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Abstract
Isogeometric shape optimization has been now studied for over a decade. This contribution aims at compiling the key 
ingredients within this promising framework, with a particular attention to sensitivity analysis. Based on all the researches 
related to isogeometric shape optimization, we present a global overview of the process which has emerged. The principal 
feature is the use of two refinement levels of the same geometry: a coarse level where the shape updates are imposed and a 
fine level where the analysis is performed. We explain how these two models interact during the optimization, and especially 
during the sensitivity analysis. We present new theoretical developments, algorithms, and quantitative results regarding the 
analytical calculation of discrete adjoint-based sensitivities. In order to highlight the versatility of this sensitivity analysis 
method, we perform eight benchmark optimization examples with different types of objective functions (compliance, dis-
placement field, stress field, and natural frequencies), different types of isogeometric element (2D and 3D standard solids, 
and a Kirchhoff–Love shell), and different types of structural analysis (static and vibration). The numerical performances of 
the analytical sensitivities are compared with approximate sensitivities. The results in terms of accuracy and numerical cost 
make us believe that the presented method is a viable strategy to build a robust framework for shape optimization.

1 Introduction

Structural shape optimization has been one of the early 
application of IsoGeometric Analysis whose seminal paper 
is Hughes et al.[42]. Wall et al.[87] have rapidly highlighted 
its benefit for shape optimization because IGA uses models 
that combine an accurate geometrical description and great 
analysis capabilities. Indeed, IGA employs spline-based 
geometric models to perform the analysis. More precisely, 
IGA is a Finite Element Method that uses a spline model 
to describe the domain geometry but also to represent the 
numerical solution of the problem using the isoparametric 

paradigm[19, 42]. Even in its original version, IGA draws 
on advanced and well-known technologies coming from the 
field of Computer-Aided Design, as for instance NURBS 
models. Nowadays, a large panel of spline technologies 
(T-Splines, LR B-Splines, etc.) is available for simula-
tion[28, 69]. The growing interest for IGA does not only 
come from the possibility of having models with high qual-
ity geometries. These spline functions have also shown great 
performances when it comes to numerical simulation, and 
especially an increased per-degree-of-freedom accuracy in 
comparison with standard FEM[29]. IGA achieved to tackle 
demanding problems and became a solution of choice in 
specific fields, as for example fluid-structure interaction, or 
biomedical application[45, 60, 64].

Shape optimization might be one of these fields that could 
be pushed forward through the use of the isogeometric prin-
ciple; and it already started. The reason is quite straight-
forward. Shape optimization requires a suitable mix of an 
accurate geometric description and an efficient analysis 
model. Even more importantly, a close link between both 
the geometric and the analysis models is highly sought since 
they repeatedly communicate during the resolution. This 
is where current standard approaches for structural shape 
optimization, based on classical FE models, face some 
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difficulties. Numerical approaches for the shape optimiza-
tion of structures are not new and several strategies have 
been presented in the eighties and early nineties[9, 13, 35, 
41, 43, 71]. These developments have led to two principal 
classes of methods: the node-based approaches, and the 
CAD-based approaches. The node-based method uses the 
nodes of an analysis model (i.e. the finite element mesh) as 
design parameters. Conversely, the CAD-based method uses 
two different models of the same structure: a parametrized 
CAD model that describes the geometry, and a FE model to 
perform the structural analysis. Having these two separated 
models has shown great benefits[13] and has been preferred 
over node-based methods for quite some time[41]. However, 
a major drawback of the method has restricted its deploy-
ment in design offices. Indeed, it requires a close link to han-
dle the delicate task of transferring the information between 
the design model and the analysis model. To this purpose, 
very specific program needs to be developed[10]. For com-
plex structures, the link between the geometric model and 
the finite element mesh is far from straightforward. Also, the 
repeated mesh generations during the resolution burdens this 
optimization process. Thus, more recently, node-based meth-
ods regain interest and efficient approaches have been devel-
oped[27, 40, 54, 78]. In case of node-based optimization, the 
difficulties lie in the treatments of the large number of design 
parameters. Indeed, the number of nodes of a FEM mesh can 
be significant. Thus, adequate strategies should be put in 
place in order to process all the data. Special care (known as 
sensitivity filtering) is needed to exploit the results coming 
from the FE Analysis such that appropriate shape updates 
are imposed[7].

Using IGA, we now have models that are suitable for both 
shape modeling and simulation. This key feature has been 
shown by Wall et al.[87], and by the increasing number of 
papers dealing with IGA-based shape optimization[15, 23, 
32, 38, 39, 46, 50, 56, 59, 65–67, 75, 83, 88, 91, 93]. It con-
cerns not only structural shape optimization but also other 
fields as heat conduction[92], electromagnetics[20, 68], fluid 
mechanics[73], and many other optimization problems. A 
general procedure, which has been improved over the years, 
is commonly adopted[21, 89]. It is based on a multilevel 
design concept which consists in choosing different refine-
ment levels of the same spline-based geometry to define 
both optimization and analysis spaces[38, 50, 67, 88]. Shape 
updates are represented by altering the spatial location of 
the control points, and in some case the weights[67, 75], on 
the coarse level. The finer level defines the analysis model 
and is set to ensure good quality of the numerical solution. 
The optimization and analysis refinement levels are inde-
pendently chosen which provides a problem-adapted choice 
of the spaces.

This contribution undertakes to synthesize the previous 
research on isogeometric shape optimization of structures. 

We present a general formalism where each step is detailed: 
it goes from the setting and modeling of a shape optimiza-
tion problem to its resolution. We deal with both theoretical 
and practical aspects. Especially, we compile several bench-
mark examples that can be of interest for further researches 
and the investigation of new approaches. We do not restrict 
to a specific context in order to highlight the generality of 
the presented framework. Indeed, several types of objective 
functions are considered. Moreover, we investigate the case 
of two common structural analyses: the static linear analysis 
but also the natural frequency analysis. Finally, we deal with 
the case of 2D and 3D solid isogeometric elements as intro-
duced by Hughes et al.[42], and also the case of the isogeo-
metric Kirchhoff–Love shell of Kiendl et al.[49]. Practical 
information, quantitative data and discussions about the 
results are provided. Furthermore, this contribution offers 
a new lighting on how analytical sensitivity is achievable in 
the context of isogeometric shape optimization. It extends 
the existing works regarding this issue, as for instance 
Fußeder et al.[32] and Qian[75]. We show how analytical 
discrete adjoint-based sensitivity can be computed. All the 
examples tackled in this work are solved using this analyti-
cal method for the sensitivity analysis. Thus, it applies to 
standard solid elements but also for shells. In addition, it is 
not limited to the case of the compliance, but it can be used 
for a lot of response functions as for example stress-based 
criteria. We provide algorithms in order to illustrate how it 
can be efficiently implemented. For each numerical example, 
quantitative results on the sensitivities are given which is, 
to the author’s knowledge and to a certain extent, missing 
in the literature. The performance of this new sensitivity 
analysis is compared with approximate calculations. It can 
be quite often red in the literature that analytical sensitivities 
are difficult to implement. This work offers the necessary 
ingredients to overcome it and shows its efficiency in term 
of computational time.

This new framework for isogeometric shape optimiza-
tion of structures is presented as follows. Firstly, we present 
in Sect. 2 generalities about structural optimization and we 
describe the structural design problems that will be tackled 
in this work. Then, in Sect. 3, the different steps for the 
sensitivity analysis in IGA-based shape optimization are 
explained. We illustrate how information are shared from the 
design variable level to the analysis model and vice versa. 
Section 4 contains the main theoretical developments. We 
present how the principal required derivatives of the sen-
sitivity analysis can be analytically computed. As already 
said, both standard solid and shell elements are considered. 
Finally, the results of the optimization problems are pre-
sented and discussed in Sect. 5. Concluding remarks on our 
observations and findings are given in Sect. 6.
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2  IsoGeometric Shape Optimization

2.1  Structural Optimization

General Mathematical Formulation The mathematical for-
mulation of an optimization problem involves different quan-
tities. The objective function f quantifies the performance 
of the studied system. It is usually formulated such that the 
best solution is the one which returns the smallest value 
assessed by function f. The objective depends on several 
characteristics of the system, called variables or unknowns. 
In the specific case of structural optimization, we set design 
parameters that vary the geometry of the structure. We 
denote these parameters as design variables and we represent 
them as a vector of unknowns x. In this work, we only con-
sider the case of continuum variables. Finally, we describe 
the space in which we are looking for the optimal solution 
through a combination of constraints ci . Mathematically, the 
constraints are defined as scalar functions of x, and com-
monly takes the form of implicit equations or inequalities. 
With these notations in hand, an optimization problem can 
be formulated as follows:

where E  and I  are set of indices for equality and inequality 
constraints, respectively.

Structural Design In structural optimization, the goal is to 
improve the mechanical behavior of the structure. Thus, the 
expression of the objective function and/or the constraints 
involve quantities that describe the behavior of the structure. 
For instance, in the case of the static analysis of structures, 
the objective function is generally expressed as an explicit 
function of the design variables x and of the displacement 
field u. Moreover, in the context of computational mechan-
ics, the analysis is performed through an approximated 
method, such as FEM, for example. In this work, we con-
sider the discrete approach for shape optimization which 
means that the discretization step happens prior to the for-
mulation of the optimization problem[85]. In this case, the 
objective function is expressed using the state variables u:

In the case of static linear analysis, the variables u (namely 
the displacement Degrees Of Freedom) implicitly depends 
on the design variables x through a linear system of equation:

(1)

minimize f (x)

w.r.t. x ∈ ℝ
n

subjected to ci(x) = 0, ∀i ∈ E

ci(x) ≤ 0, ∀i ∈ I

(2)f ∶= f
(
x, u(x)

)
,

(3)�(x)u = F(x).

Indeed, the stiffness matrix � and the load vector F are built 
through domain integrals. It means that their expressions 
depend on the shape of the structure, and consequently on 
the design variables x.

Let us also mention the case of natural frequency analysis 
which is also widely encountered in computational struc-
tural analysis. The discretization step results in an eigenvalue 
problem:

where � denotes the mass matrix. As before, the governing 
equations link implicitly the eigenvalues � and their cor-
responding eigenvectors v to the design variables. Finally, 
the objective function may involve the aforementioned 
quantities:

In this work, we undertake to present a global framework 
that is not limited to one type of analysis. In the numerical 
experiments section, we will consider the case of static lin-
ear analysis as well as structural vibration analysis.

Optimization Algorithm There are numerous algorithms 
that enable to solve constrained optimization problems of 
form (1). Each algorithm is usually designed into a spe-
cific framework. In case of structural shape optimization, 
gradient-based algorithms are often used. This is possible 
when the objective and constraint functions are differenti-
able w.r.t. the design variables. For large problems with hun-
dreds to thousands design variables, the use of gradients is 
quasi-inevitable to build an algorithm that converges in an 
acceptable amount of time. The information brought back 
by the gradients enables the algorithm to make suitable deci-
sions during the resolution[72]. For large scale problems, 
gradient-free algorithm may require much more evaluation 
of the objective and constraint functions which drastically 
increase the overall computational time.

The computation of the sensitivities is a key step of the 
resolution for any gradient-based algorithm. This work deals 
with this issue in the context of isogeometric shape opti-
mization. We show how full analytical sensitivities can be 
achieved for several objective functions and several types of 
element formulation (2D and 3D solid, and the widely used 
Kirchhoff–Love shell).

2.2  Targeted Numerical Examples

Let us describe as of now the optimization problems that 
we will consider in this work. Through the examples, we 
alternatively switch between standard IGA solid elements 
(2D or 3D) and a Kirchhoff–Love shell element. For all the 
numerical examples, we will focus on the computation of the 
sensitivities. Furthermore, this work aims at motivating the 

(4)
(
�(x) − ��(x)

)
v = �,

(5)f ∶= f
(
x, �(x), v(x)

)
.
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use of isogeometric analysis for shape optimization. Some 
of the presented examples have not yet been presented in the 
context of isogeometric shape optimization, and thus enlarge 
its scope of application.

Compliance Taking the compliance as the objective func-
tion is the most common choice in structural optimization. 
It can be expressed as follows:

We will tackle three optimization problems that consists in 
minimizing the compliance under a given volume constraint:

– Plate with a hole (2D solid),
– Square roof (shell),
– 3D beam (3D solid).

Displacement Another possible choice for the objective 
function concerns the minimization of the displacement at 
a prescribed location (e.g. at point M ). Such an objective 
function can be expressed as follows:

and where Rk denote some basis functions associated to the 
discretization. Instead of considering the displacement at a 
specific location, one may want to minimize the maximal 
deflection of a structure. It is known that solving min-max 
problems can be difficult due to non-differentiability of the 
max function[33, 58]. The discontinuity can be avoided by 
replacing the max function by an alternative continuous 
function[3, 86]. In this work, we employ the P-norm:

where P is a positive integer. As P gets large, the function 
�f  approaches the maximal value returned by function f at 
the npts selected locations. There exists alternative choices 
of aggregation functions as for instance the Kreisselmeier-
Steinhauser function[3, 17, 86]. We will perform in this 
work two examples with, respectively,  fu and �u as the 
objective functions:

– 2D cantilever beam (2D solid),
– Square roof (shell).

