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Abstract
Many optimization problems encountered in the real-world have more than two objectives. To address such optimization 
problems, a number of evolutionary many-objective optimization algorithms were developed recently. In this paper, we tested 
18 evolutionary many-objective algorithms against well-known combinatorial optimization problems, including knapsack 
problem (MOKP), traveling salesman problem (MOTSP), and quadratic assignment problem (mQAP), all up to 10 objectives. 
Results show that some of the dominance and reference-based algorithms such as non-dominated sort genetic algorithm 
(NSGA-III), strength Pareto-based evolutionary algorithm based on reference direction (SPEA/R), and Grid-based evolution-
ary algorithm (GrEA) are promising algorithms to tackle MOKP and MOTSP with 5 and 10 while increasing the number of 
objectives. Also, the dominance-based algorithms such as MaOEA-DDFC as well as the indicator-based algorithms such as 
HypE are promising to solve mQAP with 5 and 10 objectives. In contrast, decomposition based algorithms present the best 
on almost problems at saving time. For example, t-DEA displayed superior performance on MOTSP for up to 10 objectives.

1  Introduction

Many real-world problems contain multiple objectives that 
should be optimized simultaneously. Problems that have 
more than one objective are called multi-objective optimi-
zation problems (MOOPs) or many-objective optimization 
problems (MaOPs) in case of more than three objectives 
[1–3]. Because of the nature of MOOPs, there is usually no 
single optimal solution [4–6]. Published studies of multi-
objective optimization describe the development of Evolu-
tionary Multi-Objective Optimization (EMO) algorithms 
that can solve two- or three-objective problems efficiently 
[4, 7–10].

Multi-objective optimization is considered to be an essen-
tial research topic in operations research [11] since most 
real-world problems are multi-objective in nature. However, 
many questions in this area have yet to be addressed and 
therefore more, and more researchers and practitioners are 
attracted to this area. The majority of the published studies 
of MOOPs were focused on solution algorithms.

There are two main categories of algorithms for address-
ing MOOPs, including population-based search algorithms 
and iterative point-wise search algorithms [12]. Although 
solving a MOOP using exact algorithms such as cutting-
plane [13], polynomial-time approximation scheme [14], 
branch and bound [15, 16], and branch and cut [17] has been 
attempted, most MOOP methods are heuristics and meta-
heuristics. For example, evolutionary computation [18–21], 
Pareto ant colony optimization [22], decomposition methods 
based on Lagrangian relaxation [23], diversity maximization 
approach [24], and zigzag search [12] have been employed 
for addressing MOOPs.

Some meta-heuristic algorithms are well-suited for solv-
ing global optimization problems such as non-convex and 
discontinuous problems [25–27]. Mete and Zabinsky [20] 
proposed a population-based algorithm to optimize MOOPs. 
They improved exploration of the solution space by employ-
ing Markov kernels, hit-and-run, and pattern hit-and-run. 
Pareto ordering rules were used to select the population and 
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update the Pareto solutions. Random search algorithms effi-
ciently optimize single ill-structured functions [28, 29] and 
multi-objective problems [8]. Many continuous and discrete 
MOOPs were addressed by population-based algorithms 
such as evolutionary algorithms [7, 8]. These approaches 
are well-suited to MOOPs because they generate a set of 
solutions in a single iteration.

Moreover, multi-objective evolutionary algorithms 
(MOEAs) can find a set of well-converged and diversified 
non-dominated solutions, known as Pareto solutions, in a 
short time and a single run because these algorithms have 
better performance in dealing with of some multi-objective 
optimization problems (such as huge search space, uncer-
tainty, noise, disjoint Pareto curves) [7, 30, 31].

The early MOEAs based on Pareto ranking perform 
poorly in cases of more than three objectives. In recent years, 
the research emphasis has been placed upon improving the 
MOEAs to enable them to efficiently solve many-objective 
optimization problems [32]. There are some Limitation of 
MOEAs such as search capacity, and computational effi-
ciency and difficulty visualizing the Pareto solutions.

Collectively, many-objective and multi-objective optimi-
zation problems have the same structure except for many-
objective optimization problems with four or more objec-
tives that require simultaneous optimization. However, 
increased numbers of objectives causes some difficulties, 
for example, most solutions become non-dominated, and 
distance metrics become less discriminatory. Therefore, 
scholars have recently focused on developing evolutionary 
algorithms that can handle many-objective problems.

Figures 1 and 2 present the distribution of documents and 
citations found in the Web of Science database based on the 
keywords “many-objective optimization” between 1974 and 
August 2018 (192 documents have been found in total). As it 
is clear from Figs. 1 and 2, since the year 2000 the research-
ers have focused seriously on this topic.

Here, we categorize eighteen MaOEAs based on some 
studies and apply them on three combinatorial optimization 
problems including MOKP, MOTSP, and mQAP with 3, 5, 
and 10 objectives. Meanwhile, the MOEAs are classified 
according to the characteristics (Dominance-based, Domi-
nance and reference-based, Decomposition-based, Indicator-
based, Preference-based). Moreover, the best classification 
of the algorithm for solving the problems is introduced 
according to the results.

This paper is organized as follows: Sect. 2 describes the 
research methodology; Sect. 3 contains empirical evalua-
tions of the many-objective evolutionary algorithms using 

Fig. 1   Distribution of documents by year (many-objective optimization)
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the MOKP, the MOTSP, and the mQAP; conclusions and 
future work are presented in Sect. 4.

2 � Methodology

2.1 � Methodology Framework

We compare MOEA methods and select the best algorithm 
relative to traditional approaches for solving three general 
multi-objective problems: MOKP, MOTSP, and mQAP. 
First, each algorithm was run on several instances of the 
problems. The number of objective functions and vari-
ables were two key factors of each problem. Additionally, 
two well-known quality performance evaluation metrics 
(inverted generational distance (IGD), and computational 
time (CT)) were used to assess the performance of the 
MOEAs.

2.2 � Multi‑objective Problems

MOKP: the many-objective D-item knapsack problem was 
developed by Ishibuchi, Akedo [33] according to the follow-
ing mathematical program [33]:

where

where x is a D-dimensional binary vector, bij represents the 
weight of item j inside knapsack i, aij is the profit of item j 
inside knapsack i, and ci is the capacity of knapsack i.

MOTSP: a many-objective traveling salesman problem 
[34] includes finding a tour to minimize the costs, as follows:

where D denotes the number of cities visited, the cost k for 
traveling from city i to city j is denoted by ck

i,j
 , and � is the 

cyclic permutation of cities. In this problem, a tour is defined 
by the cyclic permutation � of D cities. Additionally, there 
are M costs associated with traveling between two cities. M 
objectives are defined according to M costs.

(1)Maxf (x) =
(
f1(x), f2(x),… , fM(x)

)

(2)s.t.

D∑

j=1

bijxj ≤ ci, i = 1, 2,… ,M

(3)xj ∈ {0, 1}, j = 1, 2,… ,D

(4)fi(x) =

D∑

j=1

aijxj, i = 1, 2,… ,M

(5)Minzk(�) =

D−1∑

i=1

ck
�(i),�(i+1)

+ ck
�(D),�(1)

, k = 1, 2,… ,M

mQAP: a many-objective quadratic assignment problem 
was developed by Knowles and Corne [35] as follows:

where D represents the number of facilities and aij is defined 
by an N × N matrix that is related to the distance between 
locations i and j. Additionally, matrix B =

(
B1,… ,BM

)
 is 

represented for an mQAP with M flows where Bo =

(
bo
ij

)
 

and the k-th flow matrix from facility i to j is denoted by bo
ij

.Also, � is the permutation of D facilities, �i is the i-th ele-
ment of � , and co represents an objective function 
o ∈ {1, 2,… ,M}.

2.3 � Description of Applied MOEAs

Comparative research was implemented by using eighteen 
state-of-the-art MOEAs in the experiment. These approaches 
are described below:

•	 HypE: Hypervolume-based estimation algorithm [36].
This is a fast search algorithm that employs Monte Carlo 
simulation to approximate the exact hyper-volume val-
ues. This method makes a trade-off between the accuracy 
of the estimates and the available computing resources.

•	 PICEA-g: Preference-inspired co-evolutionary algorithm 
with goals [37]. In this algorithm, a population of can-
didate solutions and preference sets with a fixed size, N 
and NGoal as parameters are evolved for a fixed number 
of generations, termed Maxgen. In each generation, par-
ents are subjected to (representation appropriate) genetic 
variation operators to produce offspring. Simultaneously, 
NGoal new preference sets are randomly regenerated 
based on the initial bounds.

