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Abstract
Recent many researchers focus on image segmentation methods due to the rapid development of artificial intelligence tech-
nology. Hereinto, pulse-coupled neural network (PCNN) has a great potential based on the properties of neuronal activities. 
This paper elaborates internal behaviors of the PCNN to exhibit its image segmentation abilities. There are three significant 
parts: dynamic properties, parameter setting and complex PCNN. Further, we systematically provide the related segmenta-
tion contents of the PCNN, and hope to help researchers to understand suitable segmentation applications of PCNN models. 
Many corresponding examples are also used to exhibit PCNN segmentation effects.

1 Introduction

Image segmentation is regarded as one of the most important 
issues for image processing, and its main characteristic is 
that an image is divided into a certain number of regions 
according to the static and dynamic properties of the images. 
When image segmentation results are given by appropri-
ate segmentation algorithms, we can further extract related 
features, and conduct the identification and classification of 
objects.

In the past decades, Eckhorn et al.’s [1–4] bio-inspired 
neural network based on cat visual cortex, can synchro-
nously release pulses for similar neuron inputs. Johnson 
et al. [5–10] developed the above model and proposed a 
pulse coupled neural network (PCNN). Subsequently, 

Ranganath and Kinser et al. [11–15] presented modified 
PCNN models and further exploited image processing 
capacities of the PCNN.

PCNN has broad applications in image processing field, 
such as image fusion, image segmentation, image denois-
ing, image enhancement, feature extraction. In recent years, 
PCNN have significant potentials for evolving image seg-
mentation algorithms, due to its synchronous dynamic prop-
erties of the neuronal activity, including synchronous pulse 
release, capture behavior, nonlinear modulation and auto-
matic wave. Further, in contrast to other prevalent segmen-
tation methods, PCNN has low computational complexity 
and high segmentation accuracy, which becomes quite suit-
able for image segmentation. Thus, PCNN can obtain good 
segmentation application effects in natural images, medical 
images and other types of images.

In this paper, we provide basic and classical PCNN 
models to introduce fundamental properties of the PCNN, 
then explain internal segmentation behaviors of the PCNN 
according to three main aspects: dynamic properties, param-
eter setting and complex PCNN. We also give image seg-
mentation applications of the PCNN as possible in subse-
quent section. The flowchart of the whole framework in this 
paper is shown as Fig. 1.

The rest of paper is organized as follows. Section 2 intro-
duces the basic model and classical modified models of the 
PCNN. Section 3 elaborates the dynamic properties of the 
PCNN for image segmentation. Section 4 deduces main 
parameter setting methods of the prevalent PCNN models. 
Section 5 explains complex PCNN models by analyzing 
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heterogeneous PCNN and multi-channel PCNN. Section 6 
reviews image segmentation applications of the PCNN. Sec-
tion 7 makes a conclusion for the paper.

2  The PCNN Models

2.1  Basic PCNN Model

A neuron is regarded as a basic unit for constructing neural 
networks, and is also an electrically excitable cell which can 
transmit and receive information via chemical and electrical 
signals. A typical neuron comprises a cell body, an axon and 
dendrites. Most neurons transmit and receive one particular 
type of signal by the axon and the dendrites, respectively. 
The majority of neurons belong to central nervous system 
that is simulated as artificial neural networks to analyze and 
solve practical problems.

Different from traditional artificial neural networks, 
PCNN only has a single layer of laterally linked pulse cou-
pled neurons, which main includes four crucial components: 
the dendritic tree, the membrane potential, the action poten-
tial and the dynamic threshold potential.

On the dendritic tree, the feeding synapses receive the 
external stimulus which is main input signal, and the action 
potential of the neighboring neurons. Moreover, the linking 
synapses are only associated with their adjacent neurons. 
The interaction of the above two synapses produces the 
membrane potential of the neuron, which is compared with 
the dynamic threshold potential to judge whether the action 
potential generates or not.

Lindblad and Kinser et al. [13] developed pulse-coupled 
neural network and presented its discrete model. The model 
in the position (i,j) for neuron Nij has five main parts: feed-
ing input Fij[n], linking input Lij[n], internal activity Uij[n], 
dynamic threshold Eij[n] and pulse output Yij[n]. Hereinto, 

feeding input Fij[n] and linking input Lij[n] are given as 
follows:

In (1) and (2), e−αf and e−αl denote the exponential decay 
factors recording previous input states, VF and VL are the 
weighing factors modulating the action potentials of sur-
rounding neurons. Additionally, Mijkl and Wijkl denote the 
feeding and linking synaptic weights, respectively. Sij is 
external feeding input stimulus which has a great influence 
for pulse-coupled synaptic modulation.

The decrease of numerical values for the first terms in 
(1) and (2) is with the increase of iteration times, moreover, 
corresponding values of the second terms in the above equa-
tions are always larger than zero owing to neighboring neu-
rons firing. The third term in (1) denotes an external input 
stimulus with a nonzero positive number. Obviously, if the 
decay values of the first term in (1) surpass the sum of the 
second and third terms, the values of the feeding input Fij[n] 
will be smaller than the previous iteration Fij[n − ]. Similarly, 
Lij[n] and Lij[n − 1] can also acquire a comparison result after 
comparing with the values of two input terms in (2).