Stress Field In order to prevent the failure of a structure, 
one may seek to reduce the maximal stresses due to, for 
example, stress concentration. Even if taking the compli-
ance as an objective function tends to reduce the overall 
magnitude of the stress field, local stress with increased 

(6)fc =
1

2
F ⋅ u.

(7)fu =
√
�h ⋅ �h, with �

h(M) =
�
a

Ra(M)ua,

(8)�f =

(
npts∑
k=1

|fk|P
)1∕P

.

magnitude can appear[24, 97]. Adding the maximal stress 
into an optimization problem raises several difficulties due 
to its local nature[3, 86]. As for the maximal deflection, one 
solution consists in using an aggregation function that meas-
ures the maximal stress. In this work, this is done through 
the P-norm:

We will perform in this work two examples with �� as the 
objective function:

– 2D fillet (2D solid),
– Catenary arch (shell).

For the catenary arch problem, the objective will be to 
minimize the bending moment along the arch. For the fillet 
problem, the objective will be to minimize the Von-Mises 
stresses in the structure.

Natural Frequencies We will deal with a last objective 
function. One possibility we address here is to maximize 
the lower natural frequency �1 of the structure. This is 
done through the minimization of the following objective 
function:

However, such an objective function may not be differenti-
able at specific configurations due to mode switching[66, 
76, 96]. In this case, the algorithm faces difficulties to reach 
convergence. In order to define an objective function that 
is differentiable, one possibility is to aggregate (as for the 
stress-based optimization; see Eq. (9)) a group of n� frequen-
cies in which the mode switching occurs:

We will present one optimization example with �� as the 
objective function:

– Elephant trunk (3D solid).

The development of the analytical sensitivities will be done 
in the context of static analysis. We will only mention the 
case of natural frequency analysis when dealing with this 
last optimization problem. However, we will see that the 
computation of the sensitivities is very similar in both con-
texts and involves the same steps and quantities. Again, we 
present this example in order to highlight the generality of 
the present framework.

(9)�� =

(
npts∑
k=1

|�k|P
)1∕P

.

(10)f�1 =
1

�1
.

(11)�� =

(
n�∑
k=1

(
1

�k

)P
)1∕P

.
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2.3  A Multi‑level Approach

The present framework relies on researches dealing with 
isogeometric shape optimization. A general procedure, 
which has been improved over the years is commonly 
adopted[21, 89]. The key feature and asset of isogeomet-
ric shape optimization relies on the possibility to properly 
choose both optimization and analysis spaces[32, 50, 65–67, 
75]. A fine discretization is introduced as the analysis model 
in order to ensure good quality computations. Conversely, 
the optimization model (also called the design model) is 
defined to impose suitable shape variations. Both spaces 
describe the exact same geometry and are initially obtained 
through different refinement levels of the same geometric 
model[38].

During the optimization process, both models interact 
successively. Consequently, it is straightforward that these 
two models are also involved during the sensitivity analysis. 
Figure 1 illustrates the role of these models and how they 
communicate during the optimization process. In what fol-
lows, we present how each step depicted in Fig. 1 is formu-
lated. It starts with the definition of a shape parametrization 
that links the design variables to the design model. Then, 
we need to enlighten the link between the design model and 
the analysis model: it concerns not only the shape update 
but also the sensitivity propagation. These first two parts are 
explained in Sect. 3. The main step of the sensitivity analysis 
occurs on the analysis model where gradients are computed. 
We deal with this issue in Sect. 4.

3  Shape Update and Sensitivity 
Propagation

3.1  Adjoint‑Based Discrete Sensitivities

In this work, we perform adjoint-based discrete sensitivities. 
The starting point is the differentiation of the response func-
tion of the form (2). The total derivative of function f w.r.t. 
a design variable xi reads as:

The term du∕dxi is not explicitly known. We can identify 
this term by differentiating the discrete state Eqs. (3). It 
reads as:

Then, we can substitute Eq. (13) into Eq. (12):

One can see that the inverse �−1 is involved in the expres-
sion of the derivative. To a certain extent, it means that a 
resolution is required. There are two ways of dealing with 
this issue, namely the adjoint and the direct approaches. In 
the adjoint method, one solves firstly the adjoint problem:

(12)
df

dxi
=

�f

�xi
+

�f

�u
⋅

du

dxi
.

(13)
du

dxi
= �

−1

(
�F

�xi
−

��

�xi
u

)
.

(14)
df

dxi
=

�f

�xi
+

�f

�u
⋅�

−1

(
�F

�xi
−

��

�xi
u

)
.

Fig. 1  Computation steps during the sensitivity analysis: the design 
variables act on the optimization model. The analysis model is a 
refined version of the optimization model (representing the exact 
same geometry) where the structural analysis is performed. This 

fine model also enables to compute the sensitivities. By recalling the 
refinement level and the definition of the shape parametrization, the 
sensitivities are propagated back to the design variable level
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The adjoint solution does not depend on the design vari-
ables. Consequently, for each design variable, the adjoint 
solution u∗ is reused. Finally, the complete expression of the 
total derivative reads as follows:

Alternatively to the adjoint method, one can adopt the direct 
approach. It consists in solving several linear systems with 
the so called pseudo-load vectors as right-hand sides:

Once the solution vi is computed, one can get the total 
derivative:

Thus, in the direct sensitivity analysis there are potentially as 
many systems to be solved as design variables. Thus, adjoint 
sensitivity analysis is often preferred as long as the number 
of response functions involved in the optimization problems 
(objective and constraints) is smaller than the number of 
design variables.

One can see that, either in the direct or the adjoint 
approach, the derivatives of the stiffness matrix and of the 
load vector w.r.t. the design variables are involved. However 
the quantities � and F are defined on the analysis model, 
while the design variables act on the optimization model. In 
other words, there are intermediary steps that separate the 
design variables from the element operators. The idea to 
compute the aforementioned derivatives consists in apply-
ing several chain rules of differentiation accordingly to the 
steps that link the design variables to the element operators 
(i.e. the steps taking place during the shape update, see again 
Fig. 1).

3.2  Shape Representation and Parametrization

The first step is the shape parametrization that defines the 
design variables. In fact, until now, we did not clearly define 
what are these design variables.

NURBS Geometric Modeling In the context of isogeo-
metric shape optimization, the whole process is based on 
geometric models. On the one hand these geometric models 
enable to represent the shape of the structure. On the other 
hand, these models are also used to perform the analysis. 
Historically, isogeometric analysis has been introduced 
using NURBS models (see Hughes et al.[42]), but it is not 

(15)�u∗ =
�f

�u
.

(16)
df

dxi
=

�f

�xi
+ u∗ ⋅

(
�F

�xi
−

��

�xi
u

)
.

(17)�vi =
�F

�xi
−

��

�xi
u.

(18)
df

dxi
=

�f

�xi
+

�f

�u
⋅ vi.

restricted to these geometric models. In this work, we only 
use NURBS models but it can surely be extended to other 
types of analysis-suitable geometric models.

There exists a large literature on NURBS modeling and 
related geometric modeling techniques. The interested reader 
can refer to Cohen et al.[16], Cottrell et al.[19], Farin[30] 
and Piegl and Tiller[74], to name just a few. Let us only 
introduce here the very basics. NURBS is the acronym for 
Non-Uniform Rational Basis Spline. It constitutes the today 
most commonly used technology in CAD. It describes com-
plex geometric objects in the parametric form through the 
use of piecewise rational functions (see for example Piegl 
and Tiller[74] for more information). More precisely, a 
NURBS surface S and a NURBS volume V in the general 3D 
space are multivariate vector-valued functions of the form:

The parameters �i take real values in closed intervals (which 
form the parameter space Ω̄ ), usually [0, 1]. Each control 
point Pk is associated to a multivariate rational basis func-
tion Rk . These multivariate rational basis functions are built 
by tensor products and the weighting of univariate piece-
wise polynomial basis functions (the B-Spline functions). 
Finally, these univariate basis functions are defined by set-
ting a polynomial degree and a knot vector. An example of 
a NURBS surface is given in Fig. 2. This surface represents 
one quarter of a square plate with a hole. The main input is 
the control net formed by the linear interpolation of the con-
trol points. In order to impose shape variations, an adequate 
choice consists in modifying the control point coordinates. 
By moving the location of the control points we alter the 
shape of the structure. This is a common choice in IGA-
based shape optimization which takes up the idea behind 
CAD-based shape optimization (see for example Braibant 
and Fleury[13], Hsu[41] and Imam[43]). Due to the weight-
ing occurring in the NURBS formulation, it is also possi-
ble to act on the weights associated to the control points to 
impose shape modifications[65–67, 75]. This option is not 
investigated in this work.

Shape Parametrization There is an infinite number of 
possibilities regarding the definition of the shape parametri-
zation. One very simple parametrization lies in defining 
one independent design variable by movable control point. 
Each variable moves its associated control point in a specific 
direction:

(19)S(�1, �2) =

ncp∑
k=1

Rk(�1, �2)Pk,

(20)V(�1, �2, �3) =

ncp∑
k=1

Rk(�1, �2, �3)Pk.

(21)Pk = P0
k
+ xknk.
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Identically, several design variables can be associated to a 
single control point. For example, one variable moves the 
control point in the x-direction and the second variable in 
direction y. Furthermore, it can be interesting to link one 
specific variable to multiple control points in order, for 
example, to preserve a geometric continuity or a symmetry. 
This more general shape parametrization takes the form:

where Dk is the set of design variables acting on the kth con-
trol point. An example of design parametrization is given in 
Fig. 2 for the problem of a plate with a hole. Mathematically, 
this shape parametrization reads as:

(22)Pk = P0
k
+

∑
i∈Dk

xin
k
i
,

where ei are the Cartesian basis vectors. More complex 
shape parametrizations than those of the form (22) can be 
formulated, as for example to rotate a group of control points 
along an axis, etc.

The point to emphasize is that the shape parametrization 
links a group of design variables to the control point coordi-
nates. Regarding the sensitivities, the differentiation of this 
shape parametrization will be involved. To highlight this 
point, let us denote by Pjk the jth Cartesian component of the 
control point Pk . With these notations, we can express the 
derivatives w.r.t. the design variables through the derivatives 
w.r.t. the control points of the optimization model:

(23)

P1 = P0
1
+ x1e1

P2 = P0
2
+ x2e1 + x3e2

P3 = P0
3
+ x4e1 + x5e2

P4 = P0
4
+ x6e2

Pk = P0
k

for k > 4,

Fig. 2  NURBS modeling and shape parametrization for the plate with a hole problem
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where the symbol ∙ denotes either a component of the stiff-
ness matrix or of the load vector (or any quantity to be 
derived). The term �P∕�xi represents the differentiation of 
the shape parametrization. It contains the derivatives of the 
control points w.r.t. the design variables. In case of the shape 
parametrization of the form (22), this operator reads as:

In what follows, we will see this operator as a matrix with 
size ncp × 3 . Furthermore, this operator is very sparse and 
one should take advantage of its sparsity for numerical effi-
ciency. Indeed, one design variable usually moves only few 
control points.

For the example of the plate with a hole (see Fig. 2 and 
Eq. (23)), the derivatives of the shape parametrization are:

where the dots symbol (…) indicates that the remaining 
components are filled with zeros. They correspond to the 
control points that are fixed.

(24)
�∙

�xi
=

ncp∑
k=1

3∑
j=1

�Pjk

�xi

�∙

�Pjk

=
�P

�xi
∶

�∙

�P
,

(25)
�P

�xi
=
(
n1
i
, n2

i
,… , n

ncp

i

)
T .

�P

�x1
=
(
e1, 0, 0, 0,…

)T �P

�x4
=
(
0, 0, e1, 0,…

)T

�P

�x2
=
(
0, e1, 0, 0,…

)T �P

�x5
=
(
0, 0, e2, 0,…

)T

�P

�x3
=
(
0, e2, 0, 0,…

)T �P

�x6
=
(
0, 0, 0, e2,…

)T

3.3  From the Design Model to the Analysis Model

Spline Refinement As presented in Sect. 2.3, a major ben-
efit of IGA-based shape optimization lies in the multilevel 
approach where the analysis model is a refined version of 
the design model. This is made possible by the refinement 
strategies that are available with B-Splines and NURBS. 
The first possibility consists in inserting new knots in the 
knot vectors. This process is called knot insertion and leads 
to increase the number of elements in the discretization, as 
shown in Fig. 3. It is also possible to elevate the degree of 
the underlying basis functions. Degree elevation keeps the 
same element density and the same regularity at the knots 
but increases the number of control points (and thus enriches 
the approximation space). Generally, these two refinement 
strategies are combined which offers great flexibility regard-
ing the construction of the analysis model. This leads to the 
so called k-refinement[19] in which both the degree, regular-
ity and element density are increased. For example in Fig. 3, 
the degree is elevated up to degree three in both direction 
and the number of elements is increased such that the final 
surface counts 4 × 4 elements. We refer the interested reader 
to Cottrell et al.[18, 19] and Hughes et al.[42] for more infor-
mation on spline refinement.

Interestingly, these refinement procedures take the form 
of a linear application. The control points Q of the finer 
model are obtained through a linear relation of the form:

(26)Qw = �Pw.

