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Abstract
The hidden Markov models are statistical models used in many real-world applications and communities. The use of hidden 
Markov models has become predominant in the last decades, as evidenced by a large number of published papers. In this 
survey, 146 papers (101 from Journals and 45 from Conferences/Workshops) from 93 Journals and 44 Conferences/Work-
shops are considered. The authors evaluate the literature based on hidden Markov model variants that have been applied to 
various application fields. The paper represents a short but comprehensive description of research on hidden Markov model 
and its variants for various applications. The paper shows the significant trends in the research on hidden Markov model 
variants and their applications.

1  Introduction

A series of papers in the late 1960s and early 1970s by 
Leonard E. Baum and other researchers introduced statisti-
cal methods of Markov source and hidden Markov mod-
eling [1]. HMMs have become popular models in the last 
two decades due to its flexible nature. The mathematical 
structure of HMM makes the theoretical basis for many real-
world applications like speech recognition, facial expression 
recognition, gene prediction, gesture recognition, musical 
composition and Bio-informatics.

HMM, a statistical model designed using a Markov pro-
cess with hidden states. Andrey Markov introduced the 
Markov model in the early 20th century. Later, a series 
of papers in the late 1960s and early 1970s by Leonard E. 
Baum and other researchers introduced statistical methods of 
Markov source and Markov modeling [1]. State transitions 
refer to the random change in states of the Markov process 
in discrete time. Markov model follows the concept of mem-
ory-less property, i.e. the transition from one state to other 
state depends only on the present state [2]. In HMM, emitted 
symbols are observable, and random transitions from one 
state to another state remains unobserved. The ease in the 
implementation, handling of sequential data and handling 

of variable-length inputs, makes HMM applicable for many 
real-life applications.

1.1 � Motivation

In the last five decades, various researchers explored the 
HMM and its variant in various application domains. In 
1970s, HMM has been applied in speech recognition. Since 
1980, HMM has been extensively used in the domain of 
bioinformatics [3]. HMM are further classified into First-
order HMM, Higher-Order HMM (HO-HMM), Hidden-
Semi Markov Model (HSMM), Factorial HMM (FHMM), 
Second-Order HMM, Layered HMM (LHMM), Autoregres-
sive HMM (AR-HMM), Non-Stationary HMM (NS-HMM) 
and Hierarchal HMM (HHMM) as depicted in Fig. 1. There 
is a need to bind the work done by various researchers in the 
area of HMMs.

1.2 � Outline

This survey paper is structured as follows: Sect. 2 out-
lines the review process. Section 3 gives the preliminaries 
required for HMM. We reviewed the work of first-order 
HMM, HOHMM, HSMM and FHMM with their applica-
tions in Sects. 4.1, 4.2, 4.3 and 4.4 respectively. Application 
of second-order HMM, LHMM, AR-HMM and NS-HMM 
are explored in various domains in Sects. 4.5, 4.6, 4.7 and 
4.8 respectively. In Sect. 4.9, we lay out the various applica-
tions of HHMM and finally, Sect. 5 summarizes the conclu-
sions of the paper.
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2 � Review Process

2.1 � Classification of Papers

In this review paper, we explored the applications of various 
types of HMM and categorized the papers based on several 

criteria. Table 1 represents the properties and categorization 
of Papers. Research questions in Table 2 helped in fetching 
all the essential information from the papers.

Fig. 1   Variants of Hidden Markov Model

Table 1   Classification of papers Properties Categories
Year 1982–2019

Variants of Hidden First-order Hidden Markov Model
Markov Models Higher-order Hidden Markov Model

Hidden-semi Markov Model
Factorial Hidden Markov Model
Second-order Hidden Markov Model
Layered Hidden Markov Model
Auto-regressive Hidden Markov Model
Non-stationary Hidden Markov Model
Hierarchical Hidden Markov Model

Application domains Speech recognition, Musicology, Gesture recognition
Tool wearing, Part-of-speech tagging, Bioinformatics

Publication type Journal Article, Proceedings, Dissertation
Automated search Hidden Markov Model
Strings Application of HMM

Application of Hidden Markov Model
Databases Webofknowledge.com

https​://ieeex​plore​.ieee.org/Xplor​e/home.jsp
https​://www.scien​cedir​ect.com
https​://arxiv​.org
https​://www.googl​e.com/

Inclusion criterion Focus on the application of HMM and
application areas as specified in Application domain.
Written in English
Published in peer review Journal, Conference/Workshop Symposium
PhD and Master Thesis

Exclusion criterion Abstract, Short Papers, Tutorial and Irrelevant Papers
Papers published with similar major contribution by different authors
Papers with similar contribution from two different sources, For
instance ArXiv paper published in Journal/Conference
Paper that do not deals applications of HMM variants

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com
https://arxiv.org
https://www.google.com/
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2.1.1 � Distribution of Papers for HMM Variants (RQ1)

Figure 2 represents the number of papers reviewed for 
nine different types of HMM variants. Figure 2 shows that 
HSMM (29%) and first-order HMM (23%) are the com-
monly used HMMs variants. Rest of the variants are almost 
equally used with a difference of 1–2%. Only 3% of research-
ers used NS-HMM for their research work.