According to the computational mechanisms of pulse-
coupled neural network, the non-linear modulation between 
feeding and linking inputs produces internal activity Uij[n] to 
deduce the coupling result of the membrane potential. The 
corresponding equation is given by:

where β denotes the linking strength, which directly deter-
mines the contribution of the linking input Lij[n] in internal 

(1)Fij[n] = e−�fFij[n − 1] + VF

∑
kl

MijklYkl[n − 1] + Sij

(2)Lij[n] = e−�lLij[n − 1] + VL

∑
kl

WijklYkl[n − 1]

(3)Uij[n] = Fij[n](1 + �Lij[n])

Fig. 1  The whole framework of 
the paper
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activity Uij[n]. The above formula shows the modulatory 
coupling to the neuronal inputs. Obviously, the feeding input 
Fij[n] plays a most significant role in coupling modulating 
because of its weighing assignment, while the linking input 
Lij[n] has a secondary influence from neighboring neurons. 
Based on the comparison result between internal activity 
Uij[n] and dynamic threshold Eij[n], the neuronal firing 
condition and the dynamic threshold Eij[n] are described 
as follows:

In (4), if internal activity Uij[n] of a neuron is more than 
its dynamic threshold Eij[n], it will instantaneously fire and 
generate an output pulse (Yij[n] = 1); otherwise, the neuron 
will continue to keep quiet (Yij[n] = 0) until the above firing 
condition is ultimately satisfied.

In (5), αe is an exponential decay factor. The smaller its 
value, the more obviously dynamic threshold is affected 
from previous iteration. VE is the amplitude of dynamic 
threshold which generates an obvious influence only after 
previous neuron firing. The structure of basic PCNN model 
is shown in Fig. 2.

2.2  Classical PCNN‑Modified Models

For image segmentation, there are four classical modi-
fied PCNN models: the intersecting cortical model (ICM) 
[14], the region growing PCNN model (RG-PCNN) [16], 
the spiking cortical model (SCM) [17], Simplified PCNN 

(4)Yij[n] =

{
1, if Uij[n] > Eij[n]

0, else

(5)Eij[n] = e−�eEij[n − 1] + VEYij[n]

model (SPCNN) [18]. Most modified or simplified PCNN 
models derive from the above models because of high seg-
mentation accuracy and low computational complexity.

2.2.1  Icm

Ekblad et al. [14] presented the ICM to extract image fea-
tures without obvious boundaries. This PCNN structure 
simplifies the feeding and linking inputs, and remains the 
characteristics of the basic PCNN. Corresponding equa-
tions are given as

where f and g are decay constants of internal activity Fij[n] 
and dynamic threshold Eij[n], respectively. h is the amplitude 
of the dynamic threshold.

2.2.2  RG‑pcnn

Stewart et  al. [16] proposed the RG-PCNN to achieve 
region growing based on seed points, and avoided over-
segmentation or under-segmentation of pixel regions. 
This is the first time that the PCNN combines basic region 
growing algorithm to segment interesting regions. The 
model is formulated as

(6)Fij[n + 1] = fFij[n] + Sij +Wij{Y[n]}

(7)Yij[n + 1] =

{
1, if Fij[n] > Eij[n]

0, else

(8)Eij[n + 1] = gEij[n] + hYij[n + 1]

Fig. 2  The structure of basic 
PCNN model
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In (9)–(12), Fij[n] is feeding input corresponding the pixel 
intensity at the n-th iteration. Tij[n] is firing time matrix 
which records neuronal firing states at each iteration. d is 
an inhibition term to limit the linking input and improve the 
smoothness of the segmented image. The parameters ω and 
� are fixed thresholdings at each iteration.

2.2.3  SCM

Referring to the literature of [7], the SCM is reasonably pre-
sented for image processing [17]. its equations are given by

In (13)–(15), f and g denote exponential decay factors. VL 
and VE are the amplitudes of internal activity and dynamic 
threshold, respectively.β is the linking strength. Obviously, 
the SCM retains main characteristics of the basic PCNN, and 
reduces setting parameters from seven to five. Additionally, 
the negative time matrix of the SCM can associate human 
subjective perception with objective input stimulus of the 
PCNN.

2.2.4  SPCNN

Based on Zhan et al.′s. SCM model, Chen et al. [18] pro-
posed a SPCNN model with an automatic parameter setting 
method to segment assigned objects. The setting parameters 
of the former are obtained from empirical image attribu-
tion values, while those of the latter can be automatically 
determined according to static and dynamic properties of 

(9)Uij[n] = Fij[n]

⎧
⎪⎨⎪⎩
1 + �

⎡⎢⎢⎣
�
Nij

Yij(n) − d

⎤⎥⎥⎦

⎫
⎪⎬⎪⎭

(10)Yij[n] =

{
1, if Uij[n] > Eij[n]

0, else

(11)Tij[n] =

{
n, Yij[n] = 1

Tij[n − 1], else

(12)Eij[n] =

{
�[n], if Tij[n − 1] = 0

�, else

(13)Uij(n) = fUij(n − 1) + Sij�VL

∑
kl

WklYkl(n − 1) + Sij

(14)Eij(n) = gEij(n − 1) + VEYij(n − 1)

(15)Yij[n] =

{
1, if Uij[n] > Eij[n]

0, else

the PCNN. Hereinto, the setting parameters of SPCNN are 
formulated as

Subsequently, two segmentation examples of the SPCNN 
taken from Berkeley Segmentation Dataset [19], are given 
as shown in Fig. 3. Obviously, the SPCNN can generates 
good segmentation results with high contrast as shown in 
Fig. 3a–e, and bad results with low contrast as shown in 
Fig. 3f–j, due to automatic setting method of the above 
parameters.