Fig. 3  Refinement strategies available with B-Splines and NURBS. These refinement procedure enables to generate the analysis model from the 
design model in IGA-based shape optimization
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The refinement matrix � is a sparse rectangular matrix of 
size mcp × ncp , mcp being the number of control points of 
the analysis model. Equation (26) involves homogeneous 
coordinates: considering Pi = (xi, yi, zi) with associated 
weight wi , then Pw

i
= (xiwi, yiwi, ziwi) . In other words, we 

have:

where diag(wP) is a diagonal matrix whose diagonal con-
tains the ncp weights associated to the control points P . The 
expression of the refinement matrices in case of the knot 
insertion and degree elevation can be found in Lee and 
Park[55] and Piegl and Tiller[74], for example. The degree 
elevation is done in three steps: Bézier decomposition (knot 
insertion), degree elevation on each Bézier segment, and 
combination of the refined Bézier segments (knot removal). 
These three steps can be combined in order to form the 
refinement matrix �.

Sensitivity Propagation The transition from the design model 
to the analysis model will also be involved during the sensitivity 
analysis. Indeed, after the introduction of the shape parametriza-
tion, we need to differentiate the stiffness matrix and the load 
vector w.r.t. the control point coordinates of the optimization 
model (i.e. the term �∙∕�P in Eq. (24)). However, these opera-
tors are built using the analysis model and not using the design 
model. Therefore, to compute these derivatives we express them 
in terms of derivatives w.r.t. the control points of the analysis 
model. To that purpose, we operate once again a chain rule:

The link between the control points P of the optimization 
model and the control points Q of the analysis model is given 

(27)Pw = diag(wP)P

(28)
�∙

�P
=

�Q

�P

�∙

�Q
.

by the refinement matrix � . More precisely, Eq. (26) enables 
us to write:

Thus, the chain rule (28) takes the form:

The gradients �∙∕�Pw and �∙∕�Qw should have appropriate 
shapes so that Eq. (30) makes sense. We suggest to view 
them as column matrices with respective sizes ncp × 3 and 
mcp × 3 . Recalling Eqs. (27), (28), and (30), we get the fol-
lowing link between the derivatives w.r.t. the control points 
of the analysis and design models:

In the rest of the document, we omit the weighting terms 
( diag(wP) and diag(wQ) ) for the sake of clarity. Note in 
addition that in most examples of this work, the weights are 
equal to one (B-Spline instead of NURBS) making these 
matrices equal to the identity.

Finally, let us notice that the refinement matrix does not 
change as long as the refinement levels of both optimization 
and analysis models remain unchanged. Thus, the matrix is 
commonly built once and for all at the beginning of the opti-
mization, and can be reused during the optimization process. 
In addition, this matrix is sparse and of moderate size (in 
comparison with the stiffness matrix for instance). As a result, 
the transition between both models is computationally cheap.

(29)
�Qw

�Pw = �
T .

(30)
�∙

�Pw = �
T �∙

�Qw .

(31)
�∙

�P
=
[
diag(wP)�

Tdiag(wQ)
−1
] �∙
�Q

.

Algorithm 1:Main steps for the analytical discrete sensitivities in IGA-based shape optimization.
Inputs : Vector of design variables x

: Definition of the response function f
Output: Total derivatives
begin Shape update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shape parametrization P := P(x) (22)
Design to analysis model Q= RP (26)

end
begin Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Structural analysis Ku= F (3)
Adjoint analysis Ku∗ = ∂ f /∂u (15)

end
begin Gradient calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Differentiate adjoint work w.r.t. the control points ∂W/∂Q (35)
end
begin Sensitivity propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Analysis to design model ∂W/∂P= RT ∂W/∂Q (28)-(31)
Design model to design variables d f /dxi = ∂ f /∂xi + ∂P/∂xi : ∂W/∂P (24)-(25)

end
return d f /dx
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By substituting Eqs. (31) and (24) into the expression of 
the total derivative (16), it yields the following result:

In order to describe the above term in brackets, let us intro-
duce a function W that takes as input arguments the state 
variables u , the adjoint variables u∗ , and the control points Q 
of the analysis model. We define this function as:

Even if we have not yet given the expressions of the stiff-
ness matrix and of the load vector, let us recall that the gov-
erning equations (3) come from the virtual work principle. 
Consequently, function W can be seen as the total virtual 
work where the virtual displacement field is, in this case, 
the adjoint solution. Thus, in what follows function W is 
referred to as the adjoint work.

The load vector and the stiffness matrix depend on the com-
putational domain, and hence, on the control point coordinates 
since they act on the shape of the domain. Finally, the full 
computation of the sensitivities requires the partial derivative 
of the adjoint work W w.r.t. the control point coordinates of the 
analysis model. With these notations in hand, Eq. (32) reads as:

with

We will see in the next section how we achieve to compute 
this missing derivative �W∕�Q . Depending on the formula-
tion of the response function f, the partial derivative �f∕�xi 
may also be changed using the applied chain rule of differ-
entiation. In this case the sensitivity reads as:

For clarity and due to the large number of equations, we 
summarize in Algorithm 1 the main steps for the computa-
tion of the sensitivity. Once again, all these steps are illus-
trated in Fig. 1.

4  Differentiating the Element Formulation

This section deals with the computation of the deriva-
tives �W∕�Q through Eq. (35). These derivatives depend 
on the element formulation. We present the case of the 

(32)
df

dxi
=

�f

�xi
+

�P

�xi
∶ �

T

(
u∗ ⋅

�F

�Q
− u∗ ⋅

��

�Q
u

)
.

(33)
W(u, u∗,Q) = Wext(u

∗,Q) +Wint(u, u
∗,Q)

= u∗ ⋅ F(Q) − u∗ ⋅�(Q)u.

(34)
df

dxi
=

�f

�xi
+

�P

�xi
∶ �

T �W

�Q
,

(35)
�W

�Q
= u∗ ⋅

�F

�Q
− u∗ ⋅

��

�Q
u.

(36)
df

dxi
=

�P

�xi
∶ �

T

(
�f

�Q
+

�W

�Q

)
.

isogeometric standard solid element and the case of an 
isogeometric Kirchhoff–Love shell element.

4.1  Element Formulations Using Local Coordinates

A convenient way to compute the derivatives involved in 
Eq. (35) is to start by formulating the element using the 
curvilinear formalism. We will see that it enables to bet-
ter identify the geometric quantities involved in the element 
formulation in comparison with classical formulation based 
on Cartesian coordinates. Also, this formalism is applicable, 
and even required, for a lot of element formulation includ-
ing beams, shells and solids. Thus, we provide an unified 
framework usable for a large panel of element formulation. 
Very similar calculation steps are involved for the two types 
of isogeometric element considered in this work: the stand-
ard solid element (2D or 3D), and a Kirchhoff–Love shell 
formulation.

Within this context, the position vector associated to a 
material point is constructed from curvilinear coordinates �i 
instead of Cartesian coordinates Xi . This formalism enables 
to describe complex shapes with curvatures, and it is there-
fore widely used in shell theory[5]. Cylindrical and spheri-
cal coordinate systems are typical examples of curvilinear 
coordinate systems. For instance, locating a point belonging 
to a cylinder is simplified with the use of cylindrical coor-
dinates, i.e. a radial coordinate r, an angular coordinate � , 
and a height z:

where X is the vector position associated to the material 
point, and Ei are Cartesian base vectors. Curvilinear coor-
dinates can finally be seen as a generalization of these types 
of geometric transformations.

In this context, the gradient operator is written as[5]:

where the comma subscript represents the partial deriva-
tives w.r.t. the curvilinear coordinates, ⊗ denotes the tensor 
product, and Gk are the contravariant basis vectors associ-
ated to the reference configuration. Einstein’s summation 
convention applies here.

4.2  Solid Formulation

4.2.1  Continuum Formulation

The linearized Green-Lagrange strain tensor � in curvilinear 
coordinates reads as:

(37)X(r, �, z) = r cos �E1 + r sin �E2 + zE3,

(38)Grad(�) =
𝜕�

𝜕Xi

⊗ Ei =
𝜕�

𝜕𝜃k
⊗

𝜕𝜃k

𝜕Xi

Ei = �,k ⊗ Gk
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where the covariant components �ij are given by:

The covariant basis vectors Gi are tangent to the coordinate 
lines and are defined as:

The contravariant basis vectors can be expressed in function 
of the covariant basis vectors as follows:

where Gij are the contravariant metric coefficients. These 
coefficients are commonly obtained by the covariant coef-
ficient matrix:

Finally, let us give a definition of the covariant metric coef-
ficients Gij . They are computed by the scalar product of 
covariant basis vectors:

More information on these geometric quantities can be found 
in Echter[25] and Kiendl[48], and in the underlying refer-
ences cited therein.

There is already an interesting point to notice in the 
expression of the covariant strain components (40). We can 
easily identify where are located some information regard-
ing the geometry: all the geometric quantities are contained 
into the covariant basis vectors only. When using Cartesian 
coordinates, the linearized strain components would read as:

Here the identification of the geometric information is 
trickier: they are contained into the differential operators. 
Without giving further details at the moment, it is as of now 
possible to sense that using the curvilinear formalism will 
ease later on the differentiation of the element formulation 
w.r.t. the control point coordinates.

Let us resume the element formulation. In the case of 
small displacements, the second Piola–Kirchhoff stress 
tensor is approximated by the linearized Cauchy stress ten-
sor � . Furthermore, under the assumptions of a linear elas-
tic behavior of the material, the material law is given by 
Hooke’s law:

(39)� = �ij G
i ⊗ Gj,

(40)�ij =
1

2

(
�,i ⋅ Gj + �,j ⋅ Gi

)
.

(41)Gi =
�X

��i
= X,i.

(42)Gi = GijGj,

(43)
[
Gij

]
=
[
Gij

]−1
.

(44)Gij = Gi ⋅ Gj.

(45)�̂ij =
1

2

(
d�

dXj

⋅ Ei +
d�

dXi

⋅ Ej

)
.

where  :  denotes the scalar product of second-order tensors 
(same convention than in[5]). The fourth-order elasticity ten-
sor is given by:

The material parameters � and � are the Lamé constants. 
Thus, the stress tensor as defined by (46) is usually repre-
sented through its contravariant components:

with Einstein’s summation convention.
The internal virtual work reads as:

where the integration variables are directly the curvilinear 
coordinates �i (i.e. dΩ̄ = d𝜃1d𝜃2d𝜃3 ). The Jacobian |J| can be 
computed through the following triple product:

In addition to the strain components, the curvilinear formal-
ism leads to the expression of the internal virtual work (49) 
where identifying the geometric quantities is quite straight-
forward. For comparison, the reader can consult[1] or[37] to 
observe what are the different transformation steps required 
to separate the geometric part in the internal work when Car-
tesian coordinates are used. The control point coordinates 
act on these geometric quantities. Having a compact expres-
sion, as given by the curvilinear formalism, of these quan-
tities will surely simplify the calculation of the requested 
derivatives �W∕�Q.

Finally, let us give the expression of the external virtual 
work:

where t are the external surface forces, and F are the body 
forces.

4.2.2  Isogeometric Solid Element

The isogeometric framework sticks well with the use of 
curvilinear coordinates. One can define those curvilinear 

(46)� = � ∶ �,

(47)
� = CijklGi ⊗ Gj ⊗ Gk ⊗ Gl,

Cijkl = 𝜆GijGkl + 𝜇
(
GikGjl + GilGjk

)
.

(48)
� = �

ijGi ⊗ Gj ,

�
ij = Cijkl

�kl .

(49)𝛿WSolid
int

= −∫Ω̄

(
� ∶ 𝛿�

) |J|dΩ̄,

(50)|J| = (
G1 × G2

)
⋅ G3.

(51)
𝛿WSolid

ext
= ∫Ω

𝛿� ⋅ FdΩ + ∫Γ

𝛿� ⋅ tdΓ

= ∫Ω̄

𝛿� ⋅ F |J|dΩ̄ + ∫Γ̄

𝛿� ⋅ t |I|dΓ̄.
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coordinates as being the geometric parameters of the spline. 
The position vector X is defined by a tri-variate mapping:

The covariant basis vectors are then obtained by partial deri-
vation with respect to the parameters �i which gives:

With these vectors in hand, one can compute the covariant 
metric coefficients Gij using Eq. (44). Then, the contravari-
ant metric coefficients Gij are obtained by inverting a 3-by-3 
matrix as given by Eq. (43). Those are the main calculation 
steps of the formulation. Hence, using curvilinear coordi-
nates is actually not a complex task, especially with IGA.

For the rest, everything is identical to classical Finite Ele-
ment formulations. The displacement field is approximated 
using the basis functions coming from the discretization of 
the geometry:

It leads to the following expression of the discretized strain 
components:

which can be stored into a vector by using, for example, the 
Voigt notation:

where the �k are strain matrices that contain the terms indi-
cated in brackets in Eq. (55). Identically, the discretized 
stress is given by:

where � is the matrix representation of the fourth-order 
material tensor given in Eq. (47).

Finally, introducing these approximated quantities into 
the virtual works (49) and (51) lead to the so-called stiffness 

(52)X(�1, �2, �3) =

mcp∑
k=1

Rk(�1, �2, �3)Qk.

(53)Gi(�1, �2, �3) =

mcp∑
k=1

Rk,i(�1, �2, �3)Qk.

(54)�
h(�1, �2, �3) =

mcp∑
k=1

Rk(�1, �2, �3)uk.

