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Abstract

This work develops formulas for numerical integration with spline interpolation. The new formulas are shown to be alterna-
tives to the Newton—Cotes integration formulas. These methods have important application in integration of tables or for
discrete functions with constant steps. An error analysis of the technique was conducted. A new type of spline interpolation
is proposed in which a polynomial passes through more than two tabulated points. The results show that the proposed for-
mulas for numerical integration methods have high precision and absolute stability. The obtained methods can be used for
the integration of stiff equations. This paper opens a new field of research on numerical integration formulas using splines.

1 Introduction

Texts on numerical methods abound with formulas for numer-
ical integration sometimes called quadrature or mechanical
quadrature [1, 2]. The function f(x), which is to be integrated,
may be a known function or a set of discrete data. This is not
surprising, since there are so many possibilities for select-
ing the base-point spacing, the degree of the interpolating
polynomial, and the location of base points with respect to
the interval of integration. Many known functions, however,
do not have an exact integral, and an approximate numerical
procedure is required to compute the integral. In many cases,
the function f(x) is known only as a set of discrete points, in
which case an approximate numerical procedure is required
to compute the integral [1, 2]. Numerical integration formulas
can be developed by fitting approximating functions to dis-
crete data and integrating the approximating function:

X, +(n—=1h

/ P(x)dx (1)
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when the function to be integrated has known values at
equally spaced points (Ax =h=constant) and n is number
of points with x ranging as: X;, X,=X;+h, x3=x,+2h, ...,
X,_1=x1+(n—-2)h, x,=x;+ (n—1)h, a polynomial P(x) can
be fit to the discrete data [2, 3]. The resulting formulas are
called Newton—Cotes formulas that employ functional val-
ues at equally spaced base points.

The distance between the lower and upper limits of an
integral is called the range of integration. The distance
between any two data points is called an increment or step
(Ax=h) [1, 3-5].

2 State of the Art on Numerical Quadrature

There is a large literature on numerical integration, also called
quadrature. Of special importance are the midpoint rule and
Simpson’s rule. They are simple to use and bring enormous
improvements for smooth functions in low dimensions [6—8].
The advantage of classical quadrature methods decays rapidly
with increasing dimension. This phenomenon is a manifesta-
tion of Bellman’s ‘curse of dimensionality’, with Monte Carlo
versions in two classic theorems of Bakhvalov.

The trapezoid rule is based on a piecewise linear approxi-
mation. The trapezoid rule integrates correctly any function
f that is piecewise linear on each segment [x;_,, x;], by using
two evaluation points at the ends of the segments [9-11].
The midpoint rule also integrates such a function correctly
using just one point in the middle of each segment. The
midpoint rule has benefitted from an error cancellation. This
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kind of cancellation plays a big role in the development of
classical quadrature methods.

The midpoint rule has a big practical advantage over the
trapezoid rule. It does not evaluate f at either endpoint a or
b. Many of the integrals that we apply Monte Carlo methods
to diverge to infinity at one or both endpoints. In such cases,
the midpoint rule avoids the singularity. There are numerous
mathematical techniques for removing singularities [12—14].
When we have no such analysis of our integrand, perhaps
because it has a complicated problem-dependent formula-
tion, or because we have hundreds of integrands to consider
simultaneously, then avoiding the singularity is attractive.
By contrast, the trapezoid rule does not avoid the endpoints
x=a and x=Db. For such methods a second, less attrac-
tive principle is to ignore the singularity, perhaps by using
f(x;) =0 at any sample point x; where f is singular.

The midpoint and trapezoid rules are based on correctly
integrating piecewise constant and linear approximations to
the integrand. That idea extends naturally to methods that
locally integrate higher order polynomials [15—17]. The
result is much more accurate integration, at least when the
integrand is smooth. The idea behind Simpson’s rule gen-
eralizes easily to higher orders. We split the interval [a, b]
into panels, find a rule that integrates a polynomial correctly
within a panel, and then apply it within every panel to get a
compound rule.

There are two main varieties of compound quadrature
rule. For open rules we do not evaluate f at the end-points
of the panel. The midpoint rule is open. For closed rules we
do evaluate f at the end-points of the panel [18, 19]. The
trapezoid rule and Simpson’s rule are both closed. Closed
rules have the advantage that some function evaluations
get reused when we increase n. Open rules have a perhaps
greater advantage that they avoid the ends of the interval
where singularities often appear.

The trapezoid rule and Simpson’s rule use n=2 and n =3
points respectively within each panel. In general, one can
use m points to integrate polynomials of degree n— 1, to
yield the Newton—Cotes formulas, of which the trapezoid
rule and Simpson’s rule are special cases [12, 20, 21]. The
Newton—Cotes rule for n=4 is another of Simpson’s rules,
called Simpson’s 3/8 rule. Newton—Cotes rules of odd order
have the advantage that, by symmetry, they also correctly
integrate polynomials of degree m, as we saw already in the
case of Simpson’s rule.

High order rules should be used with caution [22-24].
They exploit high order smoothness in the integrand, but can
give poor outcomes when the integrand is not as smooth as
they require. In particular if a genuinely smooth quantity has
some mild nonsmoothness in its numerical implementation
f, then high order integration rules can behave very badly,
magnifying this numerical noise.
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As a further caution, note that taking f fixed and letting
the order n in a Newton—Cotes formula increase does not
always converge to the right answer even for f with infinitely
many derivatives. Lower order rules applied in panels are
more robust [23-25]. The Newton—Cotes rules can be made
into compound rules similarly to the way Simpson’s rule was
compounded. When the basic method integrates polynomials
of degree r exactly within panels, then the compound method
has error O(m™), assuming that f is continuous on [a, b].

The rules considered above evaluate f at equispaced
points. The basic panel for a Gauss rule is convention-
ally [— 1, 1] or sometimes R, and not [0, 4] as we used for
Newton—Cotes rules. Also the target integration problem is
generally weighted. The widely used weight functions are
multiples of standard probability density functions, such as
the uniform, gamma, Gaussian and beta distributions [12,
24, 26]. The idea is that having f be nearly a polynomial can
be much more appropriate than requiring the whole inte-
grand f{x)w(x) to be nearly a polynomial. Choosing w; and
x; together yields 2n parameters and it is then possible to
integrate polynomials of degree up to 2n — 1 without error.

Unlike Newton—Cotes rules, Gauss rules of high order
have non-negative weights. We could in principle use a very
large n. For the uniform weighting w(x) =1 though, we could
also break the region into panels. Then for m function evalu-
ations the error will be O(m™>") assuming as usual that £
is continuous on [a, b]. Gauss rules for uniform weights on
[— 1, 1] have the advantage that they can be used within
panels.

Quadrature rules offer an elegant and efficient way to
numerically evaluate integrals of functions from a linear
space under consideration [24-27]. These rules typically
require function evaluation at specific points, called nodes,
and these values are multiplied by constants, called weights,
to give the final value of the integral as a weighted sum.

There is an extensive number of various quadrature rules
depending on n (f is univariate, bivariate, multivariate),
domain shape (disc, hypercube, simplex), and the type of
the linear space (polynomials, splines, rational functions,
smooth non-polynomial) [12, 13, 28, 29]. For polynomial
multivariate integration, the field is well studied. In the uni-
variate case, a lot of research has been devoted to piecewise
polynomials to address integration for spline spaces arising
in isogeometric analysis. Introduced so called half-point rule
for splines that needs the minimum number of quadrature
points. However, this rule is in general exact only over the
whole real line (infinite domain).

For finite domains, one may introduce additional quad-
rature points which make the rule non-Gaussian (slightly
suboptimal in terms of the number of quadrature points),
but more importantly, it yields quadrature weights that can
be negative, unlike in Gaussian quadratures. When comput-
ing Galerkin approximations, assembling mass and stiffness
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matrices is the bottleneck of the whole computation and effi-
cient quadrature rules for specific spline spaces are needed
to efficiently evaluate the matrix entries [12, 13, 26, 29-31].

In the multivariate case where spline spaces possess a
tensor-product structure, univariate quadrature rules are
typically used in each direction, resulting in tensor-product
rules. Recently, it have changed the paradigm of the mass
and stiffness matrix computation from the traditional ele-
ment-wise assembly to a row-wise concept [32—34]. When
building the mass matrix, one B-spline basis function of the
scalar product involved is considered as a positive measure
(i.e., a weight function), and a weighted quadrature with
respect to that weight is computed for each matrix row.
Such an approach brings significant computational savings
because the number of quadrature points in each parameter
dimension is independent on the polynomial degree and
requires asymptotically (for a large number of elements)
only two points per element. For the multivariate case that
is unstructured such as triangular meshes in 2D, however,
constructing efficient quadrature rules from tensor product
counterparts is unnatural, resulting in rules that are often
not symmetric even though they act on a symmetric domain
[35-37].

Classical quadrature methods are very well tuned to one-
dimensional problems with smooth integrands. A natural
way to extend them to multi-dimensional problems is to
write them as iterated one-dimensional integrals, via Fubi-
ni’s theorem [12, 13, 38, 39]. When we estimate each of
those one-dimensional integrals by a quadrature rule, we
end up with a set of sample points on a multi-dimensional
grid. Unfortunately, there is a curse of dimensionality that
severely limits the accuracy of this approach. This curse of
dimensionality is not confined to sampling on grids formed
as products of one-dimensional rules. Any quadrature rule
in high dimensions will suffer from the same problem. Two
important theorems of Bakhvalov, make the point.