•	 GrEA: Grid-based evolutionary algorithm [38]. In this 
algorithm, the potential of the grid-based approach is 
exploited to strengthen the selection pressure toward the 
optimal direction while an extensive and uniform dis-
tribution is maintained among solutions. Two key con-
cepts were introduced by the authors to determine the 
mutual relationship of individuals in a grid structure: 
(i) grid dominance and (ii) grid difference. In contrast, 
three grid-based metrics were applied into the fitness 
of individuals to distinguish them in mating and in the 
environmental selection process: (i) grid ranking, (ii) 
grid crowding distance, and (iii) grid coordinate point 
distance.

•	 NSGA-III: Non-dominated sorting genetic algorithm 
III [39].The authors used a few novel approaches and a 
number of viable directions to develop a potential EMO 
algorithm for addressing many-objective optimization 

(6)Minco(�) =

D∑

i=1

D∑

j=1

aijb
o
�i�j

, o = 1, 2,… ,M
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problems. The authors proposed a reference-point-
based many-objective evolutionary algorithm, termed 
NSGA-II.

•	 A-NSGA-III: Adaptive NSGA-III [40].The authors 
extended NSGA-III to address generic constrained 
many-objective optimization problems. The authors 
also suggested three types of constrained test problems 
that are scalable to any number of objectives and so, 
several kinds of challenges were provided to a many-
objective optimizer by using these test problems.

•	 SPEA2 + SDE:SPEA2 with shift-based density estima-
tion [41].The authors focused on modifying the diver-
sity maintenance mechanism in the algorithm and pro-
posed a shift-based density estimation (SDE) strategy.

•	 BiGE: Bi-goal evolution [42]. This algorithm converts 
a many-objective optimization problem into a bi-goal 
(objective) optimization problem regarding proximity 
and diversity requirements. This algorithm applies the 
Pareto dominance relation in the bi-objective domain.

•	 EFR-RR: Ensemble fitness ranking with ranking 
restriction [43].The authors proposed an algorithm that 
explicitly maintains the desired diversity of solutions 
in their evolutionary process by exploiting the perpen-
dicular distance from the solution to the weight vector 
in the objective space, which achieves a better balance 
between convergence and diversity in many-objective 
optimization.

•	 I-DBEA: Improved decomposition based evolutionary 
algorithm [44].The authors introduced a decomposi-
tion based evolutionary algorithm in which uniformly 
distributed reference points are generated via system-
atic sampling, the balance between convergence and 
diversity is maintained using two independent distance 
measures, and a simple preemptive distance compari-
son scheme is used for association.

•	 KnEA: Knee point driven evolutionary algorithm [45]. 
In this algorithm, the authors proposed a strategy in 
which knee points are preferred among non-dominated 
solutions, assuming that no explicit user preferences 
are given. The authors discussed that bias towards the 
knee points in the non-dominated solutions in the cur-
rent population is an approximation of a bias towards 
a large hyper-volume. No additional diversity main-
tenance mechanisms were required because one solu-
tion will be identified as a knee point in the vicinity 
of each solution in the non-dominated Pareto front. 
Therefore, the computational complexity is consider-
ably decreased.

•	 MaOEA-DDFC: Many-objective evolutionary algorithm 
based on directional diversity and favorable conver-
gence [46]. In this algorithm, a mating selection based 
on favorable convergence is applied to strengthen selec-
tion pressure while an environmental selection based 

on directional diversity and favorable convergence is 
designed to balance diversity and convergence.

•	 MOEA-DD: Multi-objective evolutionary algorithm 
based on dominance and decomposition [47]. In this 
algorithm, a unified paradigm is defined that combines 
dominance- and decomposition-based approaches for 
many-objective optimization. The purpose of this method 
is to exploit the merits from both the dominance- and 
decomposition-based approaches to balance the conver-
gence and diversity of the evolutionary process.

•	 MOMBI-II: Many-objective meta-heuristic based on the 
R2 indicator II [48]. In this algorithm, the authors pre-
sented an improved version of an MOEA based on the 
R2 indicator, which takes into account two key aspects 
(low computational cost and weak-Pareto compatibility) 
using the scalarizing achievement function and statistical 
information about the population’s proximity to the true 
Pareto optimal front.

•	 MaOEA-R&D: Many-objective evolutionary algo-
rithm based on objective space reduction and diversity 
improvement [49]. This algorithm consists of two stages: 
(i) the whole population quickly approaches a small 
number of “target” points near the true Pareto front and 
then (ii) the proposed diversity improvement strategy is 
applied to facilitate the spread and distribution of indi-
viduals.

•	 RVEA: Reference vector guided evolutionary algorithm 
[50]. In this method, the authors applied the reference 
vectors to decompose the original MOOP into a number 
of single-objective sub-problems. Moreover, user prefer-
ences are elucidated to target a preferred subset of the 
whole Pareto front. Besides, an approach, termed angle 
penalized distance, is applied to balance the convergence 
and the diversity of the solutions in the high-dimensional 
objective space.

•	 RVEA-a: RVEA embedded with the reference vector 
regeneration strategy [50]. In this approach, the RVEA 
has been modified by embedding a new strategy.

•	 SPEA-R: Strength Pareto evolutionary algorithm based 
on reference direction [51]. In this algorithm, the authors 
revived a previously developed and computationally 
expensive strength Pareto based evolutionary algorithm 
by introducing an efficient reference direction-based den-
sity estimator, a new fitness assignment scheme, and a 
new environmental selection strategy.

•	 �-DEA: �-dominance based evolutionary algorithm 
[52]. In this algorithm, the convergence of NSGA-III 
is enhanced by exploiting the fitness evaluation scheme 
in the multi-objective evolutionary algorithm based on 
decomposition. The NS scheme based on the introduced 
new dominance relation is applied for ranking solutions 
in the environmental selection stage, ensuring conver-
gence as well as diversity.
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To improve the performance of some traditional MOEAs 
for tackling MaOPs, new methods have been applied, and 
these MOEAs are divided into some groups based on their 
approaches. To categorize the algorithms, the recent litera-
ture was reviewed and compared. (Li et al., 2015) presented 
a categorization for MaOEAs in which GrEA is classified 
into two different groups including the relaxed dominance-
based and diversity based methods. Also, SPEA2 + SDE 
is classified into diversity-based method. In another group 
namely reference set based, NSGA-III, A-NSGA-III, RVEA, 
and RVEA* are inserted. Also, HypE and MOMBII-II are 
categorized in the indicator-based group, and moreover, 
PICEA-g is put in the preference-based class. In another 
study [50] three groups are introduced. The first group 
includes the algorithms that are dominance based such as 
GrEA, SPEA2 + SDE, KnEA, MaOEA-DDFC, MaOEA-
R&D, and SPEA-R. The second group contains algorithms 
such as NSGA-III, A- NSGA-III, EFR-RR, I-DBEA, 
MOEA-DD, RVEA, RVEA*, t-DEA. In this group, the 
decomposition approaches are employed to enhance the 
performance of the algorithm. The third group is known as 
the Indicator-based methods like HypE and MOMBI-II. The 
PICEA-g is not classified into any of the four categories. 
This is classified in the fifth group. Also, there are a few 
algorithms that employ a different approach in addition to 
their primary method. For example, both dominance and 
decomposition-based methods are applied in the MOEA-
DD, and unlike most MOEAs, in SPEA-R, a diversity-
first-convergence-second selection strategy was adopted to 
enhance the algorithm in quantifying solutions’ diversity and 
convergence. Most existing MOEAs adopt a convergence-
first-and diversity-second selection strategy [53] to balance 
convergence and diversity, and since the proportion of non-
dominated solutions is very high, and diversity preserva-
tion is very likely to be carried out only on non-dominated 
solutions, so, this strategy generally works well in MOOPs 
[51]. In a recent study, Tanabe, Ishibuchi [54] five criteria 
are introduced to categorize the MaOEAs including Pareto 
dominance based, relaxed dominance based, decomposi-
tion based, indicator based, and reference based. In this 
classification, NSGA-III, SPEA2 + SDE, GrEA, KnEA, 
SPEA/R and t-DEA are put in Pareto dominance-based and 
furthermore, NSGA-III, t-DEA and SPEA/R are categorized 
in reference-based group. On the other hand, GrEA is put 
in a relaxed dominance based class. I-DBEA, MOEA-DD, 
RVEA, and RVEA* are classified in decomposition based 
and moreover, I-DBEA, as well as MOEA-DD, are put in 
Pareto dominance based while RVEA, and RVEA* are refer-
ence based in addition to decomposition based. Last group 
namely, indicator-based includes HypE, BiGE, and MOM-
BII-II so that both HypE and BiGE are inserted to Pareto 
dominance based. Therefore, we present five main criteria 
to classify applied MaOEAs according to the literature; 

Dominance-based (C1) including Pareto (C1-a), diversity 
(C1-b), and relaxed (C1-c), Reference-set (C2), Decomposi-
tion-based (C3), Indicator-based (C4), and Preference-based 
(C5). As a consequence, four main classes are determined 
for eighteen algorithms. Also, three sub-criteria of the first 
criterion are denoted by a, b, c as indicated in Table 1.