(55)�
h
ij
=

mcp∑
k=1

1

2

(
Rk,i Gj + Rk,j Gi

)
⋅ uk,

(56)�
h =

mcp∑
k=1

�kuk,

(57)�
h =

mcp∑
k=1

��kuk,

matrix � and load vector F which can be obtained by assem-
bling elementary matrices of the form:

The integral is computed numerically using quadrature rule. 
Even if the intermediary steps are a bit different, one should 
keep in mind that the solid element written in the curvilinear 
fashion is strictly the same than the standard solid element. 
At the end of the day, the stiffness matrices obtained with 
both approaches are identical. However, we will see that 
using the curvilinear formalism provides a suitable way to 
compute analytically the derivatives involved in the sensi-
tivities [see Eq. (35)].

4.2.3  Differentiating the Standard IGA Operators

According to Eq. (35), we are at a point where we need to 
compute the derivatives of the external and internal works:

The stiffness matrix and the load vector are built element-
wise. The sensitivity analysis will be performed similarly, 
and we focus here mainly on the stiffness matrix because it 
is the most challenging part. Summing over each element 
gives:

An important point to notice is that only the control points 
associated to the current element e give non-zero deriva-
tives in the term ��e∕�Q . Thus, for each element of the 
analysis model, only the few corresponding components of 
the gradient are updated. Moreover, for each element, it is 
numerically not efficient to build a large matrix ��e∕�Q . 
Instead, we use the following development:

where k and l denote two control point indices associated to 
the current element e. Using Eq. (58), the derivatives of the 
components of the elementary stiffness matrices w.r.t. the 
control points are given by:

(58)�
e
kl
= ∫Ω̄e

�k
T
��l|J|dΩ̄,

(59)Fe
k
= ∫Ω̄e

Rk F |J|dΩ̄ + ∫Γ̄e

Rk t |I|dΓ̄.

(60)
�Wext

�Q
= u∗ ⋅

�F

�Q
and

�Wint

�Q
= −u∗ ⋅

��

�Q
u.

(61)u∗ ⋅
��

�Q
u =

∑
e

(
ue∗ ⋅

��e

�Q
ue
)
.

(62)ue∗ ⋅
��e

�Q
ue =

∑
k

∑
l

ue∗
k
⋅

��e
kl

�Q
ue
l
,
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We can put this last equation into Eq. (62). By commuting 
the double sum and the integral, we get:

Three terms can be identified: 

1. Derivative of the Jacobian

 where 

2. Derivative of the (adjoint) Strains

3. Derivative of the Stresses

We finally end up with a generic expression of the analyti-
cal sensitivities. However, to the author’s understanding, the 
partial derivatives w.r.t. the control points are more acces-
sible in the context of element formulation based on curvi-
linear coordinates as shown in what follows.

Derivative of the Jacobian Differentiating the Jacobian 
w.r.t. the control points leads to:

We remind that the partial derivative �∕�Q contains the par-
tial derivatives w.r.t. the three components of the all active 
control points (denoted previously Qja which corresponds to 
the jth component of the control point number a). Differen-
tiating the covariant basis vectors Gi gives:

(63)

𝜕�e
kl

𝜕Q
= ∫Ω̄e

(
𝜕�k

T

𝜕Q
��l + �k

T 𝜕�

𝜕Q
�l + �k

T
�
𝜕�l

𝜕Q

)
|J|dΩ̄

+ ∫Ω̄e

�k
T
��l

𝜕|J|
𝜕Q

dΩ̄.

(64)
ue∗ ⋅

𝜕�e

𝜕Q
ue = ∫Ω̄e

(
𝜕�∗

𝜕Q
∶ � + �

∗ ∶
𝜕�

𝜕Q

)
|J|dΩ̄

+ ∫Ω̄e

(�∗ ∶ �)
𝜕|J|
𝜕Q

dΩ̄.

(65)(�∗ ∶ �)
�|J|
�Q

(66)�
∗ =

∑
k

�ku
∗
k
, � =

∑
l

��lul,

(67)
��∗

�Q
=
∑
k

��k

�Q
u∗
k
,

(68)
��

�Q
=
∑
l

(
��

�Q
�l +�

��l

�Q

)
ul.

(69)

�|J|
�Q

= (G2 × G3) ⋅
�G1

�Q

+ (G3 × G1) ⋅
�G2

�Q
+ (G1 × G2) ⋅

�G3

�Q
.

and finally, the complete expression for the derivatives of 
the Jacobian is:

The derivative �|J|∕�Qa takes the form of a vector with three 
components. The gradient �|J|∕�Q in Eq. (64) collects these 
derivatives where the index a corresponds to the active con-
trol points (those from the current element e).

Derivative of the Strains It is computationally not efficient 
to build the matrices  ��k∕�Q and then summing as 
expressed in Eq.  (67). If one takes a closer look at the 
expression, one can see that it is possible to commute the 
derivative and the sum. For instance, let us take the case of 
a specific strain component �h

ij
:

We already know the derivative of the covariant vectors 
w.r.t. the control points, e.g. see Eq. (70). Finally the term 
in Eq. (64) with the derivative of the (adjoint) strains is not 
as hard as it may seem. One has to compute quantities of the 
following form:

where the index a corresponds to the active control points, 
and �∗,i reads as:

The result given by Eq. (73) should be seen as a vector with 
three components (derivation w.r.t. each of the three com-
ponents of Qa ). We end up with a compact expression of 
the term involving the derivatives of the strain components. 
One simply has to compute the derivatives of the adjoint 
field as expressed in Eq. (74), and then put these results in 
Eq. (73). In Qian[75] where Cartesian coordinates are used, 
such a compact expression is not provided. Instead, several 
intermediary results are given since combining them leads 
to a long and non-practicable expression.

Derivative of the Stresses Having the derivatives of the 
strains in hand is already a first step to compute those of 

(70)
�Gi

�Qja

= Ra,i ej,

(71)
�|J|
�Qa

= Ra,1G2 × G3 + Ra,2G3 × G1 + Ra,3G1 × G2.

(72)

��h
ij

�Q
=

mcp∑
k=1

1

2

(
Rk,i

�Gj

�Q
+ Rk,j

�Gi

�Q

)
⋅ uk

=
1

2

(
�
h,i ⋅

�Gj

�Q
+

�Gi

�Q
⋅ �

h,j

)
.

(73)
��∗

�Qa

∶ � =
∑
ij

1

2
�ij

(
�
∗,i Ra,j + Ra,i �

∗,j
)
,

(74)�
∗,i =

mcp∑
k=1

Rk,iu
∗
k
.
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the stresses. Again, Eq. (68) is not used as such. Instead, 
we commute the derivative and the sum. For a given stress 
component, the differentiation w.r.t. the control points gives:

with Einstein’s summation convention.
The derivatives of the material tensor �Cijkl∕�Q are 

obtained by the derivation of the Eq. (47). A chain rule of 
differentiation leads to:

Thus, the derivatives of the contravariant metrics w.r.t. to the 
control points are involved. We have not yet computed these 
derivatives. To this purpose, let us remind that these metrics 
are obtained by inverting a 3-by-3 matrix which takes the 
covariant metrics as components [see Eq. (43)]. One can 
notice that the following relation holds true:

where � denotes here the identity matrix of size 3. Differen-
tiating this last equation leads to:

Then, we multiply this result on the right with the matrix 
containing the contravariant metrics in order to identify 
the derivatives of the contravariant metrics. Using Eq. (77) 
finally yields:

(75)
��ij

�Q
=

�Cijkl

�Q
�kl + Cijkl

��kl

�Q
,

(76)

�Cijkl

�Q
= �

(
�Gij

�Q
Gkl + Gij �G

kl

�Q

)

+ �

(
�Gik

�Q
Gjl + Gik �G

jl

�Q
+

�Gil

�Q
Gjk + Gil �G

jk

�Q

)
.

(77)
[
Gij

][
Gij

]
= �,

(78)
[
�Gij

�Q

][
Gij

]
+

[
Gij

][
�Gij

�Q

]
=

[
0

]
.

This enables to express the derivatives of the contravari-
ant metrics as functions of the derivatives of the covariant 
metrics:

The covariant metrics are obtained by dot products between 
the covariant vectors as given in Eq. (44). Thus, the deriva-
tives of the covariant metrics w.r.t. the control points is quite 
straightforward:

and by introducing Eq. (70) one can get the results we were 
interested in:

We now have all the ingredients to compute the derivatives 
of the stresses w.r.t. the control points of the analysis model; 
i.e. we know how to compute the terms involved in Eq. (75). 
As for the strain components, we end up with a compact 
expression of the derivatives of stress components thanks to 
the use of the curvilinear formalism. It involves the deriva-
tives of the contravariant metrics contained in the compo-
nents of the material tensor. The equations to be used are 
(76), (80) and (82).

(79)
[
�Gij

�Q

]
= −

[
Gij

][
�Gij

�Q

][
Gij

]
.

(80)
�Gij

�Q
= −

∑
kl

GikGlj
�Gkl

�Q
.

(81)
�Gkl

�Q
=

�Gk

�Q
⋅ Gl + Gk ⋅

�Gl

�Q
,

(82)
�Gkl

�Qa

= Ra,kGl + Ra,lGk.
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Algorithm 2: Computation of the partial derivatives of the total work w.r.t. the control point coordinates ∂W/∂Q.
Input : State and Adjoint variables u and u∗

: Geometric and Mechanical properties
Output: Gradient

1 gradW(:, :)= 0. // Initialize with size (mcp ×3)

for ie = 1 to ne do
gradWe(:, :)= 0. // Initialize with size (me

cp ×3)

for igp = 1 to ngp do

66 Evaluate basis function and derivatives at gauss point igp
7 Compute curvilinear quantities (Gi ,Gi ,Gi j ,Gi j )
8 Compute derivatives of displacement and adjoint fields (u,i and u∗,i )
9 Infer state and adjoint strains and stresses (ε, σ , ε∗, σ ∗)
1010 Compute and store other redundant quantities (|J |, (ε∗ : σ ), etc.)

1212 for a = 1 to me
cp do

Compute derivative of Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation (71):

∂|J |
∂Qa

= Ra,1G2×G3 + Ra,2G3×G1 + Ra,3G1×G2

Compute derivative of state and adjoint strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation (73):

∂ε∗

∂Qa
: σ =

i j

1

2
σ i j u∗,i Ra, j + Ra,i u∗, j

σ ∗ :
∂ε

∂Qa
=

i j

1

2
σ ∗ i j u,i Ra, j + Ra,i u, j

Compute derivative of material tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equations (76),(80),(82):

∂Gi j

∂Qa
=−

kl

GikGl j Ra,kGl + Ra,lGk

∂Ci jkl

∂Qa
= λ

∂Gi j

∂Qa
Gkl +Gi j ∂G

kl

∂Qa
+µ

∂Gik

∂Qa
G jl +Gik ∂G

jl

∂Qa
+

∂Gil

∂Qa
G jk +Gil ∂G

jk

∂Qa

Compute derivative of stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation (75):

ε∗ :
∂σ

∂Qa
= σ ∗ :

∂ε

∂Qa
+

i j kl

ε∗i j
∂Ci jkl

∂Qa
εkl

Update 3 components of the gradient associated to Qa (i.e. add terms to gradWe(a, :)) . . . Equation (84):

∂We

∂Qa
−= ε∗ : σ

∂|J |
∂Qa

+
∂ε∗

∂Qa
: σ +ε∗ :

∂σ

∂Qa
|J | |Jgp|wgp

If exist, add terms coming from the body forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation (85):

∂We

∂Qa
+= u∗ · f

∂|J |
∂Qa

+ u∗ :
∂f
∂Qa

|J | |Jgp|wgp

end
end
gradW(activeCPs, :)+= gradWe(:, :)

end
If exist, add terms coming from external surface forces (same strategy than for the body forces) . . . . . Equation (86).

24 return gradW
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4.2.4  Summary and Generalization

Despite the large number of equations, we end up with a 
general expression of the required derivatives (formulated 
initially by Eq. (35)). It reads as the differentiation of the 
total work evaluated using the displacement and the adjoint 
fields w.r.t. the control point coordinates:

where the derivatives of the internal work are given by:

and the derivatives of the external work are given by:

 Regarding the implementation, one should view the deriva-
tives as given by these equations. We present in Algorithm 2 
the main steps for the implementation of the aforementioned 
derivatives. We summarize the principal equations one 
would required to implement the gradient.

4.3  Shell Formulation

4.3.1  Continuum Formulation

The Kirchhoff–Love formulation has been largely studied in 
the literature both for analysis and for shape optimization. 
We only remind here key theoretical points in order to be 
able to present the analytical sensitivities. The starting point 
consists in invoking specific kinematic assumptions, namely 
the Kirchhoff–Love hypotheses. These hypotheses intro-
duced by Kirchhoff[51] and Love[61] state that the normals 
to the mid-surface in the reference configuration remain nor-
mal and unstretched in the deformed configuration.

There are different strategies to impose the kinematic 
assumptions. In this work we follow the strategy from   
Kiendl et al.[49] based on the direct approach. It means that 
the shell is regarded from the beginning as a two-dimen-
sional surface (often named as a Cosserat surface) and 
proper kinematic assumptions, representing the three-dimen-
sional behavior, are postulated. Thus, the shell continuum is 
described by its mid-surface S and director vectors:

(83)
�W

�Q
=

�Wint

�Q

(
�
∗h, �h

)
+

�Wext

�Q

(
�
∗h
)
,

(84)

𝜕Wint

𝜕Q
= − ∫Ω̄

(
𝜕�∗

𝜕Q
∶ � + � ∶

𝜕�

𝜕Q

)
|J|dΩ̄

− ∫Ω̄

(�∗ ∶ �)
𝜕|J|
𝜕Q

dΩ̄,

(85)
𝜕Wext

𝜕Q
= ∫Ω̄

{
�
∗
⋅

𝜕F

𝜕Q
|J| + (�∗ ⋅ F)

𝜕|J|
𝜕Q

}
dΩ̄

(86)+∫Γ̄

{
�
∗
⋅

𝜕t

𝜕Q
|I| + (�∗ ⋅ t)

𝜕|I|
𝜕Q

}
dΓ̄.

where t is the shell thickness. In the case of Kirchhoff–Love 
kinematic, the director vector is taken as the normal at each 
point of the mid-surface:

where A� , � = 1, 2 are the covariant vectors associated to 
the mid-surface.