Bakhvalov’s theorem makes high-dimensional quadrature
seem intractable. There is no way to beat the rate O(n~"%), no
matter where you put your sampling points x; or how clev-
erly you weight them. At first, this result looks surprising,
because we have been using Monte Carlo methods which
get an root mean square error O(n~?) in any dimension.
The explanation is that in Monte Carlo sampling we pick
one single function f{-) with finite variance ¢2 and then in
sampling n uniform random points, get an root mean square
error of on~ '/ for the estimate of that function’s integral.
Bahkvalov’s theorem works in the opposite order [40]. We
pick our points x,,.., x,, and their weights w;. Then Bakh-
valov finds a function f with r derivatives on which our rule
makes a large error. When we take a Monte Carlo sample,
there is always some smooth function for which we would
have got a very bad answer. Such worst case analysis is very
pessimistic because the worst case functions could behave

very oddly right near our sampled X;,.., X,,, and the worst
case functions might look nothing like the ones we are trying
to integrate. We can hybridize quadrature and Monte Carlo
methods by using each of them on some of the variables.
Hybrids of Monte Carlo and quasi-Monte Carlo methods
are often used [5-7, 41-43].

The Laplace approximation is a classical device for
approximate integration. The Laplace approximation is very
accurate when log(f(x)) is smooth and the quadratic approxi-
mation is good where fis not negligible. Such a phenomenon
often happens when x is a statistical parameter subject to
the central limit theorem, f{x) is its posterior distribution,
and the sample size is large enough for the Central Limit
Theorem to apply [20, 21, 44—-46].

The Laplace approximation is now overshadowed by
Markov Chain Monte Carlo. One reason is that the Laplace
approximation is designed for unimodal functions. When
prior distribution has two or more important modes, then the
space can perhaps be cut into pieces containing one mode
each, and Laplace approximations applied separately and
combined, but such a process can be cumbersome. Markov
Chain Monte Carlo by contrast is designed to find and sam-
ple from multiple modes, although on some problems it will
have difficulty doing so. The Laplace approximation also
requires finding the optimum of a d-dimensional function
and working with the Hessian at the mode. In some settings
that optimization may be difficult, and when d is extremely
large, then finding the determinant of the Hessian can be a
challenge. Finally, posterior distributions that are discrete or
are mixtures of continuous and discrete parts can be handled
by Markov Chain Monte Carlo but are not suitable for the
Laplace approximation. The Laplace approximation is not
completely superceded by Markov Chain Monte Carlo. In
particular, the fully exponential version is very accurate for
problems with modest dimension d and large n. When the
optimization problem is tractable then it may provide a much
more automatic and fast answer than Markov Chain Monte
Carlo does [12, 17, 23, 31, 34, 47].

There is some mild controversy about the use of adaptive
methods. There are theoretical results showing that adap-
tive methods cannot improve significantly over non-adaptive
ones. There are also theoretical and empirical results show-
ing that adaptive methods may do much better than non-
adaptive ones. These results are not contradictory, because
they make different assumptions about the problem. For a
high level survey of when adaptation helps [4, 47—49].

Sparse grids were originally developed for the quadrature
of high-dimensional functions. The method is always based
on a one-dimensional quadrature rule, but performs a more
sophisticated combination of univariate results. However,
whereas the tensor product rule guarantees that the weights
of all of the cubature points will be positive if the weights of
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the quadrature points were positive, Smolyak’s rule does not
guarantee that the weights will all be positive [39-41, 48].

Bayesian Quadrature is a statistical approach to the
numerical problem of computing integrals and falls under
the field of probabilistic numerics [42—44]. It can provide a
full handling of the uncertainty over the solution of the inte-
gral expressed as a Gaussian Process posterior variance. It is
also known to provide very fast convergence rates which can
be up to exponential in the number of quadrature points n.

The problem of evaluating the integral can be reduced to
an initial value problem for an ordinary differential equa-
tion by applying the fundamental theorem of calculus. For
instance, the standard fourth-order Runge—Kutta method
applied to the differential equation yields Simpson’s rule.
Thus, in our view, numerical quadrature problems are often
wrongly studied as a numerical solution of differential equa-
tions. Numerical integration is a much more general and
distinct study of the differential equations [50-53].

3 Newton-Cotes Numerical Integration
Formulas

The Newton—Cotes formulas are shown for comparison with
the new formulas obtained using splines. The closed inte-
gration formulas use information about f(x), that is, they
have base points, at both limits of integration. The trapezoid
rule for a single interval is obtained by fitting a first-degree
polynomial to two discrete points [1, 2, 4, 26]. Simpson’s
1/3 rule is obtained by fitting a second-degree polynomial
to three equally spaced discrete points. Simpson’s 3/8 rule is
obtained by fitting a third-degree polynomial to four equally
spaced discrete points. Boole’s rule is obtained by fitting
a fourth-degree polynomial to five equally spaced discrete
points. Table 1 shows Newton—Cotes closed integration
formulas.

Generally, for closed equations where n is the number of
points, ci are integer coefficients, num is the integer numera-
tor that multiplies step 2 =Ax and den is the integer denomi-
nator, the closed integration formula is:

I= dejh(ﬂlyl + ciyyy + Clzys + Clgyy + o+ Clyp Yy F Clyy Yoy F €LY, )

Table 1 Newton—Cotes closed

. . Formulas Error ~
integration formulas
Trapezoid Rule 1= g(y, +,) O(h?)
Simpson’s 1/3 Rule I = g(y1 +4y, +y3) O(h*)
Simpson’s 3/8 Rule I = % (y1 + 3y, +3y3 +34) O(h*)
Boole’s Rule I = % (7y1 + 32y, + 12y; + 32y, + 7y5) O(h°)
1= 2L (19y, + 75y, + 50y; + 50y, + 75ys + 19y) O(h®)
h 8
= m(41y1 + 216y, +27y; + 272y, + 27y5 + 216y, + 4ly7) O(®)
[ T 751y, + 3577y, + 1323y; + 2989y, + 2989y5 + 1323y, o(h®
17280 + 3577y, + 751y,
[ (989 +5888y, ~928 yy + 10496y, — 4540 ys O(h')
14175\ 410496 y, — 928 y, + 5888 yg + 989 y,
I o 2857y, + 15741y, + 1080y, + 19344y, + 5778 ys O(h!%
89600 \ 45778y, + 19344y, + 1080 yg + 15741 y, + 2857y,
12
16067 y, + 106300 y, — 48525 y, + 272400 y, — 260550 y5 Oh™)
5h
I= 20| +427368 yg — 260550 y; + 272400 yg — 48525 g + 106300y,
+16067 y;,
12
2171465 y, + 13486539 y, — 3237113 y, + 25226685 y, O(h™)
I=—otel = 9595542 y5 + 15493566 y, + 15493566 y; — 9595542 yg
+ 25226685 y, — 3237113 y,, + 13486539 y,, + 2171465 y,,
1364651 y, + 9903168 y, — 7587864 y, + 35725120 y, O(h')

5255250

+ 1364651y,

i — 51491295 y5 + 87516288y, — 87797136 y, + 87516288 y,
— 51491295 y, + 35725120 y,, — 7587864 y,, + 9903168 y,,

The step size is given by h=Ax=x;,;—X;
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In the open integration formulas, the first (y,) and last
(y,) points do not appear in the formula. The open integra-
tion formulas do not require information about f(x) at limits
of integration [1, 2, 4, 5, 27]. The midpoint rule for a dou-
ble interval is obtained by fitting a zero-degree polynomial
to three discrete points. The upper limit of integration is
X3=X, +2h. Table 2 shows Newton—Cotes open integration
formulas.

Generally, for the open formulas, where n is the number
of points, ci are the integer coefficients, num is the integer
numerator that multiplies step #=Ax and den is the integer
denominator, the open integration formula is:

= Eh(czzy2 + Clyy3 + Cigyy + -+ Cly_ YV, 0 + Cly1Y,_1)

3)

In the semi-open integration formulas, the last point (y,,)
does not appear in the formula. In the semi-closed integra-
tion formulas, the first point (y,) does not appear in formula

[1, 2, 28-30]. The formula for a double interval is obtained
by fitting a zero-degree polynomial to three discrete points.
When N is odd, the semi-closed or semi-open integration
formulas are the same as the open integration formulas. The
upper limit of integration is X3 =X, + 2h, and the integral (I)
has the following formula:

I = 2h(y2) or I=2hy, Error= O(hz) )]

For three intervals, the semi-open formula is obtained by
fitting a first-degree polynomial to four discrete points. The
upper limit of the integral is x,=x; + 3h; then, the integral
(D has the following formula:

I= 3;1_h(y1 + 3y3) or 1=0.75hy, +2.25hy; Error ~ O(h’)
®)
Table 3 shows Newton—Cotes semi-open integration for-

mulas [1-3]. Generally, for semi-open formulas, where n is
the number of points, the semi-open integration formula is:

Table 2 Newton—Cotes open

. . Formula Error ~
integration formulas
Midpoint Rule I = 2hy, 0o(h?)
h 2
1=%(y2+y3) O(h?)
4
1= %(2}/2—)@ +2y4) O™
I=%(11y2+y3+y4+11y5) O
I'=2(11y, - 14y; + 26y, — 14ys + 11y,) O(h®)
Th 6
1= 725611y, — 453y; + 562y, + 562y5 — 453y, + 611y, O(hg)
I= % (460y, — 954y; + 2196y, — 2459ys + 2196y, — 954y, + 460y;) O(h®)
" 1787 y, — 2803 y; 4+ 4967 y, — 1711 y5 — 1711 y, + 4967 y, O(h®)
4480 — 2803 yg + 1787 y,
[ 4045y, — 11690 y; + 33340y, — 55070 y5 + 67822 y, 0O(h'%
4536 — 55070 y, + 33340 yg — 11690 y, + 4045y,
The step size is given by h=Ax=x;,—X;
Table.3 New.ton—Cotes semi- Formulas Error ~
open integration formulas
I="2hy, 0(h?)
1= %(y1 + 3y3) o)
4
1= %(2}/2—)@ +2y4) O™
5h 5
1= 22(19y; — 10y, + 120y — 70y, + 85ys) o)
=2 (11y, - 14y, + 26y, — 14y; + 11y,) 0(h°)
I= % (751y, — 840y, + 8547y; — 11648y, + 14637y5 — 7224y, + 4417y,) o)
I= % (460y, — 954y; + 2196y, — 24595 + 2196y, — 954y, + 460y;) O(h®
[ o < 2857y, — 4986y, + 51966 y; — 110322y, + 182880 y5 o(h’%)
44800 — 177102 y, + 129666 y; — 50886 yg + 20727 y,
[ 4045y, — 11690 y; + 33340y, — 55070 y5 + 67822 y, 0O(h'%
4536 — 55070 y, + 33340 yg — 11690 y, + 4045y,