3  Dynamic Properties

3.1  Feeding Input F

The feeding input Fij[n] of a neuron in (1) always includes 
three terms, and its expression can be rewritten as

Hereinto, the first term F1 denotes previous feeding input 
state based on an exponential decay factor e−αf. The second 
term F2 shows action potential outputs of the neighboring 
neurons with the weighing factor VF. The third term F3 is 
an external input stimulus Sij. A neuron changes its own 
previous state by adjusting the parameter e−αf in F1, and 
is always affected by its neighboring neurons according to 
F2. The neuron also receives external stimuli based on F3. 
Since F1 and F2 have similar input expressions and practi-
cal influences in contrast to traditional linking input in (2), 
simplified feeding inputs tend to be defined as F3, such as 
Refs. [20, 21], and its mathematical equation is expressed as

(16)Wijkl =

⎡
⎢⎢⎣

0.5 1 0.5

1 0 1

0.5 1 0.5

⎤
⎥⎥⎦

(17)�f = log

(
1

�(S)

)

(18)� =
(Smax∕S

�) − 1

6VL

(19)VE = e−�f + 1 + 6�VL

(20)VL = 1

(21)�e = ln

⎛⎜⎜⎝

VE

S�

1−e−3�f

1−e−�f
+ 6�VLe

−�f

⎞⎟⎟⎠

(22)Fij[n]
1 = F1 + F2 + F3
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The input stimulus Sij is always defined as image attribution 
values, such as pixel intensities and pixel gradient values. In 
Addition, there are still little literatures that the feeding input is 
composed of last two items in (22), like Cheng et al. [22]. The 
literature adopted a simplified feeding input to strongly asso-
ciate central neurons with neighboring neurons to detect the 
existence of the cracks. The simplified feeding input is given as

In (24), the first and second items actually derive from F2 
and F3 in (22). Referring to [22], subsequent feeding input 
of basic PCNN can be divided into any combination of F1, 
F2 and F3 to solve practical image segmentation problems.

3.2  Linking Input L

The linking input Lij[n] of a neuron in (2) has two terms, and 
its equation can be also simplified as

Hereinto, the first term L1 denotes previous linking input 
state from an exponential decay factor e−αl analogous to the 
above parameter e−αf in (1). The second term L2 gives action 
potential outputs of the neighboring neurons. However, the 
above two terms would be difficult to distinguish from previ-
ous two terms of the feeding input in (22). In order to build 
a clear corresponding relationship between the feeding and 

(23)Fij[n]
2 = Sij

(24)Fij[n]
3 = Sij + VF

∑
MijklYkl[n − 1]

(25)Lij[n]
1 = L1 + L2

the linking inputs, most simplified PCNN models mainly 
retain the second term L2 of the linking input in (25). Fur-
ther, the linking inputs mainly focus on real influences of 
neighboring firing neurons to exhibit the connectivity and 
the interoperability between neurons. Most simplified link-
ing input is written as

Additionally, the simplified linking input Lij[n] can 
also increase a positive constant d as an inhibition term to 
improve the smoothness of neuronal firing regions, espe-
cially when the whole image has a smaller difference for 
pixel intensities [16]. The linking input Lij[n] is rewritten as

In (27), the distribution range of the parameter d is 1 ≥ d > 0. 
The larger the values of the parameter d, the smoother the 
segmented image obtains final segmenting region. Neighbor-
ing firing neurons can also directly affect the linking input. It 
is obvious that the modified expression of the linking input 
always depends on the inhibition term d and neighboring 
action potentials Ykl[n − 1].

3.3  Internal Activity U

The internal activity Uij[n] in (3) derives from the coupled 
results between the feeding input and the linking input with 
linking strength β. The increase of Uij[n] is with the increase 

(26)Lij[n]
2 = VL

∑
kl

WijklYkl[n − 1]

(27)Lij[n]
3 =

∑
kl

WijklYkl[n − 1] − d

Fig. 3  The segmentation process of the SPCNN from Berkeley Seg-
mentation Dataset: Images in the first column represent natural gray 
images; images in the second, third and fourth column represent the 
segmentation results of the SPCNN with iteration times 1–3; images 

in the fifth column represent the final segmentation results of the 
SPCNN with iteration times 3–6 (blue regions, cyan regions, red 
regions and yellow regions denote the third, fourth, fifth and sixth 
iteration results, respectively). (Color figure online)
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of the above two inputs. In recent years, there are several 
significantly improved expressions of the internal activity 
from the SPCNN [18], the enhanced PCN [23], the pulse 
coupled neural filter [24].

In the SPCNN, the internal activity Uij[n]1 includes its 
previous neuron state and the coupled result in (3). Its math-
ematical expression is given as

where the parameter αf is the exponential decay factor based 
on the internal activity. Comparing with most simplified 
PCNN models, the internal activity Uij[n] of the SPCNN 
provides the neuronal modulation results more reasonably.

The enhanced PCN is a two-layer recurrent PCNN whose 
internal activity Uij(t)2 in each layer increases an inhibition 
term γLij(t) modulated by the linking strength γ. The internal 
activity terms of the enhanced PCN are shown as

In (29) and (30), the inhibition terms readjust the firing times 
of corresponding neurons than basic PCNN. What is more, 
neurons firing speed of two-layer network is faster than 
single-burst PCNN.

For the pulse coupled neural filter, traditional coupled 
modulation is changed for avoiding direct influence of zero-
valued pixels, and new internal activity is given as follows:

3.4  Action Potential Y

For basic PCNN in (4), the generation of action potential Y 
derives from the comparisons of internal activity Uij[n] and 
dynamic threshold Eij[n]. If Uij[n] > Eij[n], neuron Nij outputs 
a pulse (Yij[n] = 1); otherwise, it does not fire (Yij[n] = 0). Addi-
tionally, output values of action potential Y can occasionally be 
set by logical operation rules [25]. Certainly, referring to the 
SCM model [17], action potential Y can also be described as

In (32), action potential Yij[n]1 adopts the sigmoid function 
with the parameter γ. This indicates that the action potential 

(28)

Uij[n]
1 = e−�fUij[n − 1] + Fij[n](1 + �Lij[n])

= e−�fUij[n − 1] + Sij

(
1 + �VL

∑
kl

WijklYkl[n − 1]

)

(29)Uij(t)
2
1
= Fij(t)(1 + �1Lij(t)11 − �1Lij(t)12)

(30)Uij(t)
2
2
= Fij(t)(1 + �2Lij(t)21 − �2Lij(t)22)

(31)Uij(t)
3 = Fij(t) + �Lij(t).