2.4 � Performance Evaluation Metrics

This section introduces the performance metrics used to 
evaluate the quality of the obtained non-dominated solutions 
in the Pareto repository set of the MOEAs. Several important 
metrics of multiple objective problems have been described 
in the literature like inverted generational distance (IGD), 
hyper-volume (HV), normalized hyper-volume (NHV), spac-
ing metric (SM), diversity metric (DM), and potential non-
dominated (PND); the metric of IGD is described below:

•	 Inverted Generational distance (IGD). This metric was 
employed by Srinivas and Deb [55] to measure the aver-
age distance between the solutions in the PF and the 
closest solution in the PFknown. Mathematically, let P* be 
a reference set that represents the PF. The value of IGD 
value from P* to the PFknown is calculated as follows:

where |P*| denotes the number of individuals in P* and 
d(z, P) is the nearest Euclidean distance from z to P 
(PFknown). The value ofIGD reflects the comprehensive 
performance of an algorithm. Smaller IGD values result 
in a better solution set, which indicates that PFknown is 
close to PFtrue and has a good distribution.

3 � Computational Experiments

To compare the performance of the algorithms, all of them 
were run on random instances and then the results were 
analyzed. For this purpose, we used PlatEMO v. 1.5, intro-
duced by Tian et al. [56], to run the 18 algorithms described 
in Sect. 2.3. Also, the instances were generated using this 
platform.

3.1 � Parameter Setting of Applied Algorithms

Several parameter values of the applied algorithms were 
checked. There are two parameter categories for MOEAs: 
general and private parameters. The number of function 
evaluations (NFE) and population size (nPOP) are classi-
fied as public group parameters. The rate of knee points for 
KnEA, the number of neighbors for estimating density for 
MaOEA-DDFC, and the number of nearest weight vectors 

(7)IGD =

∑
z∈P∗ d(z,P)

�P∗�
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for EFR-RR are examples for private group parameters. In 
this work, the NFE is set to10,000 and nPOP was set accord-
ingly to 200 to obtain a better Pareto solution for all prob-
lems. Public parameters were set using trial and error and, 
after several trials, the best parameters were determined. In 
the strategy used to set parameters, the NFE was set first, and 
its value was fixed, then the second parameter (i.e., nPOP) 
was set. Private parameters were set according to recom-
mended values that were previously set by researchers of 

PlatEMO (Tian, Cheng [56]. Algorithms such as PICEA-
g, GrEA, NSGA-III, A-NSGA-III, SPEA2 + SDE, BiGE, 
I-DBEA, MaOEA-R&D, SPEA/R, and t-DEA do not con-
tain any private parameters but were tested for public param-
eter settings while the rest of the algorithms were tested for 
private and public parameter settings. Therefore, NFE as 
well as nPOP were set to 10000 and 200, respectively, for 
all algorithms. All final private parameters of the MaOEAs 
are displayed in Table 2.

Table 1   Categorization of 
MaOE algorithms

MaOEA/Group C1 C2 C3 C4 C5

a b c

Dominance-based (D.)
 MaOEA-DDFC •
 MaOEA-R&D •
 KnEA • •
 SPEA2 + SDE • •

Dominance and reference-based (D. R.)
 GrEA • •
 NSGA-III • •
 A-NSGA-III • •
 t-DEA • •
 SPEA/R • • •

Decomposition-based (DCP.)
 EFR-RR •
 I-DBEA • •
 MOEA/DD • •
 RVEA • •
 RVEA* • •

Indicator-based (I.)
 HypE • •
 BiGE • •
 MOMBI-II •

Preference-based (P.)
 PICEA-g •

Table 2   Private parameters of 
each MaOE algorithm

a Number of nearest weight vectors
b The number of neighbors for estimating the density
c Threshold of variances
d The parameter controlling the rate of change of penalty

Algorithm nSample Ka Rate Kb L Delta Alphac Epsilon Record Alphad Fr

HypE 10,000
EFR-RR 2
KnEA 0.5
MaOEA-DDFC 5 3
MOEA/DD 0.9
MOMBI-II 0.5 0.001 5
RVEA 2 0.1
RVEA* 2 0.1
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3.2 � Comparison Between Algorithm’s Performance 
on All Considered Instances

This section describes the experimental results of all algo-
rithms tested on the MOKP, MOTSP, and mQAP. Mean 
and standard deviation values of IGD with 3, 5, and 10 
objectives are presented. In the tables, the best-performing 
algorithms are shown with a bold background and the sec-
ond best-performers are shown with a italics background. 
As shown in Table 3, I-DBEA from the decomposition-
based group was the best-performing algorithm for the 
MOKP with three objectives while SPEA-R from the 
dominance and reference-based group was the second-
best performer on this same MOPK. Moreover, SPEA-
R was the best-performing algorithm on the MOKP with 
five objectives and EFR-RR the second-best. For MOKP 
with 10 objectives, KnEA and SPEA-R were the top and 
second-best performing algorithms, respectively. Since 
the homogeneity of variances of algorithms was rejected 
according to the Levene test at the 0.05 significance level, 
the Dunnett T3 test was used to show significance between 
different results at the 0.05 significance level. The last row 
of each table shows p values presenting the test value of 
all the algorithms on Dunnett T3 test. A p value of 0 indi-
cates a significant difference between the mean of the best-
performing algorithm and the other algorithms (indicated 

by #). The computational results of ANOVA are shown in 
Supplementary File (S2), Tables 1–9.

Figures 3, 5, and 6 present median and inter-quartile 
range (IQR) values of the algorithms on the test problems 
with 3, 5, 10 objectives (subplots a, b, and c, respectively, 
in each figure). The size of each rectangle represents the 
IQR. The short line at each end of each rectangle indicate 
maximum and minimum values, and the short line represents 
median in each rectangle. The figures contain some inter-
esting patterns. For example, in Fig. 3a, I-DBEA occupies 
the lowest position in the graph as compared to the other 
algorithms while RVEA* occupies the highest position. Fur-
thermore, the MOEA-DD rectangle occupies the smallest 
area, indicating that the MOEA-DD data has the smallest 
degree of variance.

Figure 4 shows the distribution of the solution sets in the 
Pareto Front. Nine plots show the values corresponding to 
the number of objectives for the most efficient algorithms 
for MOKP, MOTSP, and mQAP. Three figures show scat-
ter plots of the best objective values for the three problems 
above. Figure 4a, d, g presents results of A-NSGA-III on 
a 3-objective MOTSP, a 5-objective mQAP, and results of 
IDBEA on a 3-objectiveMOKP, respectively. Figure 4b, 
e, h depicts results of EFRRR on a 5-objective MOTSP, 
a 5-objective mQAP, and results of SPEAR on a 5-objec-
tive MOKP, respectively. Figure 4c, f, i depicts results of 
KnEA on a 10-objective MOKP, HypE on a 10-objective 

Table 3   The values of IGD 
(mean and standard deviation) 
of the Pareto solutions of the 
algorithms on the MOKP 
problem in which bold and 
italics backgrounds indicate the 
first and second-best performing 
algorithm for each condition

# Indicate bold algorithm outperforms the corresponding algorithmssignificantly. p value shows the test 
value of all the algorithms on the Dunnett T3 test

Algorithm 3-Obj 5-Obj 10-Obj

Mean St. dev. Mean St. dev. Mean St. dev.

MaOEA-DDFC 2.83E+04 1.36E+01# 3.43E+04 6.43E+02 4.58E+04 3.49E+02
MaOEA-R&D 2.84E+04 3.22E+02# 3.54E+04 3.16E+02# 4.63E+04 3.71E+02
KnEA 2.86E+04 1.71E+02# 3.50E+04 2.74E+02# 4.39E+04 1.71E+03
SPEA2 + SDE 2.85E+04 3.18E+02# 3.48E+04 5.45E+02# 4.58E+04 3.01E+02
GrEA 2.81E+04 2.22E+02# 3.48E+04 1.60E+02# 4.65E+04 1.74E+02
NSGA-III 2.78E+04 5.25E+02# 3.47E+04 4.76E+02# 4.55E+04 4.66E+01
A-NSGA-III 2.81E+04 1.40E+02# 3.43E+04 5.31E+02 4.57E+04 3.99E+02
t-DEA 2.84E+04 1.10E+02# 3.51E+04 1.70E+02# 4.66E+04 3.56E+02#

SPEA/R 2.75E+04 2.25E+02# 3.36E+04 4.04E+01 4.42E+04 5.09E+02
EFR-RR 2.77E+04 2.55E+02# 3.39E+04 1.95E+02# 4.66E+04 1.54E+02#

I-DBEA 2.68E+04 1.78E+02 3.52E+04 2.37E+02# 4.73E+04 2.98E+02#

MOEA/DD 2.77E+04 4.53E+01# 3.50E+04 8.07E+01# 4.56E+04 1.08E+02
RVEA 2.85E+04 1.06E+02# 3.62E+04 1.11E+02# 4.70E+04 2.87E+02#

RVEA* 2.90E+04 1.25E+02# 3.60E+04 1.36E+02# 4.67E+04 5.19E+02#

HypE 2.87E+04 1.15E+02# 3.52E+04 4.56E+02# 4.59E+04 3.85E+02
BiGE 2.86E+04 2.51E+02# 3.52E+04 2.73E+02# 4.55E+04 5.25E+02
MOMBI-II 2.88E+04 6.39E+01# 3.51E+04 3.91E+02# 4.76E+04 1.45E+02#

PICEA-g 2.81E+04 1.21E+02# 3.54E+04 1.22E+03 4.53E+04 8.25E+01
p value 0.000 0.000 0.000
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mQAP, and SPEAR on a 10-objective MOTSP, respectively. 
Based on Fig. 4a, d, A-NSGA-III is well-converged and has 
a proper distribution on MOTSP as compared to mQAP. 
Based on Fig. 4b, e on 5-objective problems, EFRRR is 
well-converged on MOTSP as compared to mQAP. Moreo-
ver, It can be seen from the first and second columns two 
algorithms have fine performance on two problems, 4-(a),(d) 
and 4-(b), (e) while for the 10-objective, three different 
algorithms perform best on three different problems. The 
plots of the algorithms are shown in Supplementary File 
S1: Figures 1–52.

Table 4 presents the mean and standard deviation values 
of computational time for all algorithms considering 3, 5, 
and 10 objectives on MOKP. MaOEA-R&D from domi-
nance based group obtained Pareto sets in the lowest amount 
of time for 3-objective and RVEA from decomposition based 
group obtained a Pareto solution for 5 and 10 objectives in 
the lowest amount of time. RVEA was the second-best per-
forming algorithm for 3 objectives on MOKP and MaOEA-
R&D was the second-best performing algorithm for 5 and 
10 objectives on MOKP.

Table 5 presents the mean and standard deviation values 
of IGD for all algorithms considering 3, 5, and 10 objectives 
on MOTSP. As shown, A-NSGA-III and NSGA-III from 
dominance and reference based were the first- and second-
best performing algorithms on MOKP with 3 objectives, 
EFR-RR from the decomposition based and SPEA-R from 
dominance and reference based were the first- and second-
best performing algorithms with 5 objectives and SPEA-R 
and KnEA were the first- and second-best performing algo-
rithms on MOTSP with 10 objectives (Fig. 5).

Table 6 shows the mean and standard deviation values 
of computational time for all algorithms considering 3, 
5, 10 objectives on MOTSP. As shown, t-DEA from the 
dominance and reference based group obtained Pareto sets 

in the lowest amount of time for problems with 3, 5, and 
10 objectives, while RVEA from decomposition based was 
the second-best performing algorithm for obtaining Pareto 
solution for problems with 5 and 10 objectives. BiGA was 
the second-best performing algorithm for 3 objectives on 
MOTSP.

Table 7 presents the mean and standard deviation values 
of IGD for all algorithms considering 3, 5, and 10 objectives 
on mQAP. The A-NSGA-III from dominance and reference-
based, EFR-RR from decomposition-based, and HypE from 
indicator based group were the best-performing algorithms 
on mQAP with 3, 5, and 10 objectives while GrEA from 
dominance and reference-based, MOEA-DDFC from dom-
inance-based group, and KnEA from indicator-based group 
were the second-best performing algorithms with the same 
number of objectives on mQAP, respectively (Fig. 6).

Table 8 presents the mean and standard deviation val-
ues of computational time for all algorithms considering 3, 
5, and 10 objectives on mQAP. As indicated, KnEA from 
dominance-based, PICEA-g from preference-based, and 
EFR-RR from decomposition based group obtained Pareto 
sets in the lowest amount of time for 3, 5, and 10 objec-
tives, while NSGA-III from dominance and reference-based, 
EFR-RR from decomposition-based, and A-NSGA-III from 
dominance and reference-based group obtained Pareto solu-
tion in the second-lowest amount of time for 3, 5, and 10 
objectives on mQAP, respectively.

Table 9 presents ranking changes for all algorithms on 
MOKP, MOTSP, and mQAP considering the metrics: IGD 
and CT separately. In Table 9, indicator A indicates the num-
ber of objectives changes from 3 to 5 and indicator B shows 
the number of objectives changes from 5 to 10. For example, 
the first row, which starts with algorithm HypE, indicates 
a slight decrease of − 3 on indicator A and − 3 on indica-
tor B (i.e., A from 3 to 5 and B from 5 to 10) on MOKP, 

(b)(a) (c)

Fig. 3   Boxplot of values of IGD on 3, 5, and 10 objective 500 dimension MOKP
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whereas on CT, both A and B are zero, indicating there was 
no change for this metric when the number of objectives was 
changed. While there was a significant decrease of − 4 in the 
value for an index of A on MOTSP, the value of indicator 
B decreased to − 1. However, CT value for both indicator A 
and B on MOTSP are zero. The rankings of mQAP from 3 
objectives to 5 objectives and 5 objectives to 10 objectives 
have values of − 2 for indicator A and − 10 for indicator B 
for the value; ranking of CT for the same problem revealed 
an increase of + 1 for indicator A and + 3 for indicator B. 
Description of other rows in Table 8 is the same. More 

details of Table 8 are provided in Supplementary File S1 
(Figures 53–55).

3.3 � Discussion

In this section, we discuss the class of the MaOEAs that 
outperforms others in solving each problem according to the 
significant statistical results.

To solve the MOKP, we can observe the better results 
among the third category such as I-DBEA, MOEA-DD, 
EFR-RR, since the decomposition based algorithms 

Fig. 4   The best performing algorithms relative to the IGD metric for the MOKP,MOTSP, mQAP with 3,5, and 10 objectives
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outperform others in solving 3-objective samples. As the 
size of the objectives increases to 5, not only the rank of the 
dominance based algorithms such as KnEA and MaOEA-
DDFC or dominance and reference based such as SPEA/R 
ameliorates but also SPEA/R, and MaOEA-DDFC out-
perform the second group significantly. For example, after 
increasing the objectives from 3 to 5 the rank of the I-DBEA 
and MOEA-DD is exacerbated (+ 5) and (+ 11) respectively 
while, the rank of the KnEA, SPEA/R, and MaOEA-DDFC 
is enhanced (− 6), (− 1), and (− 5). Although, the rank of the 
indicator based group is improved but the results of those 
underperform by the dominance and reference based group 
for 5-objective MOKP. As can be seen from Table 3, there 
is no significant difference between first and second posi-
tions for 10 objectives MOKP problem, we can conclude 
the MaOEAs that are dominance based as well as reference 
set based, obtain the best IGD with less standard deviation 
for MOKP. On the other hand, the rank of the PICEA-g 

is changed (− 13) with increasing objectives from 5 to 10, 
and the behavior of this algorithm indicates the promising 
performance for solving the 10-objective MOKP. Although 
the rank of the indicator based group is ameliorated approxi-
mately in many-objective KP, the second group outperforms 
all groups. Therefore, we can point out the dominance and 
reference based category are promising to tackle many-
objective KP in comparison with other groups. Further-
more, the improved MaOEAs such as SPEA/R occupy 
the best rank among other algorithms of this group since 
a diversity-first-convergence second selection strategy is 
adopted in SPEA/R, unlike most MOEAs. As it is found 
from Table 8, the SPEA/R shows a slight decrease (− 1) of 
the rank to solve the problem from 3 to 5 objectives, and a 
slight increase (+ 1) of the rank for solving the MOKP from 
5-objective to 10-objective which justify the robustness of 
this algorithm. However, the mentioned algorithms do not 
perform well in comparison with RVEA and MaOEA-R&D 

(b)(a) (c)

Fig. 5   Boxplots of value of IGD on 3, 5, and 10 objective 500 dimension MOTSP

(a) (b) (c)

Fig. 6   Boxplots of IGD value on 3, 5, and 10 objective 500 dimension mQAP
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Table 4   The CT (mean and 
standard deviation) of the Pareto 
solutions of the algorithms on 
the MOKP problem in which 
bold and italics backgrounds 
indicate the first and second-
best performing algorithm for 
each condition

# Indicate bold algorithm significantly outperforms the other algorithms. p value shows the test value of all 
the algorithms on the Dunnett T3 test

Algorithm 3-Obj 5-Obj 10-Obj

Mean St. dev. Mean St. dev. Mean St. dev.

MaOEA-DDFC 1.93E+00 1.09E−01# 3.35E+00 1.16E−01# 7.16E+00 5.85E−01#

MaOEA-R&D 1.01E+00 7.83E−02 1.11E+00 1.41E−02 1.36E+00 6.06E−02#

KnEA 1.44E+00 2.63E−02# 1.85E+00 4.61E−02# 2.59E+00 3.56E−02#

SPEA2 + SDE 2.78E+01 1.34E−01# 3.15E+01 7.44E−01# 4.60E+01 9.78E−01#

GrEA 3.97E+00 4.98E−02# 6.55E+00 8.36E−01# 1.51E+01 1.41E+00#

NSGA-III 1.35E+00 2.54E−02# 1.67E+00 1.25E−01# 1.98E+00 1.58E−02#

A-NSGA-III 1.69E+00 6.70E−02# 2.07E+00 5.96E−02# 2.66E+00 8.18E−02#

t-DEA 1.26E+00 1.08E−02# 1.48E+00 6.82E−02# 1.66E+00 9.28E−02#

SPEA/R 1.38E+01 1.81E−01# 9.71E+00 1.11E−01# 9.18E+00 5.58E−02#

EFR-RR 1.46E+00 3.00E−02# 1.62E+00 6.83E−02# 1.76E+00 5.68E−02#

I-DBEA 1.21E+01 1.48E−01# 1.24E+01 3.62E−01# 1.50E+01 5.14E−01#

MOEA/DD 2.84E+01 2.82E−01# 2.51E+01 1.10E−01# 2.72E+01 3.85E−01#

RVEA 1.08E+00 1.25E−02 1.10E+00 5.56E−02 1.15E+00 1.89E−02
RVEA* 1.28E+00 4.70E−02# 1.39E+00 1.16E−01# 1.55E+00 8.50E−03#

HypE 6.82E+01 5.09E+00# 2.63E+02 1.70E+01# 1.18E+03 8.97E+01#

BiGE 1.16E+00 5.03E−02# 1.23E+00 1.07E−01 1.72E+00 1.04E−01#

MOMBI-II 2.19E+00 3.13E−02# 2.14E+00 9.13E−02# 2.14E+00 2.17E−02#

PICEA-g 1.98E+00 3.27E−02# 3.00E+00 4.85E−02# 1.41E+01 1.50E+00#

p value 0.000 0.000 0.000

Table 5   The values of IGD 
(mean and standard deviation) 
of the Pareto solutions of the 
algorithms on the MOTSP 
problem in which bold and 
italics backgrounds indicate the 
first and second-best performing 
algorithm for each condition

# Indicate bold algorithm significantly outperforms the other algorithms. p value shows the test value of all 
the algorithms on the Dunnett T3 test

Algorithm 3-Obj 5-Obj 10-Obj

Mean St. dev. Mean St. dev. Mean St. dev.

MaOEA-DDFC 4.70E+02 1.06E+01 5.81E+02 8.31E+00 8.00E+02 3.97E+00#

KnEA 4.75E+02 2.91E+00# 5.97E+02 1.65E+01# 7.93E+02 6.32E+00
SPEA2 + SDE 4.78E+02 2.86E+00# 5.97E+02 4.41E+00# 8.17E+02 2.76E+00#

GrEA 4.78E+02 7.04E+00# 5.82E+02 1.66E+00# 8.30E+02 5.85E−01#

NSGA-III 4.66E+02 4.78E+00 5.84E+02 8.55E+00# 8.02E+02 1.20E+00#

A-NSGA-III 4.59E+02 6.45E+00 5.84E+02 5.01E+00# 8.05E+02 2.20E+00#

t-DEA 4.71E+02 7.77E+00 6.03E+02 1.10E+01# 8.35E+02 2.06E+01#

SPEA/R 4.66E+02 5.38E+00 5.72E+02 1.94E+00 7.87E+02 2.28E+00
EFR-RR 4.76E+02 8.43E+00# 5.70E+02 4.00E+00 8.24E+02 9.49E+00#

I-DBEA 4.67E+02 8.77E+00 6.08E+02 1.31E+00# 8.53E+02 1.67E+00#

MOEA/DD 4.71E+02 6.59E+00 5.95E+02 1.83E+00# 8.24E+02 1.47E+00#

RVEA 4.68E+02 1.67E+00 6.07E+02 6.85E+00# 8.45E+02 1.84E+00#

RVEA* 4.93E+02 1.09E+01# 6.17E+02 5.78E+00# 8.23E+02 1.07E+01#

HypE 4.80E+02 5.55E+00# 5.95E+02 4.25E+00# 8.20E+02 1.17E+01#

BiGE 4.82E+02 4.52E+00# 5.89E+02 7.36E+00# 8.06E+02 2.62E+00#

MOMBI-II 4.85E+02 5.84E+00# 5.91E+02 9.09E+00# 8.66E+02 1.19E+00#

PICEA-g 4.71E+02 7.73E+00 5.86E+02 8.34E+00# 7.96E+02 2.85E+00#

p value 0.000 0.000 0.000
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from the aspect of time. We found that the decomposition 
based category such as RVEA, I-DBEA saves time in solv-
ing MOKP in comparison with other groups.

For tackling the 3-objective MOTSP, we must point out 
that most algorithms of the second group such as A-NSGA-
III, NSGA-III, SPEA/R obtain better results in comparison 

Table 6   The CT (mean and 
standard deviation) of the Pareto 
solutions of the algorithms on 
the MOTSP problem in which 
bold and italics backgrounds 
indicate the first and second-
best performing algorithm for 
each condition

# Indicate bold algorithm significantly outperforms the corresponding algorithms. p value shows the test 
value of all the algorithms on the Dunnett T3 test

Algorithm 3-Obj 5-Obj 10-Obj

Mean St. dev. Mean St. dev. Mean St. dev.

MaOEA-DDFC 1.97E+01 4.40E−02# 3.22E+01 2.23E−01# 5.74E+01 1.45E−01#

KnEA 1.88E+01 9.56E−02# 2.74E+01 9.73E−02# 4.77E+01 2.66E−02
SPEA2 + SDE 6.57E+01 2.00E−02# 1.03E+02 2.86E+00# 1.67E+02 1.29E+00#

GrEA 2.35E+01 1.23E−01# 4.63E+01 5.54E−01# 7.88E+01 1.00E−01#

NSGA-III 1.86E+01 1.27E−01# 2.65E+01 1.37E−01# 4.47E+01 1.03E−01
A-NSGA-III 1.91E+01 1.26E−01# 2.69E+01 4.31E−02# 4.56E+01 5.46E−02
t-DEA 1.05E+01 1.39E+00 2.00E+01 2.91E+00 3.87E+01 7.41E+00
SPEA/R 3.05E+01 6.65E−01# 3.44E+01 5.21E−01# 5.65E+01 2.87E+00#

EFR-RR 1.84E+01 5.69E−02# 2.60E+01 5.68E−02# 4.41E+01 6.02E−01
I-DBEA 5.82E+01 4.18E−01# 7.71E+01 4.76E−01# 1.19E+02 5.77E−01#

MOEA/DD 8.59E+01 2.20E−01# 9.56E+01 2.88E−01# 1.30E+02 3.65E+00#

RVEA 1.81E+01 8.77E−02# 2.53E+01 2.91E−02# 4.33E+01 1.34E−01
RVEA* 1.82E+01 6.11E−02# 2.58E+01 8.93E−02# 4.40E+01 1.28E−01
HypE 1.54E+02 2.64E+01# 1.09E+03 1.44E+02# 2.66E+03 1.35E+02#

BiGE 1.77E+01 3.14E−02# 2.56E+01 9.57E−02# 4.51E+01 6.13E−02
MOMBI-II 1.98E+01 2.40E−02# 2.71E+01 9.46E−02# 4.50E+01 2.70E−01
PICEA-g 1.98E+01 8.89E−01# 3.75E+01 4.28E−01# 9.13E+01 1.34E+00#

p value 0.000 0.000 0.000

Table 7   The values of IGD 
(mean and standard deviation) 
of the Pareto solutions of the 
algorithms on the mQAP 
problem in which bold and 
italics backgrounds indicate the 
first and second-best performing 
algorithm for each condition

# Indicate bold algorithm significantly outperforms the other algorithms. p value shows the test value of all 
the algorithms on the Dunnett T3 test

Algorithm 3-Obj 5-Obj 10-Obj

Mean St. dev. Mean St. dev. Mean St. dev.

MaOEA-DDFC 3,238,411,057 616,105.2 4,181,135,126 67,784.2421 5,910,610,328 76,971.75
KnEA 3,238,424,081 257,388.4 4,181,428,857 101,525.116# 5,910,489,995 227,411.7
SPEA2 + SDE 3,238,934,788 105,952.6# 4,181,447,356 104,334.561# 5,911,633,212 90,447.86#

GrEA 3,238,302,447 137,836.9 4,181,446,891 327,636.864 5,912,106,455 114,648.8
NSGA-III 3,238,403,512 4902.027 4,181,172,087 275,558.847 5,910,678,821 75,690.47
A-NSGA-III 3,238,153,228 280,055.5 4,181,366,324 177,000.135 5,910,848,941 317,553.8
t-DEA 3,238,473,939 281,569.8 4,181,638,779 102,255.097# 5,910,857,547 162,041.7
SPEA/R 3,238,665,030 109,856.9# 4,181,566,107 460,354.866 5,910,890,545 242,490.6
EFR-RR 3,238,363,710 140,395.6 4,181,127,096 152,027.997 5,911,000,361 77,023.06#

I-DBEA 3,238,336,826 44,924.78 4,181,374,563 90,980.2614# 5,912,234,524 177,109.4#

MOEA/DD 3,238,943,378 273,681.9# 4,182,171,353 122,073.069# 5,911,168,962 67,392.7#

RVEA 3,238,663,027 160,574.7# 4,182,161,241 526,789.003# 5,911,626,735 314,282.4#

RVEA* 3,239,165,655 268,893.3# 4,181,907,575 8163.283# 5,910,956,568 229,349.8
HypE 3,238,686,720 209,576.8# 4,181,449,643 245,881.052 5,910,253,162 462,765.5
BiGE 3,238,459,413 42,283.27 4,181,436,494 37,477.6092# 5,910,701,725 7374.795
MOMBI-II 3,238,653,884 119,698.2# 4,181,455,320 252,132.464 5,912,708,659 128,329.8#

PICEA-g 3,239,545,211 728,173.3# 4,181,279,593 203,637.295 5,910,528,534 64,760.97#

p value 0.000 0.000 0.000
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Table 8   The CT (mean and 
standard deviation) of the Pareto 
solutions of the algorithms on 
the mQAP problem in which 
bold and italics backgrounds 
indicate the first and second-
best performing algorithm for 
each condition

# Indicates bold algorithm significantly outperforms the other algorithms. p value shows the test value of all 
the algorithms on the Dunnett T3 test

Algorithm 3-Obj 5-Obj 10-Obj

Mean St. dev. Mean St. dev. Mean St. dev.

MaOEA-DDFC 8.64E+01 2.13E+00 1.40E+02 1.97E+00# 2.77E+02 5.81E−01#

KnEA 8.36E+01 2.80E−02 1.42E+02 3.93E+00 2.89E+02 2.27E+01
SPEA2 + SDE 1.10E+02 4.02E−01# 1.66E+02 2.40E+00# 3.18E+02 3.19E+00#

GrEA 8.67E+01 1.32E+00# 1.45E+02 7.37E−01# 2.83E+02 2.35E+00#

NSGA-III 8.38E+01 1.33E−01 1.43E+02 1.53E+00# 2.75E+02 1.65E+00#

A-NSGA-III 8.38E+01 2.93E−01 1.38E+02 2.81E−01# 2.70E+02 8.08E−01#

t-DEA 8.76E+01 8.12E−01# 1.44E+02 3.67E+00# 2.81E+02 6.03E+00#

SPEA/R 1.81E+02 5.08E+00# 3.04E+02 3.10E+01# 5.47E+02 4.87E+00#

EFR-RR 8.48E+01 1.69E+00 1.37E+02 3.10E−01 2.67E+02 1.27E+00
I-DBEA 2.24E+02 3.18E+00# 2.97E+02 1.40E+01# 5.51E+02 9.14E+00#

MOEA/DD 2.07E+02 8.83E+00# 3.09E+02 6.11E+00# 6.02E+02 3.30E+01#

RVEA 8.54E+01 7.52E−01# 1.40E+02 3.05E−01# 2.73E+02 1.22E+00#

RVEA* 8.51E+01 3.52E−01# 1.41E+02 1.16E+00# 2.72E+02 5.45E−01#

HypE 1.05E+02 3.06E−01# 2.30E+02 6.00E+00# 1.86E+03 1.58E+02#

BiGE 8.61E+01 1.10E+00# 1.41E+02 7.14E+00 2.74E+02 9.51E−01#

MOMBI-II 8.55E+01 8.47E−02# 1.39E+02 3.64E+00 2.72E+02 6.66E−01#

PICEA-g 8.39E+01 5.59E−01 1.37E+02 2.77E−01 2.89E+02 9.72E−01#

p value 0.000 0.000 0.000

Table 9   Rank changes of 
MOEAs versus objective 
changes on all problems 
considering IGD and CT 
metrics

*The MaOEA-R&D is not compatible with MOTSP and mQAP and it was not run on MOTSP and mQAP

Algorithms MOKP MOTSP mQAP

IGD CT IGD CT IGD CT

A B A B A B A B A B A B

MaOEA-DDFC − 5 4 2 − 1 − 3 1 1 1 − 4 2 − 4 2
MaOEA-R&D 4 − 4 1 0 * * * * * * * *
KnEA − 6 − 8 1 1 2 − 10 2 0 0 − 5 8 3
SPEA2 + SDE − 5 2 1 0 1 − 5 1 0 − 4 4 − 1 0
GrEA 0 6 0 2 − 9 9 1 − 1 7 6 1 − 2
NSGA-III 0 − 1 1 0 3 0 0 − 1 − 2 2 8 − 3
A-NSGA-III − 4 4 0 1 5 0 − 1 1 4 2 0 − 1
t-DEA 0 3 1 − 1 6 0 0 0 5 − 6 − 1 − 2
SPEA/R − 1 1 − 1 − 2 − 1 − 1 − 2 − 1 1 − 4 1 − 2
EFR-RR − 2 12 − 2 0 − 10 11 0 − 1 − 3 10 − 4 0
I-DBEA 11 5 1 − 1 12 0 0 0 3 10 − 2 0
MOEA/DD 5 − 2 − 1 0 2 0 − 1 0 2 − 5 1 − 1
RVEA 5 − 2 − 1 0 10 0 − 1 0 5 − 3 − 2 0
RVEA* − 1 − 2 − 1 − 1 0 − 7 0 − 1 − 1 − 5 1 − 3
HypE − 3 − 3 0 0 − 4 − 1 0 0 − 2 − 10 1 3
BiGE 0 − 9 0 2 − 7 − 1 1 4 0 − 2 − 1 − 2
MOMBI-II − 6 7 − 2 − 2 − 7 8 − 2 − 2 2 5 − 4 − 1
PICEA-g 8 − 13 0 2 0 − 4 1 1 − 13 − 1 − 2 9
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with the other groups. Besides, the SPEA/R, GrEA from 
the second class and KnEA and MaOEA-DDFC from the 
first class obtain better positions for 5 and 10-objective 
MOTSP. Although the average of EFR-RR as decomposi-
tion based is better than that of SPEA/R for 5-objectives, 
the St. Dev. of SPEA/R is less than that of EFR-RR. On the 
other hand, SPEA/R has a slight decrease (− 1) of the rank 
to solve MOTSP not only from 3 to 5, but also from 5 to 10 
objectives and therefore, this result shows the robustness of 
this algorithm for solving MOTSP with many objectives. 
To solve MOTSP, since there is no significant difference 
between the first and the second positions for each problem 
(3, 5, 10) objectives according to the results of Table 5, we 
conclude the MaOEAs that are dominance based as well as 
reference set based, obtain the best IGD with less standard 
deviation for MOTSP. On the other hand, an improvement 
of the performance is seen in the behavior of the PICEA-g 
for solving 10-objective MOTSP, and so this method can 
be promising to tackle many-objective TSP as behaved for 
MOKP. As it is shown in the results, we can observe as the 
objectives increase from 3 to 5, the rank of the second group 
such as GrEA, and SPEA/R is enhanced to (− 9) and (− 1) 
respectively and as objectives increase from 5 to 10, the 
rank of the KnEA and SPEA2 + SDE from the first group is 
improved to (− 10) and (− 5) respectively. Also, it is shown 
that the rank of the indicator based group is improved after 
increasing the objectives nonetheless; the second group 
outperforms all of them and therefore, this group is promis-
ing to tackle many-objective TSP in comparison with other 
groups. However, the mentioned algorithms do not perform 
well in saving time in comparison with t-DEA, RVEA. 
Therefore, we found that the second and third category such 
as t-DEA and RVEA saves time to solve 3, 5, and 10-objec-
tive MOTSP in comparison with other categories.

To solve the 3-objective mQAP, the MaOEAs such as 
A-NSGA-III, NSGA-III, GrEA, EFR-RR, and I-DBEA 
obtain the best positions in comparison with others. Accord-
ing to Table 7, there is no significant difference between 
first and second positions of these algorithms. Therefore, 
the dominance and reference based group outperforms other 
groups with less standard deviation for 3-objective mQAP. 
To tackle the 5-objective mQAP, we could not determine the 
best group since there is no significant difference between 

results of some representative of categories and for exam-
ple, MaOEA-DDFC is the best for solving the 5-objective 
mQAP in comparison with EFR-RR since the St. Dev. of 
the MaOEA-DDFC is less than that of the EFR-RR. On 
the other hand, SPEA2 + SDE, MaOEA-DDFC from the 
first group have a mutation of the rank (− 4) and EFR-RR 
from third class and NSGA-III from the second class have 
a change of the rank (− 3) and (− 2), whereas I-DBEA from 
the third group and A-NSGA-III and GrEA from the second 
group have the change of the rank (+ 3), (+ 4), and (+ 7). 
As a consequence, some dominance based algorithm can be 
promising to solve 5-objective mQAP in comparison with 
others.

As it is indicated from Table 7, there is no significant dif-
ference between first and second positions for 10 objectives 
mQAP problem, and as a consequence, the MaOEAs that are 
dominance-based, presents the best IGD with less standard 
deviation for mQAP. For example, HypE outperforms oth-
ers for solving 10-objective mQAP according to its aver-
age although; KnEA from the first group has the better St. 
Dev. In total, there is no significant difference between the 
results of HypE and some of the first class such as KnEA, 
MaOEA-DDFC and so, we can observe that the first group, 
as well as HypE from the indicator based group, outperforms 
others when the objectives of mQAP are increased from 5 
to 10. Although, the rank of the RVEA* as well as MOEA-
DD is ameliorated (− 5) but both of them underperformed 
by the mentioned algorithms from first class. However, 
KnEA, PICEA-g, and EFR-RR solve the 3, 5, and 10-objec-
tive mQAP at the savings in time. As indicated, the perfor-
mance of the dominance based, decomposition based, and 
preference-based classes in saving time for many-objective 
QAP is better than other classes.

Table 10 displays the best algorithms for different many 
objective problems. We found from this table that the domi-
nance and reference based algorithms such as SPEA/R, 
NSGA-III, and GrEA are suitable algorithms to tackle 
MOTSP and mQAP with 3 objectives. However, decompo-
sition based such as I-DBEA and MOEA-DD are promising 
for 3-objective MOKP. On the other hand, the dominance 
and reference based algorithms such as SPEA/R, NSGA-
III, and GrEA are promising algorithms to tackle MOKP 
and MOTSP with 5 and 10 objectives as the size of the 

Table 10   the best class of the algorithms for solving the problems on different many objectives

Problem 3-Obj 5-Obj 10-Obj

MOKP DCP. (I-DBEA, MOEA-DD)
D. R. (NSGA-III, SPEA/R)

D. R. (SPEA/R, A-NSGA-III)
(MaOEA-DDFC)

D. R. (SPEA/R, NSGA-III)
D. (KnEA, MaOEA-DDFC)

MOTSP D. R. (A-NSGA-III, NSGA-III, SPEA-R)
DCP. (I-DBEA, RVEA)

D. R. (SPEA/R, GrEA)
DCP. (EFR-RR)

D. R. (SPEA/R, NSGA-III)
D. (KnEA, MaOEA-DDFC)

mQAP D. R. (A-NSGA-III, NSGA-III, GrEA)
DCP. (EFR-RR, I-DBEA)

D. (MaOEA-DDFC)
DCP. (EFR-RR)

I. (HypE)
D. (KnEA, MaOEA-DDFC)
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objectives increases. While, the dominance based such as 
MaOEA-DDFC as well as the indicator-based algorithms 
such as HypE are promising to solve mQAP with 5 and 10 
objectives although, both the first and the second have no 
significant difference to solve 5-objective mQAP. Lastly, the 
performance of the second group at saving time is the best 
on all problems when the size of objectives increases.

4 � Conclusion

In this work, the search behavior of well-known MaOEAs 
algorithms (NSGA-III, MOEA-DD, SPEA-R,HypE, PICEA-
g, GrEA, A-NSGA-III, SPEA2 + SDE, BiGE, EFR-RR, 
I-DBEA, KnEA, MaOEA-DDFC, MOMBI-II, RVEA, 
RVEA*, and t-DEA) on many-objective MOKP, MOTSP, 
and mQAP with 3, 5, and 10 objectives was examined. The 
experimental results on many-objective problems (MOKP, 
MOTSP, mQAP) were consistent with the following fre-
quently reported result: when the number of objectives was 
increased, the performance of Pareto dominance-based algo-
rithms deteriorated severely. When IGD was considered, 
the decomposition-based algorithms performed best on 
MOKP with 3 objectives, and the dominance and reference 
based algorithms worked the best with 5 and 10 objectives, 
respectively. For MOTSP, when IGD was considered, some 
of dominance and reference based as well as decomposition 
based worked best with 3 objectives and some of dominance 
and reference based performed best with 5 and 10 objectives, 
respectively. For mQAP, When IGD was considered, while 
the second class worked best with 3 objectives, some of first 
and third class worked best with 5 objectives and dominance 
based as well as indicator based group worked the best with 
10 objectives. For the CT metric, although the MaOEA-
R&D from the first class worked best on MOKP with 3 
objectives, the RVEA, as well as some of the third class, 
had the best performance on the same problem with 5 and 
10 objectives. Some of the second group such as t-DEA had 
best performance on MOTSP with 3, 5, and 10 objectives. 
Although the KnEA worked best on mQAP with 3 objec-
tives, PICEA-g and EFR-RR had the best performance on 
the same problem with 5 and 10 objectives. It is valuable to 
note that the results above mentioned are based on ANOVA 
test. In short, it is concluded that convergence-based algo-
rithms have better performance on MOKP while the number 
of objectives increases; considering MOTSP dominance and 
reference based algorithms present better performance com-
pared with other algorithms with increasing the number of 
objectives; and finally indicator-based as well as dominance 
based perform better than others on mQAP with increasing 
the number of objectives. Among the eighteen algorithms 
tested in this study, SPEA-R has a better ranking on the three 
problems while the number of objectives increases.

Acknowledgements  Authors would like to thank Prof. Jürgen Branke 
(Warwick Business School) for his valuable comments and helps.

Funding  The authors confirm that there is no source of funding for 
this study.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Human Participants and/or Animals  None.

References

	 1.	 Tian Y et al (2018) An indicator-based multiobjective evolution-
ary algorithm with reference point adaptation for better versatil-
ity. IEEE Trans Evol Comput 22(4):609–622

	 2.	 He C et al (2017) A radial space division based evolutionary 
algorithm for many-objective optimization. Appl Soft Comput 
61:603–621

	 3.	 Li T, Li J (2018) Using modified determinantal point process 
sampling to update population. In: 2018 IEEE congress on evo-
lutionary computation (CEC). IEEE

	 4.	 Deb K (2014) Multi-objective optimization. Search methodolo-
gies. Springer, Berlin, pp 403–449

	 5.	 Marler RT, Arora JS (2004) Survey of multi-objective opti-
mization methods for engineering. Struct Multidiscipl Optim 
26(6):369–395

	 6.	 Caramia M, Dell’Olmo P (2008) Multi-objective optimization. 
Springer, Berlin

	 7.	 Coello CAC, Lamont GB, Van Veldhuizen DA (2007) Evolu-
tionary algorithms for solving multi-objective problems, vol 5. 
Springer, Berlin

	 8.	 Deb K (2001) Multi objective optimization using evolutionary 
algorithms. Wiley, New York

	 9.	 Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion 
optimizer: a multi-objective optimization algorithm for solving 
engineering problems. Appl Intell 46(1):79–95

	10.	 Gul S et  al (2011) Bi-criteria scheduling of surgical ser-
vices for an outpatient procedure center. Prod Oper Manag 
20(3):406–417

	11.	 Minella G, Ruiz R, Ciavotta M (2008) A review and evaluation of 
multiobjective algorithms for the flowshop scheduling problem. 
INFORMS J Comput 20(3):451–471

	12.	 Wang H (2012) Zigzag search for continuous multiobjective opti-
mization. INFORMS J Comput 25(4):654–665

	13.	 Loganathan G, Sherali HD (1987) A convergent interactive cut-
ting-plane algorithm for multiobjective optimization. Oper Res 
35(3):365–377

	14.	 Erlebach T, Kellerer H, Pferschy U (2002) Approximating multi-
objective knapsack problems. Manag Sci 48(12):1603–1612

	15.	 Sourd F, Spanjaard O (2008) A multiobjective branch-and-bound 
framework: application to the biobjective spanning tree problem. 
INFORMS J Comput 20(3):472–484

	16.	 Stidsen T, Andersen KA, Dammann B (2014) A branch and bound 
algorithm for a class of biobjective mixed integer programs. 
Manag Sci 60(4):1009–1032

	17.	 Jozefowiez N, Laporte G, Semet F (2012) A generic 
branch-and-cut algorithm for multiobjective optimization 



688	 R. Behmanesh et al.

1 3

problems: application to the multilabel traveling salesman prob-
lem. INFORMS J Comput 24(4):554–564

	18.	 Köksalan M, Phelps S (2007) An evolutionary metaheuristic for 
approximating preference-nondominated solutions. INFORMS J 
Comput 19(2):291–301

	19.	 Müller J (2017) SOCEMO: surrogate optimization of computa-
tionally expensive multiobjective problems. INFORMS J Comput 
29(4):581–596

	20.	 Mete HO, Zabinsky ZB (2014) Multiobjective interacting par-
ticle algorithm for global optimization. INFORMS J Comput 
26(3):500–513

	21.	 Phelps S, Köksalan M (2003) An interactive evolutionary 
metaheuristic for multiobjective combinatorial optimization. 
Manag Sci 49(12):1726–1738

	22.	 Rauner MS et al (2010) Dynamic policy modeling for chronic 
diseases: metaheuristic-based identification of pareto-optimal 
screening strategies. Oper Res 58(5):1269–1286

	23.	 Dentcheva D, Wolfhagen E (2016) Two-stage optimization prob-
lems with multivariate stochastic order constraints. Math Oper 
Res 41(1):1–22

	24.	 Masin M, Bukchin Y (2008) Diversity maximization approach for 
multiobjective optimization. Oper Res 56(2):411–424

	25.	 Herrmann JW, Lee CY, Hinchman J (1995) Global job shop 
scheduling with a genetic algorithm. Prod Oper Manag 4(1):30–45

	26.	 Halim AH, Ismail I (2019) Combinatorial optimization: compari-
son of heuristic algorithms in travelling salesman problem. Arch 
Comput Methods Eng 26(2):367–380

	27.	 Tang Z, Hu X, Périaux J (2019) Multi-level hybridized optimiza-
tion methods coupling local search deterministic and global search 
evolutionary algorithms. Arch Comput Methods Eng 2019:1–37

	28.	 Zabinsky ZB (2013) Stochastic adaptive search for global optimi-
zation, vol 72. Springer, Berlin

	29.	 Zabinsky ZB (2010) Random search algorithms. Wiley Ency-
clopedia of Operations Research and Management Science, New 
York

	30.	 Liu L et al (2018) A new multi-objective evolutionary algorithm 
for inter-cloud service composition. KSII Trans Internet Inf Syst 
12(1):1–20

	31.	 Yuan S et al (2017) Multi-objective evolutionary algorithm based 
on decomposition for energy-aware scheduling in heterogeneous 
computing systems. J Univers Comput Sci 23(7):636–651

	32.	 Mohammadi S, Monfared M, Bashiri M (2017) An improved 
evolutionary algorithm for handling many-objective optimization 
problems. Appl Soft Comput 52:1239–1252

	33.	 Ishibuchi H, Akedo N, Nojima Y (2015) Behavior of multiobjec-
tive evolutionary algorithms on many-objective knapsack prob-
lems. IEEE Trans Evol Comput 19(2):264–283

	34.	 Lust T, Teghem J (2010) The multiobjective traveling salesman 
problem: a survey and a new approach. In: Advances in multi-
objective nature inspired computing. Springer, pp 119–141

	35.	 Knowles J, Corne D (2003) Instance generators and test suites for 
the multiobjective quadratic assignment problem. In: International 
conference on evolutionary multi-criterion optimization. Springer

	36.	 Bader J, Zitzler E (2011) HypE: an algorithm for fast hyper-
volume-based many-objective optimization. Evol Comput 
19(1):45–76

	37.	 Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired 
coevolutionary algorithms for many-objective optimization. IEEE 
Trans Evol Comput 17(4):474–494

	38.	 Yang S et al (2013) A grid-based evolutionary algorithm for many-
objective optimization. IEEE Trans Evol Comput 17(5):721–736

	39.	 Deb K, Jain H (2014) An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting 

approach, part I: solving problems with box constraints. IEEE 
Trans Evol Comput 18(4):577–601

	40.	 Jain H, Deb K (2014) An evolutionary many-objective optimiza-
tion algorithm using reference-point based nondominated sorting 
approach, part II: handling constraints and extending to an adap-
tive approach. IEEE Trans Evol Comput 18(4):602–622

	41.	 Li M, Yang S, Liu X (2014) Shift-based density estimation for 
Pareto-based algorithms in many-objective optimization. IEEE 
Trans Evol Comput 18(3):348–365

	42.	 Li M, Yang S, Liu X (2015) Bi-goal evolution for many-objective 
optimization problems. Artif Intell 228:45–65

	43.	 Yuan Y et al (2016) Balancing convergence and diversity in 
decomposition-based many-objective optimizers. IEEE Trans 
Evol Comput 20(2):180–198

	44.	 Asafuddoula M, Ray T, Sarker R (2015) A decomposition-based 
evolutionary algorithm for many objective optimization. IEEE 
Trans Evol Comput 19(3):445–460

	45.	 Zhang X, Tian Y, Jin Y (2015) A knee point-driven evolution-
ary algorithm for many-objective optimization. IEEE Trans Evol 
Comput 19(6):761–776

	46.	 Cheng J, Yen GG, Zhang G (2015) A many-objective evolutionary 
algorithm with enhanced mating and environmental selections. 
IEEE Trans Evol Comput 19(4):592–605

	47.	 Li K et al (2014) Combining dominance and decomposition in 
evolutionary many-objective optimization. IEEE Trans Evol Com-
put 99:1–23

	48.	 Hernández Gómez R, Coello Coello CA (2015) Improved 
metaheuristic based on the R2 indicator for many-objective 
optimization. In: Proceedings of the 2015 annual conference on 
genetic and evolutionary computation. ACM

	49.	 He Z, Yen GG (2016) Many-objective evolutionary algorithm: 
objective space reduction and diversity improvement. IEEE Trans 
Evol Comput 20(1):145–160

	50.	 Cheng R et al (2016) A reference vector guided evolutionary algo-
rithm for many-objective optimization. IEEE Trans Evol Comput 
20(5):773–791

	51.	 Jiang S, Yang S (2017) A strength Pareto evolutionary algorithm 
based on reference direction for multiobjective and many-objec-
tive optimization. IEEE Trans Evol Comput 21(3):329–346

	52.	 Yuan Y et al (2016) A new dominance relation-based evolution-
ary algorithm for many-objective optimization. IEEE Trans Evol 
Comput 20(1):16–37

	53.	 Liu H-L, Gu F, Zhang Q (2014) Decomposition of a multiobjec-
tive optimization problem into a number of simple multiobjective 
subproblems. IEEE Trans Evol Comput 18(3):450–455

	54.	 Tanabe R, Ishibuchi H, Oyama AJIA (2017) Benchmarking multi-
and many-objective evolutionary algorithms under two optimiza-
tion scenarios. IEEE Access 5:19597–19619

	55.	 Srinivas N, Deb K (1994) Muiltiobjective optimization using 
nondominated sorting in genetic algorithms. Evol Comput 
2(3):221–248

	56.	 Tian Y et al (2017) PlatEMO: a MATLAB platform for evolu-
tionary multi-objective optimization [educational forum]. IEEE 
Comput Intell Mag 12(4):73–87

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Evolutionary Many-Objective Algorithms for Combinatorial Optimization Problems: A Comparative Study
	Abstract
	1 Introduction
	2 Methodology
	2.1 Methodology Framework
	2.2 Multi-objective Problems
	2.3 Description of Applied MOEAs
	2.4 Performance Evaluation Metrics

	3 Computational Experiments
	3.1 Parameter Setting of Applied Algorithms
	3.2 Comparison Between Algorithm’s Performance on All Considered Instances
	3.3 Discussion

	4 Conclusion
	Acknowledgements 
	References