The step size is given by h=Ax=x;,;—X;. The formulas for n odd are equal to those of Newton—Cotes open
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num
den

1= h(ciyy; + ciyy, + cizys + cigyy + = + Cly_pY,_n + Cly 1 V_1)

Q)

The semi-closed integration formulas are the same as the
semi-open formulas. For example, in case of n=3:

1=2h(y,) or I=2hy, Error= O(h?) 7

For N=4:
1= 34_h (v, +3y) or I=075hy,+225hy, Error~ O(I)
®)

Table 4 shows Newton—Cotes semi-closed integration for-
mulas. Generally, for semi-closed formulas, where n is the
number of points, ci are integer coefficients, the semi-closed
integration formula is:

num
den

I'= h(ciyy, + cizys + cigyy + -+ + Cly_pVy_n + Cly Yy + C1Y,)

©))

The semi-open or semi-closed formulas can be used on

a type of improper integral, that is one with a lower limit of

— oo or an upper limit of + co. Such integrals can usually be

evaluated by making a change in the variable that transforms

the infinite limit to one that is finite [1-3, 29]. The following

identity serves this purpose and works for any function that

decreases toward zero at least as fast as the function 1/x* as
x approaches infinity:

b 1/a
1 /1
/f(x)dx=/ﬁf<;>dw (10)
a 1/b

where ab > 0. Therefore, it can be used only when a is posi-
tive and b is oo or when a is — oo and b is negative. For cases

where the limits are from — oo to oo, the integral can be
implemented in three steps [1-4]. For example:

0 —-A A ©
/f(x)dx=/f(x)dx+/f(x)dx+/f(x)dx (11
e o A A

where A is a positive number. One problem with using
Eq. (10) to evaluate an integral is that the transformed func-
tion will be singular at one of the limits [1, 3, 30, 31]. The
semi-open or semi-closed integration formula can be used to
circumvent this dilemma as these formulas allow evaluation
of the integral without employing the data at the end points
of the integration range.

4 Spline Interpolation

In applying the Newton—Cotes method, (n— 1)th-order poly-
nomials were used to interpolate between n data points. This
curve captures of all the meandering suggested by the points.
However, there are cases where these functions can lead
to erroneous results because of round-off errors and over-
shooting. An alternative approach is to apply lower-order
polynomials to subsets of the data points. These connecting
polynomials are called spline functions [1, 2, 4, 31-33].
For example, third-order curves, which are employed to
connect each pair of data points, are called cubic splines.
These functions can be constructed so that the connections
between adjacent cubic equations are visually smooth. On
the surface, it would seem that the third-order approxima-
tion of the splines would be inferior to the higher-order
expressions. You might wonder why a spline would ever
be preferable. There are situations in which a spline per-
forms better than a higher-order polynomial. This is the

Table 4 Newton—Cotes semi-

. . Formulas Error ~
closed integration formulas

I =2hy, o(h?)
3h 3

1= T(S'y2 +y4) O(h’)

4

I= %(2)’2—)’3 +2y,) O(h’)
Sh 5

= 2 (85y, — 70y; + 120y, — 10y5 + 19y,) O(h6)

I'=3(11y, — 14y; + 26y, — 14ys + 11y;) 0(h7)

h

I= i;;m (4417y, — 7224y; + 14637y, — 11648y; + 8547y, — 840y, + 751y;) O(hg)

I= % (460y, — 954y; + 2196y, — 2459ys + 2196y, — 954y, + 460y;) Oo(®)

[ o 20727 y, — 50886 y, + 129666 y, — 177102 y5 + 182880 y4 0o(h’%)
44800 — 110322 y; + 51966 yg — 4986 y, + 2857 v,

T 4045 y, — 11690 y; + 33340 y, — 55070 y5 + 67822 y, 0(h'%
4536 — 55070 y, + 33340 yg — 11690 y, + 4045y,

The formulas for n odd are equal to those of Newton—Cotes open. Note that, rules are reflected in relation

to semi-open formulas
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case where a function is generally smooth but undergoes
an abrupt change somewhere in the region of interest. In
this case a higher-order polynomial will tend to erratically
oscillate in the vicinity of the abrupt change. In contrast, the
spline also connects the points, but because it is limited to
lower-order changes, the oscillations are kept to a minimum.
Thus the spline usually provides a superior approximation
of the behavior of functions that have local, abrupt changes
[1,2,4,34-37].

The concept of the spline originated from the drafting
technique of using a thin, flexible strip (called a spline) to
draw smooth curves through a set of points. The process is
depicted in Fig. 1 for a series of five pins (data points). In
this technique, the draftsman places paper over a wooden
board and hammers nails or pins into the paper (and board)
at the location of the data points [38—41]. A smooth cubic
curve results from interweaving the strip between the pins.
Hence, the name “cubic spline” has been adopted for poly-
nomials of this type [1, 3, 4, 12].

Using this practical historical interpolation device, one
could also calculate the area under the curve, by using the
weight of the sand beneath the spline, as shown in Fig. 2.

In interpolation by splines, between every two points,
we have a polynomial of a certain degree [1, 2, 4, 41-44].
Therefore, the interpolation is not made by a single poly-
nomial but by many polynomials. Below, an example with
5 points and 4 third-degree polynomials forming a cubic
spline is given. We can see from the equations that there are
12 unknown coefficients, (ay,...,as,by,...,bs,Cq,...,C3,dg. . .,d3).

Fig. 1 The practical experimen-
tal technique of using a spline
to draw smooth curves through
a series of points. Notice how,
at the end points, the spline
straightens out. This is called a
“natural” spline

Scale marking
on the axes

Measure the area by
the weight of the
sand placed

Fig.2 Primitive integration, using the weight of the sand to calculate
the area under the curve generated by a spline interpolation

P,(x) = ay+ax+ax* +ax>, se x; <x<x,
Py(x) = by +byx + byx® + byx®, se x; < x<x3
P.(x) = co+ c1x + cx? + 3%, se x3 S x < xy
Py(x) =dy+dx + dyx® + d3x3, se xy < x < x5
12)
As shown in Fig. 3, the objective in using cubic splines is
to derive a third-order polynomial for each interval between
the knots (between two data points). Thus, for n data points

fx) =
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Spline Cubic
E(xy)=Fi(x) Derivation
P'(x;)=P/(x:) conditions

(.\" Vs )
Natural Derivation -\‘t“f'fl
conditions conditions conditions
P'(x)=0 F(xy) = P(xy) Pl(x,)=0
P'(x;) = P'(x;) P,(x)=d, +dx+d,x* +d,x’°
(x;. %) i i e
Iﬂ,“l Derivation (5.2 ). P(X)=Cy + X +C,X° +63X° Fa (1“) "v'
\ conditions P(x)=y, TEe
N ’ ; P.(x;)=y, (x.5.)
N P(x,)=F(x,) P(x,)=y Interpolation
k\“ P(x,) = Pl(x,) RRES Tl conditions
N Interpolation
\ rpo
N\ (x;.5,) ) . e
a@:‘nhi_' w5y R(l) — bo —b;.\'— b:.\" A8 b;.\" conditions
P (x)=a,+ax+a,x* +a,x’ P(xy)=y,
P(x)=x B (x3)=Y;
P.(xy) =Y, Intex:p?lation
conditions
Interpolation
conditions

Fig. 3 Cubic spline of 3rd order polynomials for each interval between knots (g) of 5 points (n=>5) and 4 polynomials (P,, Py, P, and P,)

(i=1, 2,..., n), there are (n —2) internal points, without the
first and last point. There are (n— 1) intervals and (n— 1)
third-order polynomials. Consequently, there are 4(n—1)
unknown constants to evaluate and thus 4n — 4 conditions
are required to evaluate the unknown constants. These are
as follows:

1. The function values must be equal at the interior knots
(2 conditions for each internal point=2n —4 conditions).

2. The first and last functions must pass through the end
points (2 conditions).

3. The first derivatives at the interior knots must be equal
(n—2 conditions).

4. The second derivatives at the interior knots must be
equal (n—2 conditions).

5. Two derivatives at the first or end knots are zero (2
conditions), chosen from the first to third derivatives of
the first and last polynomials: P’l(xl) =0, P;’(xl) =0, P’l’ !
(x,)=0, P’n_l(xn) =0, P;'_l(xn) =0 and P;’il(xn) =0.

Therefore, 2n—4)+2+ (n—-2)+(n—2)+2=4n—4,
is the number of conditions that is equal to the number of
unknown polynomial coefficients.

The visual interpretation of condition 5 is that the func-
tion becomes a straight line at the end knots [1, 4, 43—47].
Specification of such an end condition leads to what is
termed a “natural” spline. It is given this name because the
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drafting spline naturally behaves in this fashion. If the value
of the second derivative at the end knots is nonzero (that
is, there is some curvature), this information can be used
alternatively to supply the two final conditions [1, 2, 4, 12].

Generalizing for an order polynomial equal to g, the
objective in gth-order splines is to derive a gth-order poly-
nomial for each interval between knots (between two data
points), as in

Pj(x)=a0+a,x+a2x2+a3x3+a4x4+--- + a x® (13)

Thus, for n data points (i=1, 2,..., n), there are (n—2)
internal points, without the first and last point. There are
(n—1) intervals and (n— 1) gth-order polynomials conse-
quently, and (g+ 1)(n — 1) unknown constants need to be
evaluated. Therefore, gn+n—g— 1 conditions are required
to evaluate the unknown constants. These are as follows:

1. The function values must be equal at the interior knots
(2 conditions for each internal point=2n—4 conditions).

2. The first and last functions must pass through the end
points (2 conditions).

3. The first to (g — 1) order derivatives at the interior knots
must be equal ([g— 1][n— 2] conditions).

4. The (g—1) derivatives at the first or end knots are
zero (g — 1 conditions), chosen from the first to g order
derivatives of the first and last polynomials: P’](x]) =0,
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P'(x)) =0, P/"(x;)=0, P{’(x,)=0,..., P{(x,)=0 and
P (x)=0,P’ (x,)=0,P"” (x,)=0, P{(x,)=0....,
P (x,)=0.