By introducing the aforementioned kinematic assump-
tions, the displacement field of the entire body can be 
described only by the displacement � of the mid-surface:

In this work we use the linearized difference vector wlin 
which is valid under the assumption of small displace-
ment[26, 49]. This vector is also expressed w.r.t. the dis-
placement of the mid-surface. The kinematic assumptions 
also involve that transversal strains vanish (trough the thick-
ness). More details can be found, for example in Kiendl[48].

Let us directly give the expression of the virtual works for 
the Kirchhoff–Love shell formulation. It reads as:

where A is expressed in (88), p denotes distributed loads 
per unit of area applied on the mid-surface Ω0 , and t 
denotes axial forces per unit of length applied on the edges 
of the patch Γ0 . The internal work is expressed as the sum 
of two contributions: the membrane and the bending part. 
The membrane and bending strains are formulated using 
local coordinates as we did for the standard formulation in 
Sect. 4.2. More precisely, the covariant membrane compo-
nents are:

Greek indices (�, �) takes on values 1 or 2. The covariant 
bending components are:

(87)X(�1, �2, �3) = S(�1, �2) + �3A3(�1, �2), �3 ∈ [-
t

2
,
t

2
],

(88)A3 =
1

A
A1 × A2, with A = |A1 × A2|.

(89)�
3D(�1, �2, �3) = �(�1, �2) + �3w

lin(�1, �2).

(90)𝛿WKL
int

= −∫Ω̄0

(
n ∶ 𝛿e +m ∶ 𝛿�

)
AdΩ̄0,

(91)𝛿WKL
ext

= ∫Ω̄0

𝛿� ⋅ pAdΩ̄0 + ∫Γ0

𝛿� ⋅ t dΓ0,

(92)e�� =
1

2

(
�,� ⋅ A� + �,� ⋅ A�

)
.

(93)

��� = −�,�� ⋅ A3

+
1

A

(
�,1 ⋅ (A� ,� × A2) + �,2 ⋅ (A1 × A� ,�)

)

+
A3 ⋅ A� ,�

A

(
�,1 ⋅ (A2 × A3) + �,2 ⋅ (A3 × A1)

)
.
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In the expression of the virtual work (90), n and m denote the 
normal forces and the bending moments respectively. They 
are expressed as follows:

with:

The constitutive tensor �0 includes the plane-stress condi-
tion through condensation of the material equations[5]. It 
reads as:

where �̄� = 2𝜆𝜇∕(𝜆 + 2𝜇).

4.3.2  Isogeometric Kirchhoff–Love Element

The Kirchhoff–Love NURBS element is obtained by dis-
cretizing the mid-surface with a NURBS surface. This 
discretization is also used to approximate the mid-surface 
displacement field:

Then, the discretized membrane and bending strains take 
the following forms:

The expression of the membrane strain matrices �m
k
 and of 

the bending strain matrices �b
k
 can be inferred from Eqs. (92) 

and (93).
The stiffness matrix of the Kirchhoff–Love shell formula-

tion can be built through 3-by-3 matrices of the form:

(94)n = t�0 ∶ e n�� =
tE

1 − �2
H

����

0
e�� ,

(95)m =
t3

12
�0 ∶ � m�� =

t3E

12(1 − �2)
H

����

0
��� ,

(96)H
����

0
= �A��A�� +

1

2
(1 − �)

(
A��A�� + A��A��

)
.

(97)C
𝛼𝛽𝛾𝛿

0
= �̄�A𝛼𝛽A𝛾𝛿 + 𝜇

(
A𝛼𝛾A𝛽𝛿 + A𝛼𝛿A𝛽𝛾

)
,

(98)

S(�1, �2) =

mcp∑
k=1

Rk(�1, �2)Qk,

�
h(�1, �2) =

mcp∑
k=1

Rk(�1, �2)uk.

(99)eh =

mcp∑
k=1

�
m
k
uk,

(100)�
h =

mcp∑
k=1

�
b
k
uk.

(101)�
e
kl
= ∫Ω̄e

0

[
t�m

k
T
�0�

m
l
+

t3

12
�
b
k
T
�0�

b
l

]
Ad𝜃1d𝜃2,

where k and l are indices of two control points related to 
element e, and the matrix �0 reads as:

and where the components H����

0
 are given by Eq. (96). The 

integral is later computed using numerical integration. The 
load vector, which expresses the external virtual work (91) 
once the displacement field is discretized, reads as:

4.3.3  Differentiating IGA Kirchhoff–Love Operators

For the Kirchhoff–Love shell formulation, we follow the 
same logic as for the standard IGA formulation we have just 
dealt with (see Sect. 4.2). Thus, here we skip redundant cal-
culation steps. Especially, one can obtain the counterpart of 
Eq. (64) for the Kirchhoff–Love shell formulation by apply-
ing the same reasoning. In that respect, we can show that 
the derivatives of the adjoint internal work w.r.t. the control 
point coordinates are given by:

Several terms can be identified: we need to compute the 
derivatives of the Jacobian, the derivatives of the (adjoint) 
strains (membrane and bending), and the derivatives of the 
stress resultants (membrane and bending).

Derivative of the Jacobian  We already introduced the 
expression of the derivatives of the Jacobian w.r.t. the con-
trol points in case of a volume, see Eq. (71). In case of a 
surface, the derivatives are given by:

One has to differentiate Eq. (88) to get this result.
Derivative of the Membrane Strains and Stresses  The 

expressions of the membrane strains e�� and the membrane 
forces n�� involved in the Kirchhoff–Love shell are essen-
tially similar to the strain and stress fields of the standard 
solid elements (2D problem). Thus, we give here only the 
final results. One can recover the following equations by 

(102)�0 =
E

1 − �2

⎡
⎢⎢⎣

H11 11
0

H11 22
0

H11 12
0

∗ H22 22
0

H22 12
0

∗ ∗ H12 12
0

⎤
⎥⎥⎦
,

(103)Fk = ∫Ω0

RkpdΩ0 + ∫Γ0

RktdΓ0.

(104)

𝜕WKL
int

𝜕Q

(
�
∗h, �h

)
= ∫Ω̄0

(
𝜕e∗

𝜕Q
∶ n + e∗ ∶

𝜕n

𝜕Q

)
AdΩ̄0

+ ∫Ω̄0

(
𝜕�∗

𝜕Q
∶ m + �

∗ ∶
𝜕m

𝜕Q

)
AdΩ̄0

+ ∫Ω̄0

(e∗ ∶ n + �
∗ ∶ m)

𝜕A

𝜕Q
dΩ̄0.

(105)
�A

�Qa

= Ra,1A2 × A3 + Ra,2A3 × A1.
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going through what has been presented for the solid formula-
tion. For the derivatives of the membrane strains, we obtain:

where the adjoint solution is built using the bi-variate basis 
functions and takes the same form as Eq. (74).

The derivatives of the membrane forces is obtained using 
the constitutive Eq. (94). We have:

The derivatives of the material tensor �C����

0
∕�Q can be 

computed similarly to what has been done for the 3D con-
stitutive law (76).

Since the membrane part involved in the analytical sen-
sitivities for the Kirchhoff–Love formulation is very similar 
to classical 2D problems (e.g. by taking thickness equals to 
one and assuming plane-stress state), the interested readers 
can start by implementing the analytical sensitivities in that 
context.

Derivative of the Bending Strains and Stresses  The bend-
ing part involved in the sensitivity (104) requires additional 
developments. However, the core idea remains the same. A 
chain rule is applied until we get an expression with quanti-
ties that we know how to derive w.r.t. the control points. Let 
us split the expression of the bending strain (93) into three 
terms as follows in order to describe the derivatives:

where

Thus, the derivatives of the bending strains w.r.t. the control 
points are given by:

The derivatives ��1
��
∕�Q can be written as follows:

(106)
�e∗

��

�Qa

=
1

2
�
∗,�Ra,� + Ra,��

∗,�

(107)�n��

�Q
= t

�C
����

0

�Q
e�� + t C

����

0

�e��

�Q
.

(108)��� = −�,�� ⋅ A3 + �
1
��

+ �
2
��
,

(109)
�
1
��

=
1

A

(
�,1 ⋅ (A� ,� × A2) + �,2 ⋅ (A1 × A� ,�)

)
,

�
2
��

=
A3 ⋅ A� ,�

A

(
�,1 ⋅ (A2 × A3) + �,2 ⋅ (A3 × A1)

)
.

(110)
����

�Q
= −�,�� ⋅

�A3

�Q
+

��1
��

�Q
+

��2
��

�Q
.

(111)

��1
��

�Q
=
�A−1

�Q

(
�,1 ⋅ (A� ,� × A2) + �,2 ⋅ (A1 × A� ,�)

)

+
1

A

(
(�,1 × A� ,�) ⋅

�A2

�Q
− (�,1 × A2) ⋅

�A� ,�

�Q

)

+
1

A

(
(A� ,� × �,2) ⋅

�A1

�Q
− (A1 × �,2) ⋅

�A� ,�

�Q

)
,

where some circular shifts have been performed in the scalar 
triple products. Identically, the other term ��2

��
∕�Q is given 

by:

with:

We already know how are expressed the derivatives of the 
covariant basis vectors �A�∕�Q [see Eq. (70)] and the deriv-
atives of the Jacobian �A∕�Q (see Eq. (105)). Nonetheless, 
there are some additional derivatives that are involved in the 
differentiation of the bending strains. Regarding the inverse 
of the Jacobian, the derivatives read as:

The derivatives of the director vector appears multiple times. 
After few developments, one should obtain the following 
formula:

Scalar products between these derivatives �A3∕�Q and dif-
ferent vectors are involved. Let us give a general expression 
of this type of quantities:

where v denotes any required vector. Lastly, let us give the 
following results:

We now have all the ingredients in order to compute the 
derivatives of the bending strains w.r.t. the control points of 
the analysis model. It contains quite a lot of terms. Hence, it 
is worth spending some time to identify repetitive terms in 
order to make numerical savings in the implementation. For 
instance, there are multiple cross and dot products that seem 

(112)

𝜕�2
𝛼𝛽

𝜕Q
=
𝜕Ã𝛼𝛽

𝜕Q

(
�,1 ⋅ (A2 × A3) + �,2 ⋅ (A3 × A1)

)

+
A3 ⋅ A𝛼 ,𝛽

A

(
(A3 × �,1) ⋅

𝜕A2

𝜕Q
+ (�,1 × A2) ⋅

𝜕A3

𝜕Q

)

+
A3 ⋅ A𝛼 ,𝛽

A

(
(�,2 × A3) ⋅

𝜕A1

𝜕Q
+ (A1 × �,2) ⋅

𝜕A3

𝜕Q

)
,

(113)

𝜕Ã𝛼𝛽

𝜕Q
=

𝜕A−1

𝜕Q
A3 ⋅ A𝛼 ,𝛽 +

1

A

𝜕A3

𝜕Q
⋅ A𝛼 ,𝛽 +

1

A
A3 ⋅

𝜕A𝛼 ,𝛽

𝜕Q
.

(114)
�A−1

�Q
= −

1

A2

�A

�Q
.

(115)
�A3

�Q
= −

1

A
A3

�A

�Q
+

1

A

(
�A1

�Q
× A2 + A1 ×

�A2

�Q

)
.

(116)

v ⋅
�A3

�Qa

= −
v ⋅ A3

A

�A

�Qa

−
v × A2

A
Ra,1 −

A1 × v

A
Ra,2 ,

(117)v ⋅
�A� ,�

�Qa

= Ra,�� v.
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better to compute once and for all at the beginning instead 
of computingthem for each control points Qa.

Finally, the derivatives of the bending moments are com-
puted through the derivation of the constitutive Eq. (95):

At this point, we know how to compute all terms, i.e. the 
derivatives of the material tensor and the derivatives of the 
bending strains.

(118)�m��

�Q
=

t3

12

�C
����

0

�Q
��� +

t3

12
C
����

0

����

�Q
.

Implementation Regarding the implementation of the par-
tial derivatives of the adjoint work w.r.t. the control point 
coordinates in case of the Kirchhoff–Love shell formulation, 
it is done similarly than for the standard solid element. Thus, 
we refer the interested reader to Algorithm 2 to get a global 
view of how it can be implemented.

