deceleration is a sum of 
a defined function of time f(t) (a “trend”) and a stochastic 
process Xa(t):

Moreover, it has been assumed that:

•	 Xa(t)—stationary (in the broad sense) normal stochastic 
process with mean value of mXa, variance of vXa

= �
2
Xa

 , 
and known correlation function KXa(τ);

•	 trend is a function having the following form:

where A and B—coefficients; in general, they are random 
variables with normal distribution; A: N(mA, �2

A
 ), B: N(mB, 

�
2
B
 ); m—mean value and σ—standard deviation.
The following initial conditions apply to Eq. (36):

where in general, Vp and Sp are random variables with nor-
mal distribution; Vp: N(mVp

, �2
Vp
) , Sp: N(mSp

, �2
Sp
).

(35)
ΔSz

Sz
=

ΔSz

Sz

.

(36)ẍ = F(t) where F(t) = f (t) + Xa(t)

(37)f (t) = A ⋅ t + B

(38)ẋ(t = 0) = Vp, x(t = 0) = Sp

If the system response phase (tr) and deceleration 
rise phase (tn) are taken into account and the inequality 
0 ≤ t′ < tr+ tn holds, then Vp and Sp become dependent ran-
dom variables.

A complete description of the solution shown above may 
be found in [14]. Without going into detail, the solutions 
obtained in this case may be proven to be normal random 
processes. Figure 7 shows time histories of the solutions in 
the form of mean values of the distance travelled (S), vehicle 
speed (V), and longitudinal vehicle acceleration (a) and the 
corresponding time histories of standard deviations σS, σV, 
and σa. These curves have been obtained for the parameter 
values corresponding to the data given in Table 1:

•	 mA= 0 m/s3, σA= 0.0 m/s3; mB= − 6.83 m/s2, σB= 0.164 m/
s2;

•	 mVp
= 12.9 m/s (46.3 km/h), �Vp

 = 0.48 m/s (1.72 km/h); 
mS0

= 22.1 m, �S0 = 1.63 m;
•	 coefficient of correlation of random variables Sp and Vp: 

kVS = 0.276; the values describing random variables Sp 
and Vp have been determined with using an analytical 
model of braking in rectilinear motion for the period 
tr+ tn (see Figs. 5 and 6a) and with employing the Gauss 
method.

Parameters of random process Xa(t):

•	 mXa= 0 m/s2;
•	 correlation function form: KXa

(�) = v ⋅ e−u⋅|�| cos��
	   where τ—time difference; v = 0.01 m2/s4; u = 4.4 s−1, 

ω = 20 s−1 (the form of the function and coefficient values 
have been selected on the grounds of experimental test 
results [14]).

Fig. 6   Time history of braking deceleration, with random departures from a steady trend
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4.1.7 � Monte‑Carlo Method (MCM)

For these calculations, a special computer program MCM 
has been written, where the function described by formula 
(21) has also been implemented. The model parameters 
values V0, μ (or ahm), tr, and tn may be generated as ran-
dom (pseudorandom) numbers whose distributions would 
be programmed as functions (e.g. normal, exponential, or 
uniform) or be empirically based. The data taken for cal-
culations corresponded to those specified in Table 1. The 
histograms representing the distribution of stopping distance 
Sz have been shown in Figs. 8 and 9. Figure 8 describes the 
situation where all the data (V0, tr, tn, μ) were treated as 
random variables with truncated normal distribution (the 
numbers generated could not differ from the mean by more 
than treble standard deviation). The situation with these data 

being treated as random variables with uniform (rectangular) 
distribution has been illustrated in Fig. 9. As it can be seen, 
the results in both cases resemble in their shape the curve 
representing a truncated normal distribution, but with dif-
ferent standard deviation values (higher in the latter case). 
Actually, however, none of the distributions can be consid-
ered a truncated normal one. In both cases, it can be seen 
that the distribution curve is slightly asymmetric, with the 
mode being shifted towards the lower Sz values. This is due 
to a nonlinearity of the relation represented by Eq. (20). 

