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Abstract
In today’s era of new advancements, diagnosing a pathology at an early stage has given rise to the development of automated 
diagnostic systems. Knee Osteoarthritis (KOA) being among one of the most painful joint disorders is the root cause for 
disability, particularly in elderly population. Gait based recognition of KOA is a prominent area that requires deliberations 
from the end of researchers, academicians and scientists to develop more automated systems that not only offer reliability and 
accuracy but are also affordable for common man. This article aims to provide an in-depth investigation of efforts directed 
towards vision-based, sensor-based and hybrid KOA identification. The study is based on the historical data gathered and 
background obtained viz-a-viz clinical gait analysis. An extensive survey of KOA gait acquisition modalities and feature 
representation approaches for the purpose of critically examining them are also presented. The study surveys the statistical 
metrics used for evaluating KOA, considering relevant articles. Based on the survey, this article aims to provide an up-to-
date review of machine learning techniques for classification of KOA and healthy subjects. Furthermore, this article also 
identifies open research challenges existing in the literature that could be explored further for providing more effective KOA 
analysis. Finally, this article presents the future perspectives and provides an outline of the proposed work for efficient KOA 
diagnosis based on vision-based gait.

1 Introduction

A biometric refers to the measurement of various charac-
teristics of the human body that provides a unique identity 
to an individual. From recent years, a number of biometrics 
have been used for diagnostic purposes such as handwriting 
[1], voice [2–4], iris [5] etc. In the era of modern science and 
technology, gait as a biometric has gained high popularity 
in resolving a number of issues. Automating the process 
of gait analysis plays a vital role in two major application 
areas: identification of human (authentication purpose) [6, 
7] and medical (disease detection) [8–11]. So, gait analysis 
is mainly concerned with recognizing the walking pattern of 
an individual using some quantitative measures. Due to dis-
tinctive characteristics in gait patterns, positive and negative 
deviations in a person’s gait can be observed and efficiently 
investigated [12].

The term ‘abnormal gait’ is often used when a person 
loses the ability to walk normally. In clinical diagnosis, 

human gait analysis can be employed for the identification 
of various disorders that lead to gait abnormality. Individu-
als with disturbed gait have altered speed, cadence, limb 
moments etc. [13, 14] in comparison to ones with a normal 
gait. Analysis of these abnormalities in gait conditions can 
provide an effective way of developing new treatment strate-
gies [8] which can help people with better Quality of Life 
(QOL). Abnormal behavior in gait doesn’t arise due to a 
single condition but involve several pathological diseases 
such as Musculoskeletal (joint pain, OA, injury) [15, 16], 
Neurological (Parkinson’s, cerebral palsy, other sensory 
impairments) [17–19] and also diseased health conditions 
(obesity, respiratory problem, heart attack etc.) [20, 21]. 
The worldwide data has been provided by Roser et al. [22] 
on ‘Burden of Disease’ from (1990–2016) using ‘Disabil-
ity Adjusted Life Years’ (DALYs). From all the diseases, 
we have included aforementioned disorders that may affect 
the gait of a person. The study revealed that amongst all 
the considered gait conditions, Musculoskeletal disorders 
(MSD) shows the highest growth rate after heart diseases 
as shown in Fig. 1. However, the overall growth rate of car-
diovascular diseases seem to be higher but their effect on 
a person’s gait is not tangible. Also, a study by Woolf [23] 
has revealed high occurrence and burden of MSD across the 
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globe in comparison to other diseases. Therefore, the study 
of MSDs is taken into consideration and occupy the focus 
area of study in this article.

MSDs are the conditions often characterized by chronic 
and long-term pain in any region of Musculoskeletal sys-
tem (joints, tissues, nerves etc.). Presence of such painful 
situations hinder the flexibility, stability, mobility and other 
functional capabilities of a human body [24]. According to 
‘Global Burden of Disease’ (GBD) [25], MSD was ranked 
second due to functional disability caused to the patient’s 
worldwide. The most common MSD includes Osteoarthritis 
(OA), injury (joint fracture), back and neck ache [24].

Based on study [26] from (1990–2010), an increase in 
about 45% abnormality was analyzed due to MSD (primar-
ily due to OA). OA is the common joint disorder causing 
pain and inflammation in joints. The study [26] estimated 
OA to grow higher in the coming years with the rise in obe-
sity, injury and aging like factors. Another GBD study [27] 
from (1990–2015) indicated a rise in OA from 33.6 to 36% 
(between 2005 and 2015), measured using ‘Years Lived with 
Disability’ (YLDs).

Recent studies on biomechanical causes in OA mostly 
focused on analyzing knee joint movement due to its sim-
pler anatomy compared to other body joints [8]. An analysis 
by the study [28, 29] has shown about 3.8% Global-Age 
Standardization (GAS) prevalence of KOA higher among 
female population (about 18%) than males (approx. 9%) over 
65 years. Vos et al. [30] reported growth of KOA on 250 mil-
lion people on global disease survey. Further, KOA requires 
higher financial dependence for its diagnosis and treatment. 
Approximately 330$ billion has been spent on KOA in the 
USA and further rise has been estimated [28].

In the field of KOA diagnosis, the use of automated sys-
tems employing three types of gait acquisition modalities, 
i.e. vision-based, sensor-based and hybrid has been given 
more attention. Recently a study by Derek et al. [16] applied 
the combination of instrumented gait treadmill and retrore-
flective markers to access differences among gait features 
of KOA and healthy subjects. The use of inverse dynam-
ics successfully achieved an accuracy of 94–98%. The high 

potential of hybrid modality for KOA has attracted more 
researchers towards this. An effort to analyze KOA gait 
using only sensor based modality was led by Kotti et al. [10] 
attained high accuracy. Towards vision-based KOA recogni-
tion, a commendable work was put forward by Ishikawa et al. 
[31] using model-based approach. Their study revealed the 
potential of planar law to measure gait variations. Similarly, 
the use of the Kinect sensor for KOA gait acquisition by Cui 
et al. [32] opened new doors towards vision-based model 
free modality and achieved an accuracy of 97%. Besides 
these research studies, certain Universities also contributed 
to the medical field. Recently, in 2018 University of United 
Kingdom (UK) developed sensor installed clothes for gait 
capture purposes [33].

In spite of having huge benefits of vision and sensor-
based KOA recognition, several issues have been observed 
by researchers which make KOA gait analysis a complicated 
task such as unavailability of KOA database, small sam-
ple size [12, 34–36], self-occlusion [37], focus on only few 
severity levels [16, 38–40], few gait parameters [11, 41] etc. 
Till now, most of these issues remain unsolved thus opening 
new research scope in the clinical diagnosis of KOA.

In this article, the entire focus is directed towards broader 
analysis of KOA considering gait biometric. A systematic 
review process of the articles is shown in Fig. 2. A litera-
ture survey has been performed using highly reputed jour-
nals including IEEE, Sensors, The Knee, Osteoarthritis and 
Cartilage, Gait and Posture, Clinical Biomechanics, Journal 
of Biomechanics, Advanced Robotics, Arthritis Care and 
Research etc. Articles are searched using different keywords. 
Keywords such as ‘osteoarthritis gait’, ‘knee osteoarthritis’, 
‘clinical knee osteoarthritis’, ‘vision based KOA’, ‘sensor 
based KOA’ etc. are incorporated in the search box, also 
providing a range of years to be searched ‘2000–2018’. On 
specifying the search string to ‘OA gait’, approximately 
(1000–1500) articles have been obtained. Further limiting 
the search string by ‘area tag’ (e.g., knee, hip, ankle OA 
gait), most of the research articles found to be related with 
KOA. Finally, after eliminating duplicate and unrelated 
articles, a total of 125 relevant articles are considered that 
mainly focused KOA diagnosis based on gait.

The general framework followed for diagnosing KOA 
using clinical analysis involves five main stages i.e. (1) Gait 
data acquisition (2) Pre-processing (3) Feature Extraction (4) 
Classification (5) Output, shown in Fig. 3. Stage-I includes 
capturing of KOA and healthy subjects gait data using sen-
sor-based [10, 42–44], vision-based [31, 32, 37] and hybrid 
[14, 36, 45, 46] modalities. In Stage-II, the acquired data is 
then pre-processed (frame extraction, noise filtering, etc.) to 
enhance the quality of data. For filtering of gait data, But-
terworth (fourth order, zero phase lag) low-pass filter is used 
by most of the researchers [29, 31, 40, 47]. Stage-III involves 
acquiring of gait frames and extraction of relevant features 

Fig. 1  Comparative representation of some gait disorders affecting a 
large population, based on a study [22], measured using DALYs
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such as speed, knee moments, velocity etc. for both KOA 
and normal subjects, optimized features are then selected 
using some techniques such as PCA [31] etc. In Stage-IV, the 
classification among KOA and healthy subjects is performed 
using statistical measures [42, 44] or machine learning tech-
niques [41, 48]. Stage-V indicates the result of the diagnos-
tic system for KOA diagnosis and accordingly provides a 
decision regarding the severity of the disease. The detailed 
description of the aforementioned stages (I, III, IV, and V) 
is provided in succeeding sections. 

1.1  Contribution

There are some existing surveys done by different 
researchers that provided useful reviews on normal as 
well as pathological gait recognition. A recent review by 
Prakesh et al. [49] focused on different parameters (such 
as spatiotemporal, kinetic, kinematic etc.), approaches 
(vision, sensor-based and hybrid) that are used for human 

gait recognition. They had also covered application areas 
and Machine learning techniques for human identifica-
tion. Another review by Tao et al. [50] highlighted the 
efficiency of wearable sensors for gait analysis.

In the clinical field, a review by Herran et  al. [51] 
focused the use of wearable and non-wearable systems and 
their applicability in diseased gait analysis. Another effort 
by Ali et al. [52] conducted a systematic review indicating 
the potential of vision and non-vision based sensors for 
abnormal gait rehabilitation.

The aim of this article is to perform a systematic survey 
on different aspects of KOA based on gait. The objective 
of this article can be understood through the points men-
tioned under:

1. To the best of our knowledge, this is the first article 
which provides literature survey of KOA based on gait.

2. The paper comprehensively outlines the evolution of 
various techniques for clinical gait analysis from the 
year (2000–2018).

3. Investigated KOA considering more than 100 research 
articles from journals of repute.

4. The article exhaustively reviews several gait acquisition 
modalities for KOA, also highlighting their issues and 
their relative comparison.
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Fig. 2  A demonstration of the complete systematic review process to obtain relevant KOA articles from (2000–2018), considering reputed jour-
nals
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Fig. 3  A pipeline depicting the diagnostic process of knee osteoar-
thritis (KOA)
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5. The article provides a brief description of various per-
formance evaluation statistical methods used for KOA 
analysis.

6. The paper inclusively surveys a number of KOA feature 
representation approaches, based on taxonomy shown in 
Fig. 13.

7. The paper provides an overview of machine learning 
techniques for the diagnosis of KOA.

8. The article also focuses on the future perspectives that 
need to be considered for reliable KOA diagnosis.

9. A concise description of the proposed workflow is also 
given in Fig. 19.

The paper is organized as follows; Sect. 2 presents an 
overview of human gait analysis including basics of human 
gait, history of clinical gait analysis and a brief descrip-
tion of Musculoskeletal disorders. Section 3 outlines the 
evolution of clinical gait analysis technologies. Section 4 
describes KOA gait acquisition modalities. Further, feature 
representation approaches for KOA is defined in Sect. 5. 
Sections 6 and 7 illustrate evaluation methods and machine 
learning approaches for KOA analysis. Section 8 discusses 
future perspectives and proposed work is presented in 
Sect. 9. At last, Sect. 9 summarizes the whole article in the 
form of conclusion.

2  Overview to Human Gait Analysis

Gait defines the style of walking of humans as well as ani-
mals. Human gait analysis is more primarily concerned with 
the study of human kinetics employing both subjective such 
as eye and brain of the viewer as well as objective assess-
ment i.e. using various devices and techniques for calculat-
ing gesture of body, muscles action and body mechanics 
[53]. Along with security and clinical applications, gait anal-
ysis can be applied in identification of risk injuries (Sports), 
Robotics research, Rehabilitation etc. In recent years there 
has been a great interest among researchers and scholars 
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to understand, identify and intellectualize the concepts of 
biometrics in the field of medicine. By analyzing the walk-
ing pattern of a patient clinically, it is possible to perform 
an early diagnosis of various diseases and accurate differ-
entiation of normal and abnormal subjects. This section 
provides the description of human gait basics including gait 
cycle, history of clinical gait analysis and a brief illustration 
of Musculoskeletal disorders focusing primarily on Knee 
Osteoarthritis (KOA).

2.1  Basics of Human Gait

In a normal human being, gait activity occurs smoothly 
using two limbs where one limb supports another with-
out losing balance. However, this simple looking walking 
involves complex events. These events happen in a sequence 
which repeats itself to create ambulation and forms the gait 
cycle. In this section, an explanation of phases and sub-
phases involved in human gait cycle is presented (using dif-
ferent colors) in Fig. 4. Also, brief detail about percentage 
contribution of each phase in total gait cycle is provided.

1. Human gait cycle

Taking right leg as reference, the period initiating from heel 
strike of one extremity (right) to the occurrence of the same 
event of other lower extremity (left), is named as Gait Cycle 
[54]. On the other hand, if it ends with other lower extremity 
different from that of starting one, is known as Stride. Three 
essential combination of human body parts-lower extremity, 
pelvis and spinal column are responsible for the occurrence 
of the gait cycle [49].

Typically, Gait cycle is divided into two principle phases 
namely Stance Phase and Swing Phase. Stance phase means 
in-touch with the ground, i.e. when foot remains in contact 
with the floor (lime color), as shown in Fig. 4. It shares about 
60% in forming the gait cycle. On the completion of the 
Stance phase, immediately foot goes in the air (away from 
the ground) referred to as Swing Phase (tan). It contributes 
almost 40% in the gait cycle. So, the whole summation of 
above two phases makes a complete gait cycle [56]. In total-
ity, Perry et al. [55] divided gait cycle into eight sub-phases 
out of which first five belongs to Stance phase and remain-
ing three to Swing phase, implies in Fig. 4. The subsequent 
aggregation of all phases attain three important tasks-Weight 
Acceptance (WA) (aqua), Single Limb Support (SLS) (dark 
purple) and Limb Advancement (LA) (green) [49, 54].

First two sub-phases of Stance phase are: Initial Contact 
also known as heel Strike, occurs when the foot first touches 
the ground and contributes nearly (0–2%) of the gait cycle. 
The second one is Loading Response also known as foot flat, 
in which the whole weight has to be acknowledged by the 
reference leg. When this phase takes place, foot become flat 

and shares (2–10%) of the total gait cycle. These two sub-
phases lead to the accomplishment of the first task i.e. WA.

Then the next two (third and fourth) sub-phases of Stance 
phase begins-specifically Mid-Stance, which represents 
the midway of the whole Stance phase. It starts when the 
limb other than reference leg is raised and maintained over 
the forefoot and covers about (10–30%) of the gait cycle. 
Another phase i.e. Terminal Stance (heel-off) indicates 
that the heel is actually trying to leave the floor and adds 
(30–50%) of the gait cycle. These two sub-phases of Stance 
phase completes the second task of (SLS). Final (fifth) sub-
phase of stance phase: Pre-Swing (toe-off) occurs when toe 
leaves the ground and forms (50–60%) in the gait cycle. This 
phase initiates last task i.e. (LA) and is continued through 
three (sixth, seventh and eighth) other sub-phases of Swing 
phase.

In Swing phase, Initial Swing is considered as the first 
sub-phase in which the person tries to accelerate the extrem-
ity ahead and shares (60–70%) of the total gait cycle. Like-
wise, mid-stance phase of stance phase, other phase known 
as Mid-Swing referred as the midpoint of Swing phase and 
shares (73–87%) of the gait cycle.

Following the Mid-Swing phase, the last phase of Swing 
phase i.e. Terminal Swing occurs. In this phase, an effort is 
made to stop the limb for next heel strike for the preparation 
of next Stance phase and commit (87–100%) of total gait 
cycle [49, 54]. The Period of Double support (DS) can be 
seen in first and fifth phase (rose) while the period of Single 
Support (SS) extends from second to the fourth phase and 
continued from sixth to eighth phase (blue), shown in Fig. 4. 
Therefore, the gait cycle plays a vital role in the identifica-
tion of individual gait patterns either normal or with some 
pathological disorder such as KOA.

2.2  History of Clinical Gait Analysis

The understanding of walking developed today is not influ-
enced by a single era of study but involves a long history. 
How does walking happen? What are the parameters and 
phases involved in it? People have been reasoning since the 
earlier times [57]. In this section, the information about work 
done in the medical area from Ancient times to The Modern 
Era, by some major contributors is provided and summarized 
in Fig. 5.

In Ancient era, by raising certain relevant queries about 
the manner of walking of human beings, Aristotle (384–322 
BC) [57, 58] has set the basis for further evaluation in 
gait analysis and became the first person who contributed 
towards gait by giving his work in ‘Gait of Animals’. He 
examined and outlined the human movements based on 
which various new theories developed on human and ani-
mal’s locomotion.
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After Aristotle’s work, during the Renaissance era, 
Vinci (1452–1519) [58] focused on the mechanics of the 
human body during different activities such as walking, 
upstanding etc. Cardano (1501–1576) [58] contributed 
his work towards human body’s 3D joint angles to ana-
lyze the movement. Then the concept of modern scientific 
methods was put forward by Galilei (1546–1642) [57, 58] 
who was a physician. Similarly, another work by Descartes 
(1596–1650) [57] on Cartesian coordinates added a new 
advancement in the assessment of clinical gait. Out of 
all the related work done during renaissance era, one of 
the tremendous contributions was laid by Borelli et al. 
(1608–1679) [57–59] on ‘Motion of Animals’ and is con-
sidered as the first researcher to conduct experiments on 
gait analysis. Borelli’s study on muscle movements and 
body mechanics came with a new conclusion that external 
load applied to muscles is considerably less than the forces 
between the muscles.

After that, the age of enlightenment began with the work 
of Weber brothers (1806–1871) [57, 60]. They were the 
first to inspect the human gait analysis in ‘Mechanics of 
Human Walking Tools’ (Mechank der Menschlichen Gel-
werlizeuge). Their efforts towards constructing a model to 
give a clear description of the behavior of limbs at different 
time and relationship between variations in step length and 
cadence provided great insight in clinical gait assessment.

Afterward, Helmholtz (1821–1894) and Carlet 
(1845–1892) [58] has carried their researches and involve-
ment towards this field also shown in Fig. 5. Muybridge 
et al. (1830–1904) [61] and Marey et al. (1830–1904) [62] 
contributed substantially to this new findings and developing 
field of gait biometric by giving their work in ‘The Human 
Figure in Motion’ and ‘Animal Mechanics’. Muybridge 
(a leading American photographer) used his photography 
techniques to capture gait. Later Marey’s efforts to capture 
several images on a single photographic plate by developing 
a shutter had successfully overcome the Muybridge’s flaws 
and used it for pathological gait study [62].

In the same era, Braune (1831–1892) and Fischer 
(1861–1917) [58, 63] became the first to direct the tridi-
mensional mathematical investigation of human gait and 
their effort published in the book ‘Der Gang des Menschen’ 
(1895–1904). They made an effort to study mass, volume 
and center of mass for three male adults and also enhanced 
the use of regression equations to estimate various param-
eters of the body.

Gait analysis in the clinical application set up great strides 
in later half of the twentieth century [64]. In the period 
of World War II, Inman (1905–1980) [65] and Eberhart 
(1906–1993) [66] emerged with new and splendid under-
standing concerning to human locomotion. Their aim was to 
treat world war retired soldiers for providing gait rehabilita-
tion to them.

At the end of World War II, Murray (1925–1984) [58, 67] 
was the first researcher to quantify the kinematics of body 
segment in more than one plane during walking. She made 
intriguing research for worldwide studies in the medical 
field. The concept of interrupted lights was used to capture 
the gait of 60 normal males in both sagittal and traverse 
plane [57].

In the modern century, major contributions to the devel-
opment of clinical gait have been made by two surgeons 
namely Sutherland and Perry (1923–2006) [57]. Develop-
ment of Electromyography (EMG) electrodes by Sutherland 
[58] for gait measurement using EMG proved to be a suc-
cessful tool for disease investigation in clinical research. 
They established the gait enquiry library [64] and have also 
given division in the phases of the gait cycle.

Therefore, clinical gait analysis has emerged as a new 
area for academia and researchers to produce more investiga-
tive outcomes towards early detection of the disease.

2.3  Overview of Musculoskeletal Disorders (MSD): 
KOA

The human body is just like a network that consists of bones, 
joints, muscles, nerves, other tissues and supporting struc-
tures collectively named as Musculoskeletal System (MSS) 
[68]. The occurrence of any condition (e.g. injury, physical 
abnormality) which directly or indirectly affects the parts of 
such system, is termed as Musculoskeletal disorders (MSD) 
such as arthritis, Osteoporosis, back pain etc. [69]. These 
disorders causes pain and effects the walking of a person.

This section provides a brief outline of MSD, giving 
special preference to Osteoarthritis (OA) considering knee 
i.e. Knee osteoarthritis (KOA), affecting a large popula-
tion. Arthritis is a MSD that mainly causes inflammation of 
joints and besides affecting older population, children and 
young people are also prone to the disease [70]. Among all 
arthritis’s (such as Osteoarthritis (OA), Rheumatoid Arthri-
tis (RA), Gout etc.), OA is the most common type degrad-
ing people lives gradually. In a systematic analysis on the 
global burden of disease study from (1990–2016) [71], it is 
analyzed that OA shows a high rise in affecting population 
between the period 2006 and 2016 i.e. 31.5% as compared to 
other types of arthritis and MSD’s. OA typically referred to 
as degenerative joint disorder/wear and tear disease [64, 72, 
73] initially begins with affecting a few joints (medial com-
partment) and when progresses to severe stages, it destroys 
other joints of the body including knee, hip, hand, feet and 
spine [70]. In OA, the joint becomes unstable and loses its 
range of movement, even then many people do not complain 
about pain in that joint. Thus, diagnosing OA in early stages 
is a very difficult task [70].

A 2012 study by Turkieivicz et al. [74] investigated the 
present and future effect of OA on healthcare considering 
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OA population aged greater than 45. The analysis reveals 
that out of three most effected joints of the body i.e. knee, 
hip and hand, greater effect was seen on the knee (almost 
61%) followed by the hip joint (48%). Hand OA contributed 
46% and 55% by other joints (shoulder, ankle, elbow, foot, 
jaw and polyarthritis nodes) as shown in Fig. 6.

Another study by Gabriel et al. [75] has provided an evi-
dence of knee as the most affected joint attacked by OA 
compared to hip and hand joints. KOA is a very common 
cause of gait disorder that affects whole joint [76] and leads 
to serious treatment such as Total Knee Replacement (TKR) 
[77].

A joint basically provides a point where two bones meet 
and are held by a fibrous elastic tissue known as ligament. 
Figure 7 gives a visual description of differences between a 
healthy and OA knee joint. In the knee joint, two bones namely 
femur and tibia are connected with the help of ligament. In a 
healthy knee (left), cartilage prevents two bones from sliding 
each-other by providing joint space. Also synovial fluid pro-
vides nourishment to the bone and helps in normal walking. 
When KOA occurs, healthy articular cartilage starts deteriorat-
ing, get reduced, become hard and rough, ends of bone swells 
and take knobby shape [70] as shown in Fig. 7 (right). Also, 
synovial membrane thickens increasing the amount of synovial 
fluid which starts releasing toxin substances and reduces joint 

space between two bones. As a result of which, during walk-
ing, bones rub each other and cause pain to a person. 

The causes behind occurrence of KOA still remain hidden. 
However, some factors such as obesity, aging, excessive joint 
load, injury can be considered as its main causes [76]. Several 
studies have revealed that aging is the important risk factor that 
contributes to KOA and women are more prone to the disease 
than men [69]. In a health 2000 Examination survey [76], it 
was concluded that persons with age group (55–74) and mostly 
females frequently comes under the effect of KOA [70]. The 
reason may be more susceptibility of KOA for degradation and 
damage of cells [77].

Therefore, In KOA, destruction of knee joint leads to an 
abnormal gait, referred to as Antalgic gait. A person with this 
gait try to put less load on the more affected knee to avoid pain 
thus have more swing than stance phase in gait cycle [79].

1. Clinical Measurements for KOA Diagnosis

In Clinical diagnosis of KOA, radiographs (X-rays, MRI) 
of a patient’s knee gives the evidence of the presence or 
absence of KOA. Once diagnosing its presence, doctors 
grade the disease on some clinical radiograph classification 
systems to assess its severity. Currently, there are almost 
30 such systems available to grade KOA severity includ-
ing Kellgren-Lawrence Scale (K–L scale), Visual Analogue 
Scale (VAS), Knee injury and Osteoarthritis Outcome Score 
(KOOS), SF-36 questionnaire, Western Ontario and McMas-
ter Universities Osteoarthritis Index (WOMAC), Boston 
Leeds OA Knee Score (BLOKS) etc. Amongst the exist-
ing grading scales, K–L scale is typically used for assess-
ment of KOA severity by assigning grades from 0 to 4, due 
to its easiness in understanding and usage [76]. The whole 
description about the meaning of each grade in K–L scale is 
presented in Table 1.

However, the use of these clinical grading measures for 
KOA seems to be good but only involves subjective assess-
ment. Radiographic scores and patients reported pain need 
not to correlate with each-other that leads to an inaccurate 
diagnosis of KOA. Therefore, objective and quantitative 
measurements of KOA should be performed for proper diag-
nosis of KOA. Using gait as a measure for KOA, can provide 
a Quality of Life (QOL) to people suffering from KOA and 
help in gait rehabilitation.

3  Evolution of Technologies for Clinical Gait 
Analysis

A technology refers to equipment or device evolved from 
technical knowledge in order to solve numerous problems. 
Due to its larger benefits, one of its application areas is in 

Fig. 6  Representation of percentage effect of OA on various joints of 
the body including knee, hip, hand and other, based on study [74]

Healthy 
femur 
bone

Patella

Healthy 
tibia bone

Healthy articular 
cartilage

Spurring 
femur 
bone

Degenerated 
articular cartilage

Spurring 
tibia bone

Healthy Knee 
Joint

Osteoarthritis Knee 
Joint

Ligament

Fig. 7  A pictorial view of healthy unaffected knee joint (left) and 
knee joint affected by OA (right) [78]
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medical for recognition of a disease efficiently. This section 
provides a brief description of the evolution of numerous 
technologies invented by different researchers from ancient 
time to modern era [81] and are used for clinical gait analy-
sis. Figure 8 provides a visual representation of technologies 
developed from the 1800s to 2018.

The foundation of clinical gait analysis was led by 
efforts of Braune and Fischer [82] in the 1800s, by apply-
ing Geissler tubes. They focused on determining individual 
joint angles such as flexion, extension, adduction, abduc-
tion etc. using the idea of differences in angular rotation of 
joints and body segments that differentiates a normal gait 
from an abnormal one. The use of Geissler tubes however 
shown efficiency in estimating kinetic data of subject but 
required a large number of hours for patients gait acquisi-
tion and further calculations. Another advancement in this 
area was made by Carlet [57] (student of Jules Marey) in 
(1849–1892). Carlet developed insole pressure shoes with 
the aim to perform Ground Reaction Force (GRF’s) meas-
urements when foot of the subject comes in contact with 
the ground.

Afterward, in the 1940s Elbeherdt and Iman [66, 82] took 
forward the clinical research by using the principle of inter-
rupted lights. The joint angles were calculated by a series 
of dots formed by slotted plates/disks rotating in front of the 
camera at fixed intervals of time. Since these angles were 
manually computed so it was not appropriate for medical 
applications. Both Geissler tube and interrupted light meth-
ods were based on old photography. The discipline of gait 
enquiry was then lifted ahead by Inman and Colleagues 
[81] in (1944–1947) with the invention of Kinesiological 
Electromyography (KEMG). They employed KEMG in 
combination with 3-Dimensional (3D) force to investigate 
the muscle movements and strength between normal sub-
ject and the ones with the disorder. Abnormal interrupted 
lights activity potential was then analyzed using a system 
known as Electromyographs. The used procedure though 
helped in reducing the synchronization error [81] but the 
insertion of electrodes in the body to measure EMG signals 
was very painful for the subjects. In the 1950s, Goddard [81, 
83] had revolutionized the world of clinical gait analysis by 
introducing inertial sensors i.e. accelerometers, gyroscopes 
etc. These Inertial Measurement Units (IMU’s) were fixed 
to different body parts of subjects in order to compute the 

linear acceleration as well as the angular position of the 
body. However, these units had high potential in capturing 
sufficient clinical gait data but was bulky, expensive and 
caused difficulty to subjects in wearing IMU’s.

Afterwards, a new technology emerged that has changed 
the face of clinical gait analysis i.e. Kistler force plates. 
These force plates were launched by Kistler group [57, 64] in 
1969 to measure GRF’s from the surface. These devices had 
the ability to acquire total XY and vertical forces conveyed 
by foot while walking. The invention of KEMG, insole pres-
sure shoes, and force plates constitute force and pressure 
sensors which in turn are wearable (e.g. insole shoes) and 
non-wearable (e.g. Kistler plates) shown in Fig. 8. The name 
of a great researcher Murray [82] gave a new insight to this 
area by inventing an effective, easily employable and low-
cost technology of retro reflective strips in the 1960s–1970s. 
Reflective markers (either passive-covered with retro-reflec-
tive material or active-LED’s itself) were devices attached to 
different parts of the human body which then acts as land-
marks to calculate the joint angles from photographs taken. 
Measurements were performed by connecting these stripes 
to body extremities of normal (men, women) and pathologi-
cal diseased patients. This technology contributed towards 
marker-based gait capture [84].

In 1976, the very first researcher to make use of the elec-
trogoniometer technique to enable joint angles recording in 
an easy way was Karpovics brothers [82]. The main advan-
tage was its cost-effectiveness and its ability to continuously 
measure joint angles. Afterward, in the 1980s Motion cap-
ture suit shortly known as Mocap suit [85] was developed by 
Virtual Programming languages (VPL) that was competent 
enough to record the actions of the wearer. Other companies 
had also put forward this technology into a new form such as 
Tesla, prior Virtual reality (VR) etc. in the market.

In 1984, one of the eminent technologies was founded by 
Vicon [64] which enabled acquiring and capturing the 3D 
motion. Vicon was chiefly the video-based motion capture 
system to reflect infrared light of passive targets attached to 
the area of interest on the body. In the period of (1995–2005) 
Digital camcorders and Smartphone’s [64] had completely 
modernized the world. This discovery (by Sony, Ikegami 
etc.) made it easier to capture the motion of the human body 
with high accuracy and reliability. Mobile devices such as 
smartphones have been used to use the accelerometer data.

Table 1  Meaning of different 
scores for grading OA (knee) 
severity according to Kellgren–
Lawrence Scale (K–L scale) [8, 
76, 80]

K–L scale grades Meaning

Grade 0-no OA No evidence of the presence of radiographic OA
Grade 1-unsure OA Doubtful joint space reduction, possible development of osteophytes
Grade 2-mild OA Possible joint space lessening and sure osteophyte formation
Grade 3-moderate OA Definite joint space narrowing, multiple osteophytes, and some sclerosis
Grade 4-severe OA Higher osteophytes, severe sclerosis and sure bone deformity
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Research towards the medical field didn’t stop here but a 
new technology was put forward by Microsoft (MS) Kinect 
with the invention of the depth camera in 2011 [64]. This 
device had the capability to capture only that portion of the 
body in which the researcher was interested by construct-
ing a skeleton structure of the body. The three technologies 
discussed earlier i.e. Vicon 3D Motion system, Digital cam-
corders, Smartphone’s and depth camera were based on the 
concept of image processing. They directly capture gait of a 
patient without the use of markers on the body thus known 
as mark-less motion capture technology.

Recently in 2018, a new sensor installed clothes have 
been developed by the researchers in the University of 

UK [33] for clinical gait assessment. These clothes are 
equipped with highly specialized internal sensors to access 
the entire motion of the body. This new invention con-
tributed immensely towards the enhancement of clinical 
research. The technologies such as inertial sensors, elec-
trogoniometer, Mocap suit and sensor installed clothes are 
wearable sensors i.e. in order to use them, it is necessary 
to attach them to the subject’s body.

Therefore, invention and development of the abundant 
technologies have opened new doors towards medical 
applications for diagnosis of various gait disorders such 
as Musculoskeletal, neurological diseases etc. The detailed 
explanation of all the technologies is presented in Sect. 4.

Fig. 8  A Visual Representa-
tion of the evolution of various 
technologies for clinical gait 
analysis. Left side depicts the 
name of the inventor with the 
year and the right side shows 
a list of clinical gait measure-
ment technologies and types of 
modality under which they fall
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4  Gait Acquisition Modalities for Diagnosis 
of Knee Osteoarthritis (KOA)

Data acquisition primarily defines the process of collect-
ing sufficient information using different modalities. The 
success of a system relies on this acquired data. A modal-
ity is simply the way through which relevant data can be 
obtained. One of its major roles can be seen in capturing 
clinical gait of people suffering from KOA. In recent years, 
a number of KOA gait acquisition modalities have been 
developed based on different gait parameters such as Knee 
Adduction Moment (KAM), Knee Flexion Moment (KFM) 
etc. that enabled KOA effective diagnosis. Data acquisition 
in KOA is based on the technologies discussed in Sect. 3.

In this section, a systematic description about various 
KOA gait acquisition modalities from recent 15 years is 
summarized in Tables 2 and 3, based on proposed hier-
archical taxonomy shown in Fig. 10. To get deep insight 
through these modalities, a complete illustration of each 
is presented. In this article, KOA acquisition modalities 
are classified into three broad categories namely Vision-
Based, Sensor-Based and Combined/Hybrid. Approx. 125 
research articles are found on KOA from 2004 to 2018, out 
of which 90 are based on Hybrid modality, 32 are Sensor-
based and rest are Vision based, shown in Fig. 9.   

4.1  Vision‑Based

Since assessing an individual’s gait with naked eyes is 
very challenging, the use of an optoelectronic system is 
required [52]. Vision-based modality make use of the 
analog or digital camera to capture and analyze the gait 
cycle. Once KOA gait is acquired, digital image process-
ing techniques such as Time-of-Flight (TOF) and several 
methods including threshold, range imaging, background 
subtraction are used to perform measurements on recorded 
gait data [51]. This modality is further classified into two 
major sub-categories based on the use of markers i.e. 
model-based and model-free, shown in Fig. 10.

4.1.1  Model‑Based

This modality is based on modeling the human body to 
extract relevant KOA clinical gait. Initially, a set of retro-
reflective markers is fastened to the human body which pro-
vides the position of indicator points to determine angles of 
joints. Then a video-based optoelectronic system such as 
VICON, Polaris etc. is employed to detect the location of 
indicated body landmarks [108]. Retro-reflective markers 
thus used for this purpose are categorized into two classes 
[49]:

 (i) Passive markers These are the spherical, rounded or 
square devices coated by a reflective scotch lite tape 
layers. On emitting light by LED’s equipped cam-
era, these devices reflect the light back indicating the 
position of body landmarks.

 (ii) Active markers These markers are LED’s itself that 
are attached to the subject’s body and releases light. 
Infrared light signals are released by the camera to 
determine the backscattering produced by LED’s 
markers giving the exact location and position of 
landmarks on the body.

Ishikawa et al. [31] proposed a study with an objective 
to analyze the angle of elevation made by KOA patients 
and healthy controls during walking. They employed an 
eight markers plug-in-gait marker set and a nine cam-
eras VICON Mocap system. Results demonstrated the 
applicability of planar law to patients and achieved 
increased accuracy-0.69 ± 0.14, (Area under Curve) AUC-
0.69 ± 0.767, precision = 0.84 ± 0.23, recall-0.57 ± 0.26, 
F-measure-0.66 ± 0.15 than previous method and 
Threshold = 8.56 ± 1.80.

Model-based modalities however, achieve high accuracy 
by giving correct location of body landmarks but require the 
use of controlled and complex laboratories to achieve KOA 
gait acquisition purpose.

4.1.2  Model Free

To overcome the limitations of model-based modality, 
model-free also known as holistic or appearance based 
modality has been developed. Model-free modality doesn’t 
employ markers on patient’s body but only utilizes a single 
video camera such as Kinect V2 etc. to capture KOA gait. 
Existing details about the subject’s body are not required 
and the main focus is given to shape, observing the point of 
camera and appearance. Firstly, videos are captured using a 
camera and then background subtraction is done to extract 
the silhouette image in order to again capture again shape 
and motion parameters [108].

Verlekar et al. [37] developed a single 2D video camera 
based system to allow automatic diagnosis and classifica-
tion of gait pathologies using foot (step length and symme-
try, foot fraction, normalized step count, speed) and body 
(amount of movement during gait, the center of gravity shifts 
and trunk orientation) related features. The proposed sys-
tem using Support Vector Machine (SVM) outperformed 
the existing markerless two-dimensional (2D) video-based 
systems by attaining an accuracy of 98.8% and proved its 
reliability in the diagnosis of different pathologies includ-
ing the knee. Though system achieved high accuracy but 
was susceptible to some flaws such as inability to analyze 
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Table 3  Shows Combined KOA gait acquisition modality with accuracy rate

S. no. References/year Resource Dataset Accuracy Key findings Remarks

1 Derek et al. [16]/2018 Retroreflective spheres
Dual belt treadmill 

(GaitRite™)

74 moderate KOA 
subjects

94%-98% Both CP and ID had 
high potential to cal-
culate knee moment 
outcomes

Only moderate severity 
was considered

2 Metcalfe et al. 
[102]/2017

Plug-in gait marker set
12 Vicon MX2 cam-

eras
3 AMTI force plates

20 KOA, 20 HC OA and 
normal 
Knee:

95%, 
92.5%

Focused rehabilita-
tion proved to be 
useful to optimize 
outcomes

Selection of people 
with only single joint 
disease

3 Jun Sun et al. 
[103]/2017

24 reflective markers
IDEEA3
GO Pro Hero3

23 KOA patients, 12 
HC

_ Results showed 
the reliability of 
IDEEA3 for efficient 
use in KOA analysis

Restricted motion 
analysis system 
recording space

4 Angkoon et al. 
[41]/2016

8 camera Vicon 
Mocap system

9-mm retroreflective 
markers

A treadmill (Bertec)

100 KOA (45M, 55 F),
45 HC (18M, 25 F)

98–100% Gender should be 
considered while 
investigating KOA

Only focused joint 
kinematic data

5 Hiromi.M et al. 
[104]/2015

Reflective markers
An accelerometer, a 

dynamometer
CM-200 sonometer
MC-780A BCA

91 KOA (22M, 69 F) _ Results demonstrated 
strong association 
between KOA and 
falling risk

Possibility of selection 
bias

6 Shawn.F et al. 
[40]/2015

A plug-in gait marker 
set

2 Bertec force plat-
forms

8 camera Vicon 
Mocap system

17 with KOA,SRKI 
and

36 with KOA,NSRKI

_ SRKI was associated 
with alterations in 
joint

Only included patients 
with medial compart-
ment KOA

7 Favre et al. [13]/2014 A force plate
Cluster of retroreflec-

tive markers
An optoelectronic 

Mocap system

110 (29 young adults, 
27 HC, 28 moderate, 
26 severe KOA)

_ Less extension and 
Increased KAM was 
associated with KOA

‐ Cross-sectional study
‐ Chances of undiag-

nosed KOA in healthy 
ones

8 Jessica et al. [35]/2013 Reflective markers
9-camera Mocap sys-

tem (Qualisys)
A multi-component 

force plate

43 KOA patients _ In each gait trail, 
only KAM showed 
repeatability

Small number of par-
ticipants

9 Metcalfe et al. 
[36]/2013

12 Vicon MX2 camera 
system

3 AMTI force plates
Reflective marker set
EMG electrodes

9 KOA subjects, 24 
HC

_ In spite having unilat-
eral KOA, abnormal 
loading was present 
in both limbs than 
controls

Small sample size

10 Mark.W.C et al. 
[14]/2012

2 force plates
A Vicon system
Reflective markers

91 KOA patients and 
31 HC

_ Greater trunk lean 
towards more 
affected knee and 
less flexion in KOA

Cross-sectional study

11 Marius.H et al. 
[105]/2012

A 6 camera 3D 
Mocap’s

2 AMTI force plates
A plug-in gait marker 

set

137 medial KOA 
patients

_ Negative correlation 
shown between pain 
and loading by less 
severe and posi-
tive between severe 
between pain and 
KAM impulse

Cross-sectional study 
design
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arm movement in silhouette image, requirement of a high 
resolution camera.

In another study, Cui et al. [32] proposed a method for 
reliable and accurate gait analysis of KOA patients using 
a single Kinect sensor consisting of depth sensing RGB-D 
camera to capture the depth information of joints of patient’s 
body. Kinematic, kinetic and spatiotemporal features were 

determined and Dynamic Time Wrapping (DTW) was used 
for calculation of knee joint angles. DTW is a method for 
distance calculation that performs a non-linear transfor-
mation to minimize the cost function. Applying SVM for 
classification results in high efficiency of Kinect in KOA 
diagnosis with an accuracy rate of 97%.

Thus the combination of model-based and model-free 
modalities constituted video based non-wearable mode for 
KOA gait acquisition and assessment. In recent years, a very 
few research is focused on using this modality for KOA diag-
nosis. Vision-based modalities offer direct capturing of KOA 
gait without the involvement of subjects and don’t require 
putting devices over the body. So there is greater need to 
consider these modalities for further KOA investigations.

4.2  Sensor‑Based

Another important KOA gait acquisition modality is based 
on the use of sensors which are attached to the human body. 
These are further classified into two sub-categories on the 

Fig. 9  A depiction of usage proportion of each modality for KOA gait 
acquisition

Acronym of words used in table: Male (M), Female (F), Knee Osteoarthritis (KOA), Healthy Control (HC), Self-Reported Knee Instability 
(SRKI), Non Self-Reported Knee Instability (NSRKI)

Table 3  (continued)

S. no. References/year Resource Dataset Accuracy Key findings Remarks

12 Astephen et al. 
[38]/2011

Optotrack™ 3020 
Mocap system

AMTI force plate
Active markers
EMG electrodes

40 KOA patients _ Gait speed was 
determined as an 
important variable to 
calculate radio-
graphic pain

Severe knee OA 
patients were not 
involved

13 Nigar.S.K et al. 
[106]/2010

Computer interfaced 
camera’s

Reflective markers
A force platform

More than 150 KOA
subjects

80% Combination of clas-
sifiers have great 
potential to provide 
in high classification 
rate

Relationship between 
gait adaptation and 
disease severity was 
not determined

14 Ershela et al. 
[64]/2009

A motion analysis 
system

AMTI force plates
Reflective markers
An orthotrack system

26 males and 30 
females

with KOA

_ Highlighted the gait 
variations among 
M,F

Only severity level 
matched participants 
were chosen

15 Deluzio et al. 
[46]/2007

An Optoelectronic 
system

6 infrared light emit-
ting diodes

A force platform

50 end stage KOA 
patients

63 HC

92% Results depicted the 
usefulness of combi-
nation of two statisti-
cal techniques

Cross-sectional study

16 Nigar.S.K et al. 
[107]/2006

A Vicon Mocap 
system

Force plates

139 KOA patients,
20 HC

87–92% Amalgamation of 
MLP’s can be suc-
cessfully applied for 
correct gait disorder 
diagnosis

High Complexity of 
used approach

17 Astephen et al. 
[39]/2005

Optoelectronic system
6 infrared light emit-

ting diodes
A force plate

50 patients with severe
KOA, 63 HC

> 90% Results showed the 
capability of multidi-
mensional technique 
for gait pattern clas-
sification

Only severe level KOA 
patients were involved
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basis of their ability to be worn on the subject’s body namely 
Non-wearable sensors and Wearable Sensors.

4.2.1  Non‑wearable Sensors (NWS)

This KOA gait sensing modality can’t be worn on the body 
using these sensors, the diagnosis of KOA is performed on 
the basis of forces obtained from contact between foot and 
ground. Floor Sensors are used in NWS for the acquisition 
of KOA gait parameters.

(a) Floor Sensors (FS)—These are the non-wearable sen-
sors which make use of force sensors embedded in floor 
platform thus named as floor sensors. The force sen-
sor platforms such as force plates, electronic and pres-
sure mats, instrumented treadmill have the potential to 
directly make the estimate of the force vector. Trans-
ducers provide the GRF’s on which measurements are 
performed. At last, the obtained forces are transformed 
into electrical signals to compute Center of Pressure 
(COP). An example of such an electronic floor sensor 
used in the research study of Southampton University 
is shown in Fig. 11.

Kotti et al. [10] proposed a system to determine the reli-
ability of rule-based approach for comparison of 47 KOA 
and healthy subjects. They made use of two Kistler force 
plates on 6 m long walkway having piezoelectric three-com-
ponent force sensors to collect subject’s data. A 5-fold cross-
validation (CV) accuracy of 72.61% ± 4.24% was achieved, 
employing Random Forest regression learning approach.

In other work, Elbaz et al. [44] used a computerized walk-
ing mat (GaitMatMII system) and successfully classified the 
KOA male and female (including 2911 knee OA patients). 
An accuracy of 89.5% for females and 90.8% for males was 
achieved using K-means method and Classification and 
Regression Tree (CART) model.

With the integration of 2 Kistler force platforms and a 
treadmill, Mezghani et al. [89] proposed to develop a sys-
tem to differentiate KOA and healthy subjects. Using GRF’s 
parameters and Nearest Neighbor Classifier, overall accu-
racy of 91% was achieved.

4.2.2  Wearable Sensors (WS)

In contrast to NWS modality, another modality seeking 
attention for KOA gait collection is wearable sensors. In 
order to enable the gait to be captured using wearable sen-
sors, a subject has to wear the sensor on the body. Wearable 
sensors based modality is further subdivided into different 
types on the basis of their function.

Fig. 10  Gait acquisition modalities for knee osteoarthritis (KOA) diagnosis

Fig. 11  A prototype of floor or pressure mat (left) and the corre-
sponding recorded footsteps on the instrumented mat (right), taken 
from [109]. Reproduced with the permission from Southampton Uni-
versity



361A Survey of Knee Osteoarthritis Assessment Based on Gait  

1 3

(a) Inertial Sensors (IS) These are the electronic equip-
ment’s established on the concept of inertial meas-
urement. The measurement of subject’s body can be 
performed by employing three main devices such as 
accelerometer (measures acceleration), gyroscopes 
(angular velocity), magnetometers (magnetic force 
computation) and sometimes combination of all three. 
Using IMU’s, it is possible to perform linear and angu-
lar measurements efficiently [110]. Tereso et al. [92] 
proposed a study to examine the Spatiotemporal, pos-
ture and fall-related features in KOA patients after Total 
Knee Arthroplasty (TKA). Crutches, standard walker 
(SW) and Rollator with Forearm Supports (RFS) were 
used to check their capability in KOA rehabilitation 
and the gait was recorded using two inertial sensors. 
MANOVA with repeated measures shown the differ-
ences among all the spatiotemporal features (p < 0.05). 
Also, SVM predicted the best stability using SW and 
RFS in which gait of patients was more closely related 
to normal ones and revealed the importance of time in 
gait evaluation.

In other work, Bolink et al. [95] aimed to examine the 
biomechanical gait features of KOA patients using only a 
single inertial sensor. An enhanced 3D inertial sensor con-
figuration of gyroscope and accelerometer was applied to 
analyze spatiotemporal as well as kinetic features. Results 
indicated the potential of inertial sensors in KOA and ana-
lyzed that KOA subjects walk with less speed, flexion and 
more trunk lean.

(b) Electromyograph (EMG Sensors) EMG sensors are the 
devices used to inspect the muscles electrical activity 
using a device known as Electromyographs. In KOA, 
muscle electrical signals representing electrical activ-
ity and muscle patterns of patients varies to a larger 
extent. These patterns represent the strength of muscles 
and enable the computation of different gait character-
istics. EMG sensors perform their function either using 
inserted sensors, consisting of wire or needle/surface 
electrodes made up of integral electrodes.

Kozey et  al. [43] intended to determine the changes 
occurring in the knee of 38 KOA patients with time as com-
pared to healthy controls. Surface EMG electrodes were 
used to analyze lower limb motion, GRF’s and other kinetic 
moments. Using inverse dynamics and Principle Component 
Analysis (PCA), it was analyzed that changes in gait speed 
(1.25–1.17 m/s from baseline to follow up) and muscle activ-
ity (p < 0.05) for both groups varied due to age and other 
related factors.

Again, in another study, Kozey et al. [97] tried to char-
acterize the knee joint muscles pattern in 51 patients with 
severe KOA using some pattern recognition methods. Elec-
tromyographic data was collected for patients using Silver 
chloride surface EMG (S-EMG) electrodes. About 97% of 
the variance and differences in EMG waveform was detected 
using Analysis of Variance (ANOVA) models which indi-
cated that people with KOA walk with low velocity than 
healthy subjects.

(c) Electrogoniometry (EGM Sensors) These sensor-based 
modalities are used to quantify joint angles of the body 
such as ankle, knee, hip etc. repeatedly without any 
interruption. Based on analyzed fluctuations in angle, 
these type of modalities are capable of measuring 
the amount of deviation in the physical signal. Two 
types of electrogonimeter were in major use including 
Potentiometer-attached with the joints rotator points but 
due to its bulky nature inducefrustration in ambulation. 
Another was Strain Gauges, also known as the flexible 
electrogonimeter made of flex spring with plastic and 
blocks on each end. These devices were light weighted, 
portable and can be applied easily [82]. So, in spite of 
having great potential of measuring joint angles these 
devices are very painful to wear.

The use of EGM can be seen in the study performed by 
Tarnita et al. [12]. They tried to examine flexion–extension 
moments, angles between KOA and healthy group by col-
lecting kinetic and kinematic data using a treadmill and two 
electrogoniometers. Statistical analysis revealed that Knee 
OA subjects had less max flexion (69.01 deg.) for affected 
knee and max amplitude (51.73 deg.) than healthy ones. 
Also, the healthy knees of the patients shown less flexion 
than the other group.

(d) Other Sensors Irrespective of all the non-wearable 
sensor modalities discussed above, there are few other 
preferred for capturing KOA gait. This includes pres-
sure shoes, Ultrasonic sensors and Smart garments. 
Pressure shoes, also known as instrumental insoles 
are positioned within the confines of shoes inside 
and impart the weight or load information applied on 
sensors. Organero [48] presented a study to evaluate 
the efficiency of eight insole pressure sensors embed-
ded inside the shoes in KOA investigation. KOA and 
healthy control group was identified based on differ-
ent types of classifiers i.e. SVM, Logistic regression 
model, Multilayer Perceptron (MLP) and Tree-based 
classifier. Average heel, mid-foot and forefoot pressure 
was determined and results demonstrated the efficacy 
of tree-based classifier than all other classifiers.
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Ultrasonic sensors are used to achieve gait related param-
eters such as the number of steps, stride length and other 
related characteristics. Kiss et al. [101] focused on examin-
ing the relation between gait variability of KOA patients 
and its severity. Patients were strictly instructed to walk at 
three different speeds to assess the effect of speed on KOA 
subject’s gait, with different severities. An ultrasound-based 
system (a triplet of UV sensors) was used to analyze gait 
motion. The study outcome indicated that variations of gait 
among different severities of KOA are gender dependent 
and should be considered carefully while analysis of KOA.

Finally, we included smart garments also named as sens-
ing fabrics in this category. They are specially designed by 
the aggregation of sensing technology and fabric in which 
sensors are infused in normal fabrics and have flexibility. 
Bergmann et al. [100] made an effort to propose a new cloth-
ing sensor system in which sensors were installed inside the 
clothes. Knee joints measurement was performed to com-
pare the proposed system with a gold standard system. The 
coefficient of determination more than 0.99 between two 
systems shown the reliability of the proposed system for 
KOA monitoring.

Chen et al. [91] developed a mechanism to evaluate three 
rehabilitation exercises namely Short Arc Exercise (SAE), 
Straight Leg Raise (SLR) and Quadriceps Strengthening 
Mini-squads (QSM) for KOA patients using the combination 
of three OPAM inertial sensors and a goniometer. Results 
demonstrated high potential in KOA assessment by provid-
ing exercise classification accuracy of 97.29% and posture 
and classification accuracy of 88.26%.

Table 2 gives the description of work done on sensor 
based modalities either used alone or in combination with 
other sensors and attained accuracy.

Data reveals that much of the research is focused on using 
FS due to its tremendous capability of directly capturing the 
gait parameters without involvement of any complex proce-
dure for the patient but they are very expensive to use. Out 
of 32 articles on sensor-based modality, 11 are FS based, 8 
are IS based, 6 are EMG, 4 on other sensors and 3 on EGM 
based, showing more focus on FS. Percentage Utilization of 
different sensors in Sensor-Based (SB) modality is defined 
in Fig. 12.

4.3  Combined

Apart from these modalities, most of the studies are focused 
on using the amalgamation of properties and characteristics 
of sensor-based and vision based modalities [111–113]. The 
purpose was to capture the advantages of both suppressing 
their drawbacks. Metcafe et al. [102] evaluated KOA sub-
jects by collecting data using twelve VICON MX2 cameras, 
three AMTI force plates and a plug-in marker set attached 
to subject’s. The combination of modalities to capture KOA 

gait yielded an accuracy of 95% and 92.5% for affected and 
unaffected knees.

In another research, Phinyomark et al. [41] proposed a 
study to investigate the effect of gender on 100 KOA gait sub-
jects. The data was acquired using a combination of 8 cam-
era VICON Mocap system, 9 mm retroreflective markers and 
a Bertec treadmill. Using SVM to differentiate both groups 
based on kinematic joint parameters successfully gained an 
accuracy of 98–100%. Results have shown the relevance of 
gender for gait variations in KOA and healthy subjects.

Another study by Koktas et al. [106] used a combination 
of vision and sensor-based modality to analyze gait varia-
tions among 150 KOA subjects with different severity lev-
els. Reflective markers, a force platform and a set of video 
camera was used to perform measurements while walking. 
Outcomes demonstrated the potential of pooled classifiers 
(Decision Trees and Multilayer perceptron) in KOA analysis 
with a success rate of 80%.

Table 3 provides the summary of combined i.e. vision 
based and sensor based modalities along with the key find-
ings and accuracy rates. The analysis of considered state-
of-art literature indicated much of the focus on combined 
gait acquisition modalities for KOA diagnosis. About 72% 
of research seen to be done on this modality, reflecting its 
potential in KOA diagnosis as depicted by Fig. 9. Since the 
combination of different modalities offer additional data of 
the subject to be captured and analyzed and may offer more 
diagnostic accuracy for KOA identification. So these modali-
ties are preferred by most of the studies to enable more effec-
tive KOA analysis but are also limited by large space and 
heavy set-up requirements.

5  Feature Representation Based on KOA 
Gait Acquisition Modalities

A feature is a distinctive characteristic that provides a unique 
identity to a person. Based on this unique attribute, it is 
possible to determine abnormal conditions of an individual. 
Various approaches can be used to represent different gait 
features in KOA. An approach is simply the method, as a 

Fig. 12  Description of percentage use of various sensors in sensor-
based KOA gait capturing modality
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result of which relevant features can be determined for effi-
cient diagnosis. In OA, gait features such as Knee Flexion 
Moment (KFM), Knee Flexion Angle (KFA), speed, stance 
and swing time etc. has a great significance to enable proper 
detection of the disease.

In this section, a complete description of various 
approaches for identifying unique KOA gait features are 
given. A taxonomy is formed for KOA gait features under 
different approaches as depicted in Fig. 13. Tables 4 and 5 
summarized various KOA feature representation approaches 
used alone or in combination by different studies.

Based on taxonomy shown in Fig. 10, different KOA fea-
tures can be extracted and used. We have categorized these 
approaches into six main sub-categories [49] i.e. anthropo-
metric, spatiotemporal, silhouette, kinematic, kinetic and 
hybrid. Here different colors are used to clearly explain-
which KOA gait feature data is captured by what modality. 
At the leftmost top of Fig. 13 inside a large rectangular box, 
three small square type boxes in the first row (purple, green 
and grey) indicates that employing vision based modality 
using markers for KOA gait acquisition, results in features 
of three approaches-anthropometric, spatiotemporal and 
kinematic. Similarly, small square boxes in the second row 
(purple, green, grey and orange) represents that using data 
acquired by vision-based marker-less/model-free modality, 
four parameters can be extracted under four approaches i.e. 
anthropometric, spatiotemporal, kinematic and silhouette 
based features. Alike square boxes in the third row (purple, 
green, grey and pink) depicts four features-anthropometric, 
spatiotemporal, kinematic and kinetic features that can be 
extracted using sensors based data recording. Lastly, blue 
box in the last row representing the consolidation of all the 
gait approaches features (anthropometric, spatiotemporal, 
kinematic, kinetic and silhouette) inside a small rectangular 
box, that can be obtained using two or more categories of 
modalities (vision based + sensor based) together. Further 
investigation of these approaches for KOA analysis is as 
follows:

5.1  Anthropometric

This approach involves KOA demographic data features that 
represent the quantification of the size of the human body, 
as each and every individual has own body structure and 
properties. It involves age, weight, height, BMI, gender, rat-
ing score, disease duration etc. to use in KOA analysis. For 
reliable KOA diagnosis, it is necessary to consider all the 
aspects of a person, so this data is recorded for each indi-
vidual involved in the study.

In Asay et  al. [35] study, demographic data of KOA 
patients and healthy subjects such as age, weight, height, 
BMI was recorded for accurate analysis of both the groups. 

Also, WOMAC and Visual Analog Scale (VAS) pain scores 
were used to grade the KOA severity.

In another work, Monil et al. [123] collected the informa-
tion about KOOS pain score, height, weight, BMI, age and 
gender of healthy, Medial KOA and subjects with lateral 
KOA. The purpose was to only involve the matched demo-
graphic data of healthy and KOA individuals.

5.2  Spatio‑temporal

This is the most widely used approach to facilitate KOA 
diagnosis. As name suggests, the features used in this 
approach can be used to characterize or distinguish gait pat-
terns by extracting stance and swing phase related time and 
distance measurements [133]. This includes stride length, 
step length, step width, traversed distance etc. as the spatial 
(distance) features and stride, step period, cadence, veloc-
ity, Single Limb Support (SLS), Double Support (DS) etc. 
as temporal (time) features. Out of the considered features, 
stride length parameter is of utmost importance since it 
represents one gait cycle length which can be effectively 
employed for diseased gait diagnosis in KOA.

Sun et al. [103] proposed a study to analyze and evaluate 
the correctness of IDDEEA3 system against Go Pro Hero3 
high speed camera. Five spatiotemporal features (gait cycle, 
velocity, cadence, step length, and step counts) of 23 KOA 
subjects and 12 healthy controls were extracted to evalu-
ate the new system’s performance. The error was estimated 
to determine the differences in measurements using the 
formula:

where E denotes error, MR is the motion results, GPR refers 
to Go Pro results and IDEEA3 represents IDEEA3 system 
results. The results obtained for IDDEEA3 were consist-
ent with the Go Pro camera (e.g. gait cycle, cadence meas-
urements with high speed camera and IDDEEA3 system 
were 0.913 ± 0.06 and 0.916 ± 0.065, 131.991 ± 9.243 and 
131.625 ± 9.748) which indicates the high capacity of the 
proposed system to determine spatiotemporal features for 
KOA diagnosis.

In another article, Elbaz et al. [44] used spatiotem-
poral gait features (velocity, cadence, step and stride 
lengths, base of support, step time, swing time, stance 
time, SLS time, DLS time) for KOA assessment. Using 
k-means clustering and CART model, they were success-
ful in classifying male KOA patients with an accuracy of 
90.8% and females with 89.5%. Outcomes demonstrated 

(1)E(%) =

∑

MR − GPR
∑

MR
∗ 100%

(2)E(%) =

∑

GPR − IDEEA3
∑

GPR
∗ 100%
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the importance of spatiotemporal features in KOA 
identification.

A study by Falconer et al. [134] presented a very sim-
ple, inexpensive method to identify 43 KOA subjects. 
Spatiotemporal features (step length, cadence, stride 
width and velocity) were analyzed using footprints 
obtained by a runway of carbon paper. Results depicted 
reliability of the used method for KOA recognition 
purpose.

5.3  Silhouette

This approach is used to represent silhouette features. 
These features are the result of employing model free 
Marker less approach for KOA gait acquisition. The sil-
houette attributes are extracted directly from image plane 
known as Silhouette image and include the shape of sil-
houette, body posture observing Center of Gravity (COG) 
shifts, torso orientation, height, width of Bounding Box 
(BB), Gait Energy Image (GEI), etc.

Verlekar et al. [37] successfully employed automatic 
recognition of gait pathological disorders using body and 
feet related features. After extracting silhouette using back-
ground subtraction, a body related feature i.e. Amount of 
Movement (AOM) was measured that describes the amount 
of motion in arms and lower limbs during walking. To cal-
culate AOM, initially the silhouette was cropped for each 
frame, numbered from (1 to Q) and then averaged to estimate 
GEI (Gait Energy Image) over half cycle. At last, AOM was 
estimated using Shannon entropy defined as

In Eq. 3, Qj is the probability indicating j is equal to the 
distance among two neighboring pixels and AOMVB denotes 
the amount of movement. The study provided good results 
(about 98.8% accuracy) but overlapping problem made the 
shape and movements of upper and lower extremity unclear.

5.4  Kinematic

Kinematic approach especially includes the motion parame-
ters that allows the gathering of motion as well as geometric 
details of the human body [50]. These features are obtained 
using markers and vision based modality. To analyze them, 
retro reflective markers may be active or passive are attached 
to the human body. Based on the position of such landmarks, 
various features are extracted including joint angles are 
extracted such as Knee Flexion angle (KFA), knee Abduc-
tion Angle (KAM), joint positions, acceleration, motion tra-
jectories etc. for further calculations [49, 133].

(3)AOMVB = −
∑

j

Qj log2 Qj
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Table 5  Hybrid KOA feature representation approaches

S. no. References/year KOA gait features Evaluation method/clas-
sifier

Clinical rating scale Tool used Accuracy

1 Karia et al. [123]/2018 Foot length, foot width, 
KAM, KAA, COP

Bonferroni’s correction
T-tests

KOOS ques SPSS 20 _

2 Annalisa et al. 
[124]/2018

Knee excursion angles, 
external knee moments

Independent t-test
KS test
Levene’s test
MW test
Visual 3D

K–L scale SPSS _

3 Armaghanet al. 
[47]/2017

KAM, KAM impulse, 
KFM, peak KFA, inter-
nal–external rotations, 
VGRF’s, heel-strike, 
toe-off, walking speed, 
stance time

ANOVA
GEEs
KW test
Signed rank test

K–L scale
BLOKS score

Matlab 7.14.0 _

4 Paterson et al. [125]/2017 KAM, KAM impulse, 
peak KFM, peak KFA, 
varus-valgus angle and 
thrust, peak VGRF’s, 
norm walking speed

Chi-sq. test
T-test
Regression models

WOMAC index
K–L scale

Matlab _

5 Metcafe et al. [102]/2017 EMG data, hamstrings 
co-contraction, gait 
speed, cadence, step 
width, stance percent, 
hip, knee KAM and 
impulse

T-tests
MW test
Cardiff and Dampster-

Shafer

WOMAC index SPSS For affected. 
Knee-95%

For unaf-
fected. 
Knee 
92.5%

6 Angkoon et al. [41]/2016 KFM, KFA, KAM, 
walking speed, ROM 
angles, max–min 
angles,

ANOVA
Support Vector Machine 

(SVM)

K–L scale 3D gait s/w 98–100%

7 Stephen et al. [126]/2016 Peak sagittal angles, 
moment and peak 
frontal moment, ROM, 
walking speed/velocity, 
isokinetic strength

ANOVA WOMAC index Visual 3D _

8 Arita et al. [99]/2016 Gait speed, TUG out-
comes, step length,

KFA, Joint motion angles

TUG test K–L scale
WOMAC index
SF-36
VAS score

_ _

9 Chang et al. [127]/2015 Peak KAM, KAM 
impulse, peak KFM, 
gait speed

GEEs
ICC
CV
Logistic and linear 

Regression

WOMAC index
WORMS score
K–L scale

Matlab _

10 Hiromi et al. [104]/2015 Muscle strength, gait 
speed, step length, gait 
variability, muscle 
mass, kyphosis

T-test
Multiple Regression

VAS scale SPSS _

11 Lysney et al. [128]/2014 External KAM & HAM, 
KFA & HAA, EMG 
forces, GRF’s

SW test
Levene’s test
Two-way ANOVA

K–L scale Sigma Plot v.11.0 _

12 Julein Favre et al. 
[13]/2014

Flex/Ext angles, ant/post. 
displacement, KFM, 
KEM, gait speed, heel 
strike, mid-stance

ANOVA
Post hoc Turkey test
Bonferroni’s correction

K–L scale Matlab R2010b _

13 Jessica et al. [35]/2013 KFM, KAM, peak verti-
cal GRF, gait speed, 
step length, cadence

ANOVA
LSD
ICC

WOMAC index
VAS score

Matlab R2009a _

14 Farokhi et al. [129]/2013 Knee joint angles, exter-
nal knee joint moments

Ind. sample t-test K–L scale STATA V-11.2 _
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Ishikawa et al. [31] used angular parameters such as ele-
vation angles, flexion angles to analyze the subject’s gait 
presented in Fig. 14.

Elevation angles are made in sagittal plane between seg-
ment and Y-direction. Similarly, knee flexion angles are 
made between the thigh and shank portions. The differences 
among these angles made by subjects during locomotion 
provided important evidence of planar law applicability for 
KOA diagnosis (p < 0.01) with cumulative ratio greater than 
0.98.

5.5  Kinetic

The kinetic approach is related to the features that embrace 
the study of forces and moments which are caused by the 
movement of body segments during walking. These fea-
tures give attention to the forces produced by the interac-
tion of foot and ground. There are different sensors that 
can be used to capture kinetic data. Each sensor has its 
own capability such as force, acceleration can be obtained 
using floor sensors, angular velocity and Moment of Iner-
tia (MOI) etc. can be produced by inertial sensors. Simi-
larly, EMG and goniometer sensors provide EMG signals, 

Acronym of words used in table: Least Significant Difference (LSD), Mann–Whitney Test (MW), Generalized Estimating Equations (GEEs), 
Standard Error of Measurement (SEM), software (s/w), Time-up and Go (TUG)

Table 5  (continued)

S. no. References/year KOA gait features Evaluation method/clas-
sifier

Clinical rating scale Tool used Accuracy

15 Simic et al. [130]/2013 KAM, KAM impulse, 
KAI, KEM, KFM, 
GRF’s, gait speed, step 
width, step length

ANOVA
Linear Regression

WOMAC index
K–L scale

GenStat _

16 Cheryl H et al. 
[131]/2013

EMG signals, KF and 
KE ROM, ankle plantar 
flexion, gait speed

Paired t-tests
SEM

K–L scale Matlab 7.4 _

17 Deepak K et al. 
[132]/2012

KAM, muscle force, pen-
nation angles, speed/
velocity, medial and 
lateral joint loads

RMS K–L scale
KOOS score

SIMM tool _

18 Stijn B et al. [95]/2012 Locomotion, STS, block 
stepping, ROM

PROM
Performance based test
T-test
ROC

K–L scale SPSS _

Fig. 13  Various KOA gait features representation approaches obtained using different acquisition modalities
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muscles activity, range of motion (ROM), momentum etc. 
Other sensors such as smart garments, insole shoes are 
capable of recording Ground Reaction forces (GRF’s) and 
other data.

In Kotti et al. [10] study, a system was proposed that takes 
kinetic features such as GRF’s as input and produces not 
only output diagnosing KOA but also illustrates the set of 
rules through which the decision was reached. A rule-based 
approach was applied and evaluated for KOA detection. 
Results showed the high capability of used approach for 
KOA by giving an accuracy of 72.61% ± 4.24%.

Organero et al. [48] used insole pressure shoes to study 
an important kinetic feature, i.e. pressure and to check their 
effectiveness in analyzing patients with mild KOA. The 
study concluded that the pressure for each mean foot strike 
in stance phase was greater in patients with KOA as com-
pared to healthy controls indicating the potential of insole 
pressure shoes in recognizing the effect of KOA on walking.

Table 4 summarizes recent studies from 2000 to 2018 
which have used spatiotemporal, kinematic, silhouette and 
kinetic approaches for KOA detection with accuracy rate. 
Here, except disease rating scale, no other anthropometric 
approach feature has been shown in the tables since it is 
considered by almost all the studies. Data indicates the large 
use of kinetic approach for KOA gait features representa-
tion as it provides direct measurements of knee joint forces, 
muscles activities during walking. Kinetic approach however 
can be effective in KOA analysis but the interpretation of 
the extracted gait features in the form of signals offer high 
complexity.

5.6  Combined/Hybrid

Instead of considering only a small number of features for 
evaluation, it is more reliable to utilize the combination of 
features such as spatiotemporal in combination with silhou-
ette, kinematic and kinetic and many more for better KOA 
assessment. In this section, we analyzed the hybrid approach 
for the demonstration of KOA gait features. Table 5 gives 
the summary of recent studies on hybrid approach consider-
ing accuracy and classifier used to extract a combination of 
KOA gait features for successful diagnosis.

Sacco et al. [135] proposed a new KOA analysis cheap 
footwear named Moleca in combination with passive reflec-
tive markers. The objective was to determine the effect of 
used footwear and other modalities on KAM during stair 
descent. Kinematic and kinetic features such as joint cent-
ers, GRF’s were analyzed for evaluation of KOA. Results 
highlighted that for all foot wear, patients with KOA 
shown higher KAM (for barefoot-233.3%, p = 0.028, 
Moleca-379.2%, p = 0.004 and High Heeled-217.6%, 
p = 0.007) compared to healthy controls. The knee load 
was similar with barefoot and Moleca for all the stances but 

greater with high heeled during early stance. Thus, study 
demonstrated the efficiency of Moleca foot ware in KOA 
identification.

In another study, Monil et al. [123] proposed to analyze 
the combination of kinematic and kinetic features for medial, 
lateral KOA and healthy subjects including KAM, KFA for 
relative comparison with Center of Pressure (COP). Using 
logistic regression it has been analyzed that for healthy con-
trols, Knee Adduction Angle (KAA) remains almost zero (an 
ideal value for a normal person), highest for medial KOA 
group i.e. 5.1 degrees and very small for lateral KOA, almost 
- 3.5 degrees. Similarly, highest Knee Adduction Moment 
(KAM) was offered by medial KOA subjects than healthy 
controls and smaller by lateral KOA group. Also, results 
indicated less reliability of COP in KOA diagnosis.

In recent years from 2000 to 2018, about 104 articles 
related to different KOA gait feature approaches are obtained 
excluding anthropometric since this general data is used in 
all the articles. Out of the total 104 studies, 75 are based 
on hybrid features, 22 are focused on kinetic features, 5 on 
spatiotemporal and rest on kinematic and silhouette features. 
Percentage usage of each is represented in Fig. 15.

Table 5 illustrates the findings of the selected articles (out 
of the total 75 articles) with rate accuracy and tool used. 
Data shows heavy research on hybrid approach features due 
to more accurate KOA analysis. Therefore, the research 
articles discussed in this study reflect extensive research on 
hybrid KOA features approach as it allows more features 
of the person to be extracted. Extracting a large number of 
features and then optimizing them may automatically lead 
to enhancement in system’s performance.

Fig. 14  A representation of elevation and flexion angles consid-
ered by the study [31], using a human body structure model (a). UP 
denotes upper part of the body including-head, arms, and torso while 
DOWN represents lower body section including-hip, knee, ankle, 
thigh, and toe. In stick (b), θthigh, θshank and θthigh are three eleva-
tion angles made between hip and knee joint, knee and ankle joint, 
ankle joint and toe in vertical direction. c represents knee flexion 
angle made between thigh and shank
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6  Performance Evaluation Methods in KOA 
Diagnosis

After selecting some optimized features, at last the perfor-
mance of the diagnostic system is evaluated by employing 
some statistical methods. These methods are the assessment 
tests having a powerful capability to measure the accuracy of 
a system. In KOA, these measures were applied to check the 
efficiency of the used model to classify normal and abnormal 
gait.

In this section, a simple and broad description of com-
monly used statistical measures for KOA analysis is pre-
sented. Over time, a number of KOA performance evaluation 
measures have been developed and used by researchers [44, 
48, 103, 115] shown in Fig. 16 to check the overall accuracy 
of the system.

Broadly statistical measures are classified into two main 
types: parametric, which makes the assumption on data to be 
normal (e.g. mean, standard deviation (SD), T test, ANOVA, 
Pearson’s Correlation Coefficient (PCC), Intraclass Correla-
tion Coefficient (ICC)/Coefficient of variation etc.) and the 
other: non-parametric, which doesn’t make any assumption 
related to data so known as distribution less test (e.g. Chi 
sq. test, Kruskal–Wallis (KW) test, Kolmogorov–Smirnov 
(KS) test etc.) [136].

Confusion Matrices and Cross-validation (CV) are other 
vital measures used in recent studies for performance valida-
tion of the model [31, 37]. Also, two important evaluation 
measures i.e. Mean, and Standard Deviation are examined to 
be considered by almost all the studies. Thus, available data 
indicated the high potential of statistical metrics to evaluate 
the performance of KOA gait analysis system. A very fre-
quently applied tests for evaluation purpose includes:

(A) Chi Square Test

Chi2-test evaluates the inherent variability by comparing 
collected data and data that was restructured with predict.

Based on results (0–1) obtained from the test, it is con-
venient to accept or reject the hypothesis (a mere statement 
may be true or false) [44, 98, 125]. To interpret this non-
parametric statistical method, a general equation is used 
which simply states that  Chi2 value is the sum of observed 
data/freq. squared divided by expected data.

where fob and fex denotes observed and expected frequency, 
�2
chi

 denotes  Chi2 test value and � represents the sum of all 
the values obtained by performing computations on fob and 
fex.

(4)�2
chi

=
∑

[

(fob − fex)
2 ÷ fex

]

,

(B) ANOVA

If the size of the population becomes large (more than 
two), Analysis of Variance (ANOVA) provides the best 
solution by examining total amount of variation within 
each sample. ANOVA, a statistical technique specially 
designed to test whether the mean of more than two popu-
lation is equal or not [15, 41, 43, 46, 87, 96, 115, 119, 
135]. Considering the population A and other population 
X, the method can be given as

where Ā denotes group A mean X̂ is the group X mean. An 
ANOVA can be one-way [87, 119] (includes single classifi-
cation criteria with 1 independent variable and 2 levels) or 
two-way [128] (two classification criteria with 2 independent 
variable and multiple levels).

(5)Ā = X̂

Fig. 15  Usage of each approach (in %age) for KOA features represen-
tation

Statistical 
measures/ tests

Parametric
measures

Other
measures

T- test

ANOVA

PCC

ICC

Non-
Parametric
measures

Mean, SD

KS test

Chi
Square

KW test

Cross 
Validation

Confusion 
Metrics

Fig. 16  Description of common performance evaluation statistical 
measures used for KOA analysis
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(C) Intra-class Correlation Coefficient (ICC/IC)

An inferential statistic which is used when a unit is 
arranged in groups and quantitative assessment is per-
formed on it, is known as Intra-class Correlation Coef-
ficient. 1 value of ICC indicates a close relation between 
elements of group and 0 indicates no relatedness [103, 
134]. Considering a dataset with P paired data items (vq,1, 
vq,2) for q = 1…P , Mathematically, ICC can be defined as

where

Here, s denotes the ICC value,  r2 is the variance and v̄ rep-
resents the mean of the dataset.

(D) Pearson Correlation Coefficient (PCC)

PCC, the most commonly used statistical measure for cor-
relation analysis, is also referred to as Interclass or Product 
Moment Correlation Coefficient. PCC is applied to measure 
the strength of linearly related variables [16, 42]. The value of 
this coefficient ranges from − 1 to + 1. Given X and Y as the 
paired classes, consisting of k pairs, sxyp can be presented as

where

Here x̂i , ŷi represents the individual sample points of the 
class, x̄v , ȳv are their respective mean k denotes the sample 
size, j is the number of elements in two classes and sxyp is 
the PCC value.

(E) t-Test (Student’s t-test)

(6)s =
1

Pr2

P
∑
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Like ANOVA, T-test also referred to as Student’s T-test is 
used to check whether the mean of two groups are equal 
or not. To analyze this, T-score is calculated which is the 
difference between two groups divided by the difference 
between both groups. A small value of T-score indicates 
similarity between groups and vice versa. The particu-
lar choice of t-test depends on whether two samples are 
unpaired (independent) or paired (dependent) [11, 40, 48, 
49, 87, 94, 102, 135].

Thus, T-test can be classified as: Independent (unpaired) 
[32, 124] which requires two samples to be tested at once 
so it is necessary to firstly determine the variance for both 
groups and the other is Dependent (paired) [131] in which 
one group is tested twice. So, before and after conditions 
encountered in this test.

(F) Mean and Standard Deviation (SD)

Mean being an important statistical measure provides the 
average of given data observations [11, 44, 103, 114, 134]. 
E.g., X is the dataset having values x1, x2 … xnv , then math-
ematically, it can be given as

where X̂ represents the individual value of data, nv denotes 
the number of observations of data and X̄m is the mean value.

Similarly, SD gives an estimate of variability in data 
indicating how much value is far or close to the central 
mean. A small value of SD means closeness of data go 
mean and vice versa. If X̂ denotes the individual value of 
dataset X1, X2 … Xn and X̄m is the mean of the whole data-
set; SD can be presented as

Here, nv refers to the number of values in the dataset.

(G) Kolmogorov–Smirnov Test (KS)

Commonly known as KS test, is a non-parametric sta-
tistical test and is entirely agnostic. Given two sets of a 
dataset, KS test tries to examine whether the considered 
dataset varies significantly or not [35, 116, 118, 124, 128]. 
This test don’t require the data to strictly follow the nor-
mal distribution assumption. Thus, the basic purpose is to 
determine overall shape differences of the two samples, 
considering univariate and continuous data. The test sta-
tistic Dks can be defined as

(12)X̄m =

∑nv
i=1

X̂

nv

(13)𝜎SD =

�

∑nv
i=1

(X̂ − X̄m)
2

nv
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where NT is used to represent total count of data for distri-
bution, i0 denotes the frequency of observation and FT

(

Ŷi0

)

 
symbolize input numbers.

(H) Kruskal–Wallis Test (KW)

KW test, a non-parametric test also named as one-way 
ANOVA on ranks have one dependent and one independ-
ent variable. In the situation where data fails to fulfill the 
assumption of one-way ANOVA, this test is applied [47, 
122]. The test determines significant differences between 
two or more groups, making no specific supposition about 
normality. Mathematically,

where

Here, nj symbolizes the number of observations in group 
j, Sjv denotes the rank of observation ‘v’ from group ‘j’, Np 
is the total number of observations, S̄j represents average 
range of all observations in group ‘j’ and S̄ is the average 
of all the Sjv.

(I) Confusion Metrics

From recent years, a number of classification models have 
been developed such as SVM, Decision Trees etc. for KOA 
diagnosis. To evaluate the performance of such models, con-
fusion matrices are the most widely used measures.

Confusion matrix involves four important identities [31, 
88, 89, 107]:

True Positive (XTP): total number of positives truly clas-
sified as positive.
True Negative (XTN): total number of negatives truly clas-
sified as negative.
False Positive (XFP): total number of positives wrongly 
classified as positive.
False Negative (XFN): total number of negatives wrongly 
classified as negative.

In general, these metrics can be represented as

(14)

Dks = max
1
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∕2

Here Eqs.  (18)–(23) represents True Positive Rate 
(TPR), True Negative Rate (TNR), Positive Predicted 
Value  (vP), Negative predicted Value (NPV), False Nega-
tive Rate (FNR) and False Positive Rate (FPR).

Based on these evaluation metrics parameters, accuracy 
and F-score can be easily determined and given as

(J) F-Score is the beneficial performance measure for mul-
ticlass classification. Taking precision and recall into 
consideration, Total F-score is measured [135]. Highest 
value can be 1 implies higher predictive capability of 
classifier and the lowest can be 0 i.e. 0 ≤ FSC ≤ 1 . In 
scientific terms, it can be presented as

where vP and vR denotes precision and recall. There-
fore, confusion metric [31] (error metric) gives the 
estimate of performance by calculating positives and 
negatives in data. When some conducted to analyze the 
performance of a model, the probability of occurrence 
of Type-1 (α) (discarding a claim when it is true) and 
Type-2 (β) (accepting a claim when it is false) errors 
get increased. In this case, a formula is applied to cor-
rect the error rate known as Bonferroni’s correction 
(BC) [13, 121, 122, 137]. The use of such correction 
reduces the size of critical α, thus suppressing the effect 
of error occurred due to XFP and XFN in data. BC for-
mula can be defined as

(18)Sensitivity/Recall/TPR
(

vR
)

=
XTP

XTP + XFN
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where �BCnew
 implies new alpha to correct Type-1 

error, �org indicates error alpha and K is the number of 
comparisons.

Once the statistical performance measures have been 
applied, the obtained results are analyzed using ROC [31, 
34, 95] referred to as Receiver Operating Curve. ROC thus 
provides the common way to visualize the accuracy of a 
binary classifier and gives the value called AUC (Area under 
Curve). The curve is plotted between TPR (drawn on Y-axis) 
and FPR (drawn on X-axis) i.e. sensitivity versus (1-specific-
ity). A value of 1 represents the best AUC and worst by 0.5. 
So, higher the AUC, better is the test.

Yuki Ishikawa et al. [31] used ROC curves to analyze the 
performance of the system on applying planar law for KOA 
identification, displayed in Fig. 17. 

Various studies included cross-validation [10, 32, 34, 91] 
as an important statistical validation technique. The scheme 
provides an estimate for selecting best fit model thus achiev-
ing good results.

7  Overview of Machine Learning Techniques 
(MLT) in KOA Diagnosis

In the present era of automated diagnosis, the use of 
Machine Learning is increasing day by day. This is the key 
enabler of Artificial Intelligence (AI) where the purpose is 
to create intelligent machines like humans, by artificially 
incorporating knowledge in them. Machine learning tech-
niques consist of a set of algorithms that have the capability 
to perform different tasks and achieve reliable accuracy by 
learning through examples.

In a diagnostic system, final stage consists of using a 
classifier to enable the identification process. The features 
extracted in previous steps acts as input to train the clas-
sifier. The accuracy of the system depends upon how well 
the training is performed. Machine learning developed its 
root in various fields to solve important problems such as 
business, science, industry, medical and other applications. 
In medical, diagnosis of a disease is a no more difficult 
task due to high efficiency of machine learning techniques. 
It has shown its greater usage in recent years to enable 
accurate detection of KOA and their proper rehabilitation. 
A pictorial demonstration of percentage usage of different 
techniques is also presented, from (2007–2017), indicating 
its potential to provide a robust solution to problem KOA 
diagnosis.

Machine learning techniques can be broadly categorized 
into two sub-categories i.e. Supervised and Unsupervised. 

(26)�BCnew
=

�org

K

Supervised Machine Learning techniques (SMLT) are fur-
ther based on classification techniques [49] and regression 
learning models. Similarly, unsupervised Machine Learn-
ing Techniques (USMLT) include clustering and associa-
tion methods. Since clustering techniques are used by most 
of the studies so we will only focus them. Some researchers 
have combined both types of learning techniques to get 
enhanced performance, known as Hybrid machine learn-
ing technique.

7.1  Supervised Machine Learning Techniques 
(SMLT)

Supervised machine learning is the task of determining 
a function from a labeled data (having independent and a 
dependent variable). It involves the use of a supervisor to 
train the classifier with a set of inputs as well as their cor-
responding outputs. The model is trained on the labeled 
dataset, so it can predict the outcome of out-of-sample 
data. The main purpose of using this type of learning is to 
reduce the chance of occurrence of an error. Various classi-
fiers are used under supervised learning such as Supervised 
Machine Learning (SVM), Random Forests (RF), Decision 
Trees (DT), Artificial Neural Network (ANN), Regression 
Models, for KOA classification.

Support Vector Machine (SVM) is most commonly used 
for diagnosis of KOA. It can be viewed as frontier which 
best segregates two classes of labeled data using the 

Fig. 17  Describes the outcome of existing (blue dotted line) and pro-
posed method (bold purple line) by ROC curve, taken from ref [31]. 
Y-axis represents specificity and X-axis indicates sensitivity. The 
threshold change between 0 and 50 considered as 0.01. Upper area 
(left) shown better differences between the two and coincide condi-
tion is depicted by the small dotted black line. (Color figure online)
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concept of hyper-plane. The main objective is to design 
a hyper-plane that classifies all training vectors in two 
classes. They have the greater capability to work with a 
large number of features without involving complex com-
putations. Phinyomark et al. [41] applied SVM to analyze 
kinematic differences between male and females for both 
KOA and healthy and classification accuracy of 98–100% 
was achieved. In another work, Levinger et al. [34] used 
the concept of SVM and multiclass SVM to identify peo-
ple with TKR, KOA and PFPS. According to the study, 
SVM for data classification can be represented as: 

where  ui is the element of  Zn 

Here,  ui represents vectors containing gait features,  vi 
denotes corresponding class labels (+ 1 means disease 
and − 1 indicated healthy). They also employed modi-
fied SVM to differentiate data with more than two classes 
such as the involvement of different subject groups. Con-
sidering ‘m’ classes in the dataset, a combination of m 
(m − 1)/2 SVM classifiers were used to build modified 
SVM. An accuracy of 85–92% was achieved using SVM. 
On applying modified SVM, an enhanced accuracy was 
seen on test data indicating the potential of SVM in KOA 
detection.
Decision Tree (DT): classifier is based on flowchart-like 
structure where each internal node represents a test on 
the attribute and each branch indicates the outcome of 
test. DT have high potential in handling both numerical 
as well as categorical data and requires very little effort 
for data preparation. In KOA decision analysis, it can be 
used to visually and explicitly represent decisions and 
for identification and classification of KOA. A study by 
Organero et al. [48] successfully classified KOA patients 
from healthy controls using different classifiers such as 
SVM, a combination of LR and MLP, EM clustering and 
DT. Out of all the classifiers, DT has shown high perfor-
mance with a classification rate of 100%. Another study 
by Chen et al. [91] checked rehabilitation accuracy of 
three different exercises—SAE, SLR and QSM in KOA 
patients. DT outperformed KNN with an accuracy rate of 
98–100% for KOA rehabilitation.
Random Forest (RF): are the most popular and powerful 
SMLT which are capable of performing both classifica-
tion and regression tasks. RF technique creates a forest 
with a number of decision trees. This is mostly preferred 
when a large dataset with higher dimensionality is pre-
sent. In KOA diagnosis, it is proved to be a successful 
technique having numerous benefits.

(27)Snew =
{(

u1, v1
)

,
(

u2, v2
)

…
(

ul, vl
)}

vi = {1,−1}

Kotti et al. [10] using RF regressors and cross-validation 
achieved an accuracy of 72.61% ± 4.24% for identification 
of KOA and healthy subjects. Results demonstrated the 
high capability of RF rule-based approach in clinical KOA 
diagnosis.

Artificial Neural Network (ANN): is based on the bio-
logical structure of the human brain. As brain consists of 
billions of neurons that work in combination with each-
other i.e. receiving input, processing it and producing 
output. Achieving this functioning artificially is known as 
ANN. In ANN, a node which is the replica of a neuron in 
the brain, receives input from the external environment, 
processes it and gives the desired output. In KOA diagno-
sis, Multi-Layer Perceptron (MLP) ANN are mostly con-
sidered due to greater capability to deal with large com-
putation problems. MLP is a perceptron network having 
multiple layers i.e. input, output, and more than one hid-
den layers. A research work by Favre et al. [13] applied a 
feed-forward MLP having one hidden layer for KAM com-
putations in KOA and healthy controls. The network was 
trained using back propagation algorithm. The similarity 
between KAM curves of both groups shown the efficiency 
of ANN for a broader evaluation of KOA. In another study, 
Koktas et al. [107] proposed a study to analyze several 
ensemble techniques to develop a semi-automated system 
for diagnosis of people with KOA. Kinematic and Spati-
otemporal features were used to train a set of MLP’s for 
classification of 110 KOA and 91 healthy subjects. Results 
demonstrated the efficiency of used MLP’s combination 
in KOA investigation with success rate of 87–92% was 
attained.

Again, Koktas et al. [106] presented a study to evalu-
ate the performance of mixed classifiers in identification of 
KOA using vision and sensor based technologies. A Deci-
sion tree (DT) classifier build with the MLP successfully 
achieved the purpose by giving an accuracy of 80%. Munoz 
et al. [48] tried to investigate the asymmetry in pressure 
to analyze the differences in gait of KOA and healthy con-
trols. Sensors embedded shoes were used and evaluation 
was performed using a bundle of classifiers. The combina-
tion of logistic regression and MLP attained an accuracy of 
95%, closer to that of DT, reflecting its potential in KOA 
detection.

Regression Learning Models: are one of the important 
supervised machine learning algorithms used by various 
studies to classify KOA patients [10, 44, 125, 127]. Differ-
ent types of regression models have been used to achieve 
KOA classification task. A linear regression model having 
a 1:1 relation between dependent and independent variables 
applied by Mayera [118] diagnosis. In contrast to the linear 
model, multiple regression having one dependent and more 
than one independent variables was used in the study of Mat-
sumoto et al. [104]. They investigate the relation between 
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KOA and variations in gait with a risk of falling in KOA 
adults.

Another useful classification model in supervised learn-
ing is the logistic regression model. In these models, pre-
diction of output is transformed using a non-linear function 
called the logistic function. Farrokhi et al. [40] used multiple 
regression to successfully investigate the relation between 
stability and level of pain in KOA subjects. Similarly, the 
use of hierarchical regression models which involve run-
ning independent variable one at a time or in sets, made by 
some researchers. A study by Zeni Jr et al. [120] employed 
hierarchical regression to test the effect of different walking 
speeds on biomechanical variations in KOA subjects having 
different severities.

7.2  Unsupervised Machine Learning Techniques 
(USMLT)

Unsupervised machine learning techniques are considered 
when data in the training set is unlabeled i.e. there are no 
training examples available to train the model [49] and no 
corresponding label that is paired with the samples. In this 
case, to evaluate the model how well it is performing, other 
similarity measures such as cosine similarity, Mahalanobis 
distance [48] can be used. In recent years, several unsuper-
vised clustering techniques are used for the diagnosis of 
KOA such as K-means, Expectation–maximization (EM) 
clustering algorithm, Fuzzy models etc. These techniques 
form clusters of data in dataset based on their similarities 
and dissimilarities and lead to the diagnosis of diseased and 
healthy ones.

Chen et al. [91] explored the KNN clustering technique to 
classify exercise type for KOA patients after rehabilitation 
using three devices and achieved 94% accuracy. In another 
study, Organero et al. [48] used EM clustering technique to 
diagnose early-stage KOA subjects. Similarly, a point cluster 
technique was applied in a study by Chehab et al. [116] to 
estimate gait variations among KOA and healthy controls 
for reliable diagnosis.

Some studies utilized the combination of two or more 
techniques to achieve an improved accuracy rate. In a work, 
Koktas et al. [106] proposed to combine decision trees with 
MLP to achieve better accuracy. A success rate of 80% was 
achieved on KOA subjects.

7.3  Hybrid Machine Learning Techniques (HMLT)

In spite of combining similar type of machine learning 
techniques to each-other (e.g. SMLT with another SMLT), 
a semi-supervised machine learning platform was developed 
by some researchers using the combination of SMLT and 

USMLT [49]. This learning approach has the great poten-
tial to deal with limited data with high efficacy. A hybrid 
machine learning approach was adopted by Moustakidis 
et al. [88] combining fuzzy decision tree-based SVM (Fuzzy 
DT-SVM) classifier to investigate KOA subjects with dif-
ferent severity levels. The used combination yielded an 
improved accuracy of 93.44%.

A brief summary of mostly adopted machine learning 
techniques for KOA diagnosis considering their signifi-
cant benefits (+) and drawbacks (−) is defined in Table 6.

Based on the available data from 2007 to 2017, usage 
ratio of machine learning classifiers for identification of 
KOA, shown in Fig. 18. It is analyzed that about 81% of 
research focused on using SMLT, 16% on using clustering 
based USMLT and only 3% towards hybrid techniques. Out 
of the total percentage usage in SMLT, almost 41% of work 
done considering regression learning models, 16% on SVM, 
9% towards DT. ANN contribution is seen to be approx. 
12% and 3% studies used RF for KOA identification.

Therefore, the State-of-art survey indicates the use-
fulness of SMLT for diagnosis of KOA due to its sev-
eral benefits such as easiness in understanding, specific 
nature, well-known input data and more accuracy.

8  Future Perspectives

The necessary prerequisite, fundamental to any research 
is to qualitatively and quantitatively examine, analyze and 
explore the existing literature and identify the gaps in the 
previous studies. This forms the baseline for carrying out 
research and for proposing a model/approach to overcome 
the challenges identified. This section provides an insight 
to the existing methodologies/approaches by doing their 
critical analysis considering their scope in future. KOA 
gait recognition though has gained huge popularity due to 
a plethora of benefits it aims to provide to clinicians but 
the scope of improvement with the existing approaches still 
remain large which attracts researchers and academicians 
towards this field of study to provide better and more robust 
automated systems. Unresolved issues in KOA analysis that 
pose main challenge towards effective KOA diagnosis need 
to be addressed. They are as follows.

(A) Gait Dataset Creation

To initiate any detection or classification task, it is neces-
sary to have a proper set of related data. The performance 
of the entire system depends on the availability of dataset. 
Thus, one of the main perspectives is to create a clinical 
gait dataset and make it public to researchers for further 
investigations. It is pertinent to mention here that no data-
set is publicly available for KOA. Some of the datasets 
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used in earlier studies were self-created and are currently 
unavailable. Also, they involve some crucial drawbacks 
such as less number of KOA subjects i.e. very small sam-
ple size, consideration of only single gender etc. They are 
not reliable for pathological gait analysis. In other words, 
there is less dataset on gait considering pathological dis-
eases compared to other biometric. So, the research can be 
directed towards the creation of a new dataset including 
both normal and abnormal KOA gait samples. The clinical 
records of KOA like many other diseases, exhibit a striking 
disparity between the genders and reflects females affected 
adversely with the disease in comparison to male counter 
parts. Genetic and hormonal factors are the main causes 
responsible for the disparity. In addition to factors such as 
knee injury, genetics or obesity that directly influence knee 
mobility; the aging process too leaves an impression due to 
changes in the musculoskeletal system that increases the 
tendency of KOA. Therefore age and gender of subjects is 
crucial for the study so as to investigate the effect of these 

parameters on KOA susceptibility and how it affects the 
knee, over a period to develop KOA.

Table 6  Mostly adopted Machine learning techniques for diagnosis of KOA, from 2000–2018

S. no. Type of learning Technique References Remarks

1 Supervised Support Vector Machine (SVM) [32, 34, 37, 41, 48] (+) Use of kernel function to solve any com-
plex problem

(+) Reduces chance of overfitting
(−) Low performance on large datasets
(−) Can’t able to deal with noisy data
(−) Difficulty in choice of kernel function.

2 Decision Trees (DT) [48, 91, 106] (+) Easily interpretable and very compact
(+) Can handle irrelevant and missing data
(−) Unstable and often inaccurate
(−) Involves high computations

3 Random Forest (RF) [10] (+) Efficiently handles non linear problems 
also

(+) Accurate and low computational cost
(−) High risk of Overfitting
(−) Difficulty in making interpretations

4 Artificial Neural Network (ANN) [13, 48, 106, 107] (+) Ability to deal with incomplete and noisy 
data

(+) High fault tolerance
(−) Requires large dataset to work
(−) Sometimes, take huge training time

5 Linear, multiple, logistic, hierarchical 
regression

[10, 40, 44, 48, 104]
[38, 45, 117, 118, 120]
[125, 127, 130]

(+) Easy and straighforward
(+) Ability to avoid overfitting
(−) Much affected by outliers presence in data

6 Unsupervised K-means, expectation–maximization (EM) 
clustering

[44, 48, 89, 91, 106] (+) Fast, simple and flexible algorithm
(+) Can handle missing data values
(+) Efficiently fix mixture distributions
(−) Difficulty in specifying number of clusters
(−) Very slow convergence

7 Hybrid Fuzzy DT-SVM [88] (+) Highly efficient with high-dimensional 
problems

(+) Reduces complexity and overfitting 
problems

(−) Require large calculations

Fig. 18  A pictorial representation of usage rate of different Machine 
Learning Techniques (in %age) from 2007 to 2017
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(B) Self-occlusion Avoidance

In an abnormal gait such as KOA, sometimes the problem of 
self-occlusion is observed. It refers to a condition when the 
differentiation between left and right limb becomes very dif-
ficult during abnormal walking. Due to self-occlusion, false 
recognition rate increases that affect the overall classification 
accuracy. So the focus of researchers can be directed towards 
solving this problem by splitting the subject under study to 
multiple components and then reconstructing the occluded 
body parts using efficient and appropriate approaches.

(C) Background Modelling

Background Modelling is a crucial task in a recogni-
tion process. Extraction of foreground from background 
effectively needs complete and proper understanding of 
background subtraction techniques and its applicability. 
In previous work, it is examined that the major cause 
of inaccurate classification results is due to the use of 
inappropriate foreground detection methods. Verlekar 
et  al. [37] employed background subtraction cues to 
extract silhouette images from background for further 
processing. From extracted silhouette, amount of body 
movement, COG shifts, Torso Orientation (TO) and feet 
related features were then extracted and analyzed. Lack 
of efficiency in earlier steps lead to inaccurate results in 
later stages. So the future work can be focused towards 
the use of appropriate background and foreground seg-
mentation methods for effective KOA detection.

(D) Feature Space Reduction

Using a large number of features and achieving good results 
is not much of worth as it costs on the performance and scal-
ability. Feature space reduction is the process of selecting 
features in such a way that dropping some of the irrelevant 
variables among all, does not affect the overall performance 
of the system.

Kobsar et al. [15] and Derek et al. [115] applied the Prin-
ciple Component Analysis (PCA) for feature selection to 
enable better classification accuracy. Another work by Hub-
ley et al. [43] also used PCA to select lower limb features 
from Ground Reaction Forces (GRF’s) and EMG data. Thus 
using a single robust and hybrid approach that helps in fea-
ture dimensionality reduction by selecting the best optimized 
features is the major concern of this article.

(E) Severity Level

The proper diagnosis of a disease is not possible unless 
it is checked for all the severity levels. Factors such as 
peripheral joint involvement, patient’s assessment of 

severity of disease, physical examination on the basis 
of health assessment questionnaire, laboratory tests etc. 
need to be considered for holistic evaluation and assess-
ment of the severity of the disease. Recent studies indi-
cate that KOA patients show different gait characteris-
tics at different stages of the disease. Several researchers 
analyzed KOA at only one or two severity levels thus 
not considering all that need to be focused. Chang et al. 
[127] conducted a study for diagnosis of KOA consider-
ing only early stage patients. Duffell et al. [128] also 
experimented mild stage patients to analyze knee Osteo-
arthritis. Therefore, future work should take into con-
sideration the examination and assessment of knee OA 
disease at different stages of severity in order to cover 
each and every aspect of abnormal change.

Furthermore, Table 7 summarizes the limitations and 
future work of some latest KOA articles, in various jour-
nals from 2014 to 2018. The table discussed reflects the 
grey areas that still require deliberations from the side of the 
research community.

9  Proposed Work

Based on the aforementioned future perspectives, we have 
planned to direct our efforts on clinical gait recognition con-
sidering KOA patients with different severities and normal 
healthy subjects. Following objectives are considered for 
the proposed work:

1. Creating a new dataset of KOA subjects having different 
severity levels and healthy controls based on age and 
gender.

2. Collecting KOA and healthy gait data considering sagittal 
plane from left to right and right to left, shown in Fig. 19.

3. Perform pre-processing by applying a method to remove 
noise from acquired data (i.e. filtering of data) and seg-
ment the object to build a geometrical model.

4. We adopted a model-based approach due to its high effi-
ciency in detecting body joints, no need of color con-
trast, overcomes background cluttering problem.

5. Extract subjects gait features using model-based 
approach for identification of diseased and normal per-
sons.

6. Use nature-inspired or hybrid approaches to optimize 
features for their reliable selection.

7. Perform evaluation of proposed system using a robust 
classifier giving high and improved accuracy rate for 
differentiating KOA and healthy ones.

8. Perform comparative analysis for diagnosis of sever-
ity level based on proposed model-based approach and 
clinical radiographic grading score.
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10  Conclusion

In clinical practice, automated diagnosis of KOA through 
biometric gait is an evolving research area drawing the 
attention of huge researchers. Development of gait 

biometrics as a diagnostic tool for KOA has changed the 
face of subjective clinical assessment. This article pro-
vides a comprehensive survey that shows the extent of 
work done on sensor-based, vision-based and hybrid KOA 
gait recognition highlighting the most significant one.

Table 7  Year wise summary of future work proposed from 2014 to 2018

S. no. References/year Bottleneck Future perspective

1 Tanmay et al. [31]/2018 Disease samples were experimented only Need to work on: Real patients, Severity level and 
overlapping problem

2 Karia Monil et al. [123]/2018 Small number of osteoarthritic patients Analysis of KAM and COP correlation with bony 
morphology, knee alignment and disease severity 
is require and large samples should be taken

3 Annalisa Na et al. [124]/2018 Small number of samples
Cross-sectional study design
Controlled gait speed

Required further analysis of distal and proximal 
joint gait features along with sex, age, speed

4 A.J Metcalfe et al. [102]/2017 Small sample size with single joint disease Future work should be directed on large and more 
representative population

5 M. Hall et al. [138]/2017 Cross-sectional study
Great risk of Type 1 error
Inaccurate pedometer meas

Longitudinal study is needed to validate results

6 Kade L. et al. [139]/2017 Recreation of virtual gait markers Need to validate findings using other knee and foot 
models

7 D Rutherford et al. [140]/2017 Non-consideration of healthy subjects
radiographs

Relationship analysis of ageing and KOA is 
required

8 Jun Sun et al. [103]/2017 Limited motion analysis system recording
surface

Focus on other clinical gait features rather than 
only SPT is obligatory

9 Ashutosh et al. [141]/2016 Small size of KOA participants Need to analyze the results with large KOA popula-
tion

10 Stephen et al. [126]/2016 Exploratory nature of study
Didn’t used any modelling approach

Changes in physical activity patterns need to be 
explored

11 Kathleen et al. [142]/2016 Small sample size
Less similarity in body mass of obese group

Results need to be further verified using large 
samples

12 Angelos et al. [143]/2016 Included less participants
Prone to articraft problem

Further investigation of results is required: in free-
living environment in females also

13 A.H Chang et al. [127]/2015 A long-follow up time was needed for
assessment of KOA (mild)

Need to inspect the effect on gait in moderate and 
severe stages Of KOA also

14 Tine Alkjaer et al. [96]/2015 Very limited sample size Variations in result should be considered for large 
sample of KOA

15 Hiromi et al. [104]/2015 Cross-sectional study design
Subjective assessment of Kyphosis
Chances of selection bias

Clarification of relationship among different gait 
variables is required

16 Shawn Farrokhi et al. [40]/2015 Subjects with medial compartment KOA were 
studied only

Efforts should be made to study the affect of other 
factors and diseases causing knee instability

17 Kun-Hui Chen et al. [91]/2015 Very small sample size Effect on system’s performance due to change in 
sensor position need to be focused and validation 
of results should done taking real KOA patients

18 Hubley et al. [43]/2015 Large age differences b/w KOA and healthy 
subjects

Variations in result should be analyzed when con-
sidering age matched controls

19 Sparling et al. [144]/2014 Complicated and costly analysis (multiple force 
plates)

Further work can be performed on kinematic based 
recovery for KOA patients

20 Atallah et al. [93]/2014 Larger age difference between groups
Used fixed speed, controlled environment

Investigation on head rotations can be performed

21 Calder et al. [117]/2014 Only patients with medial KOA were taken for 
study

Further studies can be expanded considering com-
parison with asymptomatic controls
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The survey summarizes the efforts made by major 
contributors from ancient times to the Modern era in the 
medical field. The gait acquisition modalities, feature rep-
resentation approaches, evaluation methods, and machine 
learning techniques have been discussed in detail.

Data analysis reveal that even vision-based modality 
for KOA diagnosis is highly accurate and cost-effective 
but suffers from certain drawbacks such as overlapping, 
requirement of large space and high precision cameras 
etc. Sensor-based modality, however, performs well but 
is also constrained by factors such as high cost, large time 
and power consumption, wearing difficulty, etc. The sur-
vey done on articles published during the period from 
2000–2018 on above-mentioned modalities found approxi-
mately about 70% research articles, devoted to hybrid 
modality for KOA study. Among sensor modality, force 
sensors in particular being the most utilized sensors due 
to its capability to directly capture the gait data.

Further, the recent research statistics indicate achiev-
ing good measures of accuracy when sensor and vision 
based modalities are used individually. However, an amal-
gamation of vision and sensor based modalities definitely 
provide an edge over the modalities when used individu-
ally. Higher efficiency in capturing large and more rel-
evant KOA gait data is the key factor attributed to better 
performance accuracy. Literature thus clearly reveals the 
potential of combined features for better KOA diagnosis.

Furthermore, extracting a single feature from KOA 
gait results in average accuracy of around 85 to 90%. 
This accuracy rate can further be improved by using an 

appropriate fusion of KOA gait features as it can help in 
reducing misclassification rates. The article inclusively 
surveys statistical methods and classification techniques 
used for KOA analysis. Based on the number of articles 
received from recent years, most researchers have used 
supervised learning (regression learning models) to clas-
sify KOA and healthy subjects with high performance.

From the state-of-art approaches, tailor made specifi-
cally for gait based KOA analysis, it can be concluded that 
certain gaps exist that open up the scope of further research 
and investigations required for future work in this direc-
tion. Challenges such as absence of publicly available KOA 
gait dataset, consideration of few severity levels and only 
medial knee compartment, self-occlusion etc., ignored in 
the previous studies have to be further deliberated upon. 
Finally, this article provides useful references to get in-
depth insight of research towards KOA diagnosis via gait 
analysis.
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The URLs for the images taken from the internet and used 
in this article are provided below.
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Fig. 19  Workflow of proposed system for KOA and healthy subject’s identification. Left part of the figure represents gait samples of KOA and 
healthy subjects with two view directions (left–right and right–left) in the sagittal plane
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