Table 1  Different types of gradients for the plate with a square hole as given in Fig. 2

The analysis model counts 8 × 8 quadratic elements. Note: values are magnified by 104

Fig. 4  History of structural analysis and sensitivity analysis during the shape optimization of the plate with a hole
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5  Numerical Investigation

Now, we present the results obtained for the different exam-
ples already mentioned in Sect. 2.2. The goal is to collect 
a large range of benchmark results (spanning various struc-
tural analyzes and objective functions) which could be of 
interest during the development of new methods in the con-
text of isogeometric shape optimization. The focus is on the 
sensitivities. For each example, we display the gradients and 
we give detailed values in tables. The gradients are repre-
sented by 3D fields of arrows. On the fine analysis mod-
els, we depicted the quantities denoted �W∕�Q throughout 
this document. On the design models, we plot the quanti-
ties �W∕�P which are obtained after the first propagation 
step. Let us mention that these quantities do not depend on 
the shape parametrization: even if one use different shape 
parametrizations than those of this work, one could rely 
on the presented results. For several examples, we give in 
tables detailed values of the full sensitivities (which depend 
on the shape parametrization). We verify the correctness 
of the presented analytical sensitivities in comparison with 
approximated ones. We also discuss the numerical efficiency 
of these sensitivities. Let us mention that we use, in this 
work, the SLSQP solver available in the NLopt library as 
the gradient-based algorithm to solve the optimization prob-
lems[44, 53].

5.1  Compliance as the Objective Function

Autoadjoint Problem The compliance seems to be the most 
common choice in structural optimization. By minimizing 
the compliance, the structure becomes stiffer in the sense 
that it deforms less. The compliance is a special case where 
the adjoint solution can directly be inferred from the state 
solution. In fact, the partial derivatives of the compliance (6) 
w.r.t. the design variables and the displacement DOF are 
respectively given by:

Thus, the adjoint problem (15) reads, in the case of the com-
pliance, as:

For the three examples tackled in this section, the load vec-
tor do not depend on the design variables. Thus, during the 
sensitivity analysis, one can omit the terms involving the dif-
ferentiation of the load vector. If not, the partial derivatives 

(119)
�fc

�xi
=

1

2

�F

�xi
⋅ u,

(120)
�fc

�u
=

1

2
F.

(121)�u∗ =
1

2
F, ⇒ u∗ =

1

2
u.

of the compliance w.r.t. the design variables is computed 
firstly on the analysis model and then pull back the design 
variables level as explained in Sect. 3 [see more specifically 
Eq. (36)]. Here, we choose to omit them and to only con-
sider the derivatives of the adjoint internal work during the 
sensitivity analysis.

Plate with a Hole The problem of the plate with a hole 
has been tackled multiple times in papers dealing with isoge-
ometric shape optimization, see for instance Fußeder et al.
[32], Hassani et al.[36], Qian[75] and Wall et al.[87]. The 
plate is subjected to a bi-axial loading. Initially, the shape 
of the hole is a square. It is known that the optimal shape 
for this problem consists in a circular hole, see Wall et al.
[87]. The settings for this problem are given in Fig. 2. Due to 
symmetry, only one quarter of the plate is considered. Plane 
strain state is assumed. The optimization model is built using 
a single NURBS surface with 2 × 1 quadratic elements. The 
weights are set such that the circular hole can be exactly 
described as done in Qian[75]. We consider several refine-
ment levels to define the analysis model.

More precisely, we firstly discretize the analysis model 
with 8 × 8 quadratic elements. Figure 4 shows several shape 
updates. For each shape update, we depict the solution of 
the structural analysis, and the gradients of the compliance 
at both analysis and design levels. The algorithm requires 
about 10 iterations to recover the optimal shape. In Table 1, 
we compare the analytical sensitivities (AN) with approxi-
mated sensitivities. The results are given for the initial 
geometry (i.e. the square hole). More specifically, we give 
in Table 1 the sensitivities obtained by global Finite Differ-
ences (FD) and the sensitivities obtained by semi-analytical 
approximation (sAN) as done, for example, in Kiendl et al.
[50]. This sAN sensitivity consists in involving a finite dif-
ference scheme to approximate the derivatives of the ele-
ment operators in Eq. (16). In Table 1, a forward scheme 
is used. We vary the perturbation step in order to highlight 
its influence on the sensitivities (see again Table 1). The 
first point that we want to underline is the correctness of 
the presented analytical sensitivities. In fact, we recover the 
FD results where there is likely no implementation errors 
due to simplicity. The differences arise only after a certain 
precision. These differences come from the approximation 
scheme. In fact, by varying the perturbation step, it is clear 
that only the first decimals of the approximated sensitivities 
are correct. This is especially true for the sAN sensitivi-
ties. The inaccuracy of the sAN scheme is well known and 
strategies for getting exact semi-analytical sensitivities have 
been proposed for standard FEM[7, 12, 31, 71, 85, 88]. Let 
us mention that one can use a central difference scheme in 
order to obtain a better accuracy of the approximated sensi-
tivities. Eventually, one can observe that with the analytical 
sensitivities the following relations are obtained:
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Table 2  Values of the gradients 
represented in Fig. 5. It 
highlights the influence of the 
refinement level of the analysis 
model on the sensitivity 
analysis. Note: values are 
magnified by 104

Refinement df
c
∕dx

1
df

c
∕dx

2
df

c
∕dx

3
df

c
∕dx

4
df

c
∕dx

5
df

c
∕dx

6

r = 1, p = 2 − 7.646 − 3.916 − 3.600 3.600 3.916 7.646
r = 2, p = 2 − 8.917 − 2.900 − 2.756 2.756 2.900 8.917
r = 3, p = 2 − 9.671 − 2.236 − 2.170 2.170 2.236 9.671
r = 1, p = 3 − 8.641 − 3.134 − 2.966 2.966 3.134 8.641
r = 2, p = 3 − 9.483 − 2.406 − 2.318 2.318 2.406 9.483
r = 3, p = 3 − 9.995 − 1.941 − 1.909 1.909 1.941 9.995

Fig. 5  Influence of the refine-
ment level of the analysis model 
on the analytical sensitivity for 
the plate with a hole (r stands 
for the refinement level per-
formed by knot insertion such 
that the analysis model has 2r 
times more elements per direc-
tion than the design model)
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It is clear that the exact sensitivity verifies these equations 
due the symmetry of the problem. The fact that we recover 
these equations demonstrates the good accuracy of the ana-
lytical sensitivity. This is not the case for the FD or sAN 
sensitivities (except FD with the perturbation step equal to 
1e−4).

Regarding the accuracy of the analytical sensitivity, we 
study in Fig. 5 and Table 2 the influence of the refinement 
level of the analysis model. By looking at the presented 
results (Fig. 5 and Table 2), one can notice that the sensitivi-
ties are greatly affected by the refinement level. This is espe-
cially true for the initial configuration with the square hole 
due to the singularities at the corners of the hole. It means 
that the choice of the analysis model should not be made 
solely to ensure good results during the structural analysis 
but also to ensure good sensitivities.

Finally, it is very interesting to point out that only the 
control points associated to the domain boundary seem to 
give non-zero values in the gradients: see Fig. 4. In fact, all 
the interior control points lead to small values in �W∕�Q 
and �W∕�P in comparison with the boundary control points. 
The reason is that the interior control points do not modify 
the physical domain (from a continuum point of view). 
Thus, ideally speaking the influence of their positions on 
the internal and external works is null (as long as no geo-
metrical singularities are introduced as overlaps etc.). Due to 
numerical errors in the analysis, this is not exactly observed. 
Indeed, it is known that mesh distortions impact the quality 
of the analysis in FEM-based simulations. However, one can 
consider during the sensitivity analysis to only compute the 
terms coming from the boundary control points and set to 
zero all the others associated to the interior control points. 
Instead of computing �W∕�Q , one can compute the quan-
tity 𝜕W∕𝜕Q̃ where the components are given by:

dfc

dx1
= −

dfc

dx6
,

dfc

dx2
= −

dfc

dx5
,

dfc

dx3
= −

dfc

dx4
.

Making this choice enables to reduce the numerical cost 
of the sensitivity analysis. Instead of performing a loop on 
every element plus a loop on every active control point (as 
explained in Algorithm 2), we only need to integrate over 
the support of the basis functions associated to the bound-
ary control points and to compute partial derivatives w.r.t. 
to these control points only. In practice, using �W∕�Q or 
𝜕W∕𝜕Q̃ does not lead exactly to the same gradient, in gen-
eral (again due to discretization errors). Computing all the 
terms (i.e. using �W∕�Q ) give the same gradient than the 
one obtained with Finite Differences as already shown in 
Table 1. When only the boundary control points are con-
sidered during the sensitivity analysis, the result is slightly 
different.

Table 3 highlights this issue: we consider the two calcula-
tion methods for the initial configuration (square hole) and 
the optimal configuration (circular hole). The difference is 
quite important, especially for the square hole due to the 
singularities in the solution which are badly captured with 
the chosen analysis model ( 8 × 8 quadratic elements). The 
discretization error is surely important here. With a finer 
analysis model, the influence of using either every control 
points or only the boundary control points, becomes much 
lower. With an analysis model with 64 × 64 cubic elements, 
the sensitivities for the plate with a circular hole are identi-
cal up to the sixth decimals. Thus, both approaches lead to 
the same optimal shape. Finally, this remark regarding the 
influence of interior control points on the sensitivity analysis 
is very related to the question of how to update the position 
of these control points during the optimization. Depending 
on the mesh density of the design model, the interior control 
points need to be moved in order to prevent the appearance 
of geometrical singularities due to element overlaps etc. This 
issue is beyond the scope of this article, and the interested 
reader is referred to[63, 77]. But let us mention that for each 
example presented in this work, we achieve to formulate 
shape parametrizations that automatically ensure a correct 
regularity of the geometries. Moreover, in what follows, we 
always consider every control points during the sensitivity 
analysis.

Square Shell Roof The optimization problem of the square 
shell roof is presented in Fig. 6. This example can be found 
in Hirschler et  al.[38], and similar problems have been 
tackled by Bletzinger et al[11] and Kegl and Brank[47], for 
example. The roof is fixed at its corners and subjected to a 
vertical load (given by unit of area). The loading will not 
change with the shape update of the roof. The load vector 
can be built from the case of a square plate subjected to 

(122)
𝜕W

𝜕Q̃a

=

⎧
⎪⎨⎪⎩

𝜕W

𝜕Qa

if Qa moves the boundary,

� else.

Table 3  Influence on the sensitivities when every control point of the 
analysis model are used during the sensitivity analysis with the case 
where only the boundary control points are considered

Results are given for the plate with either a square hole and a circular 
hole. The analysis model counts 8 × 8 quadratic elements. Note: val-
ues are magnified by 104

Type df
c
∕dx

1
df

c
∕dx

2
df

c
∕dx

3

All CPs (square) − 8.917 − 2.900 − 2.756
Bound CPs (square) − 9.278 − 3.027 − 2.578
All CPs (circular) − 4.027 − 6.447 − 4.365
Bound CPs (circular) − 4.054 − 6.498 − 4.396
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uniform pressure. The same idea can be found for the opti-
mal arch problem in Kiendl et al.[50].

The results presented in Fig. 6 and Table 4 are obtained 
with a design model with 4 × 4 quadratic B-Spline elements 
and an analysis model with 32 × 32 quadratic B-Spline 

elements. The Kirchhoff–Love shell formulation is used here 
to model the behavior of the roof. The shape parametrization 
consists in moving the control points of the design model in 
the z-direction (see Fig. 6). The control points located at the 
corners of the roof are left fixed. Thus, it leads to a total of 

Fig. 6  Settings and optimization results for the square roof problem
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32 design variables. Looking at the roof problem, one can 
notice that it has several symmetries. Consequently, the sen-
sitivities have repeated terms; the influence of some design 
variables on the compliance is identical. For the initial 
geometry as given in Fig. 6, there are only 5 unique values in 
the sensitivity out of 32 components. These terms are given 
in Table 4. We compare the presented analytical sensitivity 
with several approximated sensitivities. More specifically, 
forward and central finite differential schemes are used to get 
either total FD sensitivities or sAN sensitivities. One can see 
that the forward scheme leads to quite significant differences 
with respect to the analytical sensitivity. Only the first two 
decimals are correct. With another perturbation step, the 
results can be somehow improved. However, this highlights 
one difficulty when employing approximated sensitivities: 
how to choose this perturbation step? Usually, a good point 
that limits its influence consists in scaling the problem such 
that the design variables vary between 0 and 1, for example. 
The objective functions and the constrains should also be 
scaled by using, for instance, their initial values. However, 
this does not guarantee that a given perturbation step will be 
suitable for every problem. It can be even trickier: a given 
perturbation can be suitable for the initial configuration but 
may lead to bad approximation of the sensitivities after some 
shape updates. More significantly, the adequate perturbation 
step (the one that leads to the lowest error) can be different 
for each design variable. But this is not identifiable in prac-
tice and usually one single perturbation step is chosen for 
each design variables and is kept the same during the whole 
optimization. It may be welcome to perform several sensitiv-
ity analyses for the initial configuration with different pertur-
bation steps in order to select an appropriate one. For all the 
examples tackled in this work, this preliminary procedure 
was sufficient to limit the influence of the perturbation step: 
the optimization process always converged toward the same 
optimal shape and in a similar number of iterations when 
either approximated or analytical sensitivities were used. 
Finally, let us notice that even if the analytical sensitivity 
enables to get rid of the perturbation step, there is still the 
choice of the refinement level of the analysis model that 
needs to be done when setting up the optimization prob-
lem (see previous discussion for the plate with a hole). It 

can be interesting to adapt the refinement level during the 
optimization by using, for example, advanced tools as error 
estimators[2, 4, 14].