2.1.2 � Application Fields of HSMM (RQ2)

HS-HMM is mainly used in the area of analyzing tool wear-
ing and musicology. We had considered eight and seven pub-
lished papers in the area of tool wearing and musicology, 
respectively. Besides, HS-HMM are also explored in the 
stock market, data analysis, speech recognition and network 
analysis by considering two, three, three and three papers, 
respectively (Fig. 3).

2.1.3 � HMMs for Speech Recognition (RQ3)

At present, HMM is the most successful and simplified 
approach for speech recognition. Figure 4 represents that 
the first-order HMM is explored maximally by researchers 
for speech recognition. As evident from Fig. 4, Researchers 
had published three papers using each variant of HO-HMM, 

FHMM, second-order HMM and AR-HMM in the area 
of speech recognition. Furthermore, no paper had pub-
lished using NS-HMM and HHMM in the area of speech 
recognition.

2.1.4 � Application Areas with HMMs (RQ4)

Figure 5 represents that HMMs are widely used in the area 
of speech recognition (25% papers) and human activity rec-
ognition (25% papers). Additionally, HMMs are also used 
in the area of musicology (9% papers), data processing (7% 
papers) and network analysis (6% papers).

3 � Preliminaries

HMM is a doubly stochastic finite model that calculates 
probability distribution over an infinite number of possible 
sequences [2]. It is used for studying the observed items 
from a discrete-time series. States have assigned transition 
probabilities, and every state emits symbol according to the 
emission probability of the state [5]. Figure 6 represents the 
underlying architecture of HMM.

Definition 1: HMM  [4] is defined by quintuple 
(S,O,A,B,�) where,

•	 S = S1, S2, S3,… , Sn is a set of hidden states.
•	 O(t) = o1, o2,… , om is set of m-observable symbols at 

each time intervals.
•	 A represents state transition probability and denoted by 

A = aij = {P(Xt+1 = Sj|Xt = Si)|1 ≤ i, j ≤ n} . Here aij 
represents the probability of moving from state i at time 
t to state j at time t + 1.

•	 B represents symbol emission probability and denoted by 
B = bj(t) = {P(O(t)|X(t) = Sj)|1 ≤ j ≤ n} represents the 
probability of emitting symbol O(t) from state j.

•	 � = {�i = P(X1 = Si)|1 ≤ i ≤ n} is initial state probabil-
ity.

Fig. 2   Number of papers considered using different Variants of Hid-
den Markov Model

Table 2   Research questions

Research question Main motivation Section referred

RQ 1. Which variant of HMM is maximally explored by the 
researchers?

Identify the number of papers corresponding to each HMM 
variants

Section 2.1.1

RQ 2. Which applications are best suited for HSMM? Identify the trends of HSMM for various applications Sections 2.1.2, 4.3
RQ 3. Which types of HMM variant are ideal for speech 

recognition?
Identify variants of HMM used in the area of speech recogni-

tion
Section 2.1.3

RQ 4. Which are the main areas explored using HMM? Identify the patterns in various applications areas using 
HMMs

Section 2.1.4
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Fig. 3   Application areas of HSMM

Fig. 4   HMMs for speech recognition

Fig. 5   Application areas of 
HMMs
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4 � Literature Survey

4.1 � First‑Order HMM

The basic HMM (discussed in Sect. 3) referred as first-order 
HMM [6]. We had summarized the first-order HMM in the 
area of speech recognition, human action recognition and 
analyzing genome structure.

Rabiner et al. [7] combined the techniques of vector quan-
tization with HMM for generating speaker-independent and 
isolated word recognition system. Their system produced 
higher accuracy rate for word recognizer on the vocabulary 
of isolated digits. Levinson [8] recognized speaker-inde-
pendent isolated digit using HMM and Linear Predictive 
Coding (LPC). Schwartz et al. [9] improved HMM for mod-
eling phonemes in speech recognition by considering the 
trade off between robustness and specificity. Rabiner  [1] 
reviewed various aspects of HMM and applied it in speech 
recognition. Juang and Rabiner [10] applied HMM in speech 
recognition and observed an accuracy rate higher than 95% 
in speaker-independent tasks. Figure 7 represents various 
applications of first-order HMM.

Bahl et al. [11] described a method for estimating the 
maximum mutual information for various parameters of 
HMM in speech recognition. Poritz [12] proposed a lin-
ear predictive HMM for analyzing the speech signals. The 
method was further applied for talker verification. Rose and 
Paul [13] described a system for baseline keyword recogni-
tion using HMM. Their system deals with the effect of linear 
channels and non-keyword speech. Lee and Hon [14] applied 
in speaker-independent phone recognition. They improved 
the accuracy using multiple codebooks of LPC parameters 
and Viterbi decoding. Juang [15] used HMM and dynamic 

time wrapping techniques for speech recognition. Varga 
and Moore [16] improved the task of speech recognition 
by signal decomposition using HMM. They recognized the 
concurrent events simultaneously for stationary and non-
stationary noises.