(32)Yij[n]
1 =

⎧
⎪⎨⎪⎩

1,
1

1+e
(−𝛾(Uij (n)−Eij (n)))

> 0.5

0, otherwise

can generate various types of pulse outputs, which is analo-
gous to traditional action potential Yij[n] in (4).

Besides the above sigmoid function, the action potential 
can also adopt the radial-basis function [26]. Its equation is 
described as

Additionally, The action potential can generate other out-
put values except ‘0’ or ‘1’, such as [27], and its equation 
is given as

Where ξij(n) is initial output results based on the compari-
sons between internal activity and dynamic threshold. Gij 
denotes the difference between the parameter ξij(n) and 
neighboring thresholdings. Yij(n)3 and k are final action 
potential and the hierarchy parameter, respectively. The 
above action potential setting method merge more related 
image information based on spatial adjacency proximity into 
the expression of the action potential.

3.5  Dynamic Threshold E

Dynamic threshold Eij[n] influenced by the exponential 
decay factor αe and the amplitude parameter VE, plays an 
important role for PCNN segmentation. In (4), the com-
parison results between internal activity Uij[n] and dynamic 
threshold Eij[n] can directly judge whether a neuron fire or 
not. This indicates that the calculation results of dynamic 
threshold Eij[n] obviously affect final firing results. The 
smaller the values of dynamic threshold Eij[n], the greater 
the number of firing neuron at the iteration is. Based on the 
dynamic threshold of basic PCNN, we will give several main 
improved equations and analyze their image segmentation 
characters.

Firstly, Gao et al. [20] adopted a regularized Heaviside 
function Hε including the cluster center m2[n] of the object 
to modify the dynamic threshold as

In (35), the dynamic threshold cannot form periodic oscil-
lation because of the uses of the parameters Hε and m2[n]. 
Further, if the internal activity of a neuron is lower than 
m2[n], it will be prevented from firing.

Secondly, Cheng et al. [22] introduced a decay constant 
λ to control the changing rate of firing signal inputs and 

(33)Yij[n]
2 = e−((Uij(n)−Eij(n))

2)

(34)

⎧
⎪⎪⎨⎪⎪⎩

�(n) = Uij(n) − Eij(n)

Gij =
∑

r

∑
t
��ij(n) − �i + r,j + t(n)�

Yij(n)
3 =

�
�ij(n)

max�(n)
× k

�

(35)Eij[n]
1 = m2[n]H�

{
m2[n] − Iij

}
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normalized pixel intensity Sij. The new dynamic threshold 
is described as

In (36), the dynamic threshold is gradually growing with 
the increase of the number of neighboring firing neurons 
before the new threshold satisfies the terminate condition 
of the whole cycle. Here, the setting method of the dynamic 
threshold focuses on the influences of neighboring pixels 
and normalized pixel intensity rather than dynamic thresh-
old itself.

Thirdly, Xiang et al. [28] used five proper parameters to 
form a new dynamic threshold rather than the parameters 
αe and  VE of basic PCNN. The dynamic threshold can be 
given by

where

In (37) and (38), N is the length of the attenuation step. 
T+ and K are the upper limit and the width of the varia-
tion range for dynamic thresholds, respectively. n denotes 
iteration number and M is maximum number of iterations. 
As the parameters T+, N, M and K are set to constant val-
ues, the change of dynamic threshold depends only on the 
parameter n. This setting method provides a new thinking 
that the dynamic threshold is determined by iteration times 
of the PCNN.

3.6  Feature Expression

3.6.1  Entropy Sequence

Ma et al. [29] proposed an automatic image segmentation 
method based on the maximum entropy to choose optimal 
segmentation result after n iterations. They also gave an 
entropy sequence to extract feature values of testing images. 
For entropy sequence, information entropy is firstly calcu-
lated at each iteration

where H(P) denotes the information entropy of a binary 
image. P1 and P0 are the occurring probabilities of ‘1’ 
and ‘0’, respectively. Secondly, all information entropies 
are combined into one sequence, which is regarded as an 
entropy sequence. It has invariant texture features in rota-
tion, translation and scale. Significantly, most images always 
generate a unique entropy sequence by setting suitable 
PCNN parameters.

(36)Eij[n]
2 = �

∑
kl

{
Ykl[n − 1]Sij

}

(37)Eij[n]
3 = T+ − n × N n ≤ M

(38)M =
K

N

(39)H(P) = −P1 log(P1) − P0 log(P0)

3.6.2  Time Sequence and Time Matrix

Time sequence is given by the sum of firing neurons at 
each iteration [16, 17]. Its expression is given as follow:

Obviously, time sequence can save neuronal firing 
information of the whole image, and further accomplish 
a feature conversion between multi-dimensional and one-
dimensional information. Further, related mathematical 
definitions of time matrix are also given to determine its 
final expression [26]. Their corresponding equations are 
described as

In (41), the parameters g and θij(0) are the decay coefficient, 
and the amplitude of the dynamic threshold, respectively. As 
T2

ij[n] is an implicit function and cannot obtain the calculat-
ing result, we get reasonable time matrix by calculating the 
formula (42).

3.6.3  Neighboring Firing Matrix

We adopt a neighboring firing matrix to record the number 
of neighboring firing neurons at each iteration [30]. The 
mathematical equation of the firing matrix for four neigh-
boring neurons is given as

Neighboring firing matrix based on human visual system 
(HVS) can improve the image description capacity of edge 
regions, which easily generate a more reasonable input stim-
ulus for the PCNN.

3.6.4  Sub‑intensity Ranges of Neurons Firing

The sub-intensity ranges exhibit corresponding pixel 
intensities of firing neurons at each iteration [18, 29]. 
Thus, it is significant to calculate and analyze the sub-
intensity ranges of neurons firing for PCNN. Subsequently, 
we give two examples about the sub-intensity ranges of 
the SPCNN in Fig. 4a, b to clearly illustrate the change of 
pixel intensities at each iteration. 