4.1.8 � Summary of the Results

The calculation results have been summarized in Table 3. 
They will be discussed in Sect. 4.2. 

Fig. 7   Time histories of longitudinal acceleration a (expected value of the trend) and expected values of speed V and distance S, with 3-σ disper-
sion fields plotted with dotted lines (a), and corresponding standard deviation vs time curves (b)

Fig. 8   Histogram of stopping distance Sz for input data with normal distribution
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4.2 � Comparison Between the Seven Methods Used

To facilitate the comparison between the uncertainties esti-
mated with using different methods, the calculation results 
specified in Table 3 have been presented graphically in 
Fig. 10 in the form of stopping distance ranges. The follow-
ing conclusions may be drawn from the results presented: 

•	 The ranges of the solutions obtained with using the deter-
ministic methods where the maximum uncertainty is esti-
mated (EVM, TDMM, TDM2, FDMM) do not consider-
ably differ from each other. The highest value has been 
obtained for the TDM2 method, where the uncertainty 
is bigger by about 6% than the uncertainty calculated for 
the TDM method.

Fig. 9   Histogram of stopping distance Sz for input data with uniform distribution

Table 3   Summarized results of 
calculations carried out to test 7 
uncertainty estimation methods 
with using the data of Table 1 
and a mathematical model 
described by Eq. (21)

Method Stopping distance Uncertainty of the stopping 
distance estimation

Possible range of 
the stopping dis-
tance values

Absolute Relative

Sz (m) ΔSz (m) ΔSz/Sz (%) Shmin (m) Shmax (m)

EVM (Szmax+ Szmin)/2 (Szmax − Szmin)/2
35.1 10.7 30.5 24.4 45.8

TDM Sz(0)

 TDMM 34.2 10.7 31.3 23.5 44.9
 TDMS 34.2 6.49 19.0 27.7 40.7

TDM2 Sz(0)

34.2 11.3 33.0 22.9 45.5
FDM Sz(0)

 FDMM 34.2 10.7 31.3 23.5 44.9
 FDMS 34.2 6.50 19.0 27.7 40.7

PrM Sz �Sz
Confidence level: 99.7%

34.2 2.16 6.49 19.0 27.7 40.7
PrStM Sz �Sz

Confidence level: 99.7%

34.2 2.14 6.43 18.8 27.7 40.6
MCM Sz �Sz

(Szmax − Szmin)/2

Data with normal distribution 34.2 2.16 9.4 27.2 25.1 43.9
Data with uniform distribution 34.2 3.74 10.3 29.5 24.6 45.2
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•	 The results calculated with using the probabilistic meth-
ods PrM, PrStM significantly differ from those obtained 
from the deterministic methods. The stopping distance 
ranges are much narrower, which is advantageous from 
the point of view of usefulness in accident reconstruc-
tion.

•	 A similar effect may be obtained by using deterministic 
methods and calculating the mean square uncertainty 
(TDMS, FDMS).

•	 The ranges determined by the Gauss probabilistic method 
(PrM) and the probabilistic method based on the descrip-
tion of stochastic processes (PrStM) are close to each 
other. This means that in the case under consideration 
and in similar problems, the PrM method, being rela-
tively simple in comparison with the PrStM, will be suf-
ficient for determining the probability distribution of the 
quantity sought.

•	 The ranges determined by the Monte-Carlo probabilis-
tic method (MCM) depend on types of the data prob-
ability distribution. In general, they are wider than those 

obtained from the other probabilistic methods (PrM, 
PrStM). When the input data are treated as random vari-
ables with uniform distribution (MCM-u), the range cal-
culated is close to that determined with using the deter-
ministic methods EVM, TDMM, and FDMM. For the 
data being treated as having normal distribution (MCM-
n), a narrower range has been obtained, which may be 
interpreted as an effect of coming closer to the PrM and 
PrStM methods. Hence, a hypothesis may be formulated 
that he MCM method is a compromise between the deter-
ministic methods TDM and EVM and the probabilistic 
methods PrM and PrStM in terms of both their appli-
cability and the reliability of the results obtained. The 
MCM method may also be considered a good reference 
for verifying the results obtained with using other meth-
ods.