Sonnhammer et al. [17] predicated the location and ori-
entation of transmembrane helices in protein sequences. 
Churchill [18] studied the structure of a human genome 
segment and explored the correlation between discrete 
compositional domains and genome function. Soruri 
et al. [19] introduced a novel gene clustering approach using 
HMM and optimized it using particle swarm optimization 
algorithm. They described specific HMM for each gene 
sequences and evaluated probabilities for every individual 
sequence. Yamato et al. [5] proposed a method using HMM 
and feature-based bottom-up approach for human action rec-
ognition from a set of time-sequential images. Krogh [20] 
introduced HMM for labeled observations and developed a 

Fig. 6   Basic HMM Architecture [4]

Fig. 7   Applications of first-order HMM
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maximum likelihood method for estimating the parameters 
of the model.

Manogaran et al. [21] used Bayesian HMM with Gauss-
ian mixture clustering for cancer diagnosis. They proposed 
a machine learning approach to model DNA copy number 
change in genome structure. Xin et al. [22] introduced a 
semi-automated diagnosis method for handling fault detec-
tion, identification and extraction at the same time. Yao 
et al. [23] proposed a routing method based on HMM for 
vehicle Adhoc Networks (VANET). Their proposed hybrids 
scheme predicted the vehicles future path based on the his-
tory of mobility patterns. Petersen et al. [24] modeled sepsis 
progression with HMM for studying patients heterogene-
ity. It extracts a patients physiological trajectory to identify 
patients with higher risks. Tang and Dong [25] detected 
malicious domain name using improved HMM in Spark 
environment. Zhuo et al. [26] used profile HMM for website 
fingerprinting attack on anonymous networks. The proposed 
approach identified website and webpage in the closed world 
setting. Putland et al. [27] detected underwater bio-phonic 
sounds using HMM. Their approach effectively detected 
Brydes whale vocalization irrespective of the duration and 
conflicted vessel passage sounds. Habayeb et al. [28] pro-
posed HMM for identifying the time to fix bug reports. The 
approach enabled software quality teams for early indication 
of forecasted bug reports.

Ullah et al. [29] designed HMM-based algorithm for pre-
dicting the energy consumption in smart buildings. Further, 
they validated their model using the real-data collected from 
few selected building of South Korea. Yip et al. [30] mod-
eled HMM for predicting earthquakes and introduced a latent 
Markov process for explaining the underground dynamics. 
Their model also predicts the magnitude and arrival time of 
further earthquakes. Pastell and Frondelius [31] developed 
HMM for calculating the time spend by dairy cows at the 
feed bunk using ultra-wide bands indoor positioning system. 
Further, they showed that the performance of their model 
could be improved using the Viterbi algorithm with logis-
tic regression. Alshamaa et al. [32] designed HMM-based 
mobility model for tracking of older people. It will help in 
determining the trajectory of older peoples in an indoor 
environment. Liu et al. [33] predicted the driver intention for 
autonomous vehicles using HMM. They trained and tested 
their model by taking real data from the flyover.

Jiang et al. [34] introduced a dynamic fault prediction 
model based on HMM by analysing the dissolved gas. Using 
Jiang et al.s model, preventive action can be taken for main-
taining the power transformers. Lu et al. [35] proposed a 
data mining approach based on HMM. Xu et al. [36] applied 
HMM with Eskins probabilistic detection algorithm for 
detecting the low-carbon anomaly and abuse of resources. 
It helps in the green technology innovation ecosystem. Joo 
et al. [37] generated an adaptive approach for estimating the 

batch size with HMM. The adaptive model could capture 
the changes in the process deduced from analyzing product 
quality data. Coast et al. [38] detected cardiac arrhythmia 
using HMM with statistical knowledge of ECG signals. They 
calculated the parameters using the maximum likelihood re-
estimation algorithm. Yang et al. [39] applied HMM with 
vector quantization to recognize speaker-independent lexical 
tones for Mandarin speech. They showed that the recognition 
of speaker-independent tone requires pitch-base adjustment. 
Table 3 represents classification of papers related to first-
order HMM.

4.2 � Higher‑Order HMM

HO-HMM generalizes the first-order HMM and extends the 
dependency from the previous state to n states (Fig. 8). Both 
transition and observation probability distribution depend on 
several previous states [40]. A HO-HMM of kth order is a 
HMM which considers HMM values up to lag k order [41].

Xiong and Mamon [41] introduced a self-updating model 
for the evolution of daily average temperature using HO-
HMM. Further, they analysed the weather derivatives using 
their designed model. Zhu et al. [42] discussed the asset 
allocation problem using HO-HMM. They studied optimal 
portfolio selection using long term memories of varying hid-
den economic conditions and optimal asset collection. Lee 
and Jean [40] modeled piece-wise linear processes with HO-
HMM. Their model will help in better behaviour approxima-
tion of real processes and reduced the error rate in the speech 
recognition for noisy Mandarin digits. Quan and Ren [43] 
recognized the most likely sequence of emotions in the text 
using weighted HO-HMM. Seifert et al. [44] applied parsi-
monious HO-HMM for analyzing array-based comparative 
genomics hybridization. The model enabled the interpola-
tion between a mixture model and HO-HMM for detecting 
DNA polymorphism in a closely related genome.