(40)T1[n] =
∑
x,y

Yij[n]

(41)T2
ij
[n] = logg

Uij{T
2
ij
[n]}

�ij(0)

(42)T3
ij
[n] = T3

ij
[n − 1] + nYij[n]

(43)

Q(i,j)[n] = Y(i+1,j)[n − 1] + Y(i−1,j)[n − 1] + Y(i,j+1)[n − 1]

+ Y(i,j−1)[n − 1]
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4  Parameter Setting

4.1  Input Stimulus

For traditional PCNN, input stimulus Sij is usually defined 
as a normalized pixel intensity, which directly affects com-
putational results of the feeding inputs. Since more and 
more researchers pay attention to HVS, subsequent modi-
fied strategies are proposed to associate input stimuli of 
the PCNN with HVS. Based on Weber-Fechner law, Ref. 
[31] used a new input stimuli to simulate human vision 
perception, and the expression is defined by

where B and S1
ij denote objective and subjective pixel intensi-

ties, respectively. K and K0 denote two modulated constants. 
Referring to [31], Huang et al. [21] adopted a more reason-
able external stimulus analogous to human eyes inputs

where K, C and r are three empirical constants. Tij records 
corresponding iteration times from firing neurons. The above 
formula builds the relationship between the time matrix Tij 
and subjective visual brightness. Ref. [30] also used the new 
expression of the input stimulus as follow:

where Soriij is a normalized pixel intensity in position (i,j) 
from an original image. S′denotes a normalized Otsu thresh-
olding of the original image. Qij denotes the corresponding 
value of neighboring firing matrix Q in position (i,j). In (46), 
neighboring firing matrix and Otsu thresholding determine 
the input stimulus of modified PCNN model.

(44)S1
ij
= K lnB + K0

(45)S2
ij
= K

[
�E − �ETij + ln

(
VE

C

)]
+ r

(46)S3
ij
= ln

[
1 + Soriij +

4S�3

Qij + (4 − Qij)S
�

]

4.2  Exponential Decay Factor

4.2.1  Exponential Decay Factors αf and αl

For image segmentation, the exponential decay factors αf in 
(1) and αl in (2) are always set to empirical values under a 
complex scene. In order to satisfy desired requirements for 
identifying complex objects, several self-adaptive parameter 
setting methods, such as the SPCNN [18] and the PA-PCNN 
[32], are proposed.

In the SPCNN, the parameters αf and αl are merging into 
one parameter αf

1, the equation of which is given as

Based on the SPCNN, the parameter αf
2 in the PA-PCNN 

adopts normalized Otsu thresholding S′ and its mathematical 
equation is written as

Comparing with the PA-PCNN, the parameter αf
1 in the 

SPCNN is easy to generate more obviously exponent decay.

4.2.2  Exponential Decay Factor αe

Exponential decay factor αe has several expression 
approaches proposed by Refs. [18, 25, 31–33]. Chen et al. 
[18] adopted an adaptive-parameter expression and its equa-
tion is formulated by

In (49), S′ denotes the normalized Otsu thresholding of 
the whole image. What is more, Zhou et al. [25] used the 

(47)�1
f
= log

(
1

�

)

(48)�2
f
= log

(
1

S�

)

(49)�1
e
= ln

⎛⎜⎜⎝

VE

S�

1−e
−3�f

1−e
−�f

+ 6�VLe
−�f

⎞⎟⎟⎠

Fig. 4  Intensity ranges using 
SPCNN within the first pulsing 
cycle for Fig. 3: a intensity 
ranges of SPCNN with itera-
tion times 1-6 in Fig. 3a–e; b 
intensity ranges of SPCNN with 
iteration times 1–5 in Fig. 3f–j
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cluster mean m2(n) from the fired region at previous itera-
tion to build the relationship between the parameters m2(n) 
and αe

2

In addition, the parameter αe
3 in Wei et al. [31] and Helmy 

et al. [33] adopted the average gray level μ and an adjustable 
constant C as follows:

Based on the above equations, Ref. [32] also provided a 
simplified expression of the parameter αe

4 as

4.3  Input Amplitudes

4.3.1  Feeding Input Amplitude VF and Linking Input 
Amplitude VL

The parameters VF and VL in basic PCNN denote the ampli-
tudes of the sum of output values from neighboring neurons 
at previous iteration for the feeding input and the linking 
input, respectively. In most prevalent modified models, the 
above two parameters are often eliminated to reduce com-
putational complexity. Meanwhile, several important PCNN 
models only retain the parameter VL, which is empirically 
set to 1 [17, 18].

4.3.2  Dynamic Threshold Amplitude VE

The parameter VE is reasonably evolved from the experience 
data to the adaptive results. Significantly, several adaptive 
setting methods, such as the SPCNN and the MSPCNN, 
should be introduced due to their practical roles on image 
segmentation [18, 30].

For the SPCNN, the parameter VE
1 is set to an adaptive 

value by reasonable formula derivation as follows:

Referring to the SPCNN, the parameter VE
2 in the 

MSPCNN decreases the number of the setting parameters 
and its formula is written as

In (54), the parameter S′ denotes normalized Otsu threshold-
ing and the parameter S′8 is an offset value.

(50)�2
e
= − ln

(
m2(n)

m2(n − 1)

)

(51)�3
e
=

C

�

(52)�4
e
=

1

S�
.

