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Abstract
Generative adversarial networks (GANs) present a way to learn deep representations without extensively annotated training 
data. These networks achieve learning through deriving back propagation signals through a competitive process involv-
ing a pair of networks. The representations that can be learned by GANs may be used in several applications. GANs have 
made significant advancements and tremendous performance in numerous applications. The essential applications include 
semantic image editing, style transfer, image synthesis, image super-resolution and classification. This paper aims to present 
an overview of GANs, its different variants, and potential application in various domains. The paper attempts to identify 
GANs’ advantages, disadvantages and significant challenges to the successful implementation of GAN in different applica-
tion areas. The main intention of this paper is to explore and present a comprehensive review of the crucial applications of 
GANs covering a variety of areas, study of the techniques and architectures used and further the contribution of that respec-
tive application in the real world. Finally, the paper ends with the conclusion and future aspects.
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1 Introduction

Generative adversarial networks (GANs) are a recently 
developed technique for learning in both semi-supervised 
and unsupervised mode. These networks obtain it through 
modelling high-dimensional distributions of data implicitly. 
The authors of study [34] proposed to characterize learning 
by training a pair of networks in competition with each other.

GANs have several potential advantages over the exist-
ing techniques like Boltzmann machine [1] and Autoencod-
ers [100]. Most existing techniques are relying on Markov 
chains for generating their trained models. However, GANs 
were designed to avoid using Markov chains because of the 
high computational cost of the latter. Another advantage 
relative to Boltzmann machines is that the Generator func-
tion has much fewer restrictions.

For these advantages, GANs have been gaining consid-
erable attention, and the desire to use GAN in many fields 
is growing. GANs have been successfully implemented for 
solving a variety of tasks such as image generation from 
descriptions [4, 10, 44, 54, 86, 93, 94, 96, 136], getting 
high-resolution images from low-resolution ones [11, 53, 
60, 115], predicting which drug could treat a certain disease, 
Object detection [28, 66, 66, 148], retrieving images that 
contain a given pattern [6, 76, 109, 112], Facial Attribute 
Manipulation [52, 59, 125, 137, 141], Anime Character Gen-
eration [18, 49],Image to Image Translation [15, 45, 47, 74, 
104, 135, 147] and many more. There are numerous practical 
applications of GANs in the real world.

In this paper, we present an overview of GANs, its differ-
ent variants, and potential applications in different domains. 
The paper attempts to identify GANs’ advantages, disadvan-
tages and major challenges for successful implementation of 
GAN in different application areas.

Rest of the article is organized as follows. Section 2 pro-
vides basics of GANs, different objective functions, the 
latent space and challenges of GANs. Section 3 presents the 
variants of GANs developed in the last five years. Section 4 
highlights the most significant applications of GAN in real 
life. Section  5 discusses the paper by identifying advantages 
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and future challenges of GANs. Finally, Sect. 6 concludes 
the paper at the end.

2  Generative Adversarial Networks (GANs)

This section introduces the basic principles, architecture, 
objective functions, latent space and challenges of GANs.

2.1  GAN Fundamentals

Firstly, Goodfellow et al. [34] introduced the adversarial 
process to learn generative models. The fundamental aspect 
of GAN is the min-max two-person zero-sum game. In this 
game, one player takes the advantages at the equivalent loss 
of the other player. Here, the players correspond to different 
networks of GAN called discriminator and generator. The 
main objective of the discriminator consists of determining 
whether a sample belongs to a fake distribution or real dis-
tribution. Whereas, generator aims to deceive the discrimi-
nator by generating fake sample distribution. Discriminator 
produces the chances or probability of a given sample to be 
a real sample. A higher value of probability shows that the 
sample is likely to be a real sample. The value close to zero 
indicates that the sample is a fake sample. The probability 
value near 0.5 indicates the generation of an optimal solu-
tion, such that discriminator is unable to differentiate fake 
and real sample.

The general architecture of GAN is shown in Fig. 1. In 
general architecture, a generative adversarial network has 
two types of networks called discriminator and generator 
denoted as D and G respectively.

1. The Generator (G) The G is a network that is used to 
generate the images using random noise Z. The gener-
ated images using noise are recorded as G(z). The input 
that is commonly a Gaussian noise that is a random 
point in latent space. Parameters of both the G and D 
networks are updated iteratively during the training pro-
cess of GAN.

2. The Discriminator (D) The D is considered as a dis-
criminant network to determine whether a given image 
belongs to a real distribution or not. It receives an input 
image X and produces the output D (x), representing the 
probability that X belongs to a real distribution. If the 
output is 1, then it indicates a real image distribution. 
The output value of D as 0 indicates that it belongs to a 
fake image distribution.

The objective function of a two-player minimax game would 
be as Eq. 1.

2.2  Objective Functions

The goal of generative models is to match the real data dis-
tribution pdata(x) and pg(x) . Thus, minimizing differences 
between two distributions is a crucial point for training genera-
tive models [42]. Standard GAN [34] minimizes JSD(pdata‖pg) 
estimated by using the discriminator. Recently, researchers 
have found that various distances or divergence measures can 
be adopted instead of JSD and can improve the performance 
of the GAN. In this section, we discuss how to measure the 
discrepancy between pdata(x) and pg(x) using various distances 
and objective functions derived from these distances.

2.2.1  f‑Divergence

The f-divergence Df (pdata‖pg) is one of the means to measure 
differences between two distributions with a specific convex 
function f [42]. Using the ratio of the two distributions, the 
f-divergence for pdata and pg with a function f is defined as 
follows:

2.2.2  Integral Probability Metric

Integral probability metric (IPM) is defined as a maximal 
measure between two arbitrary distributions under the frame 
of f [42]. In a compact space X ⊂ R , let P(X) denote the prob-
ability measures defined on X. IPM metrics between two dis-
tributions pdata, pg ∈ P(X) is defined as follows:

(1)
Min
G

Max
D

V(D,G) = Ex∼pdata(x)
[log(d(x))] + Ez∼pg(z)

[log(1 − D(G(z)))]

(2)Df (pdata‖pg) = ∫x

pg(x)f

�
pdata(x)

pg(x)

�
dx

(3)dF(pdata, pg) = supf∈FEx∼pdata
[f (x)] − Ex∼pg

[f (x)]

Fig. 1  The general architecture of GAN
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2.2.3  Auxiliary Object Functions

This section introduces auxiliary object functions attached 
to the adversarial objective function, mainly a reconstruc-
tion objective function and a classification objective func-
tion [42] as described below.

1. Reconstruction Object Function Reconstruction is to 
make an output image of a neural network to be the 
same as an original input image of a neural network. 
The purpose of the reconstruction is to encourage the 
generator to preserve the contents of the original input 
image [13, 147] or to adopt auto-encoder architecture for 
the discriminator [8, 143]. For a reconstruction objective 
function, mostly the L1 norm of the difference of the 
original input image and the output image is used.

2. Classification Object Functions A cross entropy loss for 
classification is widely added for many GAN applica-
tions where labeled data exists, especially semi-super-
vised learning and domain adaptation. Cross-entropy 
loss can be directly applied to the discriminator, which 
gives the discriminator an additional role of classifica-
tion [87, 101]. Other approaches [9, 19] adopt classifier 
explicitly, training the classifier jointly with the genera-
tor and the discriminator through a cross entropy loss

2.3  The Latent Space

Latent space also called an embedding space, is the space 
in which a compressed representation of data lies. If we 
wish to change or reflect some attributes of an image (for 
example, a pose, an age, an expression or even an object of 
an image), modifying images directly in the image space 
would be highly difficult because the manifolds where the 
image distributions lie are high dimensional and complex. 
Rather, manipulating in the latent space is more tracta-
ble because of the latent representation expresses specific 
features of the input image in a compressed manner. This 
section investigates how GAN handles latent space to rep-
resent target attributes and how a variational approach can 
be combined with the GAN framework.

2.3.1  Latent Space Decomposition

The input latent vector z of the generator is so highly 
entangled and unstructured that we do not know which 
vector point contains the specific representations we want. 
From this point of view, several papers suggest decom-
posing the latent input space to an input vector c, which 
contains the meaningful information and standard input 

latent vector z, which can be categorized into a supervised 
method and an unsupervised method.

1. Supervised Methods Supervised methods require a pair 
of data and corresponding attributes such as the data’s 
class label. The attributes are generally used as an addi-
tional input vector as explained below.

  Conditional GAN (CGAN) [80] imposes a condition 
of additional information such as a class label to control 
the data generation process in a supervised manner by 
adding an information vector c to the generator and dis-
criminator. The generator takes not only a latent vector 
z but also an additional information vector c, and the 
discriminator takes samples and the information vector 
c so that it distinguishes fake samples given c. By doing 
so, CGAN can control the number of digits to be gener-
ated, which is impossible for standard GAN.

  Figures 2 and 3 outline CGAN and CGAN with a pro-
jection discriminator and ACGAN where CE denotes the 
cross-entropy loss for the classification. In addition, plug 
and play generative networks (PPGN) [85] are another 
type of generative model that produce data under a given 
condition.

2. Unsupervised Methods Different from the supervised 
methods discussed above, unsupervised methods do 
not exploit any labeled information. Thus, they require 
an additional algorithm to disentangle the meaningful 
features from the latent space. InfoGAN [17] decom-
poses an input noise vector into a standard incompress-
ible latent vector z and another latent variable c to cap-
ture salient semantic features of real samples. Then, 
InfoGAN maximizes the amount of mutual information 
between c and a generated sample G(z; c) to allow c to 
capture some noticeable features of real data. In other 
words, the generator takes the concatenated input (z; 
c) and maximizes the mutual information, I(c;G(z; c)) 
between a given latent code c and the generated sam-

Fig. 2  CGAN [80]

Fig. 3  CGAN with projection [81]
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ples G(z; c) to learn meaningful feature representa-
tions. However, evaluating mutual information I(c;G(z; 
c)) needs to directly estimate the posterior probability 
p(c ∣ x) , which is intractable. InfoGAN, thus, takes a var-
iational approach which replaces a target value I(c;G(z; 
c)) by maximizing a lower bound.

  Semi-supervised InfoGAN (ss-InfoGAN) [102] takes 
advantage of both supervised and unsupervised meth-
ods. It introduces some label information in a semi-
supervised manner by decomposing latent code c in to 
two parts, c = css

⋃
cus.

2.3.2  With an Autoencoder

This section explores efforts combining an autoencoder 
structure into the GAN framework. An autoencoder struc-
ture consists of two parts: an encoder which compresses data 
x into latent variable z: and a decoder, which reconstructs 
encoded data into the original data x. This structure is suit-
able for stabilizing GAN because it learns the posterior dis-
tribution p(z ∣ x) to reconstruct data x, which reduces mode 
collapse caused by the lack of GAN’s inference ability to 
map data x to z. An autoencoder can also help manipulations 
at the abstract level become possible by learning a latent 
representation of a complex, high-dimensional data space 
with an encoder X ∣ Z where X and Z denote the data space 
and the latent space. Learning a latent representation may 
make it easier to perform complex modifications in the data 
space through interpolation or conditional concatenation in 
the latent space.

1. Learning the Latent Space Adversarially learned infer-
ence (ALI) [26] and bidirectional GAN (BiGAN) [25] 
learn latent representations within the GAN framework 
combined with an encoder. They learn the joint probabil-
ity distribution of data x and latent z while GAN learns 
only the data distribution directly. The discriminator 
receives samples from the joint space of the data x and 
the latent variable z and discriminates joint pairs (G(z); 
z) and (x;E(x)) where G and E represent a decoder and 
an encoder, respectively. By training an encoder and a 
decoder together, they can learn an inference X ! Z while 
still being able to generate sharp, high-quality samples.

2. Variational Autoencoder Variational Autoencoder 
(VAE)  [24] is a popular generative model using an 
autoencoder framework. Assuming some unobserved 
latent variable z affects a real sample x in an unknown 
manner, VAE essentially finds the maximum of the mar-
ginal likelihood p�(x) for the model parameter � . VAE 
addresses the intractability of p�(x) by introducing a 
variational lower bound, learning the mapping of X → Z 
with an encoder and Z → X with a decoder. Specifically, 
VAE assumes a prior knowledge p(z) and approximated 

posterior probability modeled by Q�(z ∣ x) to be a stand-
ard normal distribution and a normal distribution with 
diagonal covariance, respectively for the tractability. 
More explicitly, VAE learns to maximize p�(x) where a 
variational lower bound of the marginal log-likelihood 
log p�(x) can be derived as follows: 

 where p�(x ∣ z) is a decoder that generates sample x 
given the latent z and Q�(z ∣ x) is an encoder that gener-
ates the latent code z given sample x.

3  GANs’ Variants

With the passage of time, several developments have been 
made to the original architecture of GAN as described 
below.

3.1  Fully Connected GANs

The first GAN architectures used fully connected neural net-
works for both the generator and discriminator [34]. This 
type of architecture was applied to relatively simple image 
datasets, namely MNIST (hand written digits), CIFAR-10 
(natural images) and the Toronto Face Dataset (TFD).

3.2  Conditional GANs (CGAN)

GANs can be extended to a conditional model if both the G 
and D networks are conditioned on some extra information y 
to address the limitation of dependence only on random vari-
ables in original model [80]. y could be any kind of auxiliary 
information, such as class labels or data from other modali-
ties. The conditional information can be added by feeding 
y into the both the D and G network as an additional input 
layer as depicted in Fig. 4.

(4)

logp�(x) = ∫z

Q�(z ∣ x)logp�(x)dz

= ∫z

Q�(z ∣ x)log

(
p�(x, z)Q�(z ∣ x)

p�(z ∣ x)Q�(z ∣ x)

)
dz

Fig. 4  The architecture of Conditional GAN
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In the G network, the prior input noise pz(z) , and y are 
combined in joint hidden representation, and the adversarial 
training framework allows for considerable flexibility in how 
this hidden representation is composed [80]. In the D network, 
x and y are presented as inputs and to a D function. The objec-
tive function of a two-player minimax game would be as Eq. 5.

3.3  Laplacian Pyramid of Adversarial Networks 
(LAPGAN)

Denton et al. [23] proposed the generation of images in a 
coarse-to-fine fashion using cascade of convolutional net-
works within a Laplacian pyramid framework. This approach 
allowed them to exploit the multiscale structure of natural 
images, building a series of generative models, each captur-
ing image structure at a particular level of the Laplacian pyra-
mid. The Laplacian pyramid is built from a Gaussian pyramid 
using upsampling u(.) and downsampling d(.) functions. Let 
G(I) = [I0; I1; … ; IK] be the Gaussian pyramid where I0 = I 
and IK is k repeated applications of d(.) to I. Then, the coef-
ficient hk at level k of the Laplacian pyramid is given by the 
difference between the adjacent levels in Gaussian pyramid, 
upsampling the smaller one with u(.).

Reconstruction of the Laplacian pyramid coefficients 
[h1; … ; hK] can be performed through backward recurrence 
as follows:

Thus, while training a LAPGAN, we have a set of convolu-
tional generative models G0;G1;…GK , each of which cap-
tures the distribution of coefficients hk for different levels 
of the Laplacian pyramid. Here, while reconstruction, the 

(5)

Min
G

Max
D

V(D,G) = Ey,x∼pdata(y,x)
[log(d(y, x))]

+ Ex∼px,z∼pz(z)
[log(1 − D(G(z, x), x))]

(6)hk = Lk(I) = Gk(I) − u(Gk+1(I)) = Ik − u(Ik+1)

(7)Ik = u(Ik+1 + hk)

generative models are used to produce hk’s. Thus, Eq. 7 gets 
modified as follows:

Here, a Laplacian pyramid is constructed from each training 
image I. At each level a stochastic choice is made regarding 
constructing the coefficient hk using the standard procedure 
or generate them using Gk . The entire procedure for training 
a LAPGAN through various stages can be seen in Fig. 5.

LAPGANs also take advantage of the CGAN model by 
adding a low-pass image lk to the generator as well as the 
discriminator. The authors evaluated the performance of the 
LAPGAN model on three datasets: (1) CIFAR10 (2) STL10 
and (3) LSUN datasets. This evaluation was done by com-
paring the log-likelihood, quality of image samples gener-
ated and a human evaluation of the samples.

3.4  Deep Convolutional Generative Adversarial 
Networks (DCGAN)

Radford et al. [92] proposed a new class of CNNs called 
Deep Convolutional Generative Adversarial Networks 
(DCGANs) having certain architectural constraints. These 
constraints involved adopting and modifying three changes 
to the CNN architectures.

• Removing fully-connected hidden layers and replac-
ing the pooling layers with strided convolutions on the 
discriminator and fractional-strided convolutions on the 
generator

• Using batch normalization on both the generative and 
discriminative models

• Using ReLU activations in every layer of the generative 
model except the last layer and LeakyReLU activations 
in all layers of the discriminative model

(8)Īk = u((Īk+1) + h̄k) = u(Īk+1) + Gk(zk, u(Īk+1))

Fig. 5  The architecture of 
LPGAN
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Figure 6 depicts the DCGAN generator for LSUN sample 
scene modeling. The DCGAN models performance was 
evaluated against LSUN, Imagenet1k, CIFAR10 and SVHN 
datasets. The quality of unsupervised representation learning 
was evaluated by first using DCGAN as a feature extractor 
and then the performance accuracy was calculated by fitting 
a linear model on top of those features. Log-likelihood met-
rics were not used for performance evaluation. The authors 
also demonstrated feature learning by the generator show-
casing how the generator could learn to forget scene compo-
nents such as bed, windows, lamps and other furniture. They 
also performed vector arithmetic on face samples leading to 
good results.

3.5  Adversarial Autoencoders (AAE)

Makhzani et al. [75] proposed adversarial autoencoder which 
is a probabilistic autoencoder which makes use of GAN to 
perform variational inference by matching the aggregated 
posterior of the hidden code vector of the autoencoder with 
an arbitrary prior distribution. In adversarial autoencoder, 
the autoencoder is trained with dual objectives—a traditional 
reconstruction error criteria, and an adversarial training cri-
terion that matches the aggregated posterior distribution of 
the latent representation to an arbitrary prior distribution. 
After training, the encoder learns to convert the data distri-
bution to the prior distribution, while the decoder learns a 
deep generative model that maps the imposed prior to the 

data distribution. The architectural diagram of an adversarial 
autoencoder is shown in Fig. 7.

Let x be the input and z be the latent code vector of an 
autoencoder. Let p(z) be the prior distribution we want to 
impose, q(z ∣ x) be the encoding distribution and p(x ∣ z) be 
the decoding distribution. Also, let pd(x) be the data dis-
tribution and p(x) be the model distribution. The encoding 
function of the autoencoder q(z ∣ x) defines an aggregated 
posterior distribution of q(z) on the hidden code vector of 
the autoencoder as follows:

In adversarial autoencoder, the autoencoder is regularized 
by matching the aggregated posterior q(z) to an arbitrary 
prior p(z). The generator of the adversarial network is also 
the encoder of the autoencoder q(z ∣ x) . Both, the adversarial 
network and the autoencoder are trained jointly with sto-
chastic gradient descent in two phases—the reconstruction 
phase and the regularization phase. In the reconstruction 
phase, the autoencoder updates the encoder and the decoder 
to minimize the reconstruction error of the inputs. In the 
regularization phase, the adversarial network first updates 
the discriminator to tell apart the true samples from the gen-
erated ones and then updates the generative model in order 
to confuse the discriminator.

Labels can also be incorporated in AAEs in the adver-
sarial training phase in order to better shape distribution of 
the hidden code. A one-hot vector is added to the input of the 
discriminative network to associate the label with the mode 
of distribution. Here, the one-hot vector acts as a switch that 
selects the corresponding decision boundary in the discrimi-
native network given the class label. The onehot vector also 
contains one point corresponding to an extra class which 
in turn corresponds to unlabelled examples. When an unla-
belled example is encountered, the extra class is turned on 
and the decision boundary for the full mixture of Gaussian 
distribution is selected.

3.6  Generative Recurrent Adversarial Networks 
(GRAN)

Im et al. [46] proposed recurrent generative model show-
ing that unrolling the gradient based optimization yields a 
recurrent computation that creates images by incrementally 
adding to a visual “canvas”. Here, the “encoder” convo-
lutional network extracts images of current “canvas”. The 
resulting code and the code for the reference image get fed 
to a “decoder” which decides on an update to the “canvas”. 
Figure 8 depicts an abstraction of how a Generative Recur-
rent Adversarial Network works. The function f serves as 
the decoder and the function g serves as encoder in GRAN.

(9)q(z) = ∫x

q(z ∣ x)pd(x)dx

Fig. 6  The architecture of DCGAN

Fig. 7  The architecture of AAE
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In GRAN, the generator G consists of a recurrent feed-
back loop that takes a sequence of noise samples dawn from 
the prior distribution z ∼ p(z) and draws the output at differ-
ent time steps C1;C2;… ;CT . At each time step t, a sample 
z from the prior distribution is passed onto a function f(.) 
with the hidden state hc,t , where hc,t represents the current 
encoded status of the previous drawing Ct − 1 . Ct is what is 
drawn to the canvas at time t and it contains the output of the 
function f(.). Moreover, the function g(.) is used to mimic 
the inverse of the function f(.). Accumulating the samples at 
each time step yields the final sample drawn to the canvas C. 
Ultimately, the function f(.) acts as a decoder and receives 
the input from the previous hidden state hc,t and noise sam-
ple z and the function g(.) acts as an encoder that provides a 
hidden representation of the output Ct−1 for time step t. Inter-
estingly, compared to all other auto-encoders which start by 
encoding an image, GRAN starts with a decoder.

3.7  Information Maximizing Generative Adversarial 
Networks (InfoGAN)

Information maximizing GANs (InfoGANs) [17] are an 
information-theoretic extension of GANs that are able to 
learn disentangled features in a completely unsupervised 
manner. A disentangled representation is one which explic-
itly represents the salient features of a data instance and can 
be useful for tasks such as face recognition and object rec-
ognition. Here, InfoGANs modify the objective of GANs to 
learn meaningful representations by maximizing the mutual 
information between a fixed small subset of GAN’s noise 
variables and observations.

In GANs, there are no restrictions on the manner in which 
the generator may use the noise. As a result, the noise may 
be used in a highly entangled way not corresponding to the 
semantic features of the data. However, it makes sense to 
semantically decompose a domain according to the seman-
tic features of the data under consideration. InfoGANs use 
this approach by decomposing the input noise vector into two 
parts: (1) z which is treated as a source of noise, (2) c called 

the latent code and targeted at the salient structured semantic 
features of the data distribution. Thus, the generator network 
with both the incompressible noise z and the latent code c 
becomes the generator G(z; c). In order to avoid the latent code 
c being ignored, information-theoretic regularization is done 
and the information I(c;G(z; c)) is maximized. The informa-
tion regularized minimax game is given as follows:

3.8  Bidirectional Generative Adversarial Networks 
(BiGAN)

Donahue et al. [25] proposed a method for learning the seman-
tics in data distribution as well as its inverse mapping - using 
these learnt feature representations for projecting data back 
into the latent space. The structure of a Bidirectional Genera-
tive Adversarial Network is shown in Fig. 9.

As it can be seen from the Fig. 9, in addition to the genera-
tor G from the standard GAN framework, BiGAN includes 
an encoder E which maps the data x to latent representations 
z. The BiGAN discriminator D discriminates not only in the 
data space (x versus G(z)), but jointly in data and latent spaces 
(tuples (x;E(x)) versus (G(z); z)), where the latent component 
is either the encoder output E(x) or generator input z. Here, 
according to the objective of GANs, the BiGAN encoder E 
should learn to invert the generator G. The BiGAN training 
objective is defined as follows:

The significant variant of GAN can be compared in context 
of number of parameters like learning, network structure, 
gradient, methodology and different performance metrics. 
The comparative summary is presented in Table 1.

(10)Min
G

Max
D

V1(D,G) = V(D,G) − �I(c;G(z, c))

(11)

Min
G,E

Max
D,E,G

V(D,E,G)

= Ex∼p(x)Ez∼PE(.∣x)[logD(x,z)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
logD(x,E(x))

+ Ez∼p(z)Ez∼PG(.∣z)[1−logD(x,z)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(1−logD(G(z),z))

Fig. 8  The architecture of GRAN
Fig. 9  The architecture of BiGAN



532 H. Alqahtani et al.

1 3

Ta
bl

e 
1 

 C
om

pa
ra

tiv
e 

su
m

m
ar

y 
of

 G
A

N
 v

ar
ia

nt
s [

39
]

C
R

IT
ER

IA
VA

N
IL

LA
 G

A
N

C
G

A
N

LA
PG

A
N

D
C

G
A

N
A

A
E

G
R

A
N

IN
FO

G
A

N
B

IG
A

N

Le
ar

ni
ng

Su
pe

rv
is

ed
Su

pe
rv

is
ed

U
ns

up
er

vi
se

d
U

ns
up

er
vi

se
d

Su
pe

rv
is

ed
, s

em
i-

su
pe

rv
is

ed
 a

nd
 

un
su

pe
rv

is
ed

Su
pe

rv
is

ed
U

ns
up

er
vi

se
d

Su
pe

rv
is

ed
 a

nd
 

un
su

pe
rv

is
ed

N
et

w
or

k 
A

rc
hi

te
c-

tu
re

M
ul

til
ay

er
 p

er
ce

p-
tro

ns
M

ul
til

ay
er

 p
er

ce
p-

tro
ns

La
pl

ac
ia

n 
py

ra
m

id
 

of
 c

on
vo

lu
tio

na
l 

ne
tw

or
ks

C
on

vo
lu

tio
na

l 
ne

tw
or

ks
 w

ith
 

co
ns

tra
in

ts

A
ut

oe
nc

od
er

s
Re

cu
rr

en
t c

on
vo

-
lu

tio
na

l n
et

w
or

ks
 

w
ith

 c
on

str
ai

nt
s

M
ul

til
ay

er
 p

er
ce

p-
tro

ns
D

ee
p 

m
ul

til
ay

er
 

ne
ur

al
 n

et
w

or
ks

G
ra

di
en

t u
pd

at
es

SG
D

 w
ith

 k
 st

ep
s 

fo
r D

 a
nd

 1
 st

ep
 

fo
r G

SG
D

 w
ith

 k
 st

ep
s 

fo
r D

 a
nd

 1
 st

ep
 

fo
r G

N
o 

up
da

te
s

SG
D

 w
ith

 A
da

m
 

op
tim

iz
er

 fo
r 

bo
th

 G
 a

nd
 D

SG
D

 w
ith

 re
co

n-
str

uc
tio

n 
an

d 
re

gu
la

riz
at

io
n 

ste
ps

SG
D

 u
pd

at
es

 to
 

bo
th

 G
 a

nd
 D

SG
D

 u
pd

at
es

 to
 

bo
th

 G
 a

nd
 D

N
o 

up
da

te
s

M
et

ho
do

lo
gy

/
ob

je
ct

iv
e

M
in

im
iz

e 
va

lu
e 

fu
nc

tio
n 

fo
r G

 
an

d 
m

ax
im

iz
e 

fo
r D

M
in

im
iz

e 
va

lu
e 

fu
nc

tio
n 

fo
r G

 
an

d 
m

ax
im

iz
e 

fo
r 

D
 c

on
di

tio
ne

d 
on

 
ex

tra
 in

fo
rm

at
io

n

G
en

er
at

io
n 

of
 

im
ag

es
 in

 c
oa

rs
e-

to
-fi

ne
 fa

sh
io

n

Le
ar

n 
hi

er
ar

ch
y 

of
 

re
pr

es
en

ta
tio

ns
 

fro
m

 o
bj

ec
t p

ar
ts

 
to

 sc
en

es
 in

 b
ot

h 
G

 a
nd

 D

In
fe

re
nc

e 
by

 m
at

ch
-

in
g 

po
ste

rio
r 

of
 h

id
de

n 
co

de
 

ve
ct

or
 o

f a
ut

oe
n-

co
de

r w
ith

 p
rio

r 
di

str
ib

ut
io

n

G
en

er
at

io
n 

of
 

im
ag

es
 b

y 
in

cr
e-

m
en

ta
l u

pd
at

es
 to

 
a 

“c
an

va
s”

Le
ar

n 
di

se
nt

an
gl

ed
 

re
pr

es
en

ta
tio

ns
 

by
 m

ax
im

iz
in

g 
m

ut
ua

l i
nf

or
m

a-
tio

n

Le
ar

n 
fe

at
ur

es
 fo

r 
re

la
te

d 
se

m
an

tic
 

ta
sk

s a
nd

 u
se

 in
 

un
su

pe
rv

is
ed

 se
t-

tin
gs

Pe
rfo

rm
an

ce
 

m
et

ric
s

Lo
g-

lik
el

ih
oo

d
Lo

g-
lik

el
ih

oo
d

Lo
g-

lik
el

ih
oo

d 
an

d 
hu

m
an

 e
va

lu
at

io
n

A
cc

ur
ac

y 
an

d 
er

ro
r 

ra
te

Lo
g-

lik
el

ih
oo

d 
an

d 
er

ro
r-r

at
e

G
en

er
at

iv
e 

ad
ve

r-
sa

ria
l m

et
ric

 
(p

ro
po

se
d)

In
fo

rm
at

io
n 

m
et

ric
 

an
d 

re
pr

es
en

ta
-

tio
n 

le
ar

ni
ng

A
cc

ur
ac

y



533Applications of Generative Adversarial Networks (GANs): An Updated Review  

1 3

4  GANs’ Applications

GAN is a very powerful generative model in that it can gen-
erate real-like samples with an arbitrary latent vector z. We 
do not need to know an explicit real data distribution nor 
assume further mathematical conditions. These advantages 
lead GAN to be applied in various academic and engineer-
ing fields.

We examine a few computer vision applications that 
have appeared in the literature and have been subsequently 
refined. These applications were chosen to highlight some 
different approaches to using GAN-based representations 
for image-manipulation, analysis or characterization, and 
do not fully reflect the potential breadth of application of 
GANs. In this section, we discuss applications of GANs in 
several domains.

4.1  Image Based Applications

This section presents detailed description of GANs applica-
tions in processing the images. Image based applications 
involves a variety of applications like improving the qulaity 
of images, super resolution etc.

4.1.1  Generation of High‑Quality Images

Much of the recent GAN research focuses on improving the 
quality and utility of the image generation capabilities. The 
LAPGAN model introduced a cascade of convolutional net-
works within a Laplacian pyramid framework to generate 
images in a coarse-to-fine fashion [23].

Zhang et al [136] proposed a Self-Attention Generative 
Adversarial Network (SAGAN) which allows attention-
driven, long-range dependency modeling for image genera-
tion tasks. It differs from traditional convolutional GANs 
that generate high-resolution details as a function of only 
spatially local points in lower-resolution feature maps. 
However, SAGAN involves the details that can be generated 
using cues from all feature locations. The SAGAN achieved 
the state-of-the-art results, boosting the best published 
Inception score from 36.8 to 52.52 and reducing Frechet 
Inception distance from 27.6 2 to 18.65 on the challenging 
ImageNet dataset.

Brock et al. [10] suggested a method for successfully gen-
erating high-resolution, diverse samples from complex data-
sets such as ImageNet by training Generative Adversarial 
Networks at the largest scale. They applied orthogonal regu-
larization to the generator renders it amenable to a simple 
“truncation trick”, allowing fine control over the trade-off 
between sample fidelity and variety by reducing the variance 
of the Generator’s input. The propsoed modifications led to 

models which set the new state of the art in class-conditional 
image synthesis. When trained on ImageNet at 128 × 128 
resolution, the proposed models (BigGANs) achieved an 
Inception Score (IS) of 166.5 and Frechet Inception Distance 
(FID) of 7.4, improving over the previous best IS of 52.52 
and FID of 18.6.

The authors of the [54] proposed a generator architecture 
for generative adversarial networks, borrowing from style 
transfer literature. The new architecture led to an automati-
cally learned, unsupervised separation of high-level attrib-
utes (e.g., pose and identity when trained on human faces) 
and stochastic variation in the generated images (e.g., freck-
les, hair), and it enabled intuitive, scale-specific control of 
the synthesis.

A similar approach is used by Huang et al. [44] with 
GANs operating on intermediate representations rather 
than lower resolution images. LAPGAN also extended the 
conditional version of the GAN model where both G and 
D networks receive additional label information as input; 
this technique has proved useful and is now a common 
practice to improve image quality. This idea of GAN condi-
tioning was later extended to incorporate natural language. 
For example, Reed et al. [93] used a GAN architecture to 
synthesize images from text descriptions, which one might 
describe as reverse captioning. For example, given a text 
caption of a bird such as “white with some black on its head 
and wings and a long orange beak”, the trained GAN can 
generate several plausible images that match the description.

In addition to conditioning on text descriptions, the 
Generative Adversarial What-Where Network (GAWWN) 
conditions on image location [94]. The GAWWN system 
supported an interactive interface in which large images 
could be built up incrementally with textual descriptions of 
parts and user-supplied bounding boxes. Conditional GANs 
not only allow us to synthesize novel samples with specific 
attributes, they also allow us to develop tools for intuitively 
editing images—for example editing the hair style of a per-
son in an image, making them wear glasses or making them 
look younger [38].

Nguyen et al. [86] showed one interesting way to synthe-
size novel images by performing gradient ascent in the latent 
space of a generator network to maximize the activations of 
one or multiple neurons in a separate classifier network. This 
concept was extended in [85] by introducing an additional 
prior on the latent code, improving both sample quality and 
sample diversity, leading to a state-of-the-art generative 
model that produces high quality images at higher resolu-
tions 227 × 227 than previous generative models, and does 
so for all 1000 ImageNet categories. The authors proposed a 
general class of models “Plug and Play Generative Networks 
(PPGNs)”. PPGNs composed of (1) a generator network 
G that is capable of drawing a wide range of image types 
and (2) a replaceable “condition” network C that tells the 
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generator what to draw. They demonstrated the generation 
of images conditioned on a class (when C is an ImageNet or 
MIT Places classification network) and also conditioned on 
a caption (when C is an image captioning network).

Salimans et al. [96] presented a variety of new architec-
tural features and training procedures that they apply to the 
generative adversarial networks (GANs) framework. The 
authors focus on two applications of GANs: semi-supervised 
learning, and the generation of images that humans find vis-
ually realistic. Their primary goal was not to train a model 
that assigns high likelihood to test data, nor do they require 
the model to be able to learn well without using any labels. 
Using new techniques, the authors achieved state-of-the-art 
results in semi-supervised classification on MNIST, CIFAR-
10 and SVHN. The generated images are of high quality 
as confirmed by a visual Turing test. The proposed model 
generated MNIST samples that humans cannot distinguish 
from real data, and CIFAR-10 samples that yield a human 
error rate of 21.3%.

Arjovsky et al. [4] proposed Wasserstein GAN (WGAN) 
makes progress toward stable training of GANs, but some-
times can still generate only poor samples or fail to converge. 
Gulrajani et al. [37] found that these problems are often due 
to the use of weight clipping in WGAN to enforce a Lip-
schitz constraint on the critic, which can lead to undesired 
behavior. They proposed an alternative to clipping weights: 
penalize the norm of gradient of the critic with respect to its 
input. Their proposed method performs better than standard 
WGAN and enables stable training of a wide variety of GAN 
architectures with almost no hyperparameter tuning, includ-
ing 101-layer ResNets and language models with continuous 
generators. They also achieved high quality generations on 
CIFAR-10 and LSUN bedrooms.

4.1.2  Image Inpainting

Image inpainting is the process of reconstructing missing 
parts of an image so that observers are unable to tell that 
these regions have undergone restoration. This technique is 
often used to remove unwanted objects from an image or to 

restore damaged portions of old photos. The Fig. 10 example 
image-inpainting results.

Recent deep learning based approaches have shown 
promising results for the challenging task of inpainting large 
missing regions in an image. These methods can generate 
visually plausible image structures and textures. Semantic 
inpainting [90] refers to the task of inferring arbitrary large 
missing regions in images based on image semantics. Since 
prediction of high-level context is required, this task is sig-
nificantly more difficult than classical inpainting or image 
completion which is often more concerned with correcting 
spurious data corruption or removing entire objects.

Yu et al. [133] proposed a new deep generative model-
based approach which can not only synthesize novel image 
structures but also explicitly utilize surrounding image fea-
tures as references during network training to make better 
predictions. The model is a feed-forward, fully convolutional 
neural network which can process images with multiple 
holes at arbitrary locations and with variable sizes during 
the test time. Experiments on multiple datasets including 
faces (CelebA, CelebA-HQ), textures (DTD) and natural 
images (ImageNet, Places2) demonstrated that the pro-
posed approach generated higher-quality inpainting results 
than existing ones. The authors in study [132] proposed a 
novel deep learning based image inpainting system to com-
plete images with free-form masks and inputs. The system 
is based on gated convolutions learned from millions of 
images without additional labelling efforts. The proposed 
gated convolution solves the issue of vanilla convolution that 
treats all input pixels as valid ones, generalizes partial con-
volution by providing a learnable dynamic feature selection 
mechanism for each channel at each spatial location across 
all layers. They also presented a novel GAN loss, named SN-
PatchGAN, by applying spectral-normalized discriminators 
on dense image patches. It was simple in formulation, fast 
and stable in training. Results on automatic image inpaint-
ing and user-guided extension demonstrate that our system 
generates higher-quality and more flexible results than previ-
ous methods.

Nazeri et al. [83] proposed a two-stage adversarial model 
EdgeConnect that comprises of an edge generator followed 
by an image completion network. The edge generator hallu-
cinates edges of the missing region (both regular and irregu-
lar) of the image, and the image completion network fills in 
the missing regions using hallucinated edges as a priori. We 
evaluate our model end-to-end over the publicly available 
datasets CelebA, Places2, and Paris StreetView.

Yeh et al. [129] proposed a novel method for semantic 
image inpainting. The authors considered semantic inpaint-
ing as a constrained image generation problem and take 
advantage of the recent advances in generative modeling. 
After a deep generative model, i.e., in their case an adversar-
ial network [34, 92], was trained, they search for an encoding Fig. 10  Example—image inpainting [7]
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of the corrupted image that is “closest” to the image in 
the latent space. The encoding is then used to reconstruct 
the image using the generator. They define “closest” by a 
weighted context loss to condition on the corrupted image, 
and a prior loss to penalizes unrealistic images. Compared 
to the CE, one of the major advantages of our method is that 
it does not require the masks for training and can be applied 
for arbitrarily structured missing regions during inference. 
They evaluated their method on three datasets: CelebA [72], 
SVHN [84] and Stanford Cars [58], with different forms of 
missing regions. Results demonstrate that on challenging 
semantic inpainting tasks our method can obtain much more 
realistic images than the state of the art techniques.

4.1.3  Super‑Resolution

Super-resolution (also spelled as super resolution and 
superresolution) is a term for a set of methods of upscaling 
video or images. Super-resolution allows a high-resolution 
image to be generated from a lower resolution image, with 
the trained model inferring photo-realistic details while 
up-sampling.

Karras et al. [53] suggested a new training methodology 
for generative adversarial networks. The main idea in this 
study is to grow both the generator and discriminator pro-
gressively: starting from a low resolution, we add new layers 
that model increasingly fine details as training progresses. 
This both speeds the training up and greatly stabilizes it, 
allowing us to produce images of unprecedented quality, 
e.g., CelebA images at 10242.

The SRGAN model [60] extends earlier efforts by adding 
an adversarial loss component which constrains images to 
reside on the manifold of natural images. The SRGAN gen-
erator is conditioned on a low resolution image, and infers 
photo-realistic natural images with 4× up-scaling factors. 
Unlike most GAN applications, the adversarial loss is one 
component of a larger loss function, which also includes 
perceptual loss from a pre-trained classifier, and a regulari-
zation loss that encourages spatially coherent images. In this 
context, the adversarial loss constrains the overall solution to 
the manifold of natural images, producing perceptually more 
convincing solutions. Customizing deep learning applica-
tions can often be hampered by the availability of relevant 
curated training datasets. However, SRGAN is straight-
forward to customize to specific domains, as new training 
image pairs can easily be constructed by down-sampling 
a corpus of high resolution images. This is an important 
consideration in practice, since the inferred photo-realistic 
details that the GAN generates will vary depending on the 
domain of images used in the training set.

Wang et al. [115] enhanced the visual quality of SRGAN 
by studying three key components of SRGAN, namely, 
network architecture, adversarial loss and perceptual loss, 

and improved each of them to derive an Enhanced SRGAN 
(ESRGAN). In particular, they introduced the Residual-in-
Residual Dense Block (RRDB) without batch normalization 
as the basic network building unit. Moreover, they borrowed 
the idea from relativistic GAN to let the discriminator pre-
dict relative realness instead of the absolute value. Finally, 
they improved the perceptual loss by using the features 
before activation, which could provide stronger supervision 
for brightness consistency and texture recovery. Benefiting 
from these improvements, the proposed ESRGAN achieves 
consistently better visual quality with more realistic and 
natural textures than SRGAN and won the first place in the 
PIRM2018-SR Challenge (region 3) with the best perceptual 
index.

Bulat et al. [11] found that most methods fail to produce 
good results when applied to real-world low-resolution, low 
quality images. To circumvent this problem, they proposed 
a two-stage process which firstly trains a High-to-Low Gen-
erative Adversarial Network (GAN) to learn how to degrade 
and downsample high-resolution images requiring, during 
training, only extitunpaired high and low-resolution images. 
Once this is achieved, the output of this network is used to 
train a Low-to-High GAN for image super-resolution using 
this time extitpaired low- and high-resolution images.

4.1.4  Person Re‑identification

Person re-identification deals with matching images of same 
person over multiple non-overlapping camera views. It is 
applicable in tracking a particular person across these cam-
eras, tracking the trajectory of a person, surveillance, and 
for forensic and security applications as presented in Fig 11. 
Person re-identification is one of the challenging tasks due 
to various human poses, domain differences, occlusions, etc. 
[15, 97, 97, 98, 103, 121]. It can be performed by using two 
types of methods, namely (1) similarity measures or learn-
ing distance for predicting similarity among two images of a 
person. [16, 117, 118, 138] and (2) developing a distinctive 
signature for representing a person under different camera 
environment having classification typically on cross-image 
representation [2, 111, 124]. The researchers in the first type 

Fig. 11  Example—person re-identification
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of methods generally utilize several kinds of hand-crafted 
features like local binary patterns, local maximal occurrence 
(LOMO), colour histogram, and focus on learning an effec-
tive distance/similarity metric for comparing the features. 
The second type of methods employs deep convolutional 
neural networks that are very effective in localizing/extract-
ing relevant features to form discriminative representations 
against view variations.

However, all these methods belong to supervised learning 
and depend on substantial labelled training data, which are 
typically required to be in pair-wise for each pair of camera 
views. The performance of these supervised methods relies 
on the quality and quantity of labelled training data. This 
limits the application of supervised methods to large scale 
networked cameras. Unsupervised learning methods address 
person re-identification problem without any dependence on 
labelled training data [116, 117, 138].

Very recently, GAN is deriving increasing attention of 
the researchers for solving person re-identifcation problem. 
Recently, some researchers used the potential of GAN for 
aiding person re-identification methods.

Wei et  al.  [120] contributed a new dataset called 
MSMT17 with many important features, e.g., (1) the raw 
videos are taken by an 15-camera network deployed in both 
indoor and outdoor scenes, (2) the videos cover a long period 
of time and present complex lighting variations, and (3) it 
contains currently the largest number of annotated identi-
ties, i.e., 4101 identities and 126,441 bounding boxes. They 
also observed that, domain gap commonly exists between 
datasets, which essentially causes severe performance drop 
when training and testing on different datasets. This results 
in that available training data cannot be effectively lever-
aged for new testing domains. To relieve the expensive costs 
of annotating new training samples, they proposed a Per-
son Transfer Generative Adversarial Network (PTGAN) to 
bridge the domain gap. Comprehensive experiments show 
that the domain gap could be substantially narrowed-down 
by the PTGAN.

Qian et al.  [91] proposed a pose-normalization GAN 
model (PN-GAN) for alleviating the impact of pose vari-
ation. Given a pedestrian image, the model utilized a 

desirable pose to produce a composite image of the same 
ID with the initial pose replaced with the desirable pose. The 
proposed framework is depicted in Fig. 12. Following this, 
the authors used the pose-normalized images and original 
images for training the re-identification model to generate 
two sets of features. In the end, they fused the two types of 
features for forming final descriptor. As a result, GAN-based 
data augmentation method enabled the enhancement in gen-
eralization ability of re-identification model and solved per-
son re-identification problem from a certain standpoint to a 
certain extent. In their experiments, the authors used VGG-
19 pre-trained on the ImageNet ILSVRC- 2012 dataset to 
extract the features of each pose images. K-means algorithm 
was used to cluster the training pose images into canonical 
poses. The mean pose images of these clusters are then used 
as the canonical poses. The eight poses obtained on Mar-
ket-1501 [145]. They used four datasets, Market-1501 [145], 
CUHK03 [68], DukeMTMC-reID [95] and CUHK01. The 
results are computed in terms of different ranks of accu-
racy and mean Average Precision (mAP). Extensive experi-
ments on these four benchmarks showed that their model 
achieves state-of-the-art performance. This model differs 
significantly from the previous models [103, 142] [144] in 
that they synthesize realistic whole-body images using the 
proposed PN-GAN, rather than only focusing on body parts 
for pose normalization. However, the quality of produced 
images was comparatively poor leading to fetching noise to 
the re-identification model.

Liu et al. [70] proposed the Identity IPGAN that ensures 
the transferred image has a similar style as the style in target 
camera domain. The method is also able to keep the identity 
information of images from source domain during the trans-
lation. IPGAN consists of a style transfer model G(x; c), a 
domain discriminator Ddom , and a semantic discriminator 
Dsem . The construction of IPGAN requires a source training 
set , the identity labels of source training set, a target training 
set, and the camera labels of target training set. They trained 
their model on the translated images by supervised methods 
and compared their results on Market-1501 [145] and Duke-
MTMC-reID [95] in terms of Rank 1, 5 , 10 of accuracy and 
mAP metrics. The reported results indicate that the images 
generated by IPGAN are more suitable for cross-domain per-
son re-identification. They compared the proposed method 
with the state-of-the-art unsupervised learning methods, 
hand crafted features like Bag-of- Words(BoW) and local 
maximal occurrence (LOMO), unsupervised methods like 
CAMEL, PUL, and UMDL and GAN based methods like 
PTGAN, SPGAN(+LMP), TJ-AIDL and CamStyle. Their 
method achieved rank-1 accuracy = 57.2% and the best mAP 
= 28.0.

Lv et al. [73] proposed a novel solution by transforming 
the unlabeled images in the target domain to fit the origi-
nal classifier by using our proposed similarity preserved Fig. 12  PN-GAN system
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generative adversarial networks model, SimPGAN. Specifi-
cally, SimPGAN adopts the generative adversarial networks 
with the cycle consistency constraint to transform the unla-
beled images in the target domain to the style of the source 
domain.

4.1.5  Object Detection

Object detection is the process of finding instances of 
real-world objects such as faces, bicycles, and buildings 
in images or videos. Object detection algorithms typically 
use extracted features and learning algorithms to recognize 
instances of an object category. It is commonly used in 
applications such as image retrieval, security, surveillance, 
and advanced driver assistance systems (ADAS). Detect-
ing small objects is notoriously challenging due to their low 
resolution and noisy representation [66].

Li et  al.  [66] proposed a new Perceptual Generative 
Adversarial Network (Perceptual GAN) model that improves 
small object detection through narrowing representation dif-
ference of small objects from the large ones. Specifically, 
its generator learns to transfer perceived poor representa-
tions of the small objects to super-resolved ones that are 
similar enough to real large objects to fool a competing dis-
criminator as shown in Fig. 13. Meanwhile its discriminator 
competes with the generator to identify the generated repre-
sentation and imposes an additional perceptual requirement 
generated representations of small objects must be beneficial 
for detection purpose on the generator. Extensive evaluations 
on the challenging Tsinghua-Tencent 100K [148] and the 
Caltech [28] benchmark well demonstrate the superiority of 
Perceptual GAN in detecting small objects, including traffic 
signs and pedestrians, over well-established state-of-the-arts.

4.1.6  Video Prediction and Generation

Understanding object motions and scene dynamics is a 
core problem in computer vision [112]. For both video 
recognition tasks (e.g., action classification) and video 

generation tasks (e.g., future prediction), a model of how 
scenes transform is needed. However, creating a model of 
dynamics is challenging because there is a vast number of 
ways that objects and scenes can change.

Vondrick et al. [112] proposed a generative adversarial 
network for video with a spatio-temporal convolutional 
architecture that untangles the scene’s foreground from the 
background. Experiments suggested this model can gener-
ate tiny videos up to a second at full frame rate better than 
simple baselines, and they show its utility at predicting 
plausible futures of static images. Moreover, experiments 
and visualizations show the model internally learns useful 
features for recognizing actions with minimal supervision, 
suggesting scene dynamics are a promising signal for rep-
resentation learning.

Mathieu et al. [76] trained a convolutional network to 
generate future frames given an input sequence. To deal 
with the inherently blurry predictions obtained from the 
standard Mean Squared Error (MSE) loss function, they 
proposed three different and complementary feature learn-
ing strategies: a multi-scale architecture, an adversarial 
training method, and an image gradient difference loss 
function. They compared the predictions to different pub-
lished results based on recurrent neural networks on the 
UCF101 dataset.

Tulyakov et al. [109] proposed the Motion and Content 
decomposed Generative Adversarial Network (MoCoGAN) 
framework for video generation. The proposed framework 
generates a video by mapping a sequence of random vectors 
to a sequence of video frames. Each random vector consists 
of a content part and a motion part. While the content part is 
kept fixed, the motion part is realized as a stochastic process. 
To learn motion and content decomposition in an unsuper-
vised manner, the authors introduced a novel adversarial 
learning scheme utilizing both image and video discrimina-
tors. Extensive experimental results on several challenging 
datasets with qualitative and quantitative comparison to the 
state-of-the-art approaches, verify effectiveness of the pro-
posed framework.

Fig. 13  Perceptual GAN
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Bansal et al.  [6] proposed a data-driven approach for 
unsupervised video retargeting that translates content from 
one domain to another while preserving the style native 
to a domain, i.e., if contents of John Oliver’s speech were 
to be transferred to Stephen Colbert, then the generated 
content/speech should be in Stephen Colbert’s style. Our 
approach combines both spatial and temporal information 
along with adversarial losses for content translation and style 
preservation.

4.1.7  Facial Attribute Manipulation

Face attributes are interesting due to their detailed descrip-
tion of human faces. Face attribute manipulation which aims 
at modifying a face image according to a given attribute 
value.

Kaneko et al. [52] presented a generative attribute con-
troller (GAC), a novel functionality for generating or edit-
ing an image while intuitively controlling large variations of 
an attribute. This controller is based on a novel generative 
model called the conditional filtered generative adversarial 
network (CFGAN), which is an extension of the conven-
tional conditional GAN (CGAN) that incorporates a filter-
ing architecture into the generator input. Unlike the conven-
tional CGAN, which represents an attribute directly using 
an observable variable (e.g., the binary indicator of attribute 
presence) so its controllability is restricted to attribute labe-
ling (e.g., restricted to an ON or OFF control), the CFGAN 
has a filtering architecture that associates an attribute with 
a multi-dimensional latent variable, enabling latent varia-
tions of the attribute to be represented. They evaluated our 
CFGAN on MNIST, CUB, and CelebA datasets and proved 
that it enables large variations of an attribute to be not only 
represented but also intuitively controlled while retaining 
identity.

Zhang et al. [137] proposed Sparsely Grouped Generative 
Adversarial Networks (SG-GAN) as a novel approach that 
can translate images in sparsely grouped datasets where only 
a few train samples are labelled. Using a one-input multi-
output architecture, SG-GAN is well-suited for tackling 
multi-task learning and sparsely grouped learning tasks. 
The new model is able to translate images among multiple 
groups using only a single trained model.

Zhao et  al.  [141] proposed ModularGAN for multi-
domain image-to-image translation that consists of several 
reusable and compatible modules of different functions. 
These modules can be trained simultaneously, and chosen 
and combined with each other to construct specific net-
works according to the domains of the image translation task 
involves. This leads to ModularGAN’s superior flexibility of 
translating an input image to any desired domain.

Xiao et al. [125] proposed a novel model which receives 
two images of opposite attributes as inputs. The proposed 

model can transfer exactly the same type of attributes from 
one image to another by exchanging certain part of their 
encodings. All the attributes are encoded in a disentan-
gled manner in the latent space, which enables to manipu-
late several attributes simultaneously. Besides, our model 
learns the residual images so as to facilitate training on 
higher resolution images. With the help of multi-scale dis-
criminators for adversarial training, it can even generate 
high-quality images with finer details and less artifacts.

Larsen et al. [59] found that by jointly training a VAE 
and a generative adversarial network (GAN) [34]. It can 
be used the GAN discriminator to measure sample sim-
ilarity. They achieved this by combining a VAE with a 
GAN as shown in Fig. 14. They proposed to collapse the 
VAE decoder and the GAN generator into one by letting 
them share parameters and training them jointly. For the 
VAE training objective, we replace the typical element-
wise reconstruction metric with a feature wise metric 
expressed in the discriminator. The VAE part regularize 
the encoder E by imposing a prior of normal distribution 
(e.g. z ∼ N(0, 1) ), and the VAE loss term is defined in 
Eq. 12.

Where z ∼ E(x) = q(z ∣ x), x ∼ G(z) = p(x ∣ z) and DKL is the 
Kullback-Leibler divergence. Also, VAE-GAN proposes to 
represent the reconstruction loss of VAE in terms of the 
discriminator D. Let Dl(x) denotes the representation of the 
l-th layer of the discriminator, and a Gaussian observation 
model can be defined in Eq. 13.

where = x ∼ D(z) is a sample from the generator, and I is the 
identity matrix. So the new VAE loss is defined as Eq. 14.

which is then combined with the GAN loss defined in 
Eq. 12. Experiments demonstrate that VAE-GAN can gen-
erate better images than VAE or GAN alone.

(12)LVAE = −Ex∼q(z∣x)[log[p(x ∣ z)] + DKL(q(z ∣ x)‖p(x))

(13)p(D(x) ∣ z) = N(D(x) ∣ D(= x), I)

(14)LVAE = −Ex∼q(z∣x)[log[p(x ∣ z)] + DKL(q(z ∣ x)‖p(x))

Fig. 14  Variational autoencoder GAN
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4.1.8  Anime Character Generation

Game development and animation production are expensive 
and hire many production artists for relatively routine tasks. 
GAN can auto-generate and colorize Anime characters [49]. 
The generator and the discriminator composes of many lay-
ers of convolutional layers, batch normalization and ReLU 
with skip connections.

Chen et al. [18] proposed a solution to transforming pho-
tos of real-world scenes into cartoon style images, which is 
valuable and challenging in computer vision and computer 
graphics. The proposed solution, CartoonGAN, a generative 
adversarial network (GAN) framework for cartoon styliza-
tion. This method takes unpaired photos and cartoon images 
for training, which is easy to use. Two novel losses suitable 
for cartoonization are proposed: (1) a semantic content loss, 
which is formulated as a sparse regularization in the high-
level feature maps of the VGG network to cope with substan-
tial style variation between photos and cartoons, and (2) an 
edge-promoting adversarial loss for preserving clear edges.

Jin et  al.  [49] applied GAN for creating automatic 
anime characters by combining a clean dataset and sev-
eral practicable GAN training strategies. The authors suc-
cessfully built a model which can generate realistic facial 
images of anime characters. Their experiments consists of 

the generator’s architecture as shown in Fig. 15, which is a 
modification from SRResNet. The model contains 16 Res-
Blocks and uses 3 sub-pixel CNN for feature map upscal-
ing. Figure 4 shows the discriminator’s architecture, which 
contains 10 Resblocks in total (Fig. 16). All batch nor-
malization layers are removed in the discriminator, since 
it would bring correlations within the mini-batch, which 
is undesired for the computation of the gradient norm. We 
add an extra fully-connected layer to the last convolution 
layer as the attribute classifier. All weights are initialized 
from a Gaussian distribution with mean 0 and standard 
deviation 0:02. The generated anime character sample are 
shown in Fig. 17.  

Fig. 15  Anime generator’s 
architecture

Fig. 16  Anime discriminator’s 
architecture

Fig. 17  Anime samples
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4.1.9  Image to Image Translation

Conditional adversarial networks are well suited for translat-
ing an input image into an output image, which is a recurring 
theme in computer graphics, image processing, and com-
puter vision. The pix2pix model offers a general purpose 
solution to this family of problems [47].

In addition to learning the mapping from input image 
to output image, the pix2pix model also constructs a loss 
function to train this mapping. This model has demonstrated 
effective results for different problems of computer vision 
which had previously required separate machinery, includ-
ing semantic segmentation, generating maps from aerial 
photos, and colorization of black and white images. Wang 
et al. present a similar idea, using GANs to first synthesize 
surface-normal maps (similar to depth maps) and then map 
these images to natural scenes.

CycleGAN [147] extended this work by introducing a 
cycle consistency loss that attempts to preserve the original 
image after a cycle of translation and reverse translation. 
In this formulation, matching pairs of images are no longer 
needed for training. This makes data preparation much sim-
pler, and opens the technique to a larger family of applica-
tions. For example, artistic style transfer [63] renders natural 
images in the style of artists, such as Picasso or Monet, by 
simply being trained on an unpaired collection of paintings 
and natural images as shown in Fig. 18.

GANs are able to convincingly generate novel samples 
that match that of a given training set; style transfer meth-
ods are able to alter the visual style of images; domain 
adaptation methods are able to generalize learned func-
tions to new domains even without labeled samples in the 
target domain and transfer learning is now commonly used 
to import existing knowledge and to make learning much 
more efficient [104]. These capabilities, however, do not 

address the general analogy synthesis problem. Taigman 
et al. [104] addressed these issues, namely, given separated 
but otherwise unlabeled samples from domains S and T and 
a multivariate function f, learn a mapping G ∶ S → T  such 
that f (x) ∼ f (G(x)) . They used deep neural networks of a 
specific structure in which the function G is a composition 
of the input function f and a learned function g. A compound 
loss that integrates multiple terms was used. The authors 
applied the proposed method to visual domains including 
digits and face images and demonstrate its ability to generate 
convincing novel images of previously unseen entities, while 
preserving their identity.

Chen et al. [15] decomposed the generative network into 
two separated networks, each of which is only dedicated 
to one particular sub-task. The attention network predicted 
spatial attention maps of images, and the transformation net-
work focused on translating objects. Attention map produced 
by attention network are encouraged to be sparse, so that 
major attention can be paid on objects of interests. No matter 
before or after object transfiguration, attention maps should 
remain constant. In addition, learning attention network can 
receive more instruction, given the available segmentation 
annotations of images. Experimental results demonstrate the 
necessity of investigating attention in object transfiguration, 
and that the proposed algorithm can learn accurate attention 
to improve quality of generated images.

Huang et  al.  [45] proposed a Multimodal Unsuper-
vised Image-to-image Translation (MUNIT) framework. 
The authors assumed that the image representation can be 
decomposed into a content code that is domain-invariant, 
and a style code that captures domain-specific properties. 
To translate an image to another domain, we recombine 
its content code with a random style code sampled from 
the style space of the target domain. they analyzed the pro-
posed framework and establish several theoretical results. 

Fig. 18  CycleGAN model learns image to image translations
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Extensive experiments with comparisons to the state-of-the-
art approaches further demonstrated the advantage of the 
proposed framework.

Ma et al. [74] proposed the Exemplar Guided and Seman-
tically Consistent Image-to-image Translation (EGSC-IT) 
network which conditions the translation process on an 
exemplar image in the target domain. They assumed that an 
image comprises of a content component which is shared 
across domains, and a style component specific to each 
domain. Under the guidance of an exemplar from the target 
domain they applied Adaptive Instance Normalization to 
the shared content component, which allows to transfer the 
style information of the target domain to the source domain. 
To avoid semantic inconsistencies during translation that 
naturally appear due to the large inner- and cross-domain 
variations, they introduced the concept of feature masks that 
provide coarse semantic guidance without requiring the use 
of any semantic labels.

Yu et al. [135] proposed a novel method, SingleGAN, 
to perform multi-domain image-to-image translations with 
a single generator. They introduced the domain code to 
explicitly control the different generative tasks and inte-
grate multiple optimization goals to ensure the translation. 
Experimental results on several unpaired datasets show 
superior performance of our model in translation between 
two domains.

4.1.10  Text to Image Translation

Fedus et al. [30] proposed to improve sample quality using 
Generative Adversarial Networks (GANs), which explic-
itly train the generator to produce high quality samples and 
have shown a lot of success in image generation. They intro-
duced an actor-critic conditional GAN that fills in missing 
text conditioned on the surrounding context. They showed 
qualitatively and quantitatively, evidence that this produces 
more realistic conditional and unconditional text samples 
compared to a maximum likelihood trained model.

Automatic synthesis of realistic images from text would 
be interesting and useful. Denton et al. [23] used a Laplacian 
pyramid of adversarial generator and discriminators to syn-
thesize images at multiple resolutions. This work generated 
compelling high-resolution images and could also condition 
on class labels for controllable generation. Radford et al. 
[92] used a standard convolutional decoder, but developed 
a highly effective and stable architecture incorporating batch 
normalization to achieve striking image synthesis results.

Reed et al. [93] used a GAN architecture to synthesize 
images from text descriptions, which one might describe 
as reverse captioning. For example, given a text caption 
of a bird such as “white with some black on its head and 
wings and a long orange beak”, the trained GAN can gener-
ate several plausible images that match the description. In 

addition to conditioning on text descriptions, the Generative 
Adversarial What-Where Network (GAWWN) conditions 
on image location [94]. The GAWWN system supported an 
interactive interface in which large images could be built up 
incrementally with textual descriptions of parts and user-
supplied bounding boxes. Conditional GANs not only allow 
us to synthesize novel samples with specific attributes, they 
also allow us to develop tools for intuitively editing images 
for example editing the hair style of a person in an image, 
making them wear glasses or making them look younger 
[38].

4.1.11  Face Aging

Face age progression (i.e., prediction of future looks) and 
regression (i.e., estimation of previous looks), also referred 
to as face aging and rejuvenation, aims to render face images 
with or without the “aging” effect but still preserve personal-
ized features of the face (i.e., personality) [140].

Zhang et al. [140] proposed a conditional adversarial 
autoencoder (CAAE) network to learn the face manifold. By 
controlling the age attribute, it will be flexible to achieve age 
progression and regression at the same time. The benefit of 
the proposed CAAE can be summarized from four aspects. 
First, the novel network architecture achieves both age pro-
gression and regression while generating photo-realistic face 
images. Second, we deviate from the popular group-based 
learning, thus not requiring paired samples in the training 
data or labeled face in the test data, making the proposed 
framework much more flexible and general. Third, the disen-
tanglement of age and personality in the latent vector space 
helps preserving personality while avoiding the ghosting 
artifacts. Finally, CAAE is robust against variations in pose, 
expression, and occlusion. The main difference from AAE 
is that the proposed CAAE imposes discriminators on the 
encoder and generator, respectively. The discriminator on 
encoder guarantees smooth transition in the latent space, and 
the discriminator on generator assists to generate photo-real-
istic face images. Therefore, CAAE would generate higher 
quality images than AAE. The CAAE was evaluated using 
Morph dataset [55] and the CACD [14] datasets.

Antipov et al. [3] proposed a new effective method for 
synthetic aging of human faces based on Age Conditional 
Generative Adversarial Network (Age-cGAN). The method 
composed of two steps: (1) input face reconstruction requir-
ing the solution of an optimization problem in order to find 
an optimal latent approximation, (2) and face aging it-self 
performed by a simple change of conditions at the input of 
the generator. The cornerstone of our method is the novel 
“Identity-Preserving” latent vector optimization approach al-
lowing to preserve the original person’s identity in the recon-
struction. This approach is universal meaning that it can be 
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used to preserve identity not only for face aging but also for 
other face alterations (e.g. adding a beard, sunglasses etc.)

4.1.12  Human Pose Estimation

Human pose estimation is the process of estimating the 
configuration of the body (pose) from a single, typically 
monocular, image. Human pose estimation is one of the key 
problems in computer vision that has been studied for well 
over 15 years.

In [106], the authors proposed CR-GAN to address the 
problem of human pose estimation. In addition to the single 
reconstruction path, they introduced a generation sideway to 
maintain the completeness of the learned embedding space. 
The two learning pathways collaborate and compete in a 
parameter-sharing manner, yielding considerably improved 
generalization ability to “unseen” dataset. More importantly, 
the two-pathway framework makes it possible to combine 
both labeled and unlabeled data for self-supervised learn-
ing, which further enriches the embedding space for real-
istic generations. The experimental results proved that CR-
GAN significantly outperforms state-of-the-art methods, 
especially when generating from “unseen” inputs in wild 
conditions.

The issue of pose variation in person images has also been 
addressed by Ge et al. [32]. The authors proposed a Feature 
Distilling Generative Adversarial Network (FD-GAN) to 
learn identity-related and pose-unrelated representations. 
The proposed system relies on a Siamese structure with 
multiple novel discriminators on human poses and identi-
ties as depicted in Fig. 19. In addition to the discriminators, 
they suggested a novel same-pose loss integration that needs 
the appearance of the same person’s produced images to be 
similar. After learning pose-unrelated person features with 
pose guidance, no auxiliary pose information and additional 
computational cost are required during testing. The proposed 
FD-GAN obtained better performance on three-person re-
identification datasets demonstrating its effectiveness and 

robust feature distilling capability. The overall loss function 
used in FD-GAN system is as per Eq. 15.

where �id, �pd, �r, and �sp are the weighting factors for the 
auxiliary image generation task. The authors evaluated their 
model using Market-1501 [145], CUHK03 [68] and Duke-
MTMCreID using Top 1 accuracy and mAP metrics and 
compared with the state-of-the-art person reID methods. The 
results indicates the superiority of the FD-GAN system. FD-
GAN achieved 90.5% top-1 accuracy and 77.7% mAP on the 
Market-1501 dataset, 92.6% top-1 accuracy and 91.3% mAP 
on CUHK03 [68] dataset, and 80.0% top-1 accuracy and 
64:5% mAP on the DukeMTMCreID dataset, which dem-
onstrated the effectiveness of FD-GAN system.

4.1.13  De‑Occlusion

Occlusion is the effect of one object in a 3-D space blocking 
another object from view. De-Occlusion attempts to remove 
the blocking of another object.

Wu et al. [122] also suggested an approach for synthe-
sizing labelled person images automatically and adopting 
them for increasing the sample number for per identity in 
datasets. The authors used the block rectangles for occlud-
ing the random parts of the persons in the images. They 
proposed a GAN model for using a paired occlusion and 
original images to synthesize the de-occluded images that 
similar but not identical to the original images. Later, they 
commented on the de-occluded images with the same labels 
of their corresponding raw image and used them to aug-
ment the training samples. They used the augmented data-
sets to train the baseline model. The experiment results on 
CUHK03 [68], Market-1501 [145] and DukeMTMC-reID 
[95] datasets show that the effectiveness of the proposed 
method in terms of Rank 1, 5 and 10 of accuracy and mAP.

It has been observed that the captured pedestrian 
images generally have low resolutions (LR) that results in 

(15)L = Lv + �idLid + �pdLpd + �rLr + �spLsp

Fig. 19  The siamese structure of FD-GAN System
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a resolution mismatch dilemma while matching the high-
resolution images in gallery set. For addressing this issue, 
several methods [29, 48, 119] have been developed for solv-
ing the low-resolution person re-identification.

Fabbri et al. [29] proposed a model for handling the issue 
of occlusion and low resolution of pedestrian attributes using 
deep generative models (DCGAN). Their model has three 
sub-networks, for the attribute classification network, the 
reconstruction network and super-resolution network. For 
the attribute classification network, the authors used joint 
global and local parts for final attribute estimation. They 
utilized ResNet50 to extract the deep features and global-
average pooling to obtain the corresponding score. These 
scores are fused as the final attribute prediction score. For 
tackling the occlusion and low-resolution problem, they 
suggested the deep generative adversarial network [34] for 
generating re-constructed and super-resolution images. Their 
model used the pre-processed images as input to the multi-
label classification network for attribute recognition.

Fulgeri et al. [31] proposed an approach by integrating 
the existing neural network architectures, namely U-nets 
and GANs, as well as discriminative attribute classification 
nets, with an architecture specifically designed to de-occlude 
people shapes. They trained their network for optimizing 
a loss function taking into consideration the objectives of 
generating image a person for a given occluded version as 
input (a) without occlusion (b) similar at the pixel level to 
a completely visible people shape (c) capable of conserv-
ing similar visual attributes of the original one. The authors 
evaluated their approach RAP dataset [65] and AiC Data-
set [31], compared with state-of-the-art methods and per-
forming the ablation study over each loss employed in terms 
of five evaluation metrics for the attribute classification 
task, namely mean Accuracy, Accuracy, Precision, Recall 
and F1. The authors reported an accuracy = 66.23%, Pre-
cision = 77.85%, Recall = 79.71%, F1-measure = 78.77% 
and mAP = 78.66% using RAP dataset [65]. The reported 
results are accuracy=74.87%, Precision  =  76.80%, 
Recall = 95.43%, F1-measure = 85.11% and mAP = 91.89% 
using AiC dataset.

4.1.14  Image Blending

Image blending is mixing of two images. The output image 
is a combination of the corresponding pixel values of the 
input images.

Gracias et  al.  [35] applied dense image matching 
approach so that only the corresponding pixels are copied 
and pasted. However, this method would not work when 
there are significant differences between the source images. 
The other way is to make the transition as smooth as possible 
so that we can hide the artefacts in the composited images. 
Alpha blending [110] is the simplest and fastest method, 

but it blurs the fine details when there are some registration 
errors or fast moving objects between the source images. 
Burt and Adelson [12] present a fixing solution so-called 
multiband blending algorithm.

Wu et al. [123] proposed Gaussian-Poisson GAN (GP-
GAN), a framework that combines the strengths of classi-
cal gradient-based approaches and GANs, which is the first 
work that explores the capability of GANs in high-resolution 
image blending task as shown in Fig. 20. Particularly, they 
proposed Gaussian-Poisson Equation to formulate the high-
resolution image blending problem, which is a joint optimi-
sation constrained by the gradient and colour information. 
Gradient filters can obtain gradient information. For gener-
ating the colour information, they propose Blending GAN 
to learn the mapping between the composited image and 
the well-blended one. Compared to the alternative methods, 
their approach can deliver high-resolution, realistic images 
with fewer bleedings and unpleasant artefacts. Experiments 
confirm that their approach achieves the state-of-the-art per-
formance on Transient Attributes dataset.

4.2  Domain Adaptation

Domain adaptation is defined as the particular case where 
the sample and label spaces remain unchanged and only the 
probability distributions change as depicted in Fig. 21 [57].

Deng et al. [22] considered the domain adaptation in per-
son re-identification that task aims at searching for images of 
the same person to the query. They proposed a heuristic solu-
tion, named similarity preserving cycle-consistent generative 
adversarial network (SPGAN). In their method, SPGAN is 
only used to improve the first component in the baseline, 
i.e., image-image translation. They performed image-image 
translation and re-identification feature learning separately. 
SPGAN is composed of an Siamese network (SiaNet) and a 
CycleGAN. Using a contrastive loss, the SiaNet pulls close 
a translated image and its counterpart in the source, and 
push away the translated image and any image in the target. 
They evaluated their methods on two large-scale datasets, 
i.e., Market-1501 [145] and DukeMTMC-reID [95] in terms 
of Accuracy ranking and mAP. They proved that SPGAN has 
better qualify the generated images for domain adaptation 

Fig. 20  The architecture of GPGAN
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and achieve the state-of-the art results on two large-scale 
person re-ID datasets.

Kanchara et al. [51] proposed a new Cyclic-Synthesized 
Generative Adversarial Networks (CSGAN) for image-to-
image transformation. The proposed CSGAN uses a new 
objective function (loss) called Cyclic-Synthesized Loss 
(CS) between the synthesized image of one domain and 
cycled image of another domain. The performance of the 
proposed CSGAN is evaluated on two benchmark image-
to-image transformation datasets, including CUHK Face 
dataset and CMP Facades dataset. The results are computed 
using the widely used evaluation metrics such as MSE, 
SSIM, PSNR, and LPIPS. The experimental results of the 
proposed CSGAN approach are compared with the latest 
state-of-the-art approaches such as GAN, Pix2Pix, Dual-
GAN, CycleGAN and PS2GAN. The proposed CSGAN 
technique outperforms all the methods over CUHK dataset 
and exhibits the promising and comparable performance 
over Facades dataset in terms of both qualitative and quan-
titative measures.

Liu et al. [69] presented a novel and unified deep learning 
framework which is capable of learning domain-invariant 
representation from data across multiple domains. Realized 
by adversarial training with additional ability to exploit 
domain-specific information, the proposed network is able 
to perform continuous cross-domain image translation 
and manipulation, and produces desirable output images 
accordingly.

Li et al. [67] proposed novel Stacked Cycle-Consistent 
Adversarial Networks (SCANs) by decomposing a single 
translation into multi-stage transformations, which not only 
boost the image translation quality but also enable higher 
resolution image-to image translation in a coarse-to-fine 
fashion. Moreover, to properly exploit the information from 
the previous stage, an adaptive fusion block is devised to 
learn a dynamic integration of the current stage’s output and 
the previous stage’s output.

Kim et al. [56] addressed the task of discovering cross-
domain relations given unpaired data. We propose a method 

based on generative adversarial networks that learns to dis-
cover relations between different domains (DiscoGAN). 
Using the discovered relations, the proposed network suc-
cessfully transfers style from one domain to another while 
preserving key attributes such as orientation and face 
identity.

4.3  Sequential Data Based Applications

GAN variants that generate discrete values mostly borrow a 
policy gradient algorithm of RL, to circumvent direct back-
propagation of discrete values. To output discrete values, the 
generator, as a function, needs to map the latent variable into 
the domain where elements are not continuous. However, 
if we do the back-propagation as another continuous value 
generating process, the generator is steadily guided to gener-
ate real-like data by the discriminator, rather than suddenly 
jumping to the target discrete values. Thus, such a slight 
change of the generator cannot easily look for a limited real 
discrete data domain [134].

4.3.1  Speech

Vougioukas et al. [113] presented a system for generating 
videos of a talking head, using a still image of a person and 
an audio clip containing speech, that doesn’t rely on any 
handcrafted intermediate features. This method is capable of 
generating subject independent realistic videos directly from 
raw audio. Our method can generate videos which have (a) 
lip movements that are in sync with the audio and (b) natural 
facial expressions such as blinks and eyebrow movements. 
We achieve this by using a temporal GAN with 2 discrimi-
nators, which are capable of capturing different aspects of 
the video.

Variational autoencoding Wasserstein GAN (VAW-
GAN) [43] is a voice conversion system combining GAN 
and VAE frameworks. The encoder infers a phonetic con-
tent z of the source voice, and the decoder synthesizes the 
converted target voice given a target speakers information 

Fig. 21  Example—domain 
adaptation [57]
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y, similar to conditional VAE [127]. VAE suffers from gen-
erating sharp results due to the oversimplified assumption 
of the Gaussian distribution. To address this issue, VAW-
GAN incorporates WGAN [4] similarly to VAEGAN [59]. 
By assigning the decoder to the generator, it aims to recon-
struct the target voice given the speaker representation.

4.3.2  Music

A simple and direct approach is continuous RNN-GAN 
(C-RNN-GAN) [82], where it models both the generator 
and discriminator as an RNN with long-short term memory 
(LSTM) [40], directly extracting whole sequences of music. 
However, as mentioned above, we can only evaluate whole 
sequences, and not a partially generated sequence. Further-
more, its results are not highly satisfactory since it does not 
consider the discrete property of the music elements. In 
contrast, sequence GAN (SeqGAN) [134], object reinforced 
GAN (ORGAN) [36], and Lee et al. [62] employed a policy 
gradient algorithm, and not generating whole sequences at 
once.

4.4  Improving Classification and Recognition

After GAN training is complete, the neural network can be 
reused for other downstream tasks. For example, outputs of 
the convolutional layers of the discriminator can be used as 
a feature extractor, with simple linear models fitted on top 
of these features using a modest quantity of (image; label) 
pairs [92, 96]. The quality of the unsupervised represen-
tations within a DCGAN network have been assessed by 
applying a regularized L2-SVM classifier to a feature vector 
extracted from the (trained) discriminator [92]. Good clas-
sification scores were achieved using this approach on both 
supervised and semi-supervised datasets, even those that 
were disjoint from the original training data. The quality of 
the data representation may be improved when adversarial 
training includes jointly learning an inference mechanism 
such as with an ALI [26]. A representation vector was built 

using last three hidden layers of the ALI encoder, a similar 
L2-SVM classifier, yet achieved a misclassification rate sig-
nificantly lower than the DCGAN [26]. Additionally, ALI 
has achieved state of the art classification results when label 
information is incorporated into the training routine. When 
labelled training data is in limited supply, adversarial train-
ing may also be used to synthesize more training samples.

Shrivastava et al.  [99] used GANs to refine synthetic 
images, while maintaining their annotation information. By 
training models only on GAN-refined synthetic images (i.e. 
no real training data), the authors achieved state-of-the-art 
performance on pose and gaze estimation tasks. Similarly, 
good results were obtained for gaze estimation and predic-
tion using a spatiotemporal GAN architecture [139]. In some 
cases, models trained on synthetic data do not generalize 
well when applied to real data [9].

Bousmalis et al. [9] proposed to address this problem 
by adapting synthetic samples from a source domain to 
match a target domain using adversarial training. Addition-
ally, Liu et al. [71] propose using multiple GANs one per 
domain with tied weights to synthesize pairs of correspond-
ing images samples from different domains. Because the 
quality of generated samples is hard to quantitatively judge 
across models, classification tasks are likely to remain an 
important quantitative tool for performance assessment of 
GANs, even as new and diverse applications in computer 
vision are explored.

4.5  Miscellaneous Applications

4.5.1  Drug Discovery

While many researchers apply generative adversarial net-
works to images and videos, researchers from Insilico Medi-
cine [77] proposed an approach of artificially intelligent drug 
discovery using GANs. They attempt to train the Generator 
to sample drug candidates for a given disease as precisely as 
possible to existing drugs from a Drug Database. After train-
ing, it’s possible to generate a drug for a previously incurable 

Fig. 22  Application of GAN in 
drug discovery [77]
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disease using the Generator, and using the Discriminator to 
determine whether the sampled drug actually cures the given 
disease as depicted in Fig. 22.

4.5.2  Molecule Development in Oncology

Insilico Medicine [77] showed the pipeline of generating 
new anticancer molecules with a defined set of parameters. 
Their aim is to predict drug responses and compounds which 
are good at fighting against cancer cells. Researchers pro-
posed an Adversarial Autoencoder (AAE) model for identi-
fication and generation of new compounds based on avail-
able biochemical data. There are many available biochemical 
data in databases such as Cancer Cell Line Encyclopedia 
(CCLE), Genomics of Drug Sensitivity in Cancer (GDSC), 
and NCI-60 cancer cell line collection. All of them contain 
screening data for different drug experiments against cancer.

AAE was trained using Growth Inhibition percentage data 
(GI, which shows the reduction in the number of cancer cells 
after the treatment), drug concentrations, and fingerprints 
as inputs. The fingerprint of the molecule contains a fixed 
number of bits in which each bit represents the absence or 
presence of some feature as depicted in Fig. 23. The latent 
layer consists of 5 neurons, one of which is responsible for 
GI (efficiency against cancer cells) and the four others are 
discriminated with normal distribution. So, a regression 
term was added to the Encoder cost function. Furthermore, 
the Encoder was restricted to map the same fingerprint to the 
same latent vector, independently from input concentration 
by additional manifold cost.

The above cited application field of GAN can be sum-
marized in Table 2.

5  Discussion

The above cited sections describes GANs and working of 
variants and their applications to various domains. This 
section provides the advantages and disadvantages of using 

GANs. It also highlights the major challenges and issues in 
using GANs.

5.1  Advantages

The major advantage of GAN is that it requires no definition 
of the shape of the probability distribution of the generator 
model. Therefore, GAN naturally avoids concerning trac-
table density forms which need to represent complex and 
high-dimensional distributions. Compared to other models 
using explicitly defined probability density [96], GAN has 
following advantages:

1. It can parallelize the sampling of the generated data. 
In the case of PixelCNN  [96], PixelRNN [89] and 
WaveNet [88], their speed of generation is very slow 
due to their autoregressive fashion, wherein pg(x) is 
decomposed into a product of conditional distribu-
tions given previously generated values. For example, 
in image generation, autoregressive models generate an 
image pixel by pixel where the probability distribution 
of future pixel cannot be inherently computed until the 
value of the previous pixel is computed. Thus, the gen-
eration process is naturally slow, which becomes more 
severe for high-dimensional data generation such as 
speech synthesis [88]. On the other hand, the genera-
tor of GAN is a simple feed-forward network mapping 
from Z to X. The generator produces data all at once, 
not pixel by pixel as autoregressive models. Therefore, 
GAN can generate samples in parallel, which results in 
a considerable speed up for sampling, and this property 
gives more opportunity for GAN to be used in various 
real applications.

2. It does not need to approximate a likelihood by introduc-
ing a lower bound, as in VAE. VAE tries to maximize a 
likelihood by introducing a variational lower bound. The 
strategy of VAE is to maximize a tractable variational 
lower bound, guaranteeing it to be at least as high as 
the lower bound, even when the likelihood is intracta-

Fig. 23  Application of GAN in 
oncology [50]
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ble. However, VAE still needs assumptions on a prior 
and posterior distributions, which do not guarantee the 
tight bound of Eq. 12. This strong assumption on dis-
tributions makes the approximation to the maximum 
likelihood biased. In contrast, GAN does not approxi-
mate the likelihood and does not need any probability 
distribution assumptions. Instead, GAN is designed to 
solve an adversarial game between the generator and the 

discriminator, and a Nash equilibrium of the GAN game 
corresponds to finding the real data distribution [34].

3. It is empirically known to produce better and sharper 
result than other generative models, especially VAE. In 
VAE, a distribution of pixel values in the reconstructed 
image is modeled as a conditional Gaussian distribu-
tion. This causes the optimization of log(pg(x ∣ z) to 
be equivalent to minimizing the Euclidean term of 
−‖x − Decoder(z)‖2 , which can be interpreted as a 
regression problem fitting the mean. GAN is highly 
capable of capturing the high-frequency parts of an 
image. Since the generator tries to fool the discrimina-
tor to recover the real data distribution, the generator 
evolves to lead even the high-frequency parts to deceive 
the discriminator. In addition, some techniques such as 
PatchGAN helps GAN produce and capture sharper 
results more effectively.

5.2  Disadvantages

GAN was developed to solve the minimax game between 
the generator and the discriminator. Though several stud-
ies discuss the convergence and the existence of the Nash 
equilibrium of the GAN game, training of GAN is highly 
unstable and difficult to converge. GAN solves the minimax 
game through the gradient descent method iteratively for 
the generator and the discriminator. In perspective of the 
cost function: V(G; D), a solution for the GAN game is the 
Nash equilibrium which is a point of parameters where the 
discriminator’s cost and the generator’s cost is minimum 
with respect to their parameters. However, the decrease of 
the discriminator’s cost function can cause the increase of 
the generator’s cost function and vice versa. Thus, a con-
vergence of the GAN game may often fail and is prone to 
be unstable.

Another important issue for GAN is the mode collapse 
problem. This problem is very detrimental for GAN that is 
applied in real applications since a mode collapse restricts 
GAN’s ability of diversity. The generator is only forced to 
deceive the discriminator, not for representing multi-modal-
ity of a real data distribution. A mode collapse thus can hap-
pen even in a simple experiment [13], and this discourages 
applying GAN due to the low diversity. Various studies tried 
to address the mode collapse by using a new object function, 
or adding new components [13, 33]. However, for a highly 
complex and multi-modal real data distribution, the mode 
collapse still remains a problem GAN has to solve.

5.3  Future Challenges

GANs have attracted considerable attention due to their abil-
ity to leverage vast amounts of unlabelled data. While much 
progress has been made to alleviate some of the challenges 

Table 2  Summary of GANs’ applications

Study Application

AGEGAN [3] Change facial attributes
DR-GAN [108] Change facial attributes
SD-GAN [25] Change facial attributes
SL-GAN [130] Change facial attributes
VAE-GAN [59] Change facial attributes
CAAE [140] Change facial attributes
Age-cGAN  [3] Change facial attributes
DCGAN [29] De-occlusion
U-nets and GANs [31] De-occlusion
CyCADA [41] Domain adaptation
FD-GAN [32] Human Pose identification
GP GAN [123] Image blending
CycleGAN [147] Image translation
DiscoGAN [56] Image translation
PAN [117] Image translation
Pix2pix [47] Image translation
Coupled GAN [71] Joint image generation
DI2IN [128] Medical image segmentation
SCAN [20] Medical image segmentation
SegAN [126] Medical image segmentation
C-RNN-GAN [82] Music generation
ORGAN [36] Music generation
SeqGAN [131] Music generation
Perceptual GAN  [64] Object detection
SeGAN [27] Object detection
Perceptual GAN [66] Object detection
Anime GAN [49] Object detection
GeneGAN [146] Object transfiguration
GP-GAN [123] Object transfiguration
PN-GAN [91] Person re-identification
IPGAN [70] Person re-identification
VAW-GAN [43] Speech conversion
SRGAN [60] Super resolution
WGAN [4] Super resolution
Stack GAN [44] Text to image
TAC-GAN [21] Text to image
MoCoGAN [109] Video generation
Pose-GAN [114] Video generation
VGAN [112] Video generation
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related to training and evaluating GANs, there still remain 
several open challenges.

1. Mode Collapse A common problem of GANs involves 
the generator collapsing to produce a small family of 
similar samples (partial collapse), and in the worst 
case producing simply a single sample (complete col-
lapse) [4]. Diversity in the generator can be increased 
by practical hacks to balance the distribution of samples 
produced by the discriminator for real and fake batches, 
or by employing multiple GANs to cover the different 
modes of the probability distribution [107]. Yet another 
solution to alleviate mode collapse is to alter the dis-
tance measure used to compare statistical distributions.

  Arjovsky et al. [4] proposed to compare distributions 
based on a Wasserstein distance rather than a KL-based 
divergence (DCGAN) or a total-variation distance 
(energy-based GAN).

  Metz et al. [79] proposed unrolling the discriminator 
for several steps, i.e., letting it calculate its updates on 
the current generator for several steps, and then using 
the “unrolled” discriminators to update the generator 
using the normal minimax objective. As normal, the dis-
criminator only trains on its update from one step, but 
the generator now has access to how the discriminator 
would update itself. With the usual one step generator 
objective, the discriminator will simply assign a low 
probability to the generator’s previous outputs, forcing 
the generator to move, resulting either in convergence, 
or an endless cycle of mode hopping. However, with the 
unrolled objective, the generator can prevent the dis-
criminator from focusing on the previous update, and 
update its own generations with the foresight of how the 
discriminator would have responded.

2. Training instability—saddle points In a GAN, the Hes-
sian of the loss function becomes indefinite. The optimal 
solution, therefore, lies in finding a saddle point rather 
than a local minimum. In deep learning, a large number 
of optimizers depend only on the first derivative of the 
loss function; converging to a saddle point for GANs 
requires good initialization.

  By invoking the stable manifold theorem from non-
linear systems theory, Lee et al. [61] showed that, were 
we to select the initial points of an optimizer at random, 
gradient descent would not converge to a saddle with 
probability one. Additionally, Mescheder et al.  [78] 
have argued that convergence of a GAN’s objective 
function suffers from the presence of a zero real part 
of the Jacobian matrix as well as eigenvalues with large 
imaginary parts. This is disheartening for GAN training; 
yet, due to the existence of second-order optimizers, not 
all hope is lost. Unfortunately, Newton-type methods 
have compute-time complexity that scales cubically 

or quadratically with the dimension of the parameters. 
Therefore, another line of questions lies in applying and 
scaling second-order optimizers for adversarial train-
ing. A more fundamental problem is the existence of 
an equilibrium for a GAN. Using results from Bayes-
ian non-parametrics, Arora et al. [5] connects the exist-
ence of the equilibrium to a finite mixture of neural 
networks—this means that below a certain capacity, no 
equilibrium might exist. On a closely related note, it has 
also been argued that whilst GAN training can appear to 
have converged, the trained distribution could still be far 
away from the target distribution. To alleviate this issue, 
Arora et al. [5] propose a new measure called the ‘neural 
net distance’. Evaluating Generative Models: How can 
one gauge the fidelity of samples synthesized by a gen-
erative models? Should we use a likelihood estimation? 
Can a GAN trained using one methodology be compared 
to another (model comparison)? These are open-ended 
questions that are not only relevant for GANs, but also 
for probabilistic models, in general. Theis [105] argued 
that evaluating GANs using different measures can lead 
conflicting conclusions about the quality of synthesised 
samples; the decision to select one measure over another 
depends on the application.

6  Conclusion

The explosion of interest in GANs is driven not only by their 
potential to learn deep, highly non-linear mappings from 
a latent space into a data space and back, but also by their 
potential to make use of the vast quantities of unlabelled 
image data that remain closed to deep representation learn-
ing. Within the subtleties of GAN training, there are many 
opportunities for developments in theory and algorithms, 
and with the power of deep networks, there are vast oppor-
tunities for new applications.
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