Lee and Lee [45] applied the HO-HMM for capturing the 
dynamics and duration of speech signals. Their proposed 
approach is robust against noise and speech recognition can 
be carried out with reduced error rates. Xiong et al. [46] 
applied the HO-HMM for car ownership behavioural analy-
sis. Zhang et al. [47] presented a high accuracy and low-
risk approach for predicting the trend in stock market price 
using HO-HMM. Chen and Qiu [48] proposed an approach 
for channel state of cognitive radio using HO-HMM. The 
approach was based on spectrum sensing slots to reduce the 
effect of latency between spectrum sensing. Figure 9 repre-
sents the application areas of higher-order HMM.

4.3 � Hidden Semi‑Markov Model

HSMM provide a way to deal explicitly with state dura-
tions. In HSMM, the underlying process of hidden state is a 
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semi-Markov chain (Fig. 10). A hidden state remains in the 
same state for time duration d, also the hidden state emits 
d observed states [49]. The probability of going from one 

hidden state to others depends on the time elapsed since 
entering into the current state [50]. HSMM is also known as 
explicit duration HMM (DHMM) or variable-length HMM 
(VLHMM).

Narimatsu and Kasai [52] proposed two extended mod-
els (Interval state HSMM and Interval length probability 
HSMM) for analysing sequential data. These models sup-
port concepts of state interval and state duration represen-
tation. Zhu and Liu [53] monitored online tool wearing 
using duration-dependent HSMM. Liu et al. [54] applied 
duration-dependent HSMM to diagnose equipments degra-
dation process. Li et al. [55] applied an optimal Bayesian 
control scheme based on the three-state continuous-time 
hidden semi-Markov process for early detection of the fault 
gear shaft. Liu and Wang [56] decoded the time-varying 
distribution of Chinese stock market returns using three-
state HSMM.

Xiao et al. [57] proposed a duration-dependent HSMM 
for analyzing online machine health. The analysis is useful in 
predicting the useful residual lifetime of the machine. Kong 

Table 3   Classification of first-order HMM papers

NA stands for not applicable

Year Author’s Name Technique Dataset Participants Accuracy 
rates (%)

1983 Rabiner et al. [7] HMM and Vector Quantization TS1: 1 replication of each of 10 digit TS1: 100 talkers 93–96
TS2: 20 replication of each of 10 digit TS2: 10 talkers

1983 Levinson et al. [8] HMM and Vector quantization of LPC 2 sets of 1000 utterances: 1 sample each 
of 10 digit

100 talkers: 50 
men and 50 
women

96.5

1986 Bahl et al. [11] HMM and Maximum mutual Informa-
tion Estimation

2000 vocabulary words: 100 sentences 
having 1297 words

NA 96

1989 Lee and Hon [14] Discrete HMM, LPC and Viterbi 
decoding

TIMIT phonetic database: 160 sen-
tences

20 speakers 73.8

1990 Rose and Paul [13] HMM 353 Keywords 8 male speakers 82
1991 Juang and Rabiner [10] HMM Vocabularies with 1000 words NA > 95

Fig. 8   Applications of higher-order HMM

Fig. 9   Higher-order hidden Markov Model [144]
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et al. [58] estimated tool wearing in the mining process with 
HSMM. The straightforward model provides higher accu-
racy rate. Wu et al. [59] presented lightweight and real-time 
fused deposition modeling for monitoring machine condi-
tion. The method used HSMM with acoustic emission to 
improve product quality and printing process reliability. 
Pertsinidou et al. [60] studied the application of HSMM for 
the assessment of seismic hazard in Greece. They used a 
simplified novel Viterbi algorithm for detecting precursory 
phases and provided warning for any anticipated earthquake 
occurrences.

Bang et al. [61] designed a scheme based on HSMM for 
detection of an anomaly in network-initiated LTE signaling 
attacks in wireless sensor networks. The proposed scheme 
captured both the temporal and spatial characteristics of 
the normal nodes. Tanwani and Calinon [62] investigated 
semi tied HSMM in learning of robot manipulation tasks. 
Cai et al. [63] applied HSMM for analyzing network pro-
tocols of the application layer. They modeled the protocol 
message format for maximizing the likelihood probability 
of keyword selection and message segmentation. Galvez 
et al. [64] HSMM model can be applied for generation 
and analysis of processes. Liu et al. [65] proposed a novel 
method for multi-sensor monitoring of health equipment.