Therefore, 2n—4)+2+(g+ 1)(n—-2)+(g—1)=gn+n—
g — 1, is the number of conditions which equals the number
of unknown polynomial coefficients.

5 New Type of Spline Interpolation

In this new type of interpolation by splines, instead of each
polynomial passing through only two points, the polyno-
mial passes through m points, as shown in Fig. 4. At each
m point, the interpolator polynomial is changed, and the
derivatives of these two polynomials are equated at these
points to give a degree of continuity to the overall curve.
Thus, at the points of change of the polynomial, the value
and the successive derivatives of these interpolating poly-
nomials are matched. The number of points (n), the number
of polynomials (np), the degree of the polynomial (g), the
number of points through which the polynomial passes (m),
and the order of the derivatives (d) that will be equalized at
the polynomial exchange points are then altered so that we

always have the number of equations equal to the number
of coefficients of unknown polynomials. To complete the
equations, the natural conditions are used, where the succes-
sive derivatives of the first and last polynomials in the first
and last points, respectively, are made equal to zero. Thus,
obtaining different interpolations and different polynomials
for the same data points.

The coefficients of the interpolating polynomials are
obtained by the resolution of a linear system. The equations
of the linear system come from the interpolation conditions,
where the polynomials pass through some points Pi(x;) =y;;
from the derivative conditions, where the derivatives of suc-
cessive orders are equalized P}g)(xi) = P}i)l(xi); and the natural
conditions, where the derivatives in the first and last point
are equalized to zero, P®(x,)=0 or Pg%)(xn) =0. The num-
ber of equations in the linear system must be equal to the
number of polynomials (np) multiplied by the degree of the
polynomials plus one (g+ 1).

Final corrections can still be made before the resolution
of a system of linear equations, where the equations that
contain one or more of a certain point can be excluded. For
example, we can remove equations that contain the first
(x;,y,) or last (xn, yn) point or the middle point (X,/,y,/)-
This results in generating integration formulas that do not
contain these points.

New Type of Spline Interpolation

P,(x)=dy +dx+d,x* +d;x° +dx* +dsx’ +dgx® +dyx7

N = -2 23 .4 .5 .6 o
P (x)=cy+ex+X" +6,X° +6,X° +65X° +CeX" +CpX P (x)=», Pt )=%, Plt)=%, P)=y,
F(x;)=v; F(xg)=yy P.(x5)=yy F.(x;0) =10 Interpolation conditions
Interpolation conditions (X30-210)
P'(x,)=0 B (x;)=PF(x;) (%5:75) SHRY
P’( X,) = Pn( x.) Derivation Ty ) ;
PYx,)=0 BT e\ 7/ conditions s Fl(x0) = F(vo)  (¥12.312)
N it BF(x;) = Px;) (xg.78) "(x,,) = P"(x
Natural conditions I Pb(-l)( ) PG)( : 8.8 P( (~\10) Pd (.\10)
2 ’ ’ X,)= A _\'7 X — pm x.
(x.3) \\,\ Fi(x)=F(x,) B .5 P{E)\w) f ((\Jl)o) xas70)
\\.\ P{,’(.\'4) o PI,"(.\‘4) et 8 & P( (.\'10) = Pd (»\'10) P'( ¢ )=0
s \'\. N z & Derivation conditions a\Xn) =
C27) N B =Rl (.5 PJ(x,) =0

\"'«n\ R,m (.\,4) o Pb<4) (x,)
(-\‘5 ) .‘.5 ) \\‘\
e (x5.%5)

(x4,3,)

P, (x) = by +Dbyx +byx? +b,x° +b,x* +byx® +bgx® +b,x7

B (x,) =,

Natural conditions

B (xs)=ys B(x)=vs B(x;)=y,

| N ; 2 23 3 s K 7
P(xX)=ay,+ax+a,x" +a;x" +a,x" +a;x° +ax" +a;x

P(x)=» F )=y, B()=y; P(x)=y,

Interpolation conditions

Interpolation conditions

Fig.4 New type of splines interpolation where order polynomial for each interval between knots (g) is 7, for 13 points (n=13), where each poly-
nomial passes through 4 points (m=4) and there are 4 polynomials (P,, P,, P_ and P,)
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6 Integration of Polynomials Obtained
by Spline Interpolation

Once the interpolating polynomials are obtained by splines,
they must be integrated. Each polynomial is integrated onto
its x-range [1-3, 12]. Because the spacing of the abscissa x
is constant (Ax =h) and the value start, x;, has no influence,
the integration formulas obtained are all functions of the
values of y (¥, Y2, ¥3> Y- --> ¥n)- The formula below shows
this procedure:

Xktm

X, np
I= / fedx= ) / P(x)dx
Xy =1 Xy

= h(cr1 yitcryy,+ e ter,_ Y, t crnyn) (14)

Once the integration formula is obtained, it is tested in
many examples, and the truncation error is estimated as a
function of the order Ax =h. The stability and convergence
of the formula are also tested in several examples where
the exact values of the integrals are known. This allows for
verification and validation of the new numerical integration
formulas.

7 Algorithm for Obtaining Different
Integration Formulas by Spline
Interpolation

An algorithm is proposed to obtain thousands of integration
formulas for different interpolations by splines. A maximum
of 25 points (mn =25) was used, considering a large number
of data points, to obtain integration formulas by following
the steps below:

1. Set the maximum number of points to 25 (mn=25)

2. Vary the number of points (n) from 2 to mn (for n=2
to mn)

3. Vary the number of polynomials (np) from 1 to mn (for
np=1to mn)

4. Vary the degree of the polynomials (g) from 0 to mn
(for g=1 to mn)

5. Vary the greater order of the derivative that will be
matched in the polynomials (d) from O to mn (i.e., from
d=0 to mn)

6. Define the data points (X;,y;), (X2,¥2), (X3,¥3)s -+
Ko 12¥n-1)» (Xp.¥p)

7. Set the equally spaced abscissa (Ax=h) value so that
X,=X;+h, X3=x;+2h,..., x,=x,+(n—1)h

8. Define the interpolating polynomials Py, P,, P5, ..., P,

9. Calculate the number of polynomial coefficients to be
obtained np(g+ 1)
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10. Obtain the np(g+ 1) linear equations

11. Determine the number of data points (m) through
which each polynomial will pass (for m=2 to mn)

12.  Obtain the linear equations using the interpolation con-
ditions Pi(x;) =y;

13. Obtain the linear equations using the derivation condi-
tions P{®'(x,) =P{¥(x))

14. Obtain the linear equations using the natural conditions
PE(x))=0 or PE(x,)=0

15. Optionally, eliminate the equations that contain a cer-
tain point, the first (x;,y;) or last point (x,,y,) or the
middle point (X,/5,y,2)

16. Perform the test to continue if the number of equations
is equal to the number of unknown polynomial coef-
ficients

17. Solve the linear system to calculate the coefficients of
the interpolating polynomials

18. Integrate the obtained polynomials

19. Obtain the formulas for numerical integration

20. Test the integration formulas obtained against known
integrals

21. Estimate the truncation error of the formulas

22. Test the convergence, applicability and accuracy of the
formulas

23. Select the best verified and validated integration for-
mulas

8 Results Obtained and the Best Integration
Formulas

The following tables show some integration formulas
obtained. Tables 5, 6, 7, 8, 9 and 10 show integration for-
mulas similar to Newton—Cotes closed formulas in increas-
ing order of truncation error. Tables 11, 12, 13, 14, 15 and
16 show integration formulas similar to Newton—Cotes open
formulas in increasing order of truncation error. Tables 17,
18, 19, 20, 21, 22, 23, 24 and 25 show integration formulas
similar to Newton—Cotes semi-closed formulas in increasing
order of truncation error. Tables 26 and 27 show integration
formulas similar to Newton—Cotes semi-closed formulas in

Table 5 Integration formulas similar to Newton—Cotes closed form
formulas with truncation error=0(h?) and degree polynomials g=1

Points (n) Formulas

2 h(y, +y2)/2

3 2h(y, +y, +¥3)/3

4 3h(yy +y, +y3 +y)/4

5 4h(y; +y, +y3 + Y4 +¥5)/5

forn (n=DhG+y,+y3+ Y4 +ys+ -+ Y +y)/n
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Table 6 Integration formulas
similar to Newton—Cotes closed
form formulas with truncation
error=0(h*) and degree
polynomials g=2

Table 7 Integration formulas
similar to Newton—Cotes closed
form formulas with truncation
error=0(h®) and degree
polynomials g=4

Points (n)

Formulas

3
4
5
6
7
8
9
1

11
12
13
14
15
16

17

h(y, + 4y, +y3)/3
3h(y + 3y, +3y3 +y4)/8
4h(11ly, + 26y, + 31y, + 26y, + 11y5)/105
S5h(31y, + 61y, + 76y; + 76y, + 61ys + 31y,)/336
h(Ty, + 12y, + 15y; + 16y, + 15y5 + 12y, + Ty,) /14
Th(1ly, + 17y, + 21y; + 23y, + 23ys + 21ys + 17y, + 11yg) /144
8h(49y, + 70y, + 85y; + 94y, + 97y5 + 94y + 85y, + T0yg + 49y,)/693
9n(58y, + 78y, + 93y; + 103y, + 108ys
+ 108y, + 103y, + 93y5 + 78y, + 58y,,)/880
Sh(159y, + 204y, + 239y; + 264y, + 279y5; + 284y,
+ 279y, + 264y + 239y, + 204y, + 159y,,)/1287
11h(127y, + 157y, + 181y; + 199y, + 211ys + 217y,
+ 217y, + 211yg + 199y, + 181y,q + 157y, + 127y,,)/2184
12h(55y, + 66y, + 75y; + 82y, + 87y5 + 90y, + 91y,
+ 90y + 87yy + 82y, + 75y, + 66y, + 55y,3)/1001
13h(35y, + 41y, + 46y; + 50y, + 53y5 + 55y + 56y,
+ 56yg + 55y9 + 53y,9 + 50y, + 46y, + 41y;3 + 35y,4)/672
7h(1313y, + 1508y, + 1673y, 4+ 1808y, + 1913y5 + 1988y, + 2033y, + 2048y,
+ 2033y, + 1988y,, + 1913y, + 1808y,, + 1673y,; + 1508y, + 1313y,5)/13260
S5h(539y, + 609y, + 669y; + 719y, + 759y5 + 789y + 809y, + 819y,
+ 819yy + 809y,y + 789y, + 759y, + 719y5 + 669y, + 609y,5 + 539y,,)/3808
16h(131y, + 146y, + 159y; + 170y, + 179y5 + 186y + 191y, + 194y + 195y,
+ 194y, + 191y,, + 186y, + 179y,5 + 170y,4 + 159y,5 + 146y, + 131y,7)/2907

Points (n)

Formulas

el e e V) |

10

11

12

13

2h(Ty, + 32y, + 12y + 32y, + Tys)/45
5h(19y, + 75y, + 50y; + 50y, + 75ys + 19y,)/288
h(13y, + 54y, + 27y; + 52y, + 27ys + 54y¢ + 13y,)/40
h(268y, + 933y, + 786y; + 646y, + 786ys + 933y, + 268y,)/770
Th(165T7y, + 5157y, + 4947y, + 4079y,
+4079y5 + 4947y + 5157y; + 1657y4) /31680
8h(309y, + 869y, + 904y; + 779y, + 713ys
+ 779y + 904y, + 869y, + 309y,)/6435
9h(1022y, + 2622y, + 2877y, + 2597y, + 2322y;
+ 2322y, + 2597y, + 2877yg + 2622y, + 1022y,,)/22880
5h(216y, + 510y, + 580y; + 545y, + 490ys + 466y,
+ 490y, + 545y5 + 580y, + 510y, + 216y,,)/2574
11h(2973y, + 6513y, + 7587y; + 7367y, + 6732y5 + 6268y,
+ 6268y, + 6732y + 7367yy + 7587y, + 6513y, +2973y,,)/74880
3h(1837y, + 3762y, + 4452y + 4438y, + 4133y + 3832y, + 3712y,
+ 3832y; + 4133y, + 4438y, + 4452y,, + 3762y, + 1837y,5)/12155
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Table 8 Integration formulas

Formulas

e Points (n)

similar to Newton—Cotes closed
form formulas with truncation 7
error=0(h%) and degree 3
polynomials g=6

9

10

11

11

h(41ly, + 216y, + 27y; + 272y, + 27y5 + 216y, + 41y,) /140
Th(751y, + 3577y, + 1323y, + 2989y,
+ 2989y5 + 1323y, + 3577y, + 751y,) /17280
8h(79811y, + 348212y, + 188378y, + 241004y, + 312215y;
+ 241004y, + 188378y, + 348212y, + 79811y,)/2027025
9h(231599y, + 934217y, + 623690y; + 618038y, + 795656y5
+ 795656y, + 618038y, + 623690y, + 934217y, + 231599y,)/6406400
Sh(1464y, + 7125y, + 2000y; + 7500y, + 3000y5 + 6206y,
+ 3000y, + 7500y + 2000y, + 7125y, + 1464y,,)/24192
5h(246633y, + 926088y, + 708731y; + 629904y, + 749172y5 + 830288y,
+ 749172y, + 629904y5 + 708731y, + 926088y, + 246633y,,)/3675672

Table 9 Integration formulas similar to Newton—Cotes closed form
formulas with truncation error=0(h'®) and degree polynomials g =8

Table 11 Integration formulas similar to Newton—Cotes open form
formulas with truncation error=0(h?) and degree polynomials g= 1

n Formulas

Points (n) Formulas

9 4h(989y, + 5888y, — 928y, + 10496y, — 4540y
+ 10496y, — 928y, + 5888y, + 989yy)/14175
10 9h(2857y, + 15741y, + 1080y, + 19344y, + 5778y;

+ 5778y, + 19344y, + 1080y, + 15741y, + 2857y,,)/39600

2hy,

3h(y; +y3)/2

4h(y, +y3 +¥4)/3
Sh(y, +y3 +y4 +5)/4

~N O B W

6h(y; +y3 + Y4 +¥s5 +Y6)/5
forn (n=Dh(yy +y;3+y4+ys+ - +y,.1)/(n=2)

Table 10 Integration formulas similar to Newton—Cotes closed form formulas with truncation error=0(h'2) and degree polynomials g=10

n

Formulas

11

5h(16067y, + 106300y, — 48525y, + 272400y, — 260550y, + 427368y,
— 260550y, + 272400y, — 48525y, + 106300y, + 16067y,,)/299376

increasing order of truncation error; it can be noticed the
similarity with the previous tables of semi-closed formulas,
having the same coefficients and changing only the index
values of the y-ordinates. Tables 28, 29, 30, 31 and 32
show integration formulas similar to Newton—Cotes closed
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formulas with no middle point in increasing order of trunca-
tion error, note that there are no y-values for indexes n/2 or
(n+ 1)/2 or both. Tables 33, 34, 35, 36 and 37 show integra-
tion formulas similar to Newton—Cotes open formulas with
no middle point in increasing order of truncation error, note
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Table 12 Integration formulas
similar to Newton—Cotes open
form formulas with truncation
error=0(h*) and degree
polynomials g=2

=

Formulas

O 0 N 9000w

[ —
—_ o

12

13

14

15

16

17

18

19

4h(2y, — y3 +2y4)/3
S5h(11ly, +y; +y4 + 11y5)/24
303y, + 2y, + 3y6) /4
h(4y, = Tyy + 12y, — Tys + 4ye)
h(8y, — 5y; + 12y, — Sys + 8y,)/3
3h(15y, — 12y + 26y, — 12y5 + 15y,)/16
3h(24y, + 9y; + 4y, + 9ys + 24y,) /35
Th(13y, + Ty + 4y, + 4ys + Tye + 13y,)/48
8h(14y, + 9y3 + 6y, + 5y5 + 6ys + Oy, + 14y4) /63
Oh(21y, + 15y; + 11y, 4+ 9ys + 9ys + 11y, + 15y5 + 21yy)/112
Sh(448y, + 343y, + 268y, + 223y5 + 208y,
+ 223y, + 268yg + 343y, + 448y,,)/1386
11h(102y, + 82y;5 + 67y, + 57y5 + 52y,
+ 52y, + 57yg + 67yy + 82y, + 102y,,)/720
4h(54y, + 45y + 38y, + 33y5 + 30y + 29y,
+ 30yg + 33yy + 38y,y + 45y, + 54y,,)/143
13h(209y, + 179y;3 + 155y, + 137y5 + 125y + 119y,
+ 119y + 125yy + 137y,y + 155y, + 179y, +209y,5)/1848
Th(88y, + T7y; + 68y, + 61y5 + 56y + 53y, + 52y4
+ 53y + 56y, + 61y, + 68y, + 77y5 + 88y,,)/429
15h(273y, + 243y, + 218y, + 198y5 + 183y, + 173y, + 168y
+ 168y, + 173y, + 183y,; + 198y, + 218y,5 + 243y, + 273y,5)/2912
161(2002y, + 1807y; + 1642y, + 1507y5 + 1402y, + 1327y, + 1282y5 + 1267y,
+ 1282y, + 1327y, + 1402y, + 1507y,5 + 1642y, + 1807y,5 + 2002y,4)/23205
17h(161y, + 147y; + 135y, + 125y5 + 117y + 111y; + 107yg + 105y,
+ 105y,o + 107y, + 111y, + 117y;5 + 125y, + 135y,5 + 147y, + 161y,,)/2016
Oh(192y, + 177y; + 164y, + 153y + 144y, + 137y; + 132y5 + 129y4 + 128y,
+ 129y, + 132y, + 137y,5 + 144y, + 153y,5 + 164y,c + 177y, + 192y,4)/1292
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Table 13 Integration formulas
similar to Newton—Cotes open
form formulas with truncation
error=0(h®) and degree
polynomials g=4

Table 14 Integration formulas
similar to Newton—Cotes open
form formulas with truncation
error=0(h®) and degree
polynomials g=6

n Formulas
7 3h(11y, — 14y, + 26y, — 14ys + 11y,)/10
8 Th(611y, — 453y, + 562y, + 562y5 — 453y, + 611y,)/1440
9 8h(1181y, — 464y, + 467y, + 1097y5 + 467y, — 464y, + 1181y,)/3465
10 9h(993y, — 147y, + 203y, + 711ys
+ 711y, + 203y, — 147y + 993y,)/3520
11 5h(1230y, + 40y, + 185y, + 670y5 + 898y,
+ 670y, + 185y + 40y, + 1230y,,)/2574
12 11h(3858y, + 658y, + 603y, + 1683y; + 2558y,
+2558y, + 16835 + 603y, + 658y, + 3858y,,)/18720
13 2h(208y, — 216y, + 432y, — 329y; + 544y, — 468y,
+ 544y, — 329y, + 432y, — 216y, +208y,,)/135
13 2n(774y, + 216y; + 146y, + 291y5 + 456y, + 524y,
+ 456y + 291y, + 146y, + 216y, + 774y,,)/715
13 2h(736y, — 1404y, + 4320y, — 9611ys + 18208y, — 22068y,
+ 18208yg — 9611y, + 4320y,, — 1404y, + 736y,,)/405
14 13h(10131y, + 3711y, + 2349y, + 3529y; + 5364y, + 6596y,
+ 6596y, + 5364y, + 3529y, + 2349y, + 3711y, + 10131y,3)/63360
15 Th(125301y, + 54846y; + 34896y, + 42834ys + 61069y, + 77036y, + 83196y,
+ 77036y, + 61069y, + 42834y,, + 34896y, + 54846y,5 + 125301y,,)/437580
n Formulas
9 8h(460y, — 954y, + 2196y, — 2459y + 2196y, — 954y, + 460y,)/945
10 Oh(1787y, — 2803y; + 4967y, — 1711ys
— 1711yc + 4967y, — 2803y, + 1787y,)/4480
11 5h(217120y, — 259055y, + 365080y, + 999555 — 197552y,
+99955y,, + 365080y — 259055y, + 217120y,,)/324324
12 11h(4501083y, — 4068611y; + 4707730y, + 3934446y — 1212248y,
— 1212248y, + 3934446y, + 4707730y, — 4068611y, + 4501083y,,)/15724800
13 h(5112y, — 8955y, + 19120y, — 18180y5 + 16920y, — 11234y,
+16920y, — 18180y, + 19120y,, — 8955y,; + 5112y,,)/1400
13 2h(634470y, — 428088y; + 423154y, + 590601y + 132168y, — 152060y,