Based on the results obtained in the calculation example, 
a statement may be made that the introduction of data uncer-
tainty to the calculations causes big differences between the 

Fig. 10   Comparison of the possible solution ranges at determining 
the stopping distance Sz for the adopted set of input data (Table  1) 
and 7 uncertainty estimation methods (EVM—extreme values 
method, TDM—total differential method, TDM2—second-order total 
differential method, FDM—finite-difference method, PrM—Gauss 
probabilistic method, PrStM—probabilistic method based on the 

description of stochastic processes, MCM—Monte-Carlo probabil-
istic method; defining symbols added to “TDM” and “FDM”: M—
maximum uncertainty, S—mean square uncertainty; defining symbols 
added to MCM: n—data with normal distribution, u—data with uni-
form distribution)
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results of such calculations and the “nominal” results (i.e. 
the results obtained without taking the data uncertainty into 
account). Such an effect can be observed for each of the 
methods used to estimate the impact of the said inaccuracies.

In consideration of the above and the fact that the data 
uncertainty values taken for the calculations were not too 
high, the following general conclusion may be drawn: a fail-
ure to take the data uncertainty into account may result in 
the construction of an untrue hypothesis about the course of 
a specific accident situation and the wrong hypothesis may 
translate into unfair legal consequences to be borne by the 
participants in such a situation. As an example: if, say, the 
minimum safe value of the distance between the vehicle and 
the obstacle at the initial instant were 40 m then, without 
taking the uncertainty into account, a judgment might be 
formulated that the driver should manage to stop the vehicle 
and the collision would not take place. The taking of the 
uncertainty into account, regardless of the method of deter-
mining it, would cause such a statement to be unprovable.

It is difficult to show unambiguously which of the uncer-
tainty determination methods should be considered the best. 
The selection depends to a considerable extent on the model 
(simulation or analytical) adopted to analyse the phenom-
enon observed and on the determinability of the input data 
(e.g. parameters of the random data distribution). To select 
the method, the limitations of each of them described in 
Sect. 3 and the above conclusions drawn from results of the 
example application of the methods should be taken into 
consideration.

5 � Conclusion

The calculations carried out at the accident reconstruction 
are burdened with uncertainty. A failure to take the uncer-
tainty into account in the calculations may considerably 
affect the expert’s opinion about the course of the incident 
under analysis. Correct determination of the uncertainty of 
calculation results and, then, of the opinion as a whole will 
improve the reliability of the opinion.

In this study, the problems related to determining the 
uncertainty of calculation results have been discussed. For 
the tools having the form of mathematical models of vehicle 
dynamics, a set of methods have been presented that make it 
possible to determine the uncertainty of calculation results 
stemming from the uncertainty of the data taken as an input. 
The uncertainty determining methods available, known in 
great measure from the area of uncertainty in metrology, are 
characterized by very different degrees of complexity and by 
their usefulness to the computing tools used. The example 
calculations made for the models used at accident recon-
struction have shown that each of the methods may produce 
results differing, even significantly, from each other. It seems 

reasonable that only the methods should be used that, apart 
from being applicable to the specific tool employed for the 
analysis, would enable the obtaining of the lowest uncer-
tainty of the expert’s opinion. Unfortunately, they are usually 
of the probabilistic type. For such methods to be employed, 
at least the statistical distributions of the quantities taken as 
the input data must be known. Such a requirement is often 
difficult to be met in the case of the parameters used for cal-
culations related to accident reconstruction. There is a need 
to determine the distributions of this kind because of the 
lack of such data even for the most fundamental parameters 
used by forensic experts, such as e.g. driver reaction time.
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