Xiao and Dong [66] designed HSMM-based reputation 
management system in the online to the offline e-com-
merce market. They performed the usefulness of the model 
by demonstrating in real-life application. Yue et al. [67] 
proposed a logical hierarchal HSMM for recognizing the 
intention of each team member, team intention and work-
ing mode. Altuve et al. [68] introduced an online system 
for detecting apnea-bradycardia along with temporal evo-
lution using HSMM. Votsi et al. [69] modeled HSMM for 
estimating occurrence rate of earthquakes. The application 
of HSMM in seismology was studied to identify features in 
the earthquake generation process. Figure 11 shows vari-
ous applications of Hidden Semi-Markov Model.

Du et  al.  [70] performed genomic segmentation by 
using HSMM. The model was designed as a general seg-
mentation engine for better sensitivity and specificity in 
genomic segmentation. Xu et al. [71] proposed a method 
for identifying user click patterns using HSMM. Further, 
they proposed a state selection algorithm and evaluated 
their result on the real data set of a state Telecom. Liu 
et al. [72] trained HSMM in max-margin learning frame-
work for segmentation of mitosis event. The segmentation 
was performed in the time-lapse phase-contrast micros-
copy image sequence of stem cell populations. Boussemart 
and Cummings [49] presented a methodology for learn-
ing HSMM with human supervisory control setting. Dong 
and Peng [73] applied non-stationary segmental HSMM 
for predicting equipments health and maintenance. Liang 
et al. [74] introduced a voice activity detector with noise-
robust using HSMM. They considered issues of feature 
distributions, temporal dependence and speech feature 
related to noise robustness. Xie et al. [75] proposed a for-
ward-backwards algorithm for nested HSMM and applied 
it to a network traffic model.

Kerk et al. [76] applied HSMM in geographic positioning 
system location to reveal the multiphasic movement of the 
endangered Florida panthers. Duan et al. [77] used HSMM 
for detecting faults and predicting the useful remaining 
life of computer numerically controlled equipment. Chen 
et al. [78] generated audio chord recognition system using 
DHMM. They explicitly considered chords duration for 
recognizing the system. Karg et al. [79] performed clini-
cal gait analysis with DHMMs. They modeled time series 
data of a group and applied the reference-based measure to 
compare the observations. Benouareth et al. [80] designed 
a recognition system for off-line handwritten Arabic words 
using explicit state duration semi-continuous HMM and 
segmentation-free approach.

Benetos and Weyde [81] used pitch-wise DHMM for 
transcription of multiple-instrument polyphonic music. It 

Fig. 10   Hidden-semi Markov model [51]
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could be useful in model tone durations and temporal evolu-
tion presented in musical patterns. Yue et al. [82] presented 
DHMM based prognostics and diagnostics method for evalu-
ating the residual life distribution of face milling. Calinon 
et al. [83] applied DHMM to encode information about time 
and position constraint in robot learning. Chordia et al. [84] 
modeled north Indian tabla sequences with Variable-length 
Markov model and VLHMM. The model could determine 
the next stroke from an audio file of tabla sequences. Sen-
turk [85] performed computational modeling of improvised 
Turkish folk music with VLMM and prediction of melody 
in the music. Senturk and Chordia [86] designed a VLHMM 
for predicting melodies in musical structures. They gener-
ated melodic improvisation for Turkeys folk music. Pikrakis 
et al. [87] classified musical patterns from raw data using 
variable duration HMM. Dumont [88] statistically analyzed 
VLHMM and proposed an algorithm to find a consistent 
estimator for context tree estimation.

Chen et al. [89] proposed a system for recognizing off-
line handwritten words. Their approach was based on contin-
uous density VLHMM and morphological segmentation for 
recognition. Liang et al. [90] applied VLHMM for analyzing 
human behaviour. The model consists of labeling posture 
and learning-recognizing atomic human action modules. 
Cao et al.  [91] proposed an approach for context-aware 
search using VLHMM. Various contexts of queries could 
be captured from the search session of log data. Bernard 
et al. [92] recognized Arabic isolated handwritten words 
using context-dependent and VLHMM.

4.4 � Factorial HMM

FHMM is an extended HMM, allowing the modeling of sev-
eral loosely coupled random processes. FHMM is a multi-
layer state structure with improved representational capac-
ity [93]. Each FHMM layer can be considered as a HMM 
and each layer work independently from other layers. The 
output of FHMM depends only on the current states of all 
the layers at the time [94] (Fig. 12).

Ozerov et al. [96] designed Factorial Scaled HMM for 
representing the polyphonic audio music files. FSHMM 
was a generalization of Gaussian scaled mixture model and 
Itakura-Saito Non-negative Matrix Factorization model. 
Bonfigli et al. [97] proposed a non-intrusive monitoring 
algorithm for appliances using active-reactive power of addi-
tive Factorial HMM. Their proposed algorithm will help the 
user to modify their habits for saving the electrical energy. 
Khorasani et al. [98] recognized amyotrophic lateral sclero-
sis (ALS) patient using FHMM. FHMM distinguishes ALS 
patients and healthy subjects by removing the unwanted data 
from stride interval time and extracting useful data. Chen 
et al. [93] recognized gait features with FHMM and Paral-
lel HMM (PHMM). FHMM and PHMM were introduced 
as a feature-level fusion scheme and decision-level fusion 
scheme respectively for combining gait features. The appli-
cations of Factorial HMM are shown in Fig. 13.