(53)V1
E
= e−�f + 1 + 6�VL

(54)V2
E
= 1 + S�2 − S�8

4.4  Linking Strength

Kuntimad and Ranganath calculated the range of the link-
ing strength β, and built the relationship between the linking 
strength and the linking input by acquiring neuronal capture 
ranges [34]. If the intensity range of object regions is [I4, 
I3], and the intensity range of background regions is [I2, I1] 
(I4 > I2 > I3 > I1), the capture results of the whole image can 
be given by

In (55)–(57), Lmin1(T1) and Lmin2(T2) are minimum linking 
inputs of the object and the background, respectively. Accord-
ing to the above three formulae, the range of the parameter β 
can be given as

Refs. [20, 23] also adopted the above method to determine 
the range of the parameter β. Refs. [16, 35, 36] gave the 
parameters βini and Δβ to redefine β. Hereinto, the parameter 
βini contains the minimum distance diffmin and the neuronal 
pulsing seed input inputseed. The parameter Δβ is a constant. 
Obviously, the value of β is gradually added by the param-
eter Δβ at each iteration until the statistical termination is 
met. Refs. [37, 38] set the value of the parameter β by cal-
culating the distance between the neighboring pixels and the 
central pixel for a fixed region. Ref. [39] proposed the setting 
method of the parameter β, and can evidently improve neu-
ron firing speed. Ref. [40] supplied a new expression based 
on the mean and variance of the pixel intensity. Ref. [22] 
gave a 3 × 3 matrix to obtain the linking strength β, which 
can decrease the influences of the bed pixels.

Besides the above semi-automatic setting method through 
calculating the empirical values and the constant values, 
several automatic parameter setting methods of the linking 
strength β are also presented, such as the SPCNN and the PA-
PCNN. The SPCNN gives the expression of the parameter 
β1 as

Based on simplified parameter β1, the parameter β2 in the 
PA-PCNN is given as

(55)I3(1 + �Lmin1(T1)) ≥ I4

(56)I1(1 + �Lmin2(T2)) ≥ I2

(57)I2(1 + 𝛽Lmax2(T2)) < I4

(58)
[max{(I4∕I3 − 1)∕Lmin1, (I2∕I1 − 1)∕Lmin2}, (I4∕I2 − 1)∕Lmax2]

(59)�1 =
(Smax∕S

�) − 1

6VL

(60)�2 =
1 − S�

6S�
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In (59) and (60), Smax denotes the maximum normalized 
intensity of the whole image. S′ denotes the normalized Otsu 
thresholding.

4.5  Synaptic Weight

The parameters Mijkl and Wijkl in basic PCNN represent syn-
aptic weights that are the sum of neighboring neuron outputs. 
Ranganath et al. [12] firstly adopted the inverse of the Euclid-
ean distance to describe Mijkl and Wijkl as follows:

In (61), synaptic weights for neuron Nij in position (i, j) have 
many linking values by calculating the distances between 
neurons. Hereinto, the Euclidean distances of four and eight 
neighboring neurons are shown in Fig. 5.

References [28, 39, 41] adjusted synaptic weights based on 
the exponential function. Hereinto, Ref. [39] used a synaptic 
weight Mijkl with Gaussian distribution and its mathematical 
equation is defined as

where the parameter C is the normalized coefficient, and the 
parameter represents the smoothness of neighboring regions. 
For most modified models, the parameter Mijkl is removed 
and the parameter Wijkl is retained to reduce parameters num-
ber. Refs. [18, 30] expressed the synaptic weights by the 
matrices with constant values as follows:

(61)Mijkl,Wijkl =
1

(i − k)2 + (j − l)2

(62)Mijkl = C�e
(i−k)2+(j−l)2

2�2

(63)Wijkl =

⎡⎢⎢⎣

0.5 1 0.5

1 0 1

0.5 1 0.5

⎤⎥⎥⎦

Besides the constant values, the synaptic weight Wijkl also 
contains fixed parameter values such as [42].

5  Complex PCNN

5.1  Heterogeneous PCNN

Ref. [21] presented a heterogeneous PCNN model that is more 
suitable for human to observe. Based on the above PCNN, Ref. 
[43] proposed a heterogeneous SPCNN, including SPCNN 1, 
SPCNN 2 and SPCNN 3 for image segmentation. There are 
three types of the SPCNN models to produce the heteroge-
neous structure of the SPCNN. The above SPCNN models 
have different internal activities, linking strengths and synaptic 
weights, while they have same other setting parameters. They 
can be also connected via the linking parameter L12 linking 
the SPCNN 1 and the SPCNN 2, and the linking parameter 
L23 linking the SPCNN 2 and the SPCNN 3. Hereinto, the 
changes of internal activities directly influence final segmenta-
tion results, and three types of internal activities are given by

In (65)–(67), the heterogeneous SPCNN can acquire three 
different values for the internal activities at each iteration, 
meanwhile, it also gives the comparison results between the 
dynamic thresholds and the above internal activities to pro-
duce three different outputs as follows:

(64)Wijkl =

⎡
⎢⎢⎣

0 1 0

1 0 1

0 1 0

⎤
⎥⎥⎦

(65)

U1[n] = e−�f U1[n − 1] + Sij

{
1 + �1VL

∑
kl

Wijkl(1)Y1kl[n − 1]

}

(66)

U2[n] = e
−�f

U2[n − 1]

+ Sij

{
1 + �2VL

∑
kl

Wijkl(2)Y2kl[n − 1] + L12

}

(67)

U3[n] = e
−�f

U3[n − 1]

+ Sij

{
1 + �3VL

∑
kl

Wijkl(3)Y3kl[n − 1] + L23

}

(68)Y1ij[n] =

{
a1 if U1ij[n] > E1ij[n − 1]

0 if U1ij[n] ≤ E1ij[n − 1]

(69)Y2ij[n] =

{
a2 if U2ij[n] > E2ij[n − 1]

0 if U2ij[n] ≤ E2ij[n − 1]

10.7121

(a) (b)

Fig. 5  The Euclidean distances of neighboring neurons: a the Euclid-
ean distance of four neighboring neurons; b the Euclidean distance of 
eight neighboring neurons
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In (68)–(70), a1, a2 and a3 are final output values of SPCNN 
1, SPCNN 2 and SPCNN 3, respectively. Their parameter 
values are set to 0.3, 0.5 and 0.2 (the sum of the param-
eter values is 1). The above three outputs Y1ij[n], Y2ij[n] and 
Y3ij[n] can be combined to one output Yij[n], corresponding 
values of which have ‘0’, ‘0.2’, ‘0.3’, ‘0.5’, ‘0.7’, ‘0.8’ and 
‘1’ rather than ‘0’ or ‘1’. This indicates that the heterogene-
ous SPCNN has more clearly segmentation levels, which 
easily generate more reasonable segmentation results. The 
structure flowchart of heterogeneous SPCNN is shown in 
Fig. 6. The segmentation results of the heterogeneous PCNN 
from two examples of Berkeley Segmentation Dataset are 
given in Fig. 7. 