We also give in Table 4 the computational time for the 
different sensitivities. The computational times are scaled 
with the one of the analytical sensitivity. Unsurprisingly, the 
FD sensitivities takes the longest to compute because, for 
each design variable, system (3) needs to be built and solved. 
In case of the central FD scheme, this is even done twice per 
design variables. That is why the central FD takes twice the 
computational time of the forward FD (see again Table 4). 
Of course, this computational time can surely be reduced by 
saving redundant quantities and by using dedicated strate-
gies as for example structural reanalysis[22, 52]. However, 
in this example, there are only 32 design variables. For more 
complex examples with thousands of design variables, FD 
sensitivities may be simply intractable[85]. Interestingly, 
the computational times of the sAN sensitivities are much 
higher than the AN sensitivity. Indeed, a factor roughly equal 
to the number of design variables (i.e. 32 here) is obtained 
when the forward finite difference scheme is used in the 
approximated part of the sAN sensitivity. Again, the com-
putational time is doubled for the central sAN in comparison 
with the standard sAN (see again Table 4). The fact that the 
ratio between the computational time of the sAN and the AN 
sensitivities tends to the number of the design variables can 
be theoretically understood and could be inferred from Algo-
rithm 2. The main calculation step of the AN sensitivity is 
the computation of the partial derivatives of the total adjoint 
work w.r.t. the control points coordinates �W∕�Q as previ-
ously explained. These terms take the form of an integral 
over the computational domain. In Algorithm 2, the steps 
that involve the most arithmetic operations are those from 
line 6 to line 10. The loop starting at line 12 consists essen-
tially in adding terms to an array where every involved quan-
tity is already computed. Thus, this loop goes fast. Interest-
ingly, removing lines 12 to end of Algorithm 2 give the steps 
required to compute the total adjoint work (33). This means 
that the computation of the derivatives of the total adjoint 
work �W∕�Q takes a comparable amount of time than the 
computation of the total adjoint work in itself. Now, let us 
point out that during the sAN sensitivity analysis, one has 

Table 4  Different types of gradients for the square roof as given in Fig. 6 (initial configuration)

The 5 given values correspond to the unique values out of the 32 components of the gradients (Note: the design variables were numbered in a 
structured way starting with direction x)
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to evaluate the total adjoint work as many times as design 
perturbations (i.e. as many times as the number of design 
variables with forward scheme, and twice as much with the 
central scheme). Because this step is the most time consum-
ing step of the overall sensitivity analysis, it also means that 
the computation time of sAN is linearly proportional to the 
number of design variables. Let us summarize what has been 
observed:

This observation leads us to conclude that the time saving 
when using AN instead of sAN sensitivities is of the order 
of magnitude of the number of design variables:

Also, the computational time of the AN sensitivity is (quasi) 
independent of the number of design variables. This is a 
great benefit of this method for the sensitivity analysis, 
especially when incorporating a large number of design 
variables.

Volumetric Beam The presented analytical sensitivity 
method can also be applied to 3D solid models. To highlight 
this point, we perform the shape optimization of a volumet-
ric beam. The problem settings are described in Fig. 7. One 
end of the beam is fixed and an uniform pressure is applied 
over its top surface. The goal is to modify the cross section 
in order to maximize the stiffness of the structure. The final 
volume should not exceed the initial volume. Additional 
geometrical constrains are set in order to prevent undesir-
able shapes as described on Fig. 7. The design model is built 
using a B-Spline trivariate with 16 elements spread over 
the x-direction. Quadratic degree is taken in this particular 
direction whereas linear degree is taken in the two others. 
Thus, the design model counts 18 × 2 × 2 control points. 
Only the 36 control points associated to the bottom surface 
(depicted in blue in Fig. 7) are movable. Two design vari-
ables are assigned to each of them. Thus, we end up with a 
total of 72 design variables. After refinement, the analysis 
model counts 32 × 8 × 8 quadratic elements.

The results of the optimization are depicted in Fig. 7. The 
final geometry deforms much less which leads, in this case, 
to a significant reduction of the maximal Von-Mises stress 
(factor 25). We also give in Fig. 7 the sensitivities for sev-
eral iterations of the resolution. Other isogeometric shape 
optimization of 3D examples can be found, for example, in 

Blanchard et al.[6], Hassani et al.[36], Li and Qian[57], 
Lian et al.[59], and Wang et al.[91]. To the authors’ knowl-
edge, only Lian et al.[59] give quantitative results concern-
ing the sensitivity analysis step. We hope that the presented 

(123)time(sAN) ≈ nDV × time(W),

(124)time(AN) ≈ time(�W∕�Q) ≈ time(W).

(125)
time(AN)

time(sAN)
≈

1

nDV
.

example of the beam give additional useful results which 
could help to extend isogeometric shape optimization toward 
real-world applications.

5.2  Displacement as the Objective Function

In this section, we seek to use the displacement field as the 
objective function. For example, it can be interesting to 
adapt the shape of a structure such that it deforms in a pre-
scribed manner. One application found in structural topol-
ogy optimization using such objective functions is compliant 
mechanisms which are designed using such response func-
tions[81, 98].

Adjoint Problem In the simple case described by Eq. (7), 
the partial derivatives of the objective function w.r.t. the 
design variables and the DOF read respectively as:

Recalling the expression of the discrete displacement �h [see 
again Eq. (7)], we get the expression of the missing deriva-
tives involved in the right-hand side (127) of the adjoint 
problem:

where Ra is the basis function associated to the displace-
ment DOF of the control point numbered a. The basis func-
tions are evaluated at the parameters �M related to the physi-
cal point M where the displacement is computed. Here it 
is assumed that the point M is attached to the geometrical 
mapping. If not, the derivative (126) is not zero. Unlike the 
case of the compliance, taking fu as the objective function 
requires the resolution of an additional system where the 
right-hand side is given by Eq. (127).

Planar Cantilever Beam The 2D cantilever beam prob-
lem depicted in Fig. 8 is derived from an already existing 
shape optimization problem that as been tackled within the 
IGA framework[67, 75, 87]. But instead of minimizing the 
compliance, we choose here to minimize the displacement 
at a specific position (see again Fig. 8). The initial geometry 
is a simple rectangle. The design region is the upper edge 
of the beam as described in Fig. 8. Here, the optimization 
model counts 4 × 1 elements. Degree 2 and 1 are taken in the 
directions x and y, respectively. It leads to 6 movable control 
points. We define 6 design variables that move the design 
control points in the y-direction. We set a lower bound to 
these design variables in order to prevent very thin sections. 

(126)
�fu

�xi
= 0,

(127)
�fu

�u
=

1

fu

��h

�u
⋅ �

h.

(128)
��h

�ua
⋅ �

h = Ra�
h,
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Fig. 7  Problem settings and results for the shape optimization of a 3D beam
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Moreover, the surface area should not exceed a given upper 
limit. All the settings are given in Fig. 8. The analysis model 
counts 32 × 8 quadratic elements. Additionally, plane strain 
state is assumed.

The optimization results for the planar cantilever beam 
problem are given in Fig. 8. In order to minimize the dis-
placement at the specified location, the algorithm strength-
ens the portion of structure contained between the fixed side 
(where the Dirichlet boundary condition is applied) and the 

point M. On the contrary, the portion between the point M 
and the point of application of the load is weakened. It tends 
to limit the influence of the load: only a small part deforms 
a lot. It leads to an optimal shape where the upper edge is 
at first concave and then convex. As for all the examples 
investigated in this paper, we depict several results from the 
sensitivity analyses performed during the resolution. The 
gradients for the initial, an intermediary, and the final geom-
etries are depicted in Fig. 8.

Fig. 8  Settings and optimization results for the cantilever beam problem
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Roof with Minimal Deflection We perform a second 
example where the displacement field is directly used as the 
objective function. This example is identical to the square 
roof problem tackled in Sect. 5.1 and presented in Fig. 6. 
We make it new by only changing the objective function. 
Instead of minimizing the compliance, we undertake here to 
minimize the maximal deflection of the shell. To formulate 
such an objective, we call on a discrete P-norm (8). Differ-
entiating the P-norm w.r.t. a quantity � reads as:

By substituting Eqs. (126) and (127) into this last equation, 
one can get the expression of the analytical sensitivity of the 
P-norm approximation of the maximal displacement. The 
npts points where the displacement magnitude is evaluated 
in Eq. (129) are here the Greville points associated to the 
analysis model. Thus, there are as many evaluation points 
than control points of the analysis model; i.e. npts = mcp.

The results for the roof problem with minimal deflec-
tion are given in Fig. 9. The results look very similar to the 
roof with minimal compliance but the final optimal shape 
slightly differs. This can be observed by comparing the final 
displacement fields in Figs. 6 and 9. Minimizing the P-norm 
(with P = 20 here) of the displacement magnitude leads to 
a maximal displacement equal to ||�||max = 7.5 × 10−6m . 
This is lower than the maximal displacement obtained when 
minimizing the compliance: it was equal to 10.0 × 10−6m . 
On the contrary, the final shape has now a higher compli-
ance in comparison with the results presented in Fig. 6. This 
highlight that the choice of the objective function (and the 
definition of the optimization problem in general) is crucial 
as it can lead to very unique designs. Finally, in Fig. 9 we 
display several results of the sensitivity analyses in order to 
give to the interested readers some quantitative data.

5.3  Stress Field as the Objective Function

Using the stress field to formulate objective functions and 
constraints is important to prevent the failure of the structure 
due to high local stresses.

Adjoint Problem As pointed out in Sect. 2.2, stress-based 
optimization is commonly done through the use of stress 
aggregation. In this work, we use the P-norm to track the 
maximal stress. As for the previous case involving the dis-
placement as the objective function, using the stress field to 
express the objective function requires the resolution of an 
adjoint problem. The formulation of this adjoint problem 
for the objective function �� as given by Eq. (9) can be 
inferred by recalling the expressions of the discrete stresses 
(i.e. Eq. (57) for standard solid elements, and Eqs.  (94) and 

(129)��

��
=

(
npts∑
k=1

sgn (fk)
�fk

��
|fk|P−1

)(
npts∑
k=1

|fk|P
)1∕P−1

.

(95) for Kirchhoff–Love shell elements) and the result from 
Eq. (129). The partial derivatives w.r.t. the design varia-
bles ���∕�xi is performed firstly on the analysis model and 
then it is propagated to the design variable level as described 
by Eq. (36). One has to reuse the expression of the deriva-
tives of the stress field w.r.t. the control point coordinates 
to get the full expression of the sensitivity (i.e. Eq. (75) 
for standard solid elements, and Eqs.  (107) and (118) for 
Kirchhoff–Love shell elements). Finally, let us point out that 
the components of the stress field expressed in the covari-
ant basis [as given in Eq. (48)] has no physical meaning. 
A change of basis into a (local) Cartesian basis is further 
required[48]:

This change of basis needs to be taken into account during 
the sensitivity analysis:

If the Cartesian basis is local, then the basis vectors Ei may 
also depend on the control point coordinates. Thus, their 
derivatives should be also taken into account in equation 
(131). The derivatives of the covariant basis vectors w.r.t. 
the control point coordinates have already been given, see 
Eq. (70).

Tensile Specimen Using the stress field in the objective 
function enables to reduce stress concentration. In order 
to highlight this point, we deal with the design of a ten-
sile specimen as described in Fig. 10. It is a planar prob-
lem where plane stress state is assumed. The specimen is 
subjected to traction. The goal is to design the transition 
between the wide ends of the specimen and its thin cen-
tral part. The initial design connects these sections with 
straight lines. It creates stress concentration due to the sharp 
transition zones in the design as shown in Fig. 10. Thus, 
to reduce these stress concentration zones, we parametrize 
the shape of the specimen (see again Fig. 10). Due to the 
symmetry of the problem, only one quarter of the struc-
ture is considered. More precisely, the optimization model 
contains three patches with C0-continuity junctions. Only 
the subdomain denoted Ω(2) in Fig. 10 is subjected to shape 
changes. This patch has degree 3 in the x-direction and 
degree 1 in the y-direction. It counts 4 × 1 elements. The 
shape parametrization consists in moving 5 of its control 
points in the y-direction as depicted in Fig. 10. The two other 
patches Ω(1) and Ω(3) are discretized using one linear single 
element each so that the patch interfaces are matching. The 
analysis model is built through k-refinement such that each 

(130)�̂
ij = �

kl
(
Ei ⋅ Gk

)(
Gl ⋅ Ej

)
.
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patch is discretized with 16 × 16 cubic elements. The goal of 
this optimization problem consists in minimizing the maxi-
mal von Mises stress occurring in the overall specimen. For 
plane stress state, the von Mises stress reads as:

The objective function is taken here as the P-norm of the 
von Mises stress �VM computed at the Greville abscissas 
of each B-Spline bivariates. Thus, the von Mises stress is 

(132)𝜎VM =
√
�̂�11�̂�11 − �̂�11�̂�22 + �̂�22�̂�22 + 3�̂�12�̂�12.

Fig. 9  Settings and optimization results for the square roof with minimal deflection problem
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evaluated at 3 × 19 × 19 = 1083 points. We take P = 40 for 
this example.