Betkowska et  al.  [94] recognized robust speech for 
the home environment by applying FHMM architec-
ture. They recognized speech in the presence of sudden 

Fig. 11   Applications of Hidden 
Semi-Markov model
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non-stationary noises. Li et al. [99] recognized faults using 
independent component analysis (ICA) and FHMM. ICA 
reduced redundancy and extracted features from multi-
channel detection. FHMM recognized the faults in speed 
up and down process of the rotating machinery. Hus-
meier [100] detected mosaic structures in DNA sequence 
using a phylogenetic tree and FHMM. The model discrimi-
nated between rate heterogeneity and inter-specific recom-
bination in the DNA sequence alignment. Durrieu and 
Thiran [101] proposed FHMM with source/filter model to 
achieve robust pitch and formant tracks in speech process-
ing. Kolter and Jaakkola [102] worked on approximate 
inference problem in additive FHMM. Table 4 represents 
the major research findings of FHMM and its applications.

4.5 � Second‑Order HMM

In a second-order HMM, the transition probability of a 
state at any time depends on the two previous states at the 
time. The sequence of the state depends on the second-order 
Markov chain. The state duration of these models is esti-
mated by the probability of entering any state only once, 
and the probability of visiting any state at least twice [103]. 
Figure 14 represents different applications of second-order 
HMM.

Hyun et al. [104] designed a log-Viterbi algorithm for 
recognizing human activities in smart homes with increased 
accuracy and decreased time complexity using second-order 
HMM. Kabir et al. [105] also recognized human activity 
in the home environment using two-layer HMM. One layer 
contains the location information, whereas the second layer 

Fig. 12   Factorial hidden Markov model [95]

Fig. 13   Applications of Facto-
rial HMM
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contains the object information. Their model also mapped 
low-level sensor data to high-level activity based on binary 
sensor data. Zhou et al. [106] used a two-stage HMM for 
detecting biomarker. They modeled HMM with the local 
false discovery rate (FDR) for detecting a significant asso-
ciation in microbiome research for practical analysis. Liang 
et al. [107] presented a system to filter and classify ECG 
signals using two-layer HMM in a free-living environment. 
Othman and Aboulnasr [108] applied second-order HMM 
for face recognition. The model used a non-overlap strategy 

to reduce the computational load. Wu et al. [109] proposed a 
two-layered HMM for human action recognition by decom-
posing the problem in two layers. First layers modelled the 
actions of two-arms, whereas the second layer modeled the 
relation in two arms. Zhang et al. [110] modeled the actions 
of individuals and groups in a meeting using two-layered 
HMM. The first layer mapped low-level features of indi-
vidual actions, and the second layer takes input from the first 
layer to recognize group actions.

Table 4   Major Research findings of FHMM and its applications

Year Author’s name Model Dataset Application

2005 Husmeier [100] Phylogenetic FHMM 1000 bases long DNA Detection of mosaic structures in a 
DNA sequence

2006 Li et al. [99] FHMM and ICA 150 groups of data Fault recognition of machinery
2007 Betkowska et al. [94] FHMM 74640 sounds Speech recognition
2009 Ozerov et al. [96] FHMM and Gaussian assumptions 10 musical pieces from the TIMIT 

database
Audio music representation

2009 Chen et al. [93] FHMM and PHMM CMU MoBo and CASIA gait 
database

Gait recognition

2012 Kolter and Jaakkola [102] Additive FHMM N cyclic HMMs, each with m 
states and n dimensional output

Energy disaggregation

2013 Durrieu and Thiran [101] FHMM with vocal source/ filter 
model

Hillen-brand vowel database hav-
ing 1668 utterances

Tracking of formant frequencies and 
modeling speech signals

2016 Khorasani et al. [98] FHMM Gait dataset of 16 healthy and 13 
ALS subjects

Recognized ALS disease

2017 Bonfigli et al. [97] Additive FHMM Almanac of Minutely Power 
dataset

Non-intrusive load monitoring of 
appliances

Fig. 14   Applications of Second-
order HMM
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Mari et al. [111] showed that second-order HMM could 
yield high-performance forward and phoneme-based speech 
recognition task. Thede and Harper  [112] used second-
order HMM for tagging part-of-speech using lexical and 
contextual probabilities. Wei et al. [113] proposed a model 
for monitoring daily activities using body sensor network 
with two-layered HMM. The lower-layer HMM processed 
sensory data locally to decrease data transmission and the 
top-layer extracted the sequence of activity from locally pro-
cessed data.

4.6 � Layered HMM

In LHMM, several composed HMMs at each layer runs 
parallel to each other. Each layer provides an output to the 
higher layer. For enabling fast re-training of the model, these 
models are trained layer-by-layer [114]. Each layer is con-
nected to the next layer through inferential results [115].