(70)Y3ij[n] =

{
a3 if U3ij[n] > E3ij[n − 1]

0 if U3ij[n] ≤ E3ij[n − 1]

5.2  Multi‑channel PCNN

For color image segmentation, single-channel PCNN 
is difficult to provide reasonable segmentation results, 
because of corresponding color spaces of normalized Red 
Green Blue (RGB). Therefore, multi-channel PCNN with 
appropriate setting parameters has a significant meaning 
for further conducting color image segmentation.

Ref. [44] gave a reasonable segmentation strategy and 
identified objects in complex real-world scenes. Signifi-
cantly, the achievement of multi-channel PCNN mainly 
depends on normalized expressions of different channels 
in color spaces. The resulting images based on RGB color 
spaces are shown as follows:

Fig. 6  The structure of hetero-
geneous PCNN

Spike 
generator

Input

SPCNN 1 
with Wijkl(1)

SPCNN 2 
with Wijkl(2)

SPCNN 3 
with Wijkl(3)

Output 2 
Y2,ij[n]

L12

L23

Output 1  
Y1,ij[n]

Output 3 
Y3,ij[n]

Final output

Fig. 7  The segmentation results of the heterogeneous PCNN: a, d original images from Berkeley Segmentation Dataset; b, e the histograms of 
original images; c, f the segmentation results of the heterogenous PCNN
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In (71)–(74), R, G and B denote pixel intensities of Red, 
Green and Blue in color space channels, respectively. r, g 
and b are the normalized expressions of different channels in 
RGB color models.  O1,  O2,  O3,  O4 and  O5 denote five chan-
nels of transformed color images. For multi-channel PCNN, 
we first analyze transformed color channels, and then adopt 
modified PCNN models to acquire the result of each chan-
nel and integrate all the above results into final results for 
achieving the segmentation goal of multi-channel PCNN.

6  Related Applications of PCNN for Image 
Segmentation

6.1  Natural Image Segmentation

Stewart et al. [16] proposed a seeded region growing (SRG) 
algorithm that uses the inhibition term d to control the 
amplitude of the linking input in the PCNN and designs the 
fixed threshold Tx[t] to take the place of the dynamic thresh-
old. Refs. [45–47] gave the termination conditions and the 
increment step Δβ of the linking strength to deduce fine seg-
mentation steps of the modified region growing algorithms. 
Xu et al. [35] proposed a color region growing PCNN (CRG-
PCNN) model, converting RGB color space into LAB and 
assessing the color distance between the neurons of feeding 
inputs. Zhou et al. [48] presented an extended PCNN based 
on a decision tree, which builds a direct relation between the 
adjustable parameters and the image characteristics. Zhao 
et al. [49]. designed a gradient-coupled spiking cortex model 
for further smoothing the pixels of same regions and enhanc-
ing the pixels of the contours from different regions.

Xiao et  al. [50] modified the expression of dynamic 
thresholds for PCNN, and used fuzzy mutual information 

(71)
⎛
⎜⎜⎝

r

g

b

⎞
⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

R

R+G+B

G

R+G+B

B

R+G+B

⎞
⎟⎟⎟⎟⎟⎠

(72)
⎛⎜⎜⎝

O1

O2

O3

⎞⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

r−g√
2

r+g−2b√
6

r+g+b√
3

⎞
⎟⎟⎟⎟⎟⎟⎠

(73)O4 = −O1

(74)O5 = −O2

as the criterion of optimal segmentation results. Nie et al. 
[51, 52] merged Unit-Linking PCNN, maximum Shannon 
entropy rule, minimum cross-entropy rule and pre-process-
ing strategies into image segmentation schemes. Ma et al. 
[53] gave the evaluation criterion of maximum information-
entropy to find suitable iteration times for PCNN to obtain 
reasonable segmentation results. Zhou et al. [39] changed 
the expressions of the synaptic weights, the linking strength 
and the dynamic threshold to improve the automatic segmen-
tation control ability of the PCNN. Zhan et al. [54] showed a 
fast-linking SCM model that can achieve the optimal thresh-
olding selection and make better homogeneous objects as 
soon as possible. Li et al. [55] found a parameter optimal 
method of simplified PCNN based on immune algorithm for 
adjusting setting parameters automatically. Jiao et al. [56, 
57] combined the SPCNN and the gbest led gravitational 
search (GLGSA) into a novel image segmentation method 
that is applied to 23 standard benchmark function. Guo et al. 
[58] first defined adaptive-semi-local feature contrast as the 
input stimulus of the original images, and then introduce 
saliency motivated improved simplified pulse coupled neural 
network based on HVS to locate interest regions.

There are still other modified algorithm based the PCNN, 
which are suitable for image segmentation, such as, oscilla-
tory correlation PCNN [59], automatic design PCNN [60], 
clustering threshold PCNN [61], simplified parameters 
PCNN [62], unsupervised texture multi-PCNN [63], genetic 
PCNN [64], bidirectional search PCNN [65] and sine–cosine 
oscillation heterogeneous PCNN [66].