+ 132168y, + 590601y, + 423154y, — 428088y, | + 634470y,,)/425425

Table 15 Integration formulas similar to Newton—Cotes open form formulas with truncation error=O(h'’) and degree polynomials g=8

n

Formulas

11

12

S5h(4045y, — 11690y + 33340y, — 55070y, + 67822y,
— 55070y, + 33340y, — 11690y, + 4045y,,)/4536

11h(2752477y, — 6603199y, + 15673880y, — 17085616y + 8891258y,
+8891258y, — 17085616y, + 15673880y, — 6603199y, + 2752477y, ,)/7257600
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Table 16 Integration formulas similar to Newton—Cotes open form formulas with truncation error=0(h'?) and degree polynomials g= 10

n Formulas

13 h(9626y, — 35771y; + 123058y, — 266298y5 + 427956y — 494042y,

+ 427956y, — 266298y, + 123058y, — 35771y, + 9626y,,)/1925

Table 17 Integration formulas similar to Newton—Cotes semi-closed

also that there are no y-values for indexes n/2 or (n+1)/2 or

n formulas
two points

formulas with truncation error=O(h') and degree polynomials g=0 both. Tables 38, 39, 40, 41 and 42 show integratio
Points (n) Formulas similar to Newton—Cotes open formulas without
in increasing order of truncation error, note that there are no
4 hGz +y3+30) y-values for indexes 1, 2, n— 1 and n.
5 h(yy +y3 +y, +Y5)
6 h(ys +y3+ Y4 + Y5 +Y6)
forn h(y +y3+ys+ s+ + Yoy +20)

Table 18 Integration formulas
similar to Newton—Cotes semi-
closed formulas with truncation
error=0(h?) and degree
polynomials g=1

Formulas

13

14

15

16

17

18

19

20

21

h(Ty, +4y; + y) /4
2h(4y; + 3y3 + 2y, +¥5)/5
h(6y, + 5y; + 4y, + 3ys + 2y,) /4
2h(25y, + 22y5 + 19y, + 16ys + 13yg + 10y,)/ 35
h(11y, + 10y;5 + 9y, + 8y5 + Ty + 6y; + 5v3)/8
2h(14y, + 13y; + 12y, + 11ys + 10y + 9y, + 8yg + Tyy)/21
h(52y, +49y; + 46y, + 43y5 + 40y + 37y, + 34yg + 31yy + 28y,,)/40
2h(21y, + 20y; + 19y, + 18y5 + 17y + 16y, + 15y5 + 14yy + 13y, + 12y,,)/33
h(25y, 4+ 24y; + 23y, + 22y5 + 21y,
+ 20y, + 19y + 18y + 17y, + 16y,; + 15y,,)/20
2h(88y, + 85y; + 82y, + 79y5 + 76ys + 73y,
+ 70yg + 67yy + 64y,y + 61y,; + 58y, + 55y,3)/143
h(34y, + 33y; + 32y, + 31ys + 30ys + 29y,
+ 28yg + 27yy + 26y,o + 25y,; + 24y, + 23y,3 +22y,,4)/28
2h(39y, + 38y; + 37y, + 36y5 + 35y + 34y, + 335
+ 32y + 31y, + 30y, + 29y, + 28y,3 + 27y, + 26y,5)/65
h(133y, + 130y; + 127y, + 124ys + 121ys + 118y, + 115y,
+ 112y4 + 109y, + 106y,; + 103y,, + 100y,5 + 97y,4 + 94y,5 + 91y, /112
2h(50y, + 49y5 + 48y, + 47y5 + 46y, + 45y, + 44yg + 43y,
+42y,9 + 41y + 40y, +39y5 + 38y,4 + 37y;5 + 36y, + 35y,7)/85
h(56y, + 55y5 + 54y, + 53y5 + 52ys + 51y; + 50y + 49yy + 48y,
+ 4Tyy) +406y1y +45y13 +44y14 + 43y)5 + 4216 + 4lyy; +40y,5)/48
2h(18T7y, + 184y; + 181y, + 178ys + 175y, + 172y, + 169y, + 166y, + 163y,,
+ 160y, + 157y, + 154y,5 + 151y, + 148y;5 + 145y,4 + 142y,; + 139y, +
h(69y, + 68y; + 67y, + 66y5 + 65y + 64y, + 63yg + 62yy + 61y, + 60y,
+ 59y, + 58y,3 + 57y 14 + 56,5 + 55y16 + 54y17 + 53y15 + 5219 + 51y,4)/60
2h(76y, + 75y5 + T4y, + T3ys + T2y¢ + Tly; + T0yg + 69y, + 68y, + 67y,

136y,9)/323

+ 66y, + 65y3 + 64y, + 63y,5 + 62y,c + 61y, + 60y,5 + 59y 9 + 58y, + 57y,;)/133
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Table 19 Integration formulas
similar to Newton—Cotes semi-
closed formulas with truncation
error=0(h%) and degree
polynomials g=2

Table 20 Integration formulas
to Newton—Cotes semi-closed
formulas with truncation
error=0(h*) and degree
polynomials g=3

@ Springer

Formulas

— O 00 N O W A

11

12

13

14

15

16

303y, +y4)/4
h(29y, + 13y5 + Ty, + 11y5)/15
h(146y, + 95y; + 64y, + 53y5 + 62y,)/84
3h(75y, + 5Ty; + 44y, + 36y5 + 33y + 35y,)/140
h(109y, + 90y; + 75y, + 64ys + 5Tye + 54y, + 55y4)/72
h(91y, + 79y; + 69y, + 61ys + 55y¢ + 51y, + 49y + 49y,)/63
3h(1428y, + 1281y, + 1154y, + 1047ys
+ 960y, + 893y, + 846yg + 819y, + 812y,,)/3080
h(534y, + 490y, + 451y, + 417y; + 388y,
+ 364y, + 345y, + 331y, + 322y, + 318y,,)/396
h(3075y, + 2868y, + 2681y, + 2514y; + 2367y,
+2240y, + 2133y, + 2046y, + 1979y, + 1932y, + 1905y,,)/2340
3h(429y, + 405y; + 383y, + 363y5 + 345y, + 329y,
+ 315yg + 303y + 293y, + 285y, + 279y,, + 275y,5)/1001
h(1166y, + 1111y, + 1060y, + 1013y5 + 970y, + 931y,
+ 896y, + 865y, + 838y, + 815y, + 796y,, + 781y,5 + 770y,,)/924
h(1937y, + 1859y, + 1786y, + 1718y5 + 1655y, + 1597y, + 1544y,
+ 1496y, + 1453y, + 1415y, + 1382y, + 1354y, + 1331y,, + 1313y,5)/1560
3h(10101y, + 9750y; + 9419y, + 9108ys + 8817y, + 8546y, + 8295y4 + 8064y,
+ 7853y,o + 7662y, + 7491y , + 7340y,5 + 7209y, + 7098y,5 + 7007y,4) /24752

Formulas

— O 00 3 O

11

12

13

14

h(801y, — 54y; + 256y, + 646ys + 31y,)/336
h(92y, + 17y;5 + 20y, + 52y5 + 64ye + Ty;)/42
h(295y, + 103y; + 73y, + 128y5 + 191y, + 185y, + 33y,)/144
4h(336y, + 156y; + 104y, + 131ys + 188y, + 226y, + 196y + 49y,)/693
h(2282y, + 1253y; + 857y, + 891ys + 1152y,
+ 1437y, + 1543y + 1267y + 406y,,)/1232
h(4584y, + 2814y, + 2004y, + 1889y5 + 2204y,
+ 2684y, + 3064y, + 3079y, + 2464y, + 954y,,)/2574
h(3222y, + 2142y; + 1586y, + 1427ys + 1538ys + 1792y,
+2062yg + 2221y, + 2142y, + 1698y,, + 762y,,)/1872
4h(1254y, + 885y5 + 678y, + 598y5 + 610ys + 679y, + 770y;
+ 848y, + 878y, + 825y, + 654y, + 330y,5)/3003
h(12023y, + 8888y; + 7010y, + 6144y5 + 6045y, + 6468y, + 7168y,
+ 7900y, + 8419y, + 8480y,, + 7838y,, + 6248y,5 + 3465y,,)/7392
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Table 21 Integration formulas
similar to Newton—Cotes semi-
closed formulas with truncation
error=0(h’) and degree
polynomials g=4

n Formulas

6 S5h(85y, — 70y + 120y, — 10ys + 19y,)/144
7 h(559y, — 212y; + 298y, + 458ys + 23y, + 134y,)/210
8 h(19381y, — 1699y; + 5067y, + 13352y + 11557y, + 2811y, + 4971y5)/7920
9 h(7903y, 4+ 923y; + 1573y, + 4141y5 + 5281y,
+ 4013y, + 1723y5 + 2163y,) /3465