Lee and Cho  [116] applied LHMM for recognizing 
long and short-term activities with in-built mobile sensors 
on Android platform. The LHMM could model temporal 
patterns using multi-dimensional data. Razin et al. [117] 
learned characteristics of the human operators performance 
from surface electromyography for predicting their inten-
tions in task operations using LHMM. Glodek et al. [114] 
applied LHMM for recognizing human activities based 
on the modalities multitude. The model detected complex 
activities from a stream of class assignments provided by 
the classifiers on the previous layer. Glodek et al. [118] 
improved human activity recognition problem by incorporat-
ing uncertainty of the class decision. Aarno and Kragic [119] 
modeled human skills using LHMM with greater discrimi-
nating power. They modeled the complex task of motion 
intention recognition even with miss-classifications present 
in the layers. Oliver et al. [120] represented humans activity 
from real-time streams of video, computer interaction and 
acoustic with LHMM. The applications of Layered HMM 
are shown in Fig. 15.

Oliver et al. [115] recognized the users activity of a mul-
timodal, real-time approach in an office environment using 
LHMM. The layered representation enabled the learning of 
humans office activity with multiple sensory channels. Bar-
nard and Odobez [121] used LHMM with an unsupervised 
low-level clustering to recognize events in sports videos. 
Zhang et al. [122] proposed cross-layered HMM (CLHMM) 
for surveillance events recognition. The cross-layer reduced 
computational complexity and increased the accuracy rate. 
Runsewe and Samaan [123] proposed layered multi-dimen-
sional HMM for cloud resource scaling in big data streaming 
applications. Solaimanpour and Doshi [124] used LHMM 
with Monte Carlo algorithm to predict the motion of a robot 
online. The predicted motions enabled updating nested 
track that could track other robots in a known environment. 

Ingels [125] recognized connected text with LHMM and 
token passing. The robust tokenizer was implemented to 
recover from segmentation and lexical error on the text 
input. Perdikis et al. [126] also recognized the inherent char-
acteristics of human actions with LHMM. The first layer of 
the model detected short and primitive motions and upper 
layer were processed to recognize human actions.

4.7 � Autoregressive HMM

AR-HMM models can capture temporal structures in 
time series data. The current observation xt of AR model 
is the linear combination of p previous observations 
xt−p,… , xt−2, xt−1 [127]. AR-HMM can explicitly model the 
longer-range correlations of sequential data by adding direct 
stochastic dependence among observations [128] (Fig. 16).

Stanculescu et al. [128] designed an AR-HMM for early 
detection of neonatal sepsis. They modeled the distribution 
of observed physiological events of patients with AR-HMM. 
Dang et al. [130] proposed an AR-HMM for Effective con-
nectivity (EC) learning in brain regions with fMRI signals. 
They modeled unobserved fMRI data and neuronal activ-
ity lost over time. Zhao et al. [131] proposed an order self-
learning ARHMM for detecting the online outlier in the 
grade analysis process of geological minerals. The model 
did not set any detection threshold and applied detection-
before-update and detection-based update strategies to avoid 
outliers influence. Malesevic et al. [132] presented a com-
putational technique to control the multifunctional artificial 
hand with multichannel surface electromyography (EMG). 
The vector AR-HMM was used for decrypting movement 
of every individual finger through surface EMG signals. 
Figure 17 represents applications of Autoregressive HMM.

Seifert et al. [133] exploited local dependencies in local 
chromosomes for identifying tumour genes using higher-
order AR-HMM. Nakamura et al. [134] modeled symbolic 
music performances with AR-HSMM. The model had better 

Fig. 15   Applications of Layered HMM
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computational time and accuracy as compared with HMMs. 
Barber et al. [135] used AR-HMM in the wind power indus-
try to model short-horizon wind forecasting. The ARHMM 
with some approximation inference methods could be used 
in missing data situations. Sasou et al. [136] applied AR-
HMM to extract features from singing voices. The model 
estimated the characteristic of the articulatory system and 
signals from the high-pitched voice. Quillen [137] used AR-
HMM for synthesizing speech. The model enhanced the sta-
bility of estimated predictor coefficients.

Ai et al. [138] investigated the use of AR-HMM esti-
mated occupancy for smart building. They calculated the 
total number of occupants in a research laboratory of a 
building using a deployed network with wireless sensors. 
Guan et al.  [127] recognized activities from time-series 
data with AR-HMM. They proposed a graphical model that 
could predict instance and bag labels using tractable infer-
ence algorithm. Dong [139] diagnosed equipments health 
with AR-HSMM that combined temporal knowledge and 
shape information. Bryan and Levinson [140] proposed an 
approach based on AR-HMM for inferring structures in lin-
guistic of the speech signal.

4.8 � Non‑stationary HMM

NS-HMM was introduced to capture state duration behav-
iour by defining a set of dynamic transition probability 
parameters. It can model state duration probabilities explic-
itly as a function of time. In transition process, the time 
duration in a state is used for estimating the probability of 
the next transition. NS-HMM is a generalized version of the 
state duration model and Baum–Welch algorithm [141]. The 
applications of Non-stationary HMM are shown in Fig. 18.