6.2  Medical Image Segmentation

For medical images, the lesions tend to be determined by 
appropriate segmentation steps, together including pre-pro-
cessing, regions segmentation and post-processing. Here-
into, most modified PCNN models has a good potential for 
finding the locations of the lesions rapidly and accurately for 
different types of diseases.

Micro-calcification detection methods in digitized mam-
mograms are separately proposed, including contourlet 
transform and simplified pulse coupled neural network, to 
extract micro-calcification clusters [67, 68]. PCNN-based 
level set also supplies a reasonable segmentation strategy 
with PCNN coarse segmentation and level set refined seg-
mentation [69]. A PCNN-based segmentation algorithm 
in breast MR images can identify corresponding interest 
regions and detect the boundary of the breast regions [70]. 
An evolutionary PCNN is proposed to segment and detect 
breast lesions in ultrasound images [42]. Basic PCNN model 
is adopted to improve segmentation accuracy rate of poten-
tial masses based on digitized mammograms [71]. Moreover, 
MSPCNN [30] and PA-PCNN [32], simplifying adaptive 
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parameters than traditional PCNN, are proposed to achieve 
initial segmentation of mass regions for digitized mammo-
grams. Hereinto, the segmentation results of the MSPCNN 
based on Digital Database for Screening Mammography 
(DDSM) and Mammographic Image Analysis Society 
(MIAS) database [72, 73], are shown in Fig. 8.

Besides breast images, several modified PCNN is gradu-
ally used to segment the lesions of other common diseases. 
A biologically-inspired spiking neural network with median 
filter can reasonably detect the boundary of the prostate in 
ultrasound images [74]. A modified SPCNN obtains a reli-
able stone segmentation result in the ultrasound images of 
the gallbladder [75]. A spatial pulse coupled neural network 
with the statistical expectation maximization is proposed 
in brain MR images [76]. A PCNN-based segmentation 
algorithm can obtain the segmentation results of rat brain 
volumes in MR images [77]. A segmentation method com-
bining the PCNN and Selective Binary and Gaussian Filter-
ing Regularized Level Set (GFRLS) is adopted to segment 
and classify teeth based on anatomical structure in MicroCT 
slices [27]. A modified PCNN derived from Zhan et al.’s 
[78]. SCM model acquires nuclei in reflectance confocal 
images of epithelial tissue. A self-adaptive PCNN model 
with any colony optimization (ACO) obtains reasonable 
segmentation results of the lesion in MR medical images 
[79]. A Tandem Pulse Coupled Neural Network (TPCNN) 
with Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) and Deep Learning Based Support Vector 
Machine (DLBSVM) is proposed to acquire segmentation 
results of retinal blood vessels in ophthalmologic diabetic 
retinopathy images [80]. A memristive pulse coupled neural 
network (M-PCNN) based on hardware implementation, is 
applied to medical image edge extraction [81].

Other PCNN segmentation methods of medical images 
also provide reasonable segmentation frameworks, such as, 
the SCM-motivated enhanced CV [82, 83], the SPCNN-
based segmentation approaches [84–87], the particle-swarm 
optimization PCNN [88].

6.3  Image Segmentation Based on HVS

Image segmentation algorithms based on HVS for PCNN 
can achieve desired segmentation goal, where the segmen-
tation results are much closer to human vision classifica-
tion than other prevalent algorithms. Huang et al. [21, 89] 
introduced the Web–Fechner law to build the relationship 
between objective image brightness and subjective human 
perception. Its equation is given as

Meanwhile, PCNN time matrix was also given to asso-
ciate adjustable PCNN parameters with image brightness 
values as follows:

In (75), K and r denote setting constants. S and I represent 
objective image brightness values and subjective perception 
values, respectively. In (76), Tij[n] is time matrix of PCNN at 
the nth iteration. c denotes a constant. VE and αE denote the 
amplitudes of dynamic threshold and the exponential decay 
factor, respectively. According to the above two equations, 
final expression of subjective human perception based on 
PCNN can be written as

Based on (77), an objective expression with neighboring fir-
ing matrix based on HVS is described to provide a new input 
stimulus of the feeding input [30]. Its final equation is given 
in (46). Corresponding experimental results show segmen-
tation performances analogous to human visual perception. 
The flowchart is given in Fig. 9.

(75)I1
ij
= K ln Sij + r

(76)Tij[n] = 1 +
1

�E
ln

VE

cSij

(77)I2
ij
= K ln Sij + r = K[�E − �ETij + ln(VE∕c)] + r

Fig. 8  The segmentation results of the MSPCNN: a an original image from the DDSM database; b the segmentation result of the MSPCNN for 
a; c an original image from the MIAS database; d the segmentation result of the MSPCNN for c 
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6.4  Other Applications

PCNN also has broad applications in other aspects based on 
image segmentation, such as satellite image analysis [33, 
90–93], visual saliency detection [58, 94, 95], plant recogni-
tion [28, 53, 96–98], iris feature extraction [99, 100], infrared 
human segmentation [101], palmprint verification [102], crack 
detection [22], power line detection [24], catenary fault detec-
tion [37], fabric defection [103], constrained ZIP code segmen-
tation [104], vehicle recognition [38], aquatic feeding detection 
[105], heterogeneous material segmentation [106], fingerprint 
orientation field estimation [107], character recognition [108], 
feature extraction and object detection based on color images 
[44, 109–111]. Other segmentation applications can also be 
elaborated by the corresponding reviews [112–115].

7  Conclusion

PCNN plays important roles for image segmentation. In this 
paper, we give a comprehensive review to analyze PCNN seg-
mentation properties and show related applications. There are 
three main steps. We first provide basic PCNN model and classi-
cal modified PCNN models, then introduce dynamic properties, 
parameter setting and multi-channel PCNN. In addition, we also 
provide main image segmentation applications of the PCNN. In 
the future, the PCNN merging semantic segmentation and deep 
learning will probably generate new image segmentation frame-
works and bring a rapid progress than state-of-the-art algorithms.
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