The results of the optimization of the tensile specimen are 
presented in Fig. 10. The final shape consists in a smooth 
fillet that leads to reduce the maximal von Mises stress from 
51.1 to 22.7 MPa . We also give several sensitivity analyses 
in Fig. 10. Table 5 gives the values of the derivatives for 

the initial configuration. We compare the AN calculation 
with the approximated sensitivities (FD and sAN). As for 
the previous studies of the plate with a hole and the square 
shell roof, the AN sensitivity is close to the approximated 
sensitivities. It enables to validate its formulation and its 
correct implementation. Even if the objective function seems 
to be quite complex, full analytical sensitivity analysis is 

Fig. 10  Settings and optimization results for the tensile specimen problem

Table 5  Different types 
of gradients for the tensile 
specimen as given in Fig. 10 
(initial configuration)

Type (step) dfc/dx1 dfc/dx2 dfc/dx3 dfc/dx4 dfc/dx5

FD (1e-4) 0.04323446 0.22659049 1.45409336 6.65664040 44.13258751

central FD (1e-4) 0.04323668 0.22659784 1.45412855 6.65676127 44.13280705

sAN (1e-4) 0.04323577 0.22659459 1.45410643 6.65661209 44.13040686

central sAN (1e-4) 0.04323670 0.22659783 1.45412854 6.65676128 44.13280707

AN (-) 0.04323670 0.22659783 1.45412854 6.65676128 44.13280746
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achievable with the present framework. Thus, our approach 
is versatile and enables to tackle a large variety of response 
functions. Finally, let us point out that similar optimization 
problems have been presented in the context of IGA, see 
for example Li and Qian[57], Wang and Turteltaub[90] and 
Wang et al.[91]. Especially, Wang and Turteltaub[90] detail 
how continuous adjoint sensitivity analysis can be performed 
in the context of isogeometric shape optimization.

Catenary Stress-based structural design can also be use-
ful to design slender structures as shells. In this context, we 
are generally interested in limiting the bending deformations 
of these structures in order to guarantee their durability[8]. 
A shell is much stiffer in the in-plane directions than in the 
out-of-plane direction. Thus, an appropriate design objec-
tive for shells consists in minimizing the bending moments 
along the structure[11]. Again, we consider here to use the 
discrete P-norm (8) of the bending moments computed at 
the Greville abscissas (with P = 40 ). More specifically, we 
seek to solve the catenary problem as described in Fig. 11. 
The arch is fixed at its ends (no displacement) and is sub-
jected to a distributed loading which simulates the effect of 
gravity. The objective is to minimize the bending moment 
along the y-axis. We also impose a geometric constraint: 
the arch length l should be equal to 15 m. Interestingly, this 
problem is related to well-known results of hanging chain 
or cable. When supported only at its ends and under its 
own weight, a chain assumes a specific shape known as a 
catenary curve[84, 94]. Here the problem is very similar 
and, finally, the optimal arch that minimizes the maximum 
bending moment would be described by a catenary (this is 
even more true when the thickness of the shell tends towards 
zero). Bandara and Cirak[4] performs a similar study but 
they use the compliance to formulate the optimization prob-
lem. There exists an analytical solution of the optimization 
problem described in Fig. 11. The height of the catenary 
arch is:

where a is the solution of:

The distance L is defined in Fig. 11. The catenary is then 
defined by the following equation:

The exact analytical solution cannot be completely recov-
ered with a B-Spline design model since B-Splines cannot 
represent exactly an hyperbola. However, we should get an 
optimal shape that approximates the catenary. We use here 
a design model with quadratic degree in the principal arch 
direction and linear degree along the width. The design 
model counts 4 × 1 elements. We define 4 design variables 

(133)hAN = a cosh (L∕a) − a,

(134)2a sinh (L∕a) − l = 0.

(135)y = −a cosh (x∕a − L∕2∕a) + a + hAN, 0 ≤ x ≤ L.

that move couples of control points in the z-direction as 
depicted in Fig. 11. The analysis model is defined through 
k-refinement such that the discretization counts 32 × 2 cubic 
elements.

The optimization results are given in Fig. 11. The final 
shape obtained with the chosen design and analysis models 
is described. Even with the proposed coarse design model, 
the optimal shape looks like a catenary. More specifically, 
the optimal arch meets the analytical height hAN . Also, the 
shape of the optimal arch is visually very close to a cate-
nary. The difference is quasi indistinguishable. The bend-
ing moment is nearly zero for the final arch. The structure 
is subjected to membrane forces only. This was the goal of 
the optimization. We also give in Fig. 11 several sensitivity 
analyses. The presented example can be used by the inter-
ested reader to validate the implementation of the analytical 
sensitivity. Due to its simplicity, this example enables to test 
new methods. A similar example of an arch optimization 
where an analytical solution exists can be found in Kiendl 
et al.[50].

5.4  Objective Functions Involving Natural 
Frequencies

The last example, described in Fig. 12, further highlights the 
versatility of the present framework. Instead of solving a lin-
ear elasticity problem, we perform here a natural frequencies 
analysis. We thus consider objective functions of the form:

where the vector Λ collects the n� eigenvalues associated 
to the problem (4). Vector x collects the design variables 
as in Eq. (2).

Sensitivity Analysis for Natural Frequencies The sensitiv-
ity analysis of response functions involving natural frequen-
cies is done in a very similar manner than in case of stand-
ard sensitivity analysis (i.e. involving the displacement). 
It is done accordingly to the process described in Fig. 1. 
Derivatives are firstly computed on the analysis model and 
then propagated back to the design variables level using the 
refinement operators and the shape parametrization.

We already have almost all the ingredients to perform the 
sensitivity analysis of response functions of the form (136). 
The total derivatives of a response function of the form (136) 
w.r.t. a design variable is given by:

By differentiating the governing equations (4), one get the 
derivatives of an eigenvalue � w.r.t. a design variable:

(136)f ∶= f (x,Λ(x)),

(137)
df

dxi
=

�f

�xi
+

n�∑
k=1

�f

��k

d�k

dxi
.
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The eigenvector v corresponding to eigenvalue � is often 
normalized w.r.t. the mass matrix which gives vT�v = 1 . We 
make this consideration in the rest of the document.

(138)
d�

dxi
=

1

vT�v

[
vT
(
��

�xi
− �

��

�xi

)
v

]
.

Then, we follow the same strategy than the one presented 
in Sects. 3 and 4. One would get the following expression:

(139)
d�

dxi
=

�P

�xi
∶ �

T

(
�Wdyn

�Q
−

�Wint

�Q

)
,

Fig. 11  Settings and optimization results for the catenary problem
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where the dynamic work Wdyn reads as:

Under the consideration of constant density � , the deriva-
tives �Wdyn∕�Q are simply given by:

The discretized solution �h is expressed as in Eq. (54) where 
the DOF are taken as the eigenvector. We already know how 
to get the derivatives of the internal work w.r.t. the control 
point coordinates [see Eq. (83)]. Regarding the implementa-
tion, the derivatives of the dynamic work (141) is performed 
as in Algorithm 2. Also, if multiple eigenvalues are involved 
in the response function then one should compute the deriva-
tives �Wdyn∕�Q and �Wint∕�Q for each eigenpair simultane-
ously and not one after the other.

Elephant Trunk We named the novel example proposed 
in Fig. 12 as the elephant trunk problem due to the obtained 
optimal shape. The problem is as follows. The initial geom-
etry is a plain cylinder with an ellipse-like cross section. 
The bottom face of the structure is fixed while the rest is 
free of motion. The first two vibration modes are shown in 
Fig. 12. We parametrize the shape of the structure by layers 
of control points in the z-direction. For each layer, we assign 
two design variables which modify the width of the cross 
section in the x- and y-direction, respectively. Again, the 
reader is referred to Fig. 12. The design model is built using 
a NURBS trivariate with 4 quadratic elements. It leads to 12 
design variables. The refinement level for the analysis model 
is chosen such that it counts 4 × 4 × 16 quadratic elements.

The goal of this optimization problem is to maximize 
the lowest natural frequency of the structure. Optimization 
problems involving an eigenvalue problem are known to be 
challenging due to mode switching and multiple eigenvalues. 
Without any particular treatment, the optimization algorithm 
may encounter difficulties in converging due to none differ-
entiability of the eigenvalues[34, 62, 76]. This difficulty is 
encountered with the present example. In a naive way, one 
can try to run the optimization without any treatment: i.e. 
by using the objective function  f�1 as defined in Eq. (11) and 
by taking �1 as the lowest eigenvalue at every iteration (no 
mode tracking). The convergence history is given in Fig. 13. 
The stopping criterion is defined as the relative difference 
in the objective function between two successive iterations. 
The algorithm takes almost 100 iterations to converge. Fig-
ure 13b provides a closer look to what happens. Several 
mode switches occur during the optimization. The reason is 

(140)Wdyn(𝜆, �
h) = −𝜆∫Ω̄

𝜌
(
�
h
⋅ �

h
)|J|dΩ̄.

(141)
𝜕Wdyn

𝜕Q
= −𝜆∫Ω̄

𝜌
(
�
h
⋅ �

h
)𝜕|J|
𝜕Q

dΩ̄.

the following. Let us imagine that at iteration k, the eigen-
value �k

x
 associated to the bending mode in the x-direction 

is the lowest. The result from the sensitivity analysis will 
then lead us to increase the width of the cross section in 
this particular x-direction. But due to the volume constraint, 
the algorithm reduces the width of the cross section in the 
other direction y. What happens is that, at the next iteration, 
the eigenvalue �k+1

y
 may become lower than the new eigen-

value �k+1
x

 . Even more, it is possible that the eigenvalue �k+1
y

 
is lower than the initial eigenvalue �k

x
 . The algorithm is then 

confused; instead of increasing the lowest eigenvalue (which 
was �k

x
 ), it has decreased it (the new �k+1

y
 ). This is what hap-

pens at iteration 19 and causes the undesirable pic (see again 
Fig. 13b). When the optimal shape has multiple eigenfre-
quencies, the algorithm faces huge difficulties to converge if 
no particular treatment is handled. Regarding the vibration 
of structures, one would face these situations when the final 
optimal shape has some symmetries. Indeed, having geo-
metrical symmetries yields the presence of multiple eigen-
values, which are known to initiate non-differentiability of 
the objective function as already pointed out.

Several methods can be employed to tackle this issue. As 
already mentioned, dedicated sensitivity analysis can be per-
formed in the case of multiple eigenvalues[34, 62, 76, 95]. 
One can also reformulate the optimization problem by using 
the so-called bound formulation[62, 66, 70, 82]. Another 
possibility is to impose constraints to enforce mode separa-
tion[79, 80, 82]. Stanford et al.[82] compare both methods 
for the topology optimization of aerostructures. Here, we 
adopt a strategy similar to Manh et al.[63]. We reformu-
late the objective function as presented in Eq. (11). For this 
example, we only consider to first two modes in the defini-
tion of function �� since the third mode is sufficiently higher 
so that it does not interact with them. When the coefficient P 
becomes high, the function �� is a close upper approxima-
tion of  f�1 . Here we choose P = 40 . This function �� has the 
advantage of being differentiable even if the first two modes 
are repeated modes. It leads to smooth convergence of the 
algorithm as shown in Fig. 13c. We end up with a geometry 
that has exact axial symmetric. The first two eigenvalues �x 
and �y are equal. Additionally, Fig. 12 presents the results 
from several vibration analyses and sensitivity analyses for 
this elephant trunk problems. We believe that this example, 
despite its apparent simplicity, enables to study the robust-
ness of new approaches for the eigenfrequency optimization 
of structures. Other examples regarding the isogeometric 
shape optimization for natural frequency can be found, for 
example, in Lei et al.[56], Manh et al.[63] and Taheri and 
Hassani[83].
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Fig. 12  Settings and optimization results for the elephant trunk problem
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6  Conclusion

For each of the tackled examples, we observed a great ben-
efit of employing analytical sensitivities especially in terms 
of computational time and accuracy. In fact, the presented 
approach was found to be (quasi) independent of the num-
ber of design variables. The main calculation step occurs 
on the analysis model where the derivatives of some sca-
lar functions w.r.t. the control points are computed. Indeed, 
we found that some commuting steps enable to drastically 
reduce the size of the operators to be differentiated. Here, 
we did not derive one-by-one every components of the finite 
element matrices w.r.t. the design variables as it is often 
presented in the literature for discrete sensitivities. Instead, 
we viewed the required derivatives as the partial differentia-
tion of the (discretized) weak formulation of the state equa-
tion. For instance, in the case of static analysis, we partially 
derived the internal and external works w.r.t. the control 
points of the analysis model. We observed that this step is 

eased by formulating the element using a curvilinear formal-
ism (as commonly done with shells). Then, these gradients 
were mapped back to the coarser design model on which the 
shape parametrization was set. Finally, these gradients are 
brought at the level of the design variables using the defini-
tion of this shape parametrization. The propagation of the 
sensitivity from the analysis model to the design variables 
is achievable within the isogeometric framework because 
of the inherent tight link between the design model and the 
analysis model. The presented analytical sensitivity analysis 
works even for complex non-linear shape parametrizations.

More generally, this work undertook to formalize IGA-
based shape optimization based on all the published works 
related with this issue. We highlighted the potential of this 
approach for the optimal design of structures. Surely, an effi-
cient sensitivity analysis is of particular importance to build 
a robust framework which would be applicable for industrial 
applications. We believe that the new presented sensitivity 
analysis is a viable strategy.

(a)

(b) (c)

Fig. 13  Convergence histories for the elephant trunk problem with the two investigated objective functions: a global view, b closer look at the 
bad convergence when no treatment of the mode switches is done, and c better convergence is obtained with the aggregation by a P-norm
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