Chen et al. [142] used NS-HMM for predicting spec-
trum occupancies. The model realized the time-varying 
property of stochastic behaviour of a primary user and esti-
mated parameters by using a variant of the Baum-Welch 
algorithm. Chatzis and Demiris [143] on the modeling of 
sequential data with NS-HMM. Lin and Tseng [144] mod-
eled the fading properties of mobile satellite link channels 
using NS-HMM and predicted the characteristics in the 
satellite-to-earth channel. Hui et al. [145] studied the prin-
ciples of NS-HMM and applied in POS tagging and pinyin-
to-character conversion.

4.9 � Hierarchical HMM

HHMM is a stochastic process having multi-levels states that 
describe a sequence of input at various levels of granularity. 
It is an HMM with internal states generated from sub-HMM. 
HHMM has a tree-like structure where nodes of a tree are 
states of the model, and the trees edges define their transi-
tions. The states of HHMM emit sequences by the repeated 
activation of any of sub-state of a state [146] (Fig. 19).

Fine et al. [146] introduced HHMM in 1998 and mod-
eled natural English text with HHMMs. They also applied 
HHMM for identifying the repeated strokes, which repre-
sent letters in the cursive handwriting. Kerr [148] designed 
HHMM for analyzing the melodic structures. The analyzed 
structures could be used in music compositions. Weiland 
et al. [149] extracted musical pitch structures representing 

Fig. 16   Autoregressive hidden Markov model [129]

Fig. 17   Applications of Autoregressive HMM
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musical patterns using HHMM. Hoffman et  al.  [150] 
explored the application of Hierarchical Dirichlet Process 
HMM (HDP-HMM) for generating data-driven music. The 
models were trained with multiple songs and produced out-
put from different hybrid inputs.

Patel et al. [151] used multi-level HHMM to deduce the 
users manipulative activities. The probabilistic algorithm 
was used to learn and grasp complex manipulation activities 
of human in everyday life. Martindale et al. [152] performed 
smart annotation of cyclic data with HHMM and reduced 
the cost of labeling data based on sensors. Marco et al. [153] 
presented an HHMM for systematic annotation of chroma-
tin states at different length scales. The model investigated 
the use of higher-order chromatin structure of gene regula-
tion. Chen et al. [154] performed a single-molecule protein Fig. 18   Applications of Non-stationary HMM

Fig. 19   Hierarchical hidden Markov model [147]
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transportation experiment with HHMM. Raman and May-
bank [155] used non-parametric HHMM for human activ-
ity recognition. The model enabled automatic inference of 
all states and facilitated information with semi-supervised 
learning. Figure 20 represents applications of Hierarchical 
hidden Markov model.

Karaman et al. [156] proposed HHMM to detect daily liv-
ing activities in videos collected from the wearable camera. 
The patients wore the camera for studying dementia disease. 
Table 5 represents the major findings of HHMM in various 
applications.

5 � Conclusion

HMMs were introduced in the late 1960s, but the basic 
theory of Markov chain was known to the mathemati-
cians for around 80 years. HMM was first applied to the 
problems of speech recognition in the mid-1970s. Many 
researchers in 1980 began to use HMMs in various fields 
like bioinformatics, musicology, gesture recognition, trend 
analysis, data analysis and many more. Work done by vari-
ous researchers with HMM variants for different applica-
tion fields is reviewed in this paper. The paper provides an 
overview of HMM variants and their applications areas. 
Much work has been done with various HMMs for many 
application fields, but still, the use of HMMs in many new 
application fields are yet to be explored. To the best of 
author’s knowledge, this is the very first attempt to com-
pile the research performed with different types of HMMs.
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Fig. 20   Applications of Hierarchical HMM

Table 5   Major findings of HHMM in various applications

Year Author’s name Technique Dataset Application Reserach area

2005 Weiland et al. [149] Flat HHMM 25 Bach’s chorales Represented and modeled music Musicology
2008 Hoffman et al. [150] HDP-HMM Synthesizing new audio files Dance song “Chewing Gum” Musicology
2011 Kerr[148] HHMM Bachs chorales Modeled mid-level music Musicology
2014 Patel et al. [151] Multi-level HMM Learning and representing 

object grasping and manipula-
tion activities

Data collected using RGB-D 
kinetic sensor when human 
is performing grasping and 
manipulation activities

Gesture recognition

2016 Raman and Maybank [155] Two-level HHMM Cornell activity dataset: 12 
activities UTKinect-Action 
dataset

Human activity recognition 
occurring in-depth image 
sequences

Gesture recognition

2016 Karaman et al. [156] Two-level HHMM Videos recorded with wearable 
device: 10 activities

Detecting daily life activities in 
videos

Gesture recognition

2017 Martindale et al. [152] HHMM Smart annotation of cyclic 
activity data

Activities in case of walk-
ing and running data within 
Bosch development platform

Gesture recognition

2017 Marco et al. [153] HHMM Annotate multi-scale chromatin 
states

ChIP-sequence for nine chroma-
tin marks

Bio-informatics
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