10 h(24574y, + 6559y, + 5299y, + 104495 + 15048y,
+ 15519y, + 11669y + 6689y, + 7154y,)/11440
11 5h(1050y, + 400y, + 275y, + 400y; + 574y,
+ 670y, + 635y5 + 490y, + 330y, + 324y,,)/2574
12 h(18246y, + 8574y, + 5794y, + 67795 + 9114y, + 11096y,
11734yg + 10749y, + 8574y, + 6354y, + 5946y,,)/9360
13 h(16071y, + 8691y, + 6009y, + 6149y; + 7604y + 9236y, + 10276y,

+ 10324y, + 9349y, + 7689y, + 6051y, + 5511y,3)/8580

Table 22 Integration formulas

similar to Newton—Cotes semi- . Formulas
closed forn(l)ulas with truncation 8 h(95751y, — 79704y, + 111403y,
;Z‘;;gf;s)gidsdegree + 53408y5 — 44907y, + 84152y, + 1657y;)/31680
9 2h(9038y, — 4727y; + 5588y, + 7487ys
+ 1262y, — 401y, + 7184yg + 309y,)/6435
10 3h(40260y, — 11865y; + 14560y, + 30795ys
+ 20064y, + 3829y, + 8064y, + 29529y, + 2044y,,)/45760
11 6438y, — T72y; + 1573y, + 4178y + 4058y,
+ 2162y, 4+ 997y + 2252y, + 4422y, + 432y,,)/2574
12 h(178671y, + 3186y; + 35451y, + 97836y + 116516y, + 88768y,
+ 50268y5 + 42388y, + 79493y, + 116238y, + 14856y,,)/74880
13 3h(18546y, 4+ 2391y; + 3532y, + 8767ys + 11672y, + 10764y, + 7664y,

+ 5260y, + 5870y, + 9405y,, + 11532y, + 1837y,,)/24310

Table 23 Integration formulas

L. . n Formulas
similar to Newton—Cotes semi-
closed formulas with truncation 8 Th(4417y, — 7224y, + 14637y,
error=0(h") and degree
polynomials g =6 — 11648y5 + 8547y, — 840y, + 751y4)/8640
9 h(446429y, — 532699y, + 836193y, — 19711y;
— 281161y, + 584655y, — 32437yg + 79811y,)/135135
10 h(4939076y, — 4270873y, + 5443568y, + 3411419y,
— 1452160y, + 579989y, + 4761488y, + 75497y, + 926396y,,)/1601600
11 h(1255641y, — 767905y; + 844454y, + 1050018y5 + 217592y,

— 100936y, + 515610y + 958526y, + 104687y, + 246633y, ,)/432432
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Table 24 Integration formulas similar to Newton—Cotes semi-closed formulas with truncation error=0(h®) and degree polynomials g=7

n Formulas

10 h(23230289y, — 37927402y; 4+ 70410062y, — 349901 14y5 — 5808640y
+50955746y, — 29589838yg + 21145898y, + 231599y,,)/6406400

11 h(12522696y, — 16186985y; + 24853224y, + 292998y5 — 9660008y,

+10651584y; + 13014840y, — 9527894y, + 10549632y, + 246633y,,)/3675672

Table 25 Integration formulas similar to Newton—Cotes semi-closed
formulas with truncation error=0(h’) and degree polynomials g =8

n Formulas

10 9h(20727y, — 50886y, + 129666y, — 177102y5 + 182880y,
— 110322y, + 51966y, — 4986y, + 2857y,,)/44800

Table 26 Integration formulas similar to Newton—Cotes semi-open
formulas with truncation error=0O(h') and degree polynomials g=0

Points Formulas

4 h(y, +y, +y3)

5 h(y, +y, +y3+y4)

6 h(y, +y, +y3+y4+s)

for n hyy + Yy v+ Y4+ + Yo +Vuet)

Rules are reflected in relation to semi-closed formulas

Table 27 Integration formulas
similar to Newton—Cotes semi-
open formulas with truncation 4
error=0(h?) and degree
polynomials g=1

n  Formulas

h(y, + 4y, +7y3)/4
5 2h(y; + 2y, +3y; +4yy)/5

Rules are reflected in relation to
semi-closed formulas

9 Conclusion

The integration of the polynomials obtained by interpola-
tion using splines allowed us to obtain new and previously
unknown integration formulas with a high order of trunca-
tion errors. Many different integration formulas, similar to
the Newton—Cotes formulas, were obtained in this study.
These new integration formulas can be used in many engi-
neering, mathematics, and physics research applications.
These new integration formulas may also be compared with
the application of Newton—Cotes formulas in different fields
of science. There seems to be a strong relationship between
the order of degree of the polynomials and the order of the
truncation errors. The present article opens a new field of
research to obtain numerical methods for derivation, inte-
gration and resolution of differential equations. Another
interesting observation is that the interpolation by splines
approach generates a smooth adjustment between intervals
and a minimum variation in curve fitting, which can help
in the stability of the integration. It is believed that more
new and important research on this subject can be made,
given the tremendous evolution of numerical methods in
engineering.

Table 28 Integration formulas similar to Newton—Cotes closed formulas with no middle point and truncation error= O(h?) and degree polynomi-

als g=1

Points (n) Formulas

3 h(y, +y3)

4 3h(y, +y4)/2

5 h(yy +y, +y4 +ys)

6 Sh(yy +y, + Y4 +y5)/4

7 h(yy +y, +y3 +ys +y6 +¥7)

8 Th(y, + Y, +y3+ Y6 + 7 +¥5)/6

9 h(y, +y, +y3+ Y4+ Y + Y7+ Vg + o)

10 Oh(y; + ¥y + Y3 + Y4+ 7 + ¥+ Yo +¥10)/8

Odd n h(y, +y, +y;3+ - +y%_I +y%+, +y%+2 +y%+3 +o Y )
Even n (n—=Dh@y; +y, +y3+ - R R e o L S +y,)/(n—2)
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Table 29 Integration formulas
similar to Newton—Cotes closed
formulas with no middle point
and truncation error=O(h*) and
degree polynomials g=2

Table 30 Integration formulas
similar to Newton—Cotes closed
formulas with no middle point
and truncation error=O(h®) and
degree polynomials g=4

Table 31 Integration formulas
similar to Newton—Cotes closed
formulas with no middle point
and truncation error=O(h®) and
degree polynomials g=6

Formulas

5 2h(y; + 8y, + 8y, +y5)/9
6 Sh(=y, + 25y, + 25y5 — ) /48
7 3h(11y, + 36y, + 51y; + Slys + 36y, + 11y,)/98
8 Th(16y, + 169y, + 271y; + 271yc + 169y, + 16y4)/912
9 2h(83y, + 174y, + 239y, + 278y, + 278y, + 239y, + 174y, + 83y,)/387
10 9h(11y, + 39y, + 60y; + 74y, + 74y, + 60yg + 39y, + 11y,,)/368
11 h(281y, + 461y, + 601y, + 701y, + 761ys

+ 761y, + 701yg + 601y, + 461y, + 281y,,)/561
12 11A(512y, + 1137y, + 1637y, + 2012y, + 2262ys

+ 2262y +2012y0 + 1637y, + 1137y,, + 512y,,)/15120
13 6h(499y, + 708y, + 879y, + 1012y, + 1107y + 1164y,

+ 1164y, + 1107y, + 1012y, + 879y, + 708y, + 499y,3)/5369
14 13h(721y, + 1243y, + 1678y, + 2026y, + 22875 + 2461y,

+ 2461y, + 2287y, + 2026y, + 1678y,, + 1243y,5 + 721y,,)/20832
15 h(485y, + 628y, + 749y, + 848y, + 925y, + 980y, + 1013y,

+ 1013y, + 980y, + 925y,, + 848y, + 749y, + 628y,, + 485y,5)/804
16 Sh(160y, + 237y, + 303y, + 358y, + 402y5 + 435y, + 457y,

+ 457y, + 435y, +402y,, + 358y,; + 303y,, + 237y,5 + 160y,)/1568
17 2h(343y, + 418y, +483y; + 538y, + 583ys + 618y, + 643y, + 658y,

+ 658y, + 643y,, + 618y, + 583y, + 538y, + 483y,5 + 418y, + 343y,7)/1071
n Formulas
7 3h(13y, + 32y, + 55y;5 + 55y5 + 32y, + 13y,)/100
8 Th(562y, + 245y, + 2793y, + 2793y, + 245y, + 562y,)/7200
9 4h(123y, + 249y, + 346y, + 407y,

+ 407ye + 346y, + 249y + 123y,) /1125
10 9h(7993y, + 6729y, + 17499y, + 30259y,
+30259y, + 17499y, + 6729y, + 7993y,,)/124960
11 5h(35082y, + 62445y, + 80610y, + 91915y, + 98030ys
+ 98030y, + 91915y, + 80610y, + 62445y, + 35082y, ,)/368082
12 111(126637y, + 126687y, + 203857y; + 306727y, + 396732y5
+396732yg + 306727y, + 203857y, + 126687y, + 126637y,,)/2321280
n Formulas
9 4h(2459y, + 12528y, +2072y; + 16016y,
+ 16016y, + 2072y, + 12528y, + 2459y,) /33075

10 9h(1711y, + 13041y, — 5022y, + 21630y,

+21630y; — 50224 + 13041y, + 1711y,,)/62720
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Table 32 Integration formulas similar to Newton—Cotes closed formulas with no middle point and truncation error=0(h'®) and degree polyno-

mials g=8

n

Formulas

11

5h(33911y, + 170560y, + 53055y, + 131520y, + 182490y5
+ 182490y, + 131520y + 53055y, + 170560y, + 33911y,,)/571536

Table 33 Integration formulas
similar to Newton—Cotes open
formulas with no middle point
and truncation error=O(h?) and
degree polynomials g=1

