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Abstract
Electric power systems have become larger, more complex and found to be operating close to their stability limits with small 
security margin. In such situation, fast and accurate assessment of voltage stability is necessary in order to prevent large-scale 
blackouts. Due to its ability to learn off-line and produce accurate results on-line, machine learning (ML) techniques i.e., 
artificial neural networks, decision trees, support vector machines, fuzzy logic and adaptive neuro-fuzzy inference system 
are widely applied for on-line voltage stability assessment. This paper focuses on providing a clear review of the latest ML 
techniques employed in on-line voltage stability assessment. For each technique, a brief description is first presented and 
then a detailed review of the finding published research papers discussed the application of this technique in on-line voltage 
stability assessment is presented. Based on the conducted review, some discussions and limitations of ML techniques are 
finally presented.

1  Introduction

In the last decade, serious power grid blackouts have 
occurred throughout the world bringing with them impor-
tant economic losses and affecting the lives of local resi-
dents. Voltage instability incidents have been identified as 
contributing factors in several recent worldwide blackouts 
such as the large-scale power failure occurred in the Tokyo 
metropolitan area in 1987 [1]. The blackout incident affected 
Egypt in April 24, 1990 where 50 million people were 
affected for 6 h [2]. This blackout was characterized by a 
fast local voltage collapse, followed by sudden total voltage 
collapse. Another incident is the blackout affected around 
50 million people in eight U.S. states and two Canadian 
provinces on 14th August 2003. Estimates show that this 
blackout interrupted around 63 GW of load resulting in an 
economic loss of approximately 4–6 billion USD. Recently, 
on 2012 India suffered a severe and large blackout following 
a voltage collapse due to the overloading of transmission 
lines. This blackout affected around 670 million people in 22 
Indian states [3]. These blackouts have large impacts that are 
both direct such as the interruption of an activity, function, 

or service that requires electricity and indirect due to the 
interrupted activities or services.

Voltage instability phenomenon is generally associated 
with a gradual or uncontrollable drop in voltage magnitude 
after disturbances in the system, increase in load demand 
or incapacity to cover the demand for reactive power. The 
voltage collapse is the process by which voltage instability 
leads to loss of voltage in an important part of the system. 
When the power system is operating with insufficient volt-
age stability margin in one or more regions, it becomes more 
likely to voltage collapse. In order to mitigate the risk of 
voltage collapse, stability analysis should be considered dur-
ing both planning and real-time operating of power systems. 
In contrast to the off-line planning, where the computational 
speed may not be important, in on-line analysis, real-time 
tools are of great importance for assessing the voltage stabil-
ity of power system.

In recent years, machine learning (ML) based techniques 
such as artificial neural networks (ANNs), decision trees 
(DTs), fuzzy logic (FL), adaptive neuro-fuzzy inference 
system (ANFIS) and support vector machines (SVMs) 
have attracted the researchers’ attention due to their abil-
ity to solve nonlinear problems with desired speed and 
accuracy. The present paper mainly focuses on providing 
a clear review of the latest ML techniques used in on-line 
voltage stability assessment. This review is organized as fol-
lows: Sect. 2 gives a brief description of voltage stability 
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phenomenon. Section 3 first briefly explains each ML tech-
nique and afterward presents a review of the finding pub-
lished works discussed the implementation of this technique 
in on-line voltage stability assessment. Section 4 presents 
some discussions and limitations of ML techniques. Finely 
a conclusion is drawn in Sect. 5.

2 � Voltage Stability

2.1 � Definition and Classification

According to the IEEE/CIGRE joint task force on stability 
terms and definitions [4], voltage stability refers to the abil-
ity of a power system to maintain steady voltages at all buses 
in the system after being subjected to a disturbance from a 
given initial operating condition. The main factor causing 
voltage instability is the inability of the power system to 
meet the demand in heavily stressed systems. Other factors 
contributing to voltage stability are the generator reactive 
power limits, outage of any equipment (transmission lines, 
generators or transformers), load characteristics, character-
istics of reactive compensation devices and the action of 
voltage control devices [5].

Voltage stability is classified into short-term voltage sta-
bility and long-term voltage stability. The short-term voltage 
stability involves dynamics of fast acting load components 
such as induction motors, electronically controlled loads 
and HVDC converters. The study period of interest is in the 

order of several seconds and analysis requires solution of 
suitable system differential equations. The long-term volt-
age stability involves slower acting equipment such as tap-
changing transformers, thermostatically controlled loads, 
and generator current limiters. The study period of inter-
est may extend to several or many minutes, and long-term 
simulations are required for analysis of system dynamic per-
formance [4]. In addition to this classification, the voltage 
stability can be fast (short-term voltage stability) or slow 
(long-term voltage stability) as demonstrated in Fig. 1.

2.2 � Concepts Related to Voltage Stability

2.2.1 � Voltage Collapse

The static voltage stability problem becomes a serious type 
of voltage instability which is associated with the increased 
loading of the power system and the inability to meet the 
demand for real or reactive powers. It is characterized by an 
initial progressive decrease of voltage magnitude and a final 
rapid decline. Figure 2 depicts the relationship between the 
load bus voltage and the active power transfer through the 
transmission line, denoted as a P–V curve. As the loading 
increases, the voltage at the load bus decreases. The edge 
of the curve is the maximum active power (Pmax) that can 
be transmitted over the transmission line and it considered 
as the “voltage collapse point”. Consequently, the voltage 
collapse can be defined as “the process by which voltage 

Fig. 1   Different time responses for voltage stability phenomena [5]
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instability causes the loss of voltage in an important part of 
the system”.

2.2.2 � Voltage Stability Margin

One of the most frequent terms related to the voltage insta-
bility is the voltage stability margin (VSM) which corre-
sponds to a measure of the distance from the current oper-
ating point to the critical point (See Fig. 2). Under some 
specific conditions, this critical point corresponds to the 
maximum loading point or the saddle-node bifurcation point 
at which voltage collapse occurs [6].

2.2.3 � Loadability Margin

Loadability margin can be directly obtained from the P–V 
curve as illustrated in Fig. 2. The normal operating value of 
active power, delivered to the load, is P0 and the maximum 
possible power transfer is Pmax. The loadability margin is 
defined as the difference between these two quantities.

2.2.4 � Voltage Security

Voltage security is the ability of the power system, not only 
to operate stably, but also to remain stable (as far as the 
maintenance of system voltage is concerned) following any 
reasonably credible contingency or adverse system change 
[7].

2.2.5 � Voltage Stability Assessment

The voltage stability assessment (VSA) or monitoring 
involves the determination of how close the system is to 
voltage instability. This assessment identifies whether the 
current operating point is secure or not.

2.3 � Voltage Stability Assessment Tools

Voltage stability assessment is one of the important parts of 
the planning and operating of power systems. Voltage sta-
bility assessment methods are categorized into off-line and 
on-line studies. The first category is conducted in the power 
system planning and the second category is conducted dur-
ing the system operation. The on-line assessment is to justify 
whether the current operating point is secure or insecure, 
and to determine how close the system is to voltage collapse 
point which is called the VSM.

Many different methods have been introduced to assess 
the voltage stability and to find the VSM among them:

2.3.1 � Methods Based on Modal Analysis

The modal analysis method proposed by Gao et al. [8] on 
1992 depends on the power flow Jacobian matrix and it can 
predict the voltage collapse in complex power systems. This 
method involves the computation of the smallest eigenvalues 
and associated eigenvectors of the reduced Jacobian matrix 
obtained from the load flow solution. The eigenvalues are 
associated with a mode of voltage and reactive power vari-
ation which can give a relative indication of how close the 
system is to the voltage collapse.

2.3.2 � Methods Based on Energy Function

The energy function method has been initially applied to 
determine the transient stability of one machine-infinite 
bus system or two-machine system based on the equal area 
criterion. Albeit that the energy function method is more 
appropriate for transient stability assessment, many authors 
have associated this technique with measure voltage stabil-
ity margin in the static cases. The first application of energy 
function for voltage collapse analysis was performed by 
DeMarco and Overbye [9]. The energy function technique 
is, also, used to rank the system buses according to their 
participation in voltage collapse [10].

2.3.3 � Methods Based on Loading Margin

One of the important tools to assess voltage stability is the 
methods based on loadability margins. This loadability mar-
gin can be computed by P–V and Q–V curves, continua-
tion power flow (CPF) method or by using voltage stability 
indices.

•	 P–V and Q–V curves
	 The P–V and Q–V curves are the most used methods 

to evaluate the voltage stability [11]. They are used to 
determine the VSM of the power system. The P–V curve 
can be obtained by gradually increasing the active power, 

Fig. 2   P–V curve for the simple two-bus system



276	 M. Amroune 

1 3

by constant power factor, at load bus or area and execut-
ing consecutive power flow equations. An example of 
such curves is the Fig. 2 which depicted the relationship 
between the load bus voltage and the active power trans-
fer through a transmission line. The edge point or voltage 
stability collapse point is the point where the power flow 
process will diverge due to the singularity of the Jacobian 
matrix. The distance between the voltage collapse point 
and the normal operating point or the so-called VSM is 
used as the voltage stability criterion. In the same man-
ner, the Q–V curves are used to indicate the sensitiv-
ity and variation of bus voltage magnitude with respect 
to reactive power injections and absorptions. The Q–V 
curve can be used as voltage stability assessment tools, 
taking the edge point of the curve as the collapse point 
and the MVar distance between this point and the normal 
operating point as the reactive power margin [11].

•	 Continuation power flow (CPF)
	 CPF is an iterative process that finds a gradation of power 

flow solutions at different operating points by using 
branch tracing methods or also called predictor–correc-
tor methods. CPF is utilized to determine the steady-state 
voltage stability limits. These limits are determined by 
drawing the nose curve where the nose represents the 
maximum power that can be transmitted over the trans-
mission line. The nose curve can be drawn by the vari-
ation of load voltage magnitude with the automatic 
changes of the loading parameter. From a known base 
solution, a tangent predictor is used so as to estimate next 
solution for a specified pattern of load increase. Then, 
the corrector step determines the exact solution using 
Newton–Raphson technique. After that, a new predic-
tion technique is made for a specified increase in load 
based upon the new tangent vector. Then corrector step is 
applied. This process goes until a critical point is touched 
[12].

•	 Voltage stability indices (VSIs)
	 The methods based on voltage stability indices are very 

popular due to the uncomplicated interpretation of the 
index used. Many indices have been proposed in the lit-
erature to assess the voltage stability of power systems 
and to find the VSM. These indices can be classified into 
bus, line and overall VSIs. The line VSIs (e.g. Fast volt-
age stability index (FVSI), line stability index (Lmn), line 
stability factor (LQP), line stability index (Lp), voltage 
collapse proximity index (VCPI), line collapse proximity 
index (LCPI)) are used to assess the voltage stability of 
the transmission lines. Bus VSIs (e.g. L-index, voltage 
stability index (VSIbus), simplified voltage stability index 
(SVSI), S difference criterion (SDC)) compute the volt-
age stability of system buses and the last type which is 
the overall VSIs (e.g. Network sensitivity approach (SG)) 
are not related to the system busess and lines. This type 

can only predict the voltage collapse point of the power 
system [13, 14].

3 � Voltage Stability Assessment Using ML 
Techniques

As abovementioned, there are numerous tools that have been 
developed to conduct a comprehensive analysis of the volt-
age stability assessment, such as P–V and Q–V curves, CPF 
and voltage stability indices. However, the developed soft-
ware tools have the scarcity to be used in a real-time or on-
line operation as they are computationally time-consuming 
due to its reliant on a complex mathematical modelling of 
a power system. The aforementioned predicament of enor-
mous computational requirements could be resolved by uti-
lizing the ML techniques. The ML includes many techniques 
such as artificial neural networks (ANNs), decision trees 
(DTs), fuzzy logic (FL), adaptive neuro-fuzzy inference sys-
tem (ANFIS) and support vector machines (SVMs). In this 
paper, we will refer only to the ML techniques that have been 
applied widely in the literature for the case study of on-line 
power system voltage stability assessment.

3.1 � Artificial Neural Networks (ANNs)

A neural network is a computational model proposed in the 
late 1940s by Hebb [15]. It was inspired by the operations 
of biological neural systems. In 1954, Farley and Clark 
[16] first employed computational machines to simulate a 
Hebbian network at Massachusetts Institute of Technology 
(MIT) and then called calculators. Rosenblatt [17] developed 
the perceptron in 1958, and in 1975 the back-propagation 
algorithm was introduced by Werbos and Beyond [18]. In 
1982 and 1984, the Hopfield and the Kohonen neural net-
works were provided by Hopfield [19] and Kohonen [20]. In 
1986 [21], Rumelhart and McClelland introduced the back-
propagation learning algorithm. In 1987, several research 
programs based on ANNs were initiated and the list of their 
application has been extended to large practical tasks [22]. 
Between 2009 and 2012, the recurrent and the deep feed-
forward ANNs were developed in the research group of Jur-
gen Schmidhuber at the Swiss AI Lab [23].

Several ANN architectures and various neural network 
combinations have been proposed in the literature for on-
line voltage stability assessment. multi-layered perceptron 
(MLP) neural network trained by the back-propagation 
algorithm is firstly introduced in [10, 24, 25] for computing 
the VSM using energy method. An extended work on the 
MLP has been employed to assess the voltage stability for 
a dynamic power system model [26, 27]. Further improve-
ment of MLP performance in on-line monitoring of voltage 
stability could be realized by reducing the input data at an 
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optimal size [28]. In the same context, Ying et al. [29] pro-
posed the use of hybrid MLP networks and ward equivalent 
approach network reduction. The proposed approach pos-
sesses the properties of ward equivalent method to update 
the parameters of the equivalent model for representing real-
time topology change of the power system. In tandem with 
the input data minimization, this can also be perpetrated by 
using several feature extraction methods such as the prin-
cipal component analysis that augment the performance of 
MLP to assess the voltage stability in an on-line manner 
[30, 31]. In [32], a systematic way to train separate MLP 
network for various contingencies is presented. In this work, 
the load active and reactive powers are used as the input 
features for the MLP. In [33], an MLP based input features 
selection using mutual information method is proposed to 
estimate the voltage stability level at various load conditions 
and contingencies. Joya et al. [34] used a sequential learning 
strategy to design a single feed-forward back-propagation 
network to estimate the line voltage stability index for dif-
ferent load conditions. In [35], a regression-based method 
of selecting features for training a separate ANNs is pro-
posed to assess the voltage stability considering deferent 
contingencies. Debbie et al. [36] proposed an ANN-based 
method to estimate the VSM of power system under nor-
mal operating conditions as well as under N-1 contingen-
cies. Venkatesan and Jolad [37] proposed the application 
of MLP based approach for fast voltage contingency rank-
ing. In the proposed approach, the off-line load flow studies 
are adopted to find the minimum singular value (MSV) and 
the results from load flow study are used to train the MLP 
network to estimate the MSV. Authors in [38] developed a 
new extreme learning machine model for precise and fast 
prediction of voltage stability under different loading con-
ditions and under contingencies. Authors in [39] proposed 
a new MLP network-based algorithm that requires only a 
minimum number of inputs to estimate the voltage mag-
nitude of each critical bus in a power system under normal 
and contingency states. Another approach to find the fewest 
input variables required to approximate the VSM with suffi-
cient accuracy and high execution speed is proposed in [40]. 
In [41], a Z-score based bad data processing algorithm is 
implemented to enhance the estimation accuracy of the feed-
forward ANNs. In [42], three ANN types i.e., MLP, RBF 
and layer recurrent (LR) have been used to assess the voltage 
stability of the power system in on-line manner. According 
to the obtained results, the RBF shows superior prediction 
ability of fast voltage stability index (FVSI) compared to the 
MLP and LR methods.

The application of radial basis function (RBF) neu-
ral network for on-line voltage stability assessment has 
also been performed by several researchers. Jain et al. 
[43] applied both supervised and unsupervised learning 
to RBF network in order to reduce the number of neural 

networks required for voltage contingency screening and 
ranking. Sahari et al. [44] used the active and reactive 
loads on all load buses as input set of RBF network for 
on-line monitoring of voltage stability. Authors in [45] 
proposed the application of RBF network-based energy 
method for on-line estimation of VSM. Arya et al. [46] 
proposed the use of RBF network to get the probabilistic 
risk of voltage collapse for various operating conditions. 
In this work, the training and testing instances have been 
generated using Monte-Carlo simulation. RBF neural net-
work is also applied by Moradzadeh et al. [47] to predict 
the static voltage stability index and to rank the critical 
line outage contingencies. In this study, three distinct fea-
ture extraction algorithms are used to speed-up the training 
process via reducing the input training vectors dimensions. 
In [48], several dimensionality reduction techniques are 
employed to enhance the predictive ability of the RBF 
network in the estimation of the voltage stability level. 
In [49], a comparison between ANNs trained using linear 
basis function and RBF in the estimation of line voltage 
stability index (Lmn) has been presented. The results show 
that both the ANNs paradigms are suitable for Lmn index 
prediction. In [50] the RBF network is adapted to esti-
mate the VSM using the dominant extracted features of 
the voltage profile by multi-resolution wavelet transform 
and principal component analysis.

The application of self-organizing Kohonen-neural 
network (SKNN) for fast indication and visualization of 
voltage stability has been discussed in [51]. In [52], a new 
ANN architecture called the parallel self-organizing hier-
archical neural network (SHNN) is proposed to estimate 
the loadability margin with static var compensator. Chen 
et al. [53] proposed a new approach to compute a risk of 
low voltage using neural network ensemble (NNE). In this 
work, the probability model of system contingency and the 
impact model of low voltage are built, first, and then the 
corresponding risk index is computed to form the NNE 
system. Chakraborty et al. [54] incorporated a self-organ-
izing feature map with RBF network for determination 
and classification of the power system voltage stability 
level. Notwithstanding the fact that the ANN has gained 
attention from researchers as a tool for on-line voltage 
stability assessment, it has some drawbacks. Duraipandy 
and Devaraj [38] proposed the use of Extreme Learning 
Machine (ELM) technique for on-line assessment of volt-
age stability for multiple contingencies. A single ELM 
model has been developed for credible contingencies for 
accurate and fast estimation of the voltage stability at dif-
ferent loading conditions. In [55], the same authors pro-
posed a new index based on ELM. The proposed index 
takes real and reactive power load as input parameters and 
a voltage stability margin called ELM-VSI as output.
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3.2 � Decision Tree (DT)

DT, also named classification and regression tree, is a deci-
sion support tool which uses a binary tree-like graph or 
model for representation of possible solutions to a deci-
sion based on certain conditions. It was first developed by 
Breiman et al. [56] in the 1980s and was firstly introduced 
into the field of power systems by Wehenkel et al. [57] in 
1989. Among the many other applications of DT in power 
systems, security assessment is the most versatile [58, 59]. 
DT is adopted to assess the voltage security of the Ameri-
can Electric Power (AEP) system [60, 61]. Recently, DT 
has been applied in on-line voltage stability assessment 
with wide-area measurements system [62–64]. Zheng et al. 
[62] proposed the use of DT for fast evaluation of power 
system oscillatory stability and voltage stability based on 
voltage and current phasor measurements. Li and Wu [63] 
used the voltage phase angle difference that obtained by 
PMUs in order to improve DT’s identification accuracy. 
Beiraghi and Ranjbar [64] developed a new on-line volt-
age security assessment method based on wide-area meas-
urements and decision-tree algorithm. In the developed 
method, the adaptive boosting (AdaBoost) techniques are 
employed to generate a combined model which is used to 
predict the voltage security of the power system using con-
tinuous wide-area measurements. Krishnan and McCalley 
[65] proposed a process of deriving DT for power system 
security assessment of multiple contingencies based on 
a novel contingency grouping method. The contingency 
grouping is based on newly devised metric called progres-
sive entropy, which is graphical metric that finds the over-
lap of class boundary progression of various contingency’s 
training databases. The proposed method was illustrated 
on the Brittany region of French power system to derive 
decision rules for five critical contingencies against voltage 
stability problems.

DT has been also combined with other algorithms, such 
as principal component analysis and fuzzy logic, for on-line 
voltage stability monitoring. Mohammadi and Dehghani 
[66] developed a combined method for on-line voltage 
security assessment in which the dimension of the token 
data from PMUs is reduced by principal component analy-
sis (PCA). In [67], the DT-based PCA method is combined 
with two optimization algorithms namely biogeography-
based optimization and invasive weed optimization to 
assess the voltage stability of the power system. In the pro-
posed method, the training data are reduced first using PCA, 
afterwards the two optimization algorithms are used to find 
the optimum dimensions of the PMU data and to minimize 
the misclassification rate of the security test. Abidin and 

Hussein [68] proposed a new approach based on fuzzy deci-
sion trees (FDTs) to assess the voltage security of power 
system. The objective of the proposed FDTs is to analy-
ses power system parameters and locates probable loca-
tions that could contribute to voltage collapse. The same 
authors improved the previous method in [69] by adding 
more contributing attributes onto the existing FDTs. The 
authors compared these results with those obtained in [70] 
and concluded that the adding of other contributing attrib-
ute values into the basic FDTs sequence will improve the 
FDTs in terms of its performance and accuracy.

3.3 � Fuzzy Logic (FL)

Fuzzy logic is an extension of Boolean logic introduced in 
1965 by Zadeh [71, 72]. FL can be defined as the nonlinear 
mapping of an input data set to a scalar output data [73]. 
FL has been widely applied in almost every part of a power 
system [74–78]. In the last years, various researchers have 
applied FL to evaluate the voltage stability state of the power 
system. Ramaswamy and Nayar [79] proposed an efficient 
fuzzy based approach to obtain on-line estimates of bus volt-
ages for an outage and/or projected load changes. In this 
approach, a fuzzy model for each load bus and contingency 
has been developed and the voltage at any load bus has been 
independently estimated. The application of extracting rules 
for voltage security monitoring based on synchronized pha-
sor measurements has been proposed by Liu et al. [80]. In 
the proposed approach, the two-layer Fuzzy Hyper-rectangu-
lar Composite Neural Network is developed and performed 
on the IEEE 30-bus system under various operating condi-
tions. According to the simulation results, the rule-based 
approach to voltage security margin estimation opens up 
new possibilities for power system protection and control. 
Nageswararao and Jeyasurya [81] proposed a fuzzy based 
expert system to evaluate the voltage stability of the power 
system by monitoring the eigenvalues of the load flow Jaco-
bian with the help of modal analysis. Udupa et al. [82] pre-
sented a reactive power control approach based on fuzzy 
sets theory for voltage stability enhancement by monitoring 
L-index. The performance of the developed fuzzy system is 
compared with conventional optimization technique and sat-
isfactory results have been obtained. In [83], a novel fuzzy 
voltage stability index (FVSI) for identifying critical buses, 
subject to normal and contingency mode of operations, has 
been introduced. The new proposed index is based on the 
extinction of fuzzy power flow algorithm to support the con-
tinuation technique. The proposed FVSI serves as a good 
indicator for identification of critical buses both in normal 
and contingency conditions.
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3.4 � Adaptive Neuro‑Fuzzy Inference System (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) model 
is first introduced by Jang [84] in 1993. It is based on the 
combination of the advantages of ANNs capability in learn-
ing from processes and fuzzy interpretation of the FL sys-
tem. In recent years, ANFIS model has emerged as a strong 
tool for power system applications. It has been applied in 
different power system areas such as transmission line faults 
[85], power quality [86], frequency control [87], and power 
system stability [88–94]. One of the first voltage stability 
approaches in which Neuro-fuzzy algorithms were applied is 
reported in [88]. In this work, a novel architecture based on 
Neuro-fuzzy and voltage, active power and reactive power 
dimensional surfaces is proposed for predicting power sys-
tem voltage security indices. The approach was found to be 
very effective, with the system providing good predictions 
of voltage collapse under a wide range of scenarios. ANFIS 
has been also applied to compute the loadability margin 
of the power systems incorporating STATCOM and SVC 
[89–91]. In [92], a Fuzzy Inference Engine is developed 
and optimized by two different approaches (neural networks 
and genetic algorithms) to evaluate the security margins of 
power system. The simulation results show that the proposed 
approaches allow the correct estimation of the voltage secu-
rity margin with a high level of reliability, accuracy and 
robustness. In [93], a new method based on ANFIS model 
and voltage stability indices computed by a voltage stability 
tool namely VOSTA (voltage stability) has been developed 
to evaluate the voltage stability of the EHV Italian transmis-
sion network. Torres et al. [94] used subtractive clustering 
(SC) and ANFIS to estimate the loadability margin of power 
system. This method has proven to give good results to deal 
with uncertain load behavior and hence, can be implemented 
in a real-time environment. Amroune et al., [95] proposed 
the application of ANFIS model in predicting VSM with 
regards to the input data of voltage magnitudes attained from 
PMUs.

3.5 � Support Vector Machines (SVMs)

SVM [70] is a supervised learning technique with different 
learning algorithms that are used for developing of clas-
sification and regression models. In recent years, SVM is 
emerged to be an effective computational technique due to 
their many advantages and has already been applied to dif-
ferent engineering areas, except in power system stability 
monitoring where its application is still very limited. Cortés-
Carmona et al. [96] employed the SVM based Bayesian rule 

to classify the status of power system either it is secure, alert 
and emergency. This approach has been applied relatively 
analogous to the proposed multi-class SVM used for security 
assessment as highlighted in [97]. In the proposed approach, 
four different statuses of system security namely normal, 
alert, emergency_1 and emergency_2 are considered. Fur-
ther amelioration of multi-class SVM has been undertaken 
by consolