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Abstract
The scaled boundary finite element method (SBFEM) is a semi-analytical approach to solving partial differential equations, in 
which a finite element approximation is deployed for the domain’s boundary, while analytical solutions are sought to describe 
the behavior in the interior of the domain. Since the inception of SBFEM, a number of different shape functions have been 
applied to interpolate the solution on the boundary. The overarching goal of this communication is to review the respective 
advantages and disadvantages of the available interpolants in the context of the SBFEM and develop recommendations 
regarding their application. In addition, we discuss in detail the discretization employed in the so-called diagonal SBFEM.

Keywords  Scaled boundary finite element method (SBFEM) · High-order elements · Isogeometric analysis (IGA) · 
Hierarchical shape functions (p-FEM) · Spectral element method (SEM)

1  Introduction

The scaled boundary finite element method (SBFEM) is a 
semi-analytical approach to solving partial differential equa-
tions (PDEs) [54]. It is based on transforming the PDE into 
a set of coupled ordinary differential equations (ODEs) by

1.	 performing a coordinate transformation (x, y) → (�, �) , 
where � denotes a parametrization of the domain’s 
boundary while � defines a coordinate pointing from 
the origin of the coordinate system to the boundary, and

2.	 applying the method of weighted residuals [57] or the 
virtual work principle [11] to obtain a weak form of the 
governing equation with respect to the coordinate �.

Roughly speaking, the �-direction is discretized “in the finite 
element sense” [21, 56, 66], which means that the solution is 
interpolated using trial functions and a weak form is derived 
in this coordinate similar to the general concept of finite 
elements. That being said, we may employ different types 

of trial or shape functions, which basically have to fulfill 
the same requirement as the ones used in any other variant 
of the finite element method (FEM). In the early days of 
the SBFEM, the standard linear and quadratic shape func-
tions as established in the conventional FEM have been used 
almost exclusively [56, 57, 64, 65]. As alternative classes of 
interpolants became more popular in finite element approxi-
mations (as well as boundary elements, meshless methods, 
and others), these techniques also found their way into the 
SBFEM. In particular, Vu & Deeks discussed the applica-
tion of high-order polynomial shape functions—namely 
Lagrange polynomials and hierarchical shape functions—
in the SBFEM [59]. The use of high-order polynomials is 
motivated by the attainable higher convergence rates1 and 
the consequent reduction of the total number of degrees of 
freedom (DOF) compared to a low-order interpolation. In 
this context, it is worthwhile noting that the stiffness and 
mass matrices computed in the SBFEM for each subdomain 
are always dense matrices. Thus, the trade-off between a 
reduction in the number of DOF and the loss of sparsity of 
the system of equations—which is a crucial consideration 
in other finite element-based high order methods—is not as 
significant in the SBFEM.

 *	 Hauke Gravenkamp 
	 hauke.gravenkamp@uni‑due.de

1	 University of Duisburg-Essen, Universitätsstraße 15, 
45141 Essen, Germany

2	 University of New South Wales Sydney, Sydney 2052, 
Australia

1  Exponential convergence can be achieved by using a p-refinement 
for sufficiently smooth problems or an hp-refinement if singularities 
are present in the solution.

http://orcid.org/0000-0002-2641-6384
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-019-09385-1&domain=pdf


474	 H. Gravenkamp et al.

1 3

Since the introduction of high-order polynomial shape 
functions in the SBFEM, a number of other options have 
been proposed in separate publications. One of these alter-
natives is the use of Fourier shape functions, which con-
sist of a series of harmonic functions. Such interpolation is 
sometimes believed to be advantageous for wave propagation 
problems since analytical solutions, if available, are typically 
constructed based on a Fourier series. Within the scope of 
the SBFEM, the application of Fourier shape functions is 
discussed in [27]. A rather different class of interpolants is 
constructed based on the concept of moving least squares. 
This idea is adopted from meshless Petrov Galerkin [10] 
and element-free Galerkin [26] methods. Furthermore, 
B-splines and NURBS (non-uniform rational B-splines) 
have been used as shape functions in attempts to combine 
the advantages of the SBFEM and isogeometric analysis 
(IGA) [20, 41, 42, 47, 61]. In a particular variant, a NURBS-
based approximation has been applied in both the radial and 
circumferential direction in the SBFEM formulation [7, 8, 
37]. It may be noted that some of the authors mentioned 
above choose a terminology different to SBFEM due to them 
using non-standard elements (e.g., “local Petrov-Galerkin 
scaled boundary method” [10]) or solving the resulting ODE 
numerically (e.g., “hybrid collocation-Galerkin method” 
[37]). However, to keep confusion to a minimum, we will 
use the term SBFEM throughout this paper, since the differ-
ent types of interpolation will be discussed in detail.

Another variant of the SBFEM has been published in a 
series of papers under the name “diagonal SBFEM” [31–36, 
46, 67]. This approach uses a set of particular polynomials in 
conjunction with nodal quadrature with the aim to decouple 
the set of ODEs, hence describing each node individually. 
The interaction of the nodes on the boundary is then approx-
imated by a very different solution procedure that sums up 
the forces acting on the scaling center and distributes them 
to the nodes. While we are not employing this solution pro-
cedure, we shed some light on this approach and discuss in 
detail the class of polynomial shape functions used therein. 
We demonstrate that these shape functions are not suitable to 
be used in a standard FE or SBFE approach. We also provide 
some insight as to why in certain simple cases, the diagonal 
SBFEM may potentially still give reasonable results (when 
employing the special solution procedure) even though the 
shape functions do not possess the requirements necessary 
to achieve convergence.

While basic information on all these different interpo-
lations can be found in the literature, direct comparisons 
in the context of the SBFEM are scarce. For instance, the 
high-order Fourier shape functions have only been com-
pared to conventional low order finite elements [26], though 
they can be expected to have more similarity with, e.g., 
p-refined Lagrange elements. Similarly, it is not apparent 
how the meshless approaches [10, 26] compare to high-order 

interpolations. High-order NURBS-based interpolants are 
also usually compared against low-order finite elements [41, 
47, 61] or against high-order Lagrange shape functions for 
very specific cases [20]. In this paper, we clarify the differ-
ences between the available interpolants both from a theo-
retical and practical viewpoint. We also show the results 
of several numerical experiments and derive some general 
statements and recommendations that will help the reader 
to make an informed decision on the implementation of a 
suitable approach in the context of the SBFEM.

2 � Summary of the SBFEM

Since the topic of this contribution will be of relevance for 
readers who are already familiar with the concept and basic 
formulation of the SBFEM, we shall abstain from present-
ing a lengthy summary of this method and only provide 
the key equations that will be required in the scope of this 
paper. Details can be found, e.g., in Refs. [19, 53, 54, 57]. 
Also, for brevity, we will restrict the discussion to the two-
dimensional case even though most of the statements can be 
adapted for three-dimensional problems straightforwardly. 
In a nutshell, the PDE that is to be solved on a domain is 
transformed into a set of ODEs by employing the concept 
of semi-discretization: The solution u(x, y)—say a displace-
ment or temperature field2—is approximated as

where �(�) denotes a set of shape functions in one spatial 
coordinate and �(�) are the corresponding “nodal” solutions 
which are a priori unknown functions of the second spatial 
coordinate. The chosen coordinate system is one where � 
describes a parametrization of the boundary and � is a linear 
parameter that equals 1 at the boundary and 0 at the origin, 
which is usually inside the domain. The relationship between 
the Cartesian coordinates (x, y) and the scaled boundary 
coordinates (�, �) is typically defined as 

where �, � are vectors of nodal coordinates and �̂(𝜂) are 
shape functions used to interpolate the boundary. Most 
implementations of the SBFEM assume �̂(𝜂) = �(𝜂) , i.e., 
isoparametric elements. Applying the method of weighted 
residuals [57] or the virtual work principle [11, 17] in the � 

(1)u(x(�, �), y(�, �)) = �(�)�(�)

(2a)x = 𝜉�̂(𝜂)�

(2b)y = 𝜉�̂(𝜂)�

2  We assume here for ease of notation that the solution u(x,  y) is a 
scalar field. The extension to vector fields is straightforward and anal-
ogous to other finite element approaches.
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direction results in a semi-analytical matrix ODE, here given 
in the frequency domain ( � ≥ 0):

The coefficient matrices are somewhat similar to stiffness 
and mass matrices in the FEM but involve only integrations 
over the boundary. For the common case of linear elasticity, 
they are given as 

with the mass density � , elasticity/constitutive matrix � , and

Rather than solving the differential Eq. (3) directly, it is 
often transformed into an equation for the (dynamic) stiff-
ness �(�) on the boundary, which reads [53]

In the static case, Eq. (7) reduces to a Riccati equation for 
the static stiffness matrix � , which can be solved using 
standard techniques:

For dynamic cases, it is now quite common to solve Eq. (7) 
by applying the continued fraction expansion detailed in 
Refs. [5, 53] of the form

(3)�0�
2�,�� + (�0 − �1 + �T

1
)��,� − �2� + �2�2�0� = 0

(4a)�0 = ∫
1

−1

�T
1
��1|J|d�

(4b)�1 = ∫
1

−1

�T
2
��1|J|d�

(4c)�2 = ∫
1

−1

�T
2
��2|J|d�

(4d)�0 = �∫
1

−1

�T�|J| d�

(5)�1 =�1�, �2 = �2�,�

(6)

�1 =
1

�J�
⎡
⎢⎢⎣

y,� 0

0 − x,�
−x,� y,�

⎤
⎥⎥⎦
;

�2 =
1

�J�
⎡⎢⎢⎣

−y 0

0 x

x − y

⎤⎥⎥⎦

(7)
(�(�) − �1)�

−1
0
(�(�) − �T

1
) − �2 + ��(�),� + �2�0 = 0

(8)(� − �1)�
−1
0
(� − �T

1
) − �2 = 0

where Mcf  denotes the order of the expansion. The matrices 
�
(1)

0
…�

(Mcf )

0
 and �(1)

1
…�

(Mcf )

1
 are computed recursively start-

ing from the static stiffness and mass matrices �,� [53]. 
The matrices �(1) …�(Mcf ) have been introduced for precon-
ditioning [5]. For computations in the time domain, high-
order stiffness and mass matrices �h,�h are constructed 
using the terms of the continued fraction expansion 

which can be utilized to form the equation of motion.

3 � High‑Order Interpolation

In this section, we will present the different classes of high-
order interpolants that have been applied in the context of 
the SBFEM and discuss their properties. The interpolation 
functions (shape functions) are defined in a local coordi-
nate system that represents a parametrization of a part of 
the boundary. According to standard finite element nota-
tion, each section of the boundary is mapped onto a local 
coordinate on the interval � ∈ [−1, 1] . In some cases, we 
will instead use the parametrization s ∈ [0, 1] in order to 
conform with the corresponding literature. To avoid nota-
tional overload, we will use the same symbols in the dif-
ferent subsections, e.g., a set of shape functions is denoted 
as Ni(�) or Ni(s) irrespective of the class of interpolation 
currently addressed.

3.1 � Lagrange Polynomials

Lagrange interpolation polynomials are probably still the 
most popular high-order interpolants within the field of 
Computational Mechanics. In the framework of the SBFEM, 
these interpolations have been introduced in Ref. [59] and 
since then have been employed in countless applications 
(e.g., [44, 55]) due to their comparably simple and stable 
computation for almost arbitrary order. Rather detailed dis-
cussions of Lagrange shape functions of a very high order 
in the SBFEM can be found in Refs. [17, 20, 22]. Given a 

(9)

�(�) =� − �2� − �4�(1)(�
(1)

0
− �2�

(1)

1

− �4�(2)(�
(2)

0
− �2�

(2)

1
−⋯ − �4�(Mcf )(�

(Mcf )

0

− �2�
(Mcf )

1
)−1[�(Mcf )]T)−1[�(2)]T)−1[�(1)]T ,

(10a)�h = diag(�, �
(1)

0
, �

(2)

0
,… , �

(Mcf )

0
)

(10b)�h =

⎡
⎢⎢⎢⎢⎢⎣

� − �(1) 0 ⋯ 0

−[�(1)]T �
(1)

1
− �(2) ⋯ 0

0 − [�(2)]T �
(2)

1
⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ �
(Mcf )

1

⎤⎥⎥⎥⎥⎥⎦
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set of interpolation points (nodes), denoted by �i , Lagrange 
polynomials of order p are defined as [1]:

Such shape functions constitute a rather consistent exten-
sion of conventional low order (linear and quadratic) finite 
elements, inasmuch as they exhibit similar properties, in 
particular:

•	 Kronecker-delta-property:

•	 partition of unity:

Equation (12) also implies that these shape functions are 
‘node-based’ since u(�i, �) = ui(�) , i.e., the unknowns retain 
a physical meaning. Therefore, the post-processing and the 
application of Dirichlet boundary conditions are straight-
forward. While Lagrange interpolation polynomials can, in 
principle, be defined for any set of distinct nodes, their prop-
erties depend critically on the nodal positions.

In the wide body of literature, there are several possibili-
ties to distribute these points within the reference interval 
[−1, 1] , see Ref. [51]. In the context of the FEM and SEM, 
the following distributions are commonly used: equidis-
tant (EQ), Gauss-Lobatto-Chebyshev (GLC), and Gauss-
Lobatto-Legendre (GLL) points:

1.	 Equidistant points [69]:

–	 �
EQ

i
= −1 + 2

i−1

p
, i = 1, 2,… , p+ 1 .

2.	 GLC points [48]:

–	 �GLC
i

= − cos
(

i−1

p
π
)
, i = 1, 2,… , p+ 1 .

3.	 GLL points [29]:

–	 𝜂GLL
i

=

⎧⎪⎨⎪⎩

−1 for i= 1

𝜂̂i for i= 2, 3,… , p

+1 for i= p+ 1

.

In the above definition, 𝜂̂i denotes the roots of the Lobatto 
polynomial Lop−1(�) of order p − 1 , which is defined as the 
first derivative of the Legendre polynomial Lp(�) of order p 
[51]

(11)Ni(�) =

p+1∏
j=1,j≠i

� − �j

�i − �j
, i = 1, 2,… , p + 1 .

(12)Ni(�j) = �ij

(13)
∑
i

Ni(�) = 1

(14)Lop−1 (�) =
dLp(�)

d�
.

Note that the equidistant nodal distribution suffers from the 
so-called Runge effect [51], i.e., the quality of the interpo-
lation deteriorates close to the interval boundaries due to 
significant oscillations. This problem can be circumvented 
easily by utilizing non-equidistant distributions such as GLL 
and GLC points. Here, it has been shown that the results 
are stable for very high orders ( p≥ 100 ) [17, 20]. Figure 1 
shows an example of Lagrange interpolation of order 5 
( n = 6 denotes the number of degrees of freedom) based 
on GLL points. The most prominent drawback of this set 
of shape functions is that when changing the order p, all 
shape functions are modified and therefore, the coefficient 
matrices have to be computed anew. Lagrange interpola-
tion polynomials are commonly used in the spectral element 
method (SEM), especially for wave propagation phenomena 
[9, 52]. In this context, the main advantage is the possibil-
ity to diagonalize the mass matrix (mass lumping) without 
loss of accuracy, i.e., retaining optimal convergence rates 
[13, 14]. Similarly, when using the SBFEM, the coefficient 
matrices �0 and �0 can be lumped without loss of accuracy 
[18, 23, 53, 59]. Consequently, the inversion of �0—which 
is performed for each subdomain separately—becomes triv-
ial (Eq. (7)); however, for most applications, this does not 
constitute a very significant advantage. The mass matrix � 
(Eq. (9)) is a dense matrix independent of the selected type 
of shape functions.

Remark 1  Lumping of the mass matrix (SEM) or the coef-
ficient matrices �0 and �0 (SBFEM) is often achieved by 
employing a so-called nodal quadrature, i.e., by choosing 
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Fig. 1   Lagrange shape functions defined on GLL points, n = 6
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the nodes to coincide with the quadrature points. A popular 
variant uses the GLL points listed above in conjunction with 
the corresponding GLL quadrature. In doing so, the matrices 
�0 and �0 are slightly “under-integrated” by at least one 
order, meaning that (assuming a constant Jacobian) these 
matrices involve integrals of polynomials of order 2p, while 
the corresponding GLL quadrature integrates polynomials of 
order 2p − 1 exactly. Alternatively, the matrices can be inte-
grated exactly (using Gauss-Legendre quadrature or more 
integration points) and then lumped by row-summing. In 
most cases, both approaches lead to identical or very similar 
results; the reason for this behaviour is explained in detail 
in Ref. [14]. In the current paper, we will not distinguish 
between these cases and always use full integration when 
dealing with Lagrange shape functions.

3.2 � Hierarchical Shape Functions

The concept of hierarchical shape functions is linked to the 
p-version of the FEM [16, 58]. In this context, hierarchical 
means that all shape functions of order p are contained in 
the set of shape functions of order p+ 1 . Though the term 
hierarchical shape functions usually refers to the specific 
type of interpolation discussed here, the property of being 
hierarchical is, strictly speaking, common between various 
kinds of interpolations. To avoid confusion (and create a 
concise abbreviation), we will often refer to this class of 
interpolants as p-FEM. The construction of these shape 
functions is based on the normalized integrals of the Leg-
endre polynomials:

with Li−1(x) denoting the Legendre polynomial of order i− 1 . 
The functions defined by Eq. (15) contain polynomials of 
order 2 up to p and vanish at the interval limits. To create 
a set of complete polynomials, these interpolants are aug-
mented by the standard linear finite element shape functions: 

 
Figure 2 shows the hierarchical shape functions up to an 

order of p = 5 . The Legendre polynomials can be computed 
using Bonnet’s recursion expression [15] or Rodriguez’ 
formula

(15)Ni(�) =

√
2i − 1

2

�

∫
−1

Li−1(x)dx , i = 2, 3,… , p ,

(16a)N1(�) =
1

2
(1 − �) ,

(16b)Np+1(�) =
1

2
(1 + �) .

Note that only the points at the interval limits possess the 
Kronecker delta property and therefore, only the DOFs asso-
ciated with these modes retain physical meaning. Conse-
quently, these shape functions are often referred to as modal 
functions [51]. This results in an additional step in the post-
processing and the application of Dirichlet boundary condi-
tions (BCs). The linear shape functions alone possess both 
the Kronecker delta and the partition of unity (PUM) proper-
ties while the higher order modes ensure the completeness 
of the ansatz for arbitrary polynomial orders. The hierarchi-
cal property implies that the order of interpolation can be 
increased by including additional shape functions without 
modifying the existing ones. In the SBFEM, the coefficient 
matrices inherit this hierarchy, similar to the stiffness and 
mass matrices in the FEM [15]. Details on adaptive refine-
ment procedures in the context of the SBFEM are published 
in Ref. [60].

3.3 � Fourier Shape Functions

Another approach to constructing shape functions of arbi-
trary order consists in using a series of harmonic functions. 
Their application in the SBFEM has been proposed by He 
et al. [27] and was inspired by the works of Guan et al. 
[24] and Khaji et al. [25, 30] who employed similar con-
cepts in the framework of the FEM and BEM, respectively. 
The resulting interpolants are referred to as Fourier shape 

(17)Li(x) =
1

2ii!

di

dxi
[(x2 − 1)i] , i ∈ ℕ0
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Fig. 2   p-FEM shape functions, n = 6
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functions since they resemble an approximation of the result-
ing displacement field by a Fourier series. To ensure that 
a subset of the basis functions forms a partition of unity 
and is capable of representing constant strains, the constant 
term of the standard Fourier series is replaced by two linear 
functions:

Here aj, bj are the unknown coefficients of the basis func-
tions. The reason why this approach may seem advantageous 
is mainly due to the simplicity of computing the required 
basis of sine and cosine functions. Furthermore, it is some-
times assumed that these shape functions may perform 
particularly well in dynamic (vibration, wave propagation) 
problems, where analytical solutions typically involve a 
superposition of harmonic functions which are solutions to 
the linear wave equation. Regarding the latter assumption, 
Fourier shape functions in our experience do not live up to 
the expectations. Except for those cases where the solution 
can be represented exactly by a truncated Fourier series, an 
approximation by harmonic functions does not seem to be 
superior to complete polynomials. Also, the ease of comput-
ing the harmonic basis functions comes at a cost: Using a 
standard Fourier series would lead to several shape func-
tions being nonzero at the element limits (the cosine terms 
in our notation) which would make assembling elements and 
applying Dirichlet boundary conditions overly cumbersome. 
To circumvent this problem, two variants of Fourier shape 
functions can be found in the literature and are summarized 
as follows:

3.3.1 � Complete (Node‑Based) Fourier Shape Functions

He et al. [27] suggested using the harmonic basis given in 
Eq. (18) to create node-based shape functions by enforcing 
the Kronecker-delta-property at uniformly distributed points 
throughout the element. First, the basis of interpolants cor-
responding to Eq. (18) is written as

It should be noted that since the total number of basis func-
tions is n = 2m + 2 , we will only deal with even numbers 

(18)

uh(s) = a0
L − s

L
+ b0

s

L

+

m∑
j=1

(
aj cos

(
jπ

L
s

)
+ bj sin

(
jπ

L
s

))

(19)�i(s) =

⎧
⎪⎪⎨⎪⎪⎩

L−s

L
i = 1

cos
�

(i−1)π

L
s
�

2 ≤ i ≤ m + 1

sin
�

(i−1−m)π

L
s
�

m + 2 ≤ i ≤ 2m + 1
s

L
i = 2m + 2

of shape functions for this type of interpolation.3 The basis 
provided in Eq. (19) is then used to construct a set of shape 
functions that fulfill the Kronecker-delta-property at uni-
formly distributed points, denoted as si . For this purpose, a 
transfer matrix � is assembled as

The node-based shape functions follow as

Figure 3 shows the resulting shape functions for a 6-noded 
element. While this approach does work, it requires the solu-
tion of a system of equations and breaks the hierarchial prop-
erty of the basis. Furthermore, as the shape functions are 
not polynomial, we may require more integration points to 
obtain accurate results. Hence, it is not obvious whether such 
a basis should be preferred over a polynomial one. While in 
Ref. [27], a relatively fast convergence is demonstrated when 
increasing the number of terms in the Fourier series (simi-
lar to p-refinement), the results are only compared against 
h-refinement using conventional low-order (linear and quad-
ratic) Lagrange shape functions. For a fair comparison, we 
shall contrast the results we obtained by this approach with 
other interpolations using p-refinement.

(20)Tij = �j

(
si
)

i, j = 1, 2,… , 2m + 2.

(21)�(s) = �(s)�−1 .
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Fig. 3   Complete Fourier shape functions, n = 6

3  While it would generally be possible to omit one of the sine or 
cosine terms to create an odd-numbered basis of shape functions, this 
would lead to ill-conditioning in the steps that follow.
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3.3.2 � Incomplete (Hierarchic) Fourier Shape Functions

Another approach to avoiding the problem of creating con-
nectivity of multiple shape functions at the element limits 
simply ignores the cosine terms of the Fourier series alto-
gether. The remaining linear and sine functions compose a 
set of hierarchical shape functions which are straightforward 
to compute. This approach is only rarely used, and the main 
area of application is vibration analysis [38, 39, 45]. To our 
knowledge, these shape functions have not been applied in 
the context of the SBFEM; however, they are included in 
this discussion since they constitute a simple modification 
of the aforementioned harmonic interpolation. We will refer 
to these interpolants as incomplete Fourier shape functions 
throughout this paper. Omitting the cosine terms in Eq. (19), 
the remaining functions constitute a hierarchical set of shape 
functions, i.e.,

Figure 4 shows the first six shape functions of this class. In 
principle, the same disadvantages as mentioned in Sect. 3.2 
apply. The most appealing advantage of using this kind of 
function is its simplicity. It can be implemented without any 
difficulties in existing codes. However, due to the incomplete 
ansatz, the attainable convergence rate is lower compared to 
that of high-order polynomials [12].

(22)Ni(s) =

⎧⎪⎨⎪⎩

L−s

L
i = 1

sin
�

(i−1)π

L
s
�

2 ≤ i ≤ m + 1
s

L
i = m + 2

3.4 � B‑splines/NURBS

Splines provide another class of interpolants that can be 
used to construct trial and test spaces in the framework 
of the FEM. Most commonly, so-called basis splines or 
B-splines are employed which are piece-wise polynomial 
functions of one parameter, say � . In our application, � 
will be used as a parametrization of the boundary, but it is 
not necessarily identical to the standard local coordinates 
� or s. A set of spline basis functions is defined by their 
polynomial order p and a set of �-values, so-called knots:

Constructing a spline of order p requires at least p + 2 
knots—not all of which need to be distinct. Repeating a knot 
k times results in the spline basis functions to be of class 
Cp−k , i.e., they are p − k times continuously differentiable 
at this particular knot. As an example, to construct a set of 
6 basis functions of order 5 on the interval [−1, 1] , we can 
use the knot vector

For a given knot vector, the corresponding set of basis func-
tions Bp

i
(�) can be computed recursively using the well-

known Cox-de Boor formula:

Details can be found in the literature on computer-aided 
design (CAD) or isogeometric analysis (IGA), e.g., in Refs. 
[28, 50].

Remark 2  Since the literature usually presents the Cox-
de Boor equation in this compact form, it may be worth-
while noting that two important pieces of information are 
commonly omitted: Firstly, the number of basis functions 
reduces by one in each step of the iteration. Hence, if m 
is the number of knots, the index variable i is given as 
i = 1 … m − (p + 1) . In our example, Eq. (24), the 12 knots 
will thus yield 6 splines of order 5 as we would expect for 
a complete set of shape functions. Secondly, if knots are 
repeated, some of the terms in Eq. (25) may be undefined, as 
they contain a term of the form 1∕(�i+p − �i) with �i+p = �i . 
These terms are set to zero. In other words, Eq. (25) gener-
ally implies that “all undefined terms are ignored” to avoid 
distinguishing different cases.

(23)� =
{
�1, �2,… , �n+p+1

}

(24)
� = {−1,−1,−1,−1,−1,−1,+1,+1,+1,+1,+1,+1} .

(25)

p = 0 ∶ B0
i
(𝜁) =

{
1 if 𝜁i ≤ 𝜁 < 𝜁i+1
0 otherwise

p > 0 ∶ B
p

i
(𝜁) =

𝜁 − 𝜁i

𝜁i+p − 𝜁i
B
p−1

i
(𝜁)

+
𝜁i+p+1 − 𝜁

𝜁i+p+1 − 𝜁i+1
B
p−1

i+1
(𝜁)
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Fig. 4   Incomplete Fourier shape functions, n = 6
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Such a complete set of basis functions can be employed 
as shape functions in any FEM or SBFEM framework. Fig-
ure 5 presents those functions for the knot vector given by 
Eq. (24). Due to the repeated knots at the interval limits, the 
interpolated solution will be C0-continuous and interpolatory 
at these points. Hence, such finite elements based on spline 
shape functions can be coupled directly in order to perform 
h-refinement. For a given element, p-refinement can be per-
formed while increasing the multiplicity of the interval’s 
endpoints in the knot vector. On the other hand, splines offer 
another type of refinement that has no direct analog in other 
finite element approaches: By inserting (unrepeated) knots 
within the interval for a higher order spline, we increase the 
number of shape functions of the same order without reduc-
ing the continuity at these additional points. For instance, 
the knot vector

leads to 6 basis functions of order 2, see Fig. 6. Inasmuch as 
these shape functions are continuously differentiable within 
the element, this so-called k-refinement is not directly com-
parable to neither h- nor p-refinement in the conventional 
finite element context.

Notwithstanding the fact that B-spline basis func-
tions can directly be used as shape functions in the FEM 
or SBFEM, there are strong arguments for working 
instead with a generalization called non-uniform rational 

(26)� =
{
−1,−1,−1,−

1

2
, 0,+

1

2
,+1,+1,+1

}

B-splines (NURBS). NURBS are rational functions and are 
derived from a basis of B-splines as

with weight factors wi > 0 . The motivation for using 
NURBS instead of simple B-splines mainly stems from 
their flexibility in representing the geometry (rather than 
their capabilities in interpolating the displacement field). 
The advantages of NURBS are:

1.	 By choosing adequate weight factors wi , certain geom-
etries like circular arcs and ellipses can be represented 
exactly. This is demonstrated for the case of a circular 
arc in Fig. 7 where a NURBS representation is compared 
to an interpolation using quadratic Lagrange polyno-
mials. While NURBS are capable of representing the 
boundary exactly, quadratic polynomials introduce small 
errors in the geometry approximation that may affect the 
convergence.

2.	 NURBS are commonly used in computer-aided design. 
Hence, if the geometry to be modeled has been created 
in a CAD software, the geometry definition can, in prin-
ciple, be used directly to define the trial and test func-
tions of the weak form. This concept is the core idea of 
isogeometric analysis (IGA).

(27)
Ni(�) =

B
p

i
(�)wi

n∑
j=1

B
p

j
(�)wj
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Fig. 5   B-splines, n = 6
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Fig. 6   B-splines, p = 2 , n = 6
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On the downside, NURBS, in general, require a larger 
number of integration points compared to polynomial 
shape functions—except for the case where all wj equal 1, 
i.e., NURBS are identical to B-splines. Like in any other 
finite element approximation, the geometry is interpolated 
based on a set of given Cartesian coordinates, referred to as 
control points:

However, since the weights determine the geometry repre-
sentation, they are typically stored with the coordinates:

Whether the IGA paradigm can be exploited effectively 
depends on the problem statement, in particular, how the 
geometry is defined. We shall not veer into a discussion of 
the pros and cons of this approach and refer instead to the 
abundance of literature on this matter. Within the scope of 
the SBFEM, the use of NURBS shape functions has been 
reported for classical elastostatic problems [41] and linear 
fracture mechanics [47]. It was demonstrated that k-refined 
NURBS can lead to a faster convergence than h-refined 
Lagrange elements. This can, of course, be ascribed to the 
exact geometry representation and higher continuity when 
using NURBS. In Ref. [20], NURBS shape functions have 
been employed for the simulation of guided elastic waves. 
The results therein indicate that while it may not be advisory 
to employ B-splines of a very high order, k-refinement in 
conjunction with B-splines of a moderately large order (say 
6) can at least in some cases outperform p-refined Lagrange 

(28)�(�) =

n∑
i=1

Ni(�)�i .

(29)�i =
[
xi, yi, zi,wi

]T
=

[
�i
wi

]
i = 1,… , n

elements. Furthermore, it has been found that NURBS 
tend to be somewhat more robust at high frequencies, for 
the special case studied there. Variants of the SBFEM with 
NURBS shape functions are also used in Refs. [42, 43, 61].4 
In another modification of the SBFEM, the semi-analytical 
paradigm has been replaced with a fully numerical model 
by employing collocation or a Galerkin-based weak form in 
the radial direction [6–8, 37].

3.5 � Element‑Free Galerkin Scaled Boundary 
Method

A rather different type of interpolation is utilized in the 
element-free Galerkin scaled boundary method. This vari-
ant was introduced in an attempt to incorporate features of 
meshless methods in the SBFEM. He et al. [26] suggested 
the element-free Galerkin approach as an improvement to 
the previously used meshless Petrov-Galerkin technique 
[10], which according to the authors is not always robust and 
results in a non-symmetric stiffness matrix. The element-free 
Galerkin approach has been implemented along the lines of 
the work presented by Belytschko [4].

Before summarizing the formulation of this type of inter-
polation, we shall discuss the motivation for this work. The 
core idea of meshless methods is to avoid the difficult task 
of decomposing the computational domain into non-overlap-
ping elements and determining their connectivity. Instead, 
the domain is described by a number of points (referred to 
as nodes like in finite elements) which are associated with an 
interpolant with local support. The interpolating functions 
are somewhat similar to shape functions in conventional 
finite element approximations; however, they can overlap 
in virtually arbitrary ways, thus removing the necessity to 
specify a particular connectivity for these points. The pros 
and cons of this general approach in various applications 
are discussed in great detail in the literature. On the other 
hand, the reader may wonder how this concept applies in 
the context of the SBFEM. At least in two dimensions, we 
only require interpolation along the boundaries of subdo-
mains. These boundaries need to be parametrized in order 
to formulate the scaled boundary coordinate transformation 
and perform the numerical integration. Hence, employ-
ing a “meshless” approach would imply only that we may 
distribute nodes arbitrarily along the boundary. However, 
once the parametrization of each subdomain’s boundary is 
established, the placement of nodes is a rather straightfor-
ward task. In Ref. [26], the nodes are distributed uniformly 

Fig. 7   Representation of a circular arc ( � = 110
◦ ) using NURBS and 

Lagrange interpolation of order 2

4  While other authors refer to the combination of IGA and SBFEM 
as SBIGA [41], SIGA [42, 43], or IGA-SBFEM [61] we will stick 
to the term SBFEM since in the context of this discussion the 
approaches differ only in the choice of shape functions.
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along each boundary section. In other words, the “meshless 
property” of this approach is not exploited, and thus this 
type of interpolation merely constitutes a different type of 
shape function that can be compared directly against the 
other methods summarized before.

Roughly speaking, the interpolation in this approach is 
obtained by (low order) polynomials that are modified by 
a weight function. The weight function determines the size 
of the local support for the nodes as well as the smoothness 
of the interpolation. The shape functions are computed by 
a moving least squares (MLS) formulation. Let �(s) denote 
a complete monomial basis in the local coordinate s—for 
instance �(s) = [1, s]T or �(s) = [1, s, s2]T for a linear or 
quadratic basis, respectively. Furthermore, wi(s) is a weight 
function associated with node i (different types of weight 
functions will be presented below). The set of interpolation 
functions is computed as

with

and

where si denote the nodal coordinates. Since in meshless 
methods, the interpolation functions may overlap more 
or less arbitrarily, they will not form a partition-of-unity 
nor fulfill the Kronecker-delta property. In Ref. [26], the 
authors construct a set of nodal shape functions using the 
same approach as for the case of Fourier shape functions (cf. 
Sect. 3.3.1), thus we obtain5 

with

The spatial derivatives of the shape functions are computed 
as

with

(30)�(s) = �(s)T�(s)−1�(s)

(31)�(s) =

n∑
i=1

wi(s)�(si)�
T(si)

(32)�(s) =
[
w1(s)�(s1), w2(s)�(s2), … , wN(s)�(sn)

]

(33)�(s) = �(s)�−1 = �(s)T�(s)−1�(s)�−1

(34)Tij = �j

(
si
)

i, j = 1, 2,… , n .

(35)�(s),s = �(s),s�
−1

(36)�,s = �T
,s
�−1� + �T(�−1

,s
� + �−1�,s)

and

The remaining question is how to choose the weight func-
tions wi(s) , which determine not only the domain of influ-
ence (the size of the local support) but also the smoothness 
of the shape functions. If we were to use piece-wise constant 
weight functions on each edge, we would recover the stand-
ard finite element shape functions. Commonly used weight 
functions include

1.	 Conical weight function: 

2.	 Exponential weight function: 

3.	 Spline weight function: 

where di(s) = |s − si| denotes the distance from the ith node; 
ri is the size of the local support, and ci is a constant that 
determines the decay of the exponential weight function. 
Generally, it can be a difficult task to choose optimal values 
for the parameters ri, ci . On the other hand, since we are 
not exploiting the meshless features in the SBFEM we shall 
for now choose ri = 1 , thus selecting the whole edge as the 
domain of influence. This will result in all nodes along each 
edge to be coupled, similar to what happens when perform-
ing p-refinement with other types of shape functions. Fur-
thermore, we will choose ci = ri∕4 as recommended in Ref. 
[68]. In the context of the SBFEM, only the spline weight 
function has been tested by He et al. [26]. Belytschko et al. 
compared exponential and conical weight functions and 
concluded that the exponential function “performs far bet-
ter than a conical weight function” [4]. Zhu et al. used both 
Gaussian and spline weight functions within a boundary ele-
ment framework and found the Gaussian weight functions to 
be superior [68]. Other authors used slightly different ver-
sions of the aforementioned weight functions, see e.g. [40, 
49]. We implemented and tested all three of the weight func-
tions presented above. However, we also found the expo-
nential weight functions to lead to the smallest errors in our 
examples and hence, we will only include those results in the 
comparison. The shape functions for order 6 using the expo-
nential weight functions are exemplarily depicted in Fig. 8.

(37)�−1
,s

= −�−1�,s�
−1 .

wi(s) =

{
1 − (di∕ri)

2, di ≤ ri
0, di > ri

wi(s) =

{
exp[−(di∕ci)

2]−exp[−(ri∕ci)
2]

1−exp[−(ri∕ci)
2]

, di ≤ ri

0, di > ri

wi(s) =

{
1 − 6

(
di

ri

)2

+ 8
(

di

ri

)3

− 3
(

di

ri

)4

, di ≤ ri

0, di > ri

5  It can be noted that—compared to Fourier shape functions—the 
basis functions �(s) are relatively expensive to compute, which may 
be a drawback when constructing a nodal basis of high order.
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3.6 � Diagonal SBFEM

A very peculiar type of shape functions has been proposed 
by Khodakarami et al. and is applied in a series of papers on 
the so-called ‘diagonal SBFEM’ [31–36, 46]. To be clear: 
We do not recommend these shape functions to be employed 
in a general SBFEM framework (or any other finite element 
based approach). They are included in the context of this 
discussion merely for completeness as well as to shed some 
light on an approach that has puzzled many researchers who 
have worked on the SBFEM. We will refer to these shape 
functions—for want of a better name—as ‘diagonal shape 
functions,’ as they have been constructed with the purpose of 
creating diagonal coefficient matrices in the SBFEM.

The underlying idea is the following: Remember that 
when employing spectral elements, the concept of nodal 
quadrature requires evaluating the shape functions exclu-
sively at each node, where only one of the shape func-
tions has a nonzero value (Kronecker-delta-property) [51]. 
This leads to the mass matrix—or in the case of SBFEM 
the matrices �0 and �0—being diagonal. The matrices 
�1 and �2 , on the other hand, are not diagonal since they 
involve the derivatives of shape functions. It may now 
seem like an obvious idea to come up with shape func-
tions whose derivatives either also fulfill the Kronecker-
delta-property or (as Khodakarami et al. opted for in the 
diagonal SBFEM) vanish at all nodes. This would cause 
all coefficient matrices to be diagonal if not zero. Do such 
shape functions exist? Yes and no. It is, of course, pos-
sible to construct polynomials that exhibit the mentioned 

properties, and this is precisely what has been done in the 
papers on the diagonal SBFEM. On the other hand, such 
polynomials will not be promising candidates to be used 
as general shape functions.

Shape functions of this type can be constructed for a 
given configuration of nodes by choosing a sufficiently 
large basis of polynomials and enforcing the aforemen-
tioned conditions at the nodes. If the element is defined 
by n nodes, there are in total 2n conditions for each shape 
function and its first derivative, which requires a polyno-
mial basis of order 2n − 1 . Hence, assuming polynomials 
of the form

the coefficients a(i)
k

 of the ith shape function are obtained by 
solving the linear system of equations

where �i denote the nodal positions and �i is a unit vector 
with the ith component equal to 1. The first n equations 
enforce the Kronecker-delta-property of the shape functions 
while the remaining equations ensure that the derivatives 
vanish at all nodes. Once the coefficients are computed for 
each polynomial, these shape functions can, in principle, 
be employed in the conventional SBFEM formulation. If, 
in addition, a nodal quadrature rule is applied as suggested 
in Refs. [31–36, 46], the SBFEM coefficient matrices will 
indeed be diagonal. Furthermore, the matrix �2 vanishes (as 
it only involves the derivatives of the shape functions at the 
nodes), leading to the modified SBFEM equation

where �� denotes a vector of body loads and �̃� , �̃� are the 
diagonal coefficient matrices that we distinguish from the 
general (fully integrated or weakly under-integrated) ones in 
the previous sections. The diagonal shape functions derived 
for 6 nodes are exemplarily depicted in Fig. 9.

(38)Ni(�) =

2n−1∑
k=0

a
(i)

k
�k

(39)

(40)𝜉�̃���,𝜉𝜉 + �̃���,𝜉 + 𝜉�� = 0
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Fig. 8   EFG shape functions (moving least squares), n = 6
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Remark 3  When employing nodal quadrature, the matrix 
�̃� vanishes unless an element on the boundary is curved.6 
Thus, for the case of straight elements and in the absence of 
body loads, Eq. (40) reduces to

which is solved by linear functions in � . Keeping in mind 
that �̃� is diagonal, Eq. (41) constitutes a set of equations of 
the form Eiui,�� = 0 . Hence, roughly speaking, the diagonal 
formulation can be interpreted as replacing the continuum by 
a set of springs connecting the nodes with the scaling center.

We would like to stress again that in the current contribu-
tion we are solely interested in the shape functions and their 
applicability in the general SBFEM without discussing in 
too much detail other particularities of the diagonal SBFEM. 
In the system of ODEs (41), the DOFs are decoupled; hence, 
they move independently. This behavior obviously does 
not represent the physical system to be modeled; thus, the 
straightforward solution of this system of equations does not 
yield very meaningful results. To overcome this problem, 
additional steps are introduced in the solution procedure of 
the diagonal SBFEM, which (in our understanding) involve 

(41)𝜉�̃���,𝜉𝜉 = 0

the computation of stresses at the scaling center due to exter-
nal loads, interpolating these stresses over the domain, re-
interpreting those interpolated stresses as body loads, and 
finally solving Eq. (40) again while considering these body 
loads in the vector �� . These additional steps are omitted in 
most publications dealing with the diagonal SBFEM and are 
only briefly mentioned in Ref. [33]. The details, however, 
remain obscure to us and we were, unfortunately, unable to 
reproduce any of the results presented in the previous pub-
lications [31–36, 46].

Nevertheless, we can—and we should—have a closer 
look at the proposed shape functions. We shall keep in mind 
that we always have the option to fully integrate the coef-
ficient matrices by using a sufficient number of quadrature 
points. This will lead to fully populated (i.e., coupled) sys-
tems such that the same solution procedures can be applied 
that are well-known to work in the SBFEM. Regarding the 
‘diagonal’ shape functions, there exist, in our view, the fol-
lowing main issues:

1.	 The polynomial basis obtained from solving Eq. (39) is 
incomplete. If the element consists of n nodes, there will 
be only n shape functions of order 2n − 1 . Consequently, 
not every polynomial of order 2n − 1 can be written as a 
superposition of such shape functions.

2.	 To obtain the desirable feature of diagonal coefficient 
matrices, nodal quadrature has to be employed. In 
doing so, the shape functions are very severely under-
integrated. For instance, the matrix �0 contains the prod-
ucts of shape functions which are polynomials of order 
4n − 2 , while the n point GLL quadrature (as employed 
in [33]) is only exact for polynomials up to an order of 
2n + 1 . Instead of GLL integration, a Clenshaw-Curtis 
quadrature rule is employed in several other publica-
tions. In this case, the issue of under-integration is even 
more severe, since Clenshaw-Curtis quadrature only 
integrates polynomials up to a degree of n − 1 exactly. In 
addition, the Jacobian |J(�)| may be non-constant, which 
deteriorates the accuracy of the quadrature even further.

To clarify, the former of these issues does in itself not neces-
sarily guarantee that these shape functions are bound to fail 
since incomplete polynomials could in general still lead to 
converging interpolations with the convergence rate being 
determined by the highest complete polynomial. However, 
in the case of the diagonal shape functions, the severity of 
this issue can be demonstrated by a simple example: Con-
sider a 2-noded element, in which case the shape functions 
are given as two polynomials of order 3 (see also Table 1 
in Ref. [34]):

(42)N1 = 0.5 − 0.75� + 0.25�3
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Fig. 9   Shape functions used in the ‘diagonal SBFEM’, n = 6

6  This is because �̃� involves second derivatives of the Cartesian 
coordinates w.r.t. � (see Eqs.  (36),  (20),  (11) in [34]), and the Coor-
dinates are interpolated using standard finite element shape functions. 
All other terms in �̃� involve derivatives of the diagonal shape func-
tions and thus vanish when nodal quadrature is applied.
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The shape functions are plotted in Fig. 10 together with an 
example of an interpolation between two arbitrary nodal val-
ues. Obviously, a superposition of the form u = u1N1 + u2N2 
cannot represent an arbitrary complete cubic or quadratic 
function, as the shape functions do not involve any quad-
ratic terms. But more importantly, the shape functions also 
cannot represent linear functions because of the additional 
cubic terms. The only case where the cubic terms cancel out 
is obtained for u1 = u2 , in which case the resulting function 
is constant over the element. For this reason, this type of 
shape functions is not even capable of representing a con-
stant strain field (linear displacement), which would be a 
requirement to pass the simplest patch test.

Remark 4  Since these sets of polynomials lack the most fun-
damental properties that would justify their use as valid 
shape functions, the reader may wonder whether the diago-
nal ODE (41) is at all meaningful or does at least represent 
a comprehensible approximation. To answer this, let us look 
at this approach from a different angle and focus on the way 
these shape functions are integrated to obtain the coefficient 
matrices. Similar to the concept of spectral elements detailed 
in Sect. 3.1, the nodal quadrature technique is applied, which 
means that the shape functions and their derivatives are only 
evaluated at the nodes. Think about what this means: Each 
shape function is constructed such that it equals one at the 
corresponding node, where simultaneously all other shape 
functions vanish (Kronecker-delta-property). The standard 
spectral elements—and in general all node-based elements 
for that matter—share the same property. Consequently, 
integrating the shape functions (not their derivatives!) by 
nodal quadrature gives exactly the same results, no matter if 
we assume conventional Lagrange interpolation polynomials 

(43)N2 = 0.5 + 0.75� − 0.25�3

or the shape functions proposed for the diagonal SBFEM.7 
Hence, if we use the same nodal positions and the same 
quadrature scheme as for conventional spectral elements, the 
diagonal SBFEM will compute the identical �� and �� 
matrices as they only involve integrations of products of 
shape functions.8 The derivatives d

d�
N(�) of the shape func-

tions, on the other hand, vanish at all nodes by construction, 
which is in contrast to all valid shape functions that are 
known to us. Hence, employing nodal quadrature leads to all 
terms in �1 and �2 that contain these derivatives to vanish. 
In other words, instead of constructing the ’diagonal’ shape 
functions with all their confusing properties, we can re-
interpret this approach as employing conventional nodal 
shape functions and assuming their derivatives to vanish. 
Consequently, Eq. (40) provides an approximation in which 
the degrees of freedom are decoupled simply by neglecting 
the derivative of the solution in the direction along the 
boundary.

4 � Numerical examples

In this section, selected examples are presented to assess and 
compare the performances of the different shape functions 
in the framework of the SBFEM. We shall restrict ourselves 
to rather basic benchmark examples that are simple enough 
for the results to be reproduced while still highlighting the 
different features of the various interpolants that we com-
pare. The benchmark examples are also chosen such that 
the results provide an unbiased comparison without invol-
untarily favoring one or the other approach which can easily 
happen when arbitrarily choosing a more complex geometry 
and problem statement.

4.1 � Square Geometry

We begin by analyzing a simple geometry, namely a square 
of unit size, and perform several quite standard numeri-
cal experiments to evaluate the properties of the different 
high order interpolations. The general problem statement is 
shown in Fig. 11a. The computational domain is
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Fig. 10   Shape functions of a 2-noded element as used in the ‘diag-
onal SBFEM’. The solution between the nodes is interpolated by a 
cubic function (dashed line)

7  This argument, of course, assumes that both approaches use the 
same nodal positions and quadrature scheme. In Ref. [33], GLL-
points are used to construct the shape functions just like in SEM. 
In most other publications on the diagonal SBFEM, GLC points are 
employed which would be a possible yet highly uncommon choice in 
other approaches.
8  The interested reader is referred to Ref. [14], in particular Sect. 4.1, 
which contains a similar argument to demonstrate the equivalence of 
different mass lumping techniques.
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The boundary of the domain is denoted by Γ , while Γu and 
Γq refer to those parts of the boundary where Dirichlet and 
nonzero von-Neumann boundary conditions are applied.

4.1.1 � Patch Test

For a linear patch test, we choose the mesh depicted in 
Fig. 11b and solve the boundary value problem9

with the exact solution

(also shown in Fig. 11b). We compare the L2 norm of the 
relative error in the nodal solutions when using different 
interpolations. Figure 12a shows the resulting errors when 
increasing the number of degrees of freedom n on each edge. 
For most interpolants, this corresponds to p-refinement, i.e., 
an increase in the order of the shape functions. However, in 
the case of moving least squares (as used in the element-free 
Galerkin approach), the number of overlapping functions is 
increased while their order remains constant. On the other 
hand, since the resulting degrees of freedom are fully cou-
pled on each edge, this type of refinement is effectively more 

(44)Ω =
{
(x, y) ∈ ℝ

2 ||| 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}

(45)�u = 0 in Ω

(46)u = 0 on Γu

(47)
�u

�n
= 1 on Γq

(48)
�u

�n
= 0 on Γ ⧵ (Γu ∪ Γq)

(49)u(x, y) = y
similar to p- than to h-refinement in terms of implementa-
tion, sparsity of the coefficient matrices, and continuity of 
the trial space. In the case of Fourier shape functions, this 
type of refinement corresponds to increasing the number of 
harmonic terms (which, strictly speaking, is not p-refinement 
as p denotes the order of a polynomial). Lastly, it should be 
noted that in the case of the ‘diagonal’ shape functions, the 
highest order of the (incomplete) polynomials is increased 
by two in each refinement step. Notwithstanding these dif-
ferences between the interpolants, we shall refer to the type 
of refinement as described above generally as p-refinement 
for easier reference.

The results demonstrate that Lagrange interpolation, p-
FEM, Fourier shape functions, and NURBS in conjunction 
with the SBFEM pass the patch test. This is of course not 
surprising as all these types of shape functions include the 
linear terms and also the analytical solution in the radial 

Problem statement Absolute displacement(a) (b)

Fig. 11   Square geometry: a problem statement, b mesh used for the 
patch test and displacement solution
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(b) Condition number

Fig. 12   Square geometry, patch test: a L
2
 norm of the relative dis-

placement error for varying element order; b condition number of the 
stiffness matrix

9  Physically, this case corresponds to a steady-state heat conduction 
problem with unit thermal diffusivity in the absence of body loads.
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coordinate � is capable of representing a linear solution 
exactly. When employing moving least squares (MLS), the 
patch test is not passed exactly since the final shape func-
tions are not polynomials; nevertheless, accurate results 
(errors between 10−7 and 10−12 ) are obtained. As anticipated, 
based on the discussion in Sect. 3.6, the shape functions 
used in the diagonal SBFEM do not pass the patch test and 
lead to false results. Since in all examples we tested, the 
errors resulting from using diagonal shape functions are of 
the order of 100% we will omit these results in the following 
sections and conclude immediately that these shape func-
tions do not constitute valid interpolants.

Figure 12b presents the condition number of the stiff-
ness matrix. With regard to this aspect, most of the tested 
interpolations show quite similar behavior. Only when using 
MLS or NURBS does the condition number increase much 
faster with the number of DOFs. In the case of NURBS, 
this problem can be avoided by applying k-refinement with 
splines of a moderately high order as will be demonstrated 
in the following sections.

Another essential difference between the classes of shape 
functions lies in the number of quadrature points required 
to integrate the SBFEM coefficient matrices. As an exam-
ple, we plot the error obtained in the patch test against the 
number of integration points (standard Gauss quadrature 
is employed) for n = 6 , see Fig. 13. When using Lagrange 
interpolation, p-FEM, and B-splines, the shape functions 
consist of polynomials of order p = 5 . The coefficient 
matrices �0,�1,�2 require the integration of polynomials 
of order 2p, 2p − 1 , 2p − 2 , respectively and are thus inte-
grated exactly when using at least p + 1 integration points.10 
Fourier shape functions and MLS are not integrated exactly 

by a Gauss quadrature. Still, in the case of Fourier shape 
functions, the error converges to almost machine precision 
when using ten integration points. MLS shape functions 
require significantly more integration points to obtain fully 
converged solutions.

4.1.2 � Modal Analysis

For our next test, we perform a modal analysis on the same 
square geometry as before. We consider the scalar wave 
equation with vanishing natural boundary conditions, i.e.,

This problem statement describes a rectangular closed 
acoustic cavity. The exact solution of the eigenfrequencies 
are given as

We apply the solution procedure based on continued frac-
tions with preconditioning (Eq. (10), [5, 53]). To study the 
convergence behavior, we compute the first ten nonzero 
eigenfrequencies and analyze the L2 norm of the relative 
error w.r.t. the exact solution. Figure 14a shows the result-
ing errors when performing p-refinement11 on each of the 
domain’s four edges. For this smooth problem, exponential 
convergence is achieved when employing a set of complete 
polynomials (such as Lagrange polynomials or p-FEM). The 
polynomial shape functions show optimal convergence to 
an error level of about 10−12 at which point small numeri-
cal errors accumulated in the continued fraction expansion 
begin to dominate the deviation from the reference solu-
tion. B-splines generally show a very similar trend compared 
with polynomial shape functions while the solution begins to 
deviate when increasing the order above 11. This finding is 
consistent with previous studies showing that it is generally 
not recommended to increase the order of B-splines arbitrar-
ily but rather to employ k-refinement with a moderately large 
order, say 6 or 8 [20].

It is interesting to note that for this particular problem 
complete Fourier shape functions indeed result in slightly 
smaller errors compared to their polynomial counterparts—
at least for moderately large element orders. This can be 
understood since, in the current test case, the exact solution 

(50)�u = �ttu in Ω

(51)
�u

�n
= 0 on Γ .

(52)�mn = 2π

[(
m

2

)2

+
(
n

2

)2
] 1

2

, m, n ∈ ℕ0 .

5 10 15 20 25

10-15

10-10
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100

Fig. 13   Square geometry, patch test: convergence of the relative error 
when increasing the number of integration points

10  Again, it should be noted that in this example, where the geometry 
consists of straight edges only, the NURBS shape functions reduce to 
simple B-splines.

11  Again assuming the somewhat loose definition of p-refinement as 
discussed in Sect. 4.1.1.



488	 H. Gravenkamp et al.

1 3

for each mode is given as a product of harmonic functions 
in the two spatial coordinates

where Amn are arbitrary amplitudes. Thus, the solution along 
the � direction can, in principle, be represented exactly by 
the Fourier shape functions. In fact, when employing Fou-
rier shape functions in a conventional high order finite ele-
ment method, this problem is solved to machine precision, 
provided that a sufficient number of terms are included to 
represent the highest mode of interest. On the other hand, 
since this special example constitutes the best case scenario 
for applying Fourier shape functions in the SBFEM, the 
improvement compared to polynomial shape functions is 
rather small and comes at the cost of requiring a larger num-
ber of integration points. The further examples will demon-
strate that in more general cases, usually no gain in accuracy 
can be expected when using Fourier shape functions. In this 
example also the MLS shape functions show slightly better 
performance compared to polynomial shape functions up to 
10 DOFs per edge. The incomplete Fourier shape functions 

(53)umn(x, y) = Amn cos (πmx) cos (πny)

lead to significantly slower convergence and hence cannot 
be recommended despite their convenient implementation. 
Again, using ‘diagonal’ shape functions did not yield cor-
rect results.

In Fig. 14b we present a comparison between p- and 
k-refinement when using NURBS (or B-splines in this 
case). Along each edge, k-refinement leads to a set of 
continuously differentiable shape functions of the given 
order p. Using k-refinement and an order of 8 leads to 
a convergence rate similar to p-refinement. The very 
similar behavior of p = 6 and p = 8 indicate that it is not 
advantageous to increase the order further.

Figure 14c, d illustrates the results of h-refinement. 
Here, the error is plotted against the inverse of the element 
length on the boundary h. Using Lagrange polynomials, 
p-FEM, or splines in the SBFEM, we obtain very similar 
convergence rates compared to a high order finite element 
formulation (not shown in the figure). Fourier shape func-
tions and MLS lead to sub-optimal convergence rates.
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Fig. 14   Square geometry, modal analysis: relative error of the first 10 nonzero eigenfrequencies of the acoustic cavity
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4.1.3 � Transient Analysis

As a transient problem, we consider once more the sca-
lar wave equation of the square domain where we choose 
a time-dependent load described by a Ricker pulse. The 
problem statement reads

where we define

with t0 = 1.5, f0 = 1 , and we choose tmax = 3 . Since this is 
essentially a one-dimensional problem, an accurate refer-
ence solution has been computed using a one-dimensional 
discretization consisting of 32 conventional spectral ele-
ments of order 8. The problem is solved in the time domain 
by employing an explicit second-order central difference 

(54)�u = �ttu in Ω for 0 ≤ t ≤ tmax

(55)u = 0 on Γu

(56)
�u

�n
= P(t) on Γq

(57)
�u

�n
= 0 on Γ ⧵ (Γu ∪ Γq)

(58)P(t) = (1 − 2π2f 2
0
(t − t0)

2) exp(−π2f 2
0
(t − t0)

2)

scheme. To ensure that the error in the time integration is 
negligible, we use a very small time step �t = 5 ⋅ 10−6 to 
compute the reference solution.

For the comparison of different interpolations, the 
boundary of the square geometry has again been dis-
cretized using line elements of uniform size. Figure 15a 
shows an example of a mesh consisting of four elements 
of order 14 (in this example, the nodes are positioned at 
the GLL points). The figure also shows a snapshot of the 
solution at the time t = 2.5 . The continued fraction expan-
sion is used to obtain the equation of motion. A continued 
fraction order of 8 has been chosen, which has been tested 
to be sufficient such that the approximation in the scaling 
direction � does not affect the results. The equation of 
motion has been integrated with the same central differ-
ence scheme as the reference solution but with a larger 
time step of �t = 10−4 . This was done to verify once more 
that the time integration is converged and does not intro-
duce relevant errors.

Figure 15b shows the computed solution on the top of 
the geometry (extracted at the position (1, 1)). The accu-
racy is evaluated by computing the L2 norm of the relative 
deviation from the reference solution at the vertices and 
all time steps. Results are presented in Fig. 16. Again, 
Lagrange polynomials, p-FEM, and NURBS lead to practi-
cally identical results for reasonable element order. When 
performing p-refinement, complete Fourier shape func-
tions and moving least squares result in slightly smaller 
error levels for this wave propagation problem, while 
incomplete Fourier shape functions lead to very poor con-
vergence. When performing h-refinement, however, com-
plete Fourier shape functions show a similarly slow con-
vergence compared to the incomplete ones. Considering 
NURBS, rapid convergence can be achieved by employing 
k-refinement instead of p-refinement, which is consistent 
with the findings in Ref. [63] in the context of high order 
FEMs. In this example, a polynomial degree of 4 suffices 
to obtain very accurate results (Fig. 16b).

4.2 � Plate with Hole

As a further benchmark example that involves a curved 
boundary, we investigate an infinite elastic plate with a cir-
cular hole of radius a as depicted in Fig. 17a. A uniform 
tension T is applied in the x-direction and a plane stress 
state is assumed. We discretize a finite section of a quarter 
of the plate and apply symmetric boundary conditions on 
the boundary sections Γu . The analytical solution for the 
displacements ui and corresponding stresses �ij in a polar 
coordinate system (r, �) is presented in numerous textbooks 
and papers, e.g., Refs. [2, 3]. A particularly compact form 
can be found online [62]:

(a)

(b)

Fig. 15   Square geometry, transient analysis: solution and exemplary 
mesh
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In the above equations,  � = (3 − �)∕(1 + �) and 
� = E∕2(1 + �) denote the Lamé parameters, with Young’s 
modulus E and Poisson’s ratio � . For our example, we choose 

(59)
ua
x
(r, �) =

Ta

8�

[
r

a
(� + 1) cos �

+
2a

r
((1 + �) cos � + cos 3�) −

2a3

r3
cos 3�

]

(60)
ua
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Ta

8�

[
r

a
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2a
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2a3
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sin 3�

]
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E = 1, � = 0.3 . The computed absolute displacements are 
plotted in Fig. 17b which also shows an exemplary mesh, 
consisting of 14 four-noded elements. We apply a traction 
boundary condition based on the analytical solution at the 
boundary sections Γq and evaluate the numerical error with 
respect to the analytical solution of the displacement at the 
vertices. Hence, the problem statement reads

with

(62)ℒ
T�ℒu = 0 in Ω

(63)n
T
u = 0 on Γu

(64)n
T� = n

T�a on Γq

(65)n
T� = � on Γ ⧵ (Γu ∪ Γq)
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Fig. 16   Square geometry, transient analysis: relative error of the solution
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Figure 18 shows the computed error in displacements when 
performing h- and p-refinement. The results are consistent 
with the previous test cases. However, it should be noted 
that when employing NURBS, the geometry is described 
exactly, whereas in all other cases, Lagrange interpolation 
has been applied to approximate the geometry, leading to 
an additional geometry error. On the other hand, this effect 
is rather small, in fact, it is only notable when comparing 
the NURBS-based interpolation to a low-order Lagrange 
interpolation. For this reason, we included the element order 
p = 2 in this comparison. Only then can we find a slightly 
smaller error when using NURBS compared to polynomial 
shape functions for coarse discretizations (Fig. 18b). When 
applying high-order interpolation, the error due to the geom-
etry approximation is not significant in this example.

(66)ℒ =

⎛⎜⎜⎝

�x 0

0 �y
�y �x

⎞⎟⎟⎠
.

5 � Conclusion

In this contribution, we have presented an overview of 
the different higher-order interpolants that are being used 
within the framework of the scaled boundary finite ele-
ment method. Due to the large number of different tech-
niques, it may not be possible to cover each and every 
detail within one paper. Nevertheless, we hope that this 
article did provide valuable insights into the theory and 
application of the numerous approaches and may serve 
as a useful reference to guide the reader to a suitable 
choice of interpolation and facilitate the implementation 
of the SBFEM. Based on our theoretical considerations 
and numerical examples, three different classes of shape 
functions can generally be recommended and should be 
chosen based on the application:

1.	 Lagrange interpolation polynomials are the most 
commonly employed shape functions in the SBFEM. 
They are node-based (which facilitates post-processing 
and the application of Dirichlet boundary conditions), 
relatively easy to compute and stable for large element 
orders. Since Lagrange shape functions are complete 
polynomials, they can lead to optimal convergence rates 
for smooth problems.

2.	 Hierarchical shape functions (“p-FEM”) yield the 
same convergence rates as Lagrange shape functions 
and require similar effort in the implementation. The 
main distinction lies in their hierarchical nature, which 
has both benefits and drawbacks. The application of 
nonzero Dirichlet boundary conditions may be consid-
ered somewhat inconvenient, and in many cases, post-
processing will be slightly more involved. On the other 
hand, hierarchical shape functions allow adjusting the 
order of interpolation without computing the coefficient 
matrices from scratch. However, while this is an elegant 
feature, applications, where the (repeated) computation 
of the coefficient matrices constitutes a significant bot-
tleneck, may be scarce.

3.	 NUBRS are the interpolation of choice when employ-
ing an isogeometric concept. If the geometry is already 
defined by such splines, they can be used as both trial 
and test functions in the SBFEM. The attainable con-
vergence rates are typically similar to the ones obtained 
by Lagrange polynomials or p-FEM. However, if high-
order interpolation is desired, it is typically more robust 
to use k-refinement based on splines of moderate order.

Some of the shape functions we tested—even though they 
are functional and yield converging results—do not seem 
to offer any particular benefits that would justify their 
implementation within the SBFEM. The idea of Fourier 

Problem statement

Absolute displacement

(a)

(b)

Fig. 17   Plate with hole, static analysis: a problem statement, b exem-
plary mesh and displacement solution
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shape functions may appear attractive due to the straight-
forward computation of the underlying harmonic basis 
functions. However, when employing a complete basis, 
we need to enforce the Kronecker-delta property at the ele-
ment endpoints, which is not only computationally more 
expensive and unstable for large element orders but also 
destroys the hierarchical property of the basis functions. 
Furthermore, only even numbers of shape functions should 
be used for stability. On the other hand, we can use an 
incomplete basis of harmonic functions, which is hierar-
chical and does not require an additional effort but leads 
to very slow convergence. MLS interpolants are adopted 
from the concept of meshless methods where they have 
been proven to allow the discretization of surfaces and 
volumes without requiring an explicit connectivity of sub-
domains. Within the (two-dimensional) SBFEM, however, 
we require only parametrization of boundaries. Using a 
meshless interpolation along the parametrized boundaries 
does not provide any additional advantages. Since these 
interpolations pose further challenges regarding the choice 
of weight functions and the integration and do not gener-
ally lead to higher accuracy compared to polynomial shape 

functions, we currently do not see any motivation for their 
application.

We also discussed in detail the shape functions that are 
employed in the so-called diagonal SBFEM. We explained 
why these shape functions are incomplete polynomials, do 
not pass the patch test, and—when applied in the standard 
SBFEM formulation—will not lead to correct results. Fur-
thermore, we provided an alternative interpretation of the 
diagonal SBFEM, which avoids formulating these shape 
functions in the first place.
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