Table 34 Integration formulas
similar to Newton—Cotes open
formulas with no middle point
and truncation error=O(h*) and
degree polynomials g=2
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Points (n) Formulas
5 2h(y, + y4)
6 Sh(y, +5)/2
7 3h(y, +¥3 + 5 +6)/2
8 Th(y, + y3 + Y6 +¥7)/4
9 Ah(yy +y3+ vy, + 6 +y7 +35)/3
10 3h(y, + y3 + Y4+ ¥7 + Y5 +¥9)/2
11 Sh(y, + 3+ Y4+ ¥s + 7 + s + Yo +¥10)/4
12 11h(y, + y3+ Y4+ ¥s +ys + Yo + 10 + 11)/8
13 6h(y, +y3 + Y4+ Y5+ Y6+ ¥s + Yo + Y10 + Y11 +¥12)/5
14 13h(y; + y3 + Y4 + s + Y6 + Yo + y10 + y11 + Y12 +313)/10
Odd n (n—Dh(y, +y3 + -+ +y%|71 +y%Jr1 +y%Jr2 +y%+3 + -+ Yy, /(n—=3)
Even n (n=Dh(y, +y; + - FYi g F Y TV F Y o +y,.)/(n—4)
n Formulas
h(2y, +y3 +y5 +2y6)
Th(11y, + 13y, + 13y + 11y,)/48
4h(62y, + 47y5 + 38y, + 38ys + 47y, + 62y4)/147
10 9h(48y, + 51y; + 53y, + 53y, + 51yg + 48y,)/304
11 5h(236y, 4+ 201y; + 176y, + 161y5 + 161y, + 176y + 201y, + 236y,,)/774
12 11h(133y, + 137y, + 140y, + 142y,
+ 142y + 140y, + 137y, + 133y,,)/1104
13 3h(444y, + 399y, + 364y, + 339y, + 324y,
+ 324y, + 339y, + 364y, + 399y, + 444y,,)/935
14 13h(1472y, + 1497y, + 1517y, + 1532y; + 1542y,
+ 1542y, + 1532y, + 1517y, + 1497y, + 1472y,3)/15120
15 Th(446y, + 413y, + 386y, + 365y; + 350y, + 341y,
+ 341y, + 350y, + 365y,, + 386y,, + 413y,5 + 446y,,)/2301
16 15h(567y, + 573y, + 578y, + 582y + 585y, + 587y,
+ 587y, + 585y, + 582y, + 578y,5 + 573y, + 567y,5)/6944
17 8h(273y, + 217y, + 206y, + 197ys + 190y + 185y, + 182y,
+ 182y,0 + 185y,, + 190y,, + 197y,5 + 206y, + 217y, + 230y,¢)/1407
18 17h(992y, + 999y, + 1005y, + 1010y; + 1014y, + 1017y, + 1019y,
+1019y,, + 1017y, + 1014y 5 + 1010y, + 1005y, 5 + 999y, + 992y,,)/14112
19 9h(336y, + 321y; + 308y, + 297y; + 288y, + 281y, + 276y, + 273,

+ 273y, + 276y, + 281y,; + 288y, +297y,5 + 308y, + 321y, + 336y,5)/2380
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Table 35 Integration formulas

similar to Newton—Cotes open . Formulas
formulas with no middle point 9 2h(321y, — 206y, + 335y, + 335y, — 206y, + 321y5)/225
gzgrg:‘;fﬁ;‘sg;gg ;Oih dand On(258y, — 195y, + 337y, + 337y, — 195y, + 258,)/800
11 h(2469y, — 303y, + 563y, +2221ys
+ 2221y, + 563yg — 303y, + 2469y,1)/990
12 11123727y, — 4769y, + 5261y, + 26901ys
+ 26901y, + 5261y, — 4769y, + 23727y,,)/102240
13 6h(38466y, + 6366y, + 6086y, + 19111y5 + 32216y,
+ 32216y, + 19111y, + 6086y, + 6366y, , + 38466y,,)/102245
14 134(350339y, + 35889y, + 39839y, + 191849y, + 364164y,

+364164y, + 191849y, + 39839y, + 35889y,, + 350339y,5)/1964160

Table 36 Integration formulas similar to Newton—Cotes open formulas with no middle point and truncation error=0(h®) and degree polynomi-
als g=6

n Formulas
11 h(17944y, — 22977y; + 36232y, — 4739y;
—4739y; + 36232y, — 22977y, + 17944y,,)/5292
12 11h(494057y, — 503433y, + 693486y, + 162610y;
+ 162610yg + 693486y, — 503433y, + 494057y,,)/1693440
13 2h(3414170y, — 2394394y, + 2461902y, + 3143563y + 206584y,

+206584y + 3143563y, + 2461902y, — 2394394y, , + 3414170y,,)/2277275

Table 37 Integration formulas similar to Newton—Cotes open formulas with no middle point and truncation error=0(h!’) and degree polynomi-
alsg=8

n Formulas

13 h(87805y, — 185176y, + 399033y, — 355548y + 186186y,
+ 186186y, — 355548y, + 399033y, — 185176y, + 87805y,,)/22050

Table 38 Integration formulas similar to Newton—Cotes open formulas without two points with truncation error=0(h?) and degree polynomials
g=1

Points (n) Formulas

n=>5 4hy,
n=6 Sh(ys +y4)/2
n=7 2h(y; +y4 +ys)
n=38 Th(ys + ys +ys + y6) /4
n=9 8h(y3 + ¥4 + s+ Y6 +¥7)/5
n (m=DhQ3 +ys+ys+ -+ Vst Yoz ty,0)/(n—4)
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Table 39 Integration formulas
similar to Newton—Cotes open
formulas without two points
with truncation error=O(h*)
and degree polynomials g=2

Table 40 Integration formulas
similar to Newton—Cotes open
formulas without two points
with truncation error = O(h®)
and degree polynomials g=4

Table 41 Integration formulas
similar to Newton—Cotes open
formulas without two points
with truncation error = O(h®)
and degree polynomials g=6

@ Springer

n Formulas
7 3h(3y; — 4y + 3ys)
8 Th(23yy — 11y, — 11ys + 23y,)/24
9 8h(71y; — 4y, — 29y5 — 4y + T1y;)/105
10 On(5Tys + 11y, — 12y5 — 12y¢ + 11y, + 57yg) /112
11 5h(101y; + 36y, — 3ys — 16y, — 3y; + 36yg + 101y,)/126
12 11h(329y; + 155y, + 39y5 — 19y — 19y, + 39y, + 155y, + 329y,,)/1008
13 4n(63y; + 35y, + 15y5 + 3ys — y7 + 3yg + 15y¢ + 35y,9 + 63y,,)/77
14 13h(1842y; + 1142y, + 617y + 267y, + 92y,
+92yg +267yy + 617y, + 1142y, + 1842y,,)/7920
15 Th(519y; + 348y, + 215y; + 120y, + 63y, + 44y,
+ 63y, + 120y, + 215y, + 348y,, + 519y,5)/1287
16 15h(1419y, + 1009y, + 681ys + 435y, + 271y, + 189y,
+ 189y, + 271y,o + 435y,, + 681y,, + 1009y,; + 1419y,,)/8008
17 16h(43y; + 32y, + 23y5 + 16y + 11y, + 8yg + Ty,
+ 8y,0 + 11y, + 16y, + 23y, + 32y, + 43y,5)/273
18 17h(1235y; + 953y, + 718ys + 530y, + 389y, + 295y, + 248y,
+248y,0 + 295y, + 389y, + 530y,5 + 718y, + 953y,5 + 1235y,,)/8736
19 Oh(7917y, + 6292y, + 4917y5 + 3792y + 2917y, + 2292y, + 1917y, + 1792y,
+ 1917y, + 2292y, + 2917y, + 3792y, + 4917y,5 + 6292y, + 7917y,7) /30940
n Formulas
9 8h(86y; — 224y, + 321ys — 224y, + 86y,)/45
10 Oh(219y; — 397y, + 258ys + 258y, — 397y, + 219y4)/160
11 S5h(260y; — 335y, + 50y5 + 302y + 50y, — 335y5 + 260y,)/126
12 11h(2327y, — 2133y, — 483ys + 1729y,
+ 1729y, — 483y, — 2133y, + 2327y,,)/2880
13 2h(2796y; — 1789y, — 999y5 + 1101y, + 2072y,
+ 1101yg — 999y, — 1789y, + 2796y,,)/715
14 13h(8526y; — 3634y, — 3339y5 + 1341y, + 5026y,
+ 5026yg + 1341y, — 3339y, — 3634y,, + 8526y,,)/15840
15 Th(11664y; — 2994y, — 4324y, + 121y + 4946y, + 6914y,
+4946y, + 121y, — 4324y,, — 2994y, + 11664y,3)/12870
16 15h(7095y; — 845y, — 2295y5 — 523y, + 2020y, + 3700y4
+ 3700y, + 2020y, — 523y,; — 2295y,, — 845y,5 + 7095y,,)/18304
17 16h(36762y, — 198y, — 9723y; — 4242y, + 6578y, + 15832y, + 19377y,
+ 15832y, + 6578y, — 4242y, — 9723y,5 — 198y,, + 36762y,5)/109395
n Formulas
11 5h(3445y, — 13320y, + 285755 — 35888y,
+28575y, — 13320y, + 3445y,)/756
12 11h(211069y; — 656261y, + 999729y5 — 494057y,
— 494057y, + 999729y, — 656261y, + 211069y,,)/120960
13 2n(621128y; — 1579924y, + 1696619y5 + 197492y, — 1420180y,

+197492y, + 1696619y, — 1579924y,, + 621128y,,)/75075
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Table 42 Integration formulas similar Newton—Cotes open no two
points with truncation error=0(h'®) and degree polynomials g=8

n Formulas

13 h(5499y; — 28192y, + 80802ys — 144864y, + 175610y,
— 144864y, + 80802y, — 28192y, + 5499y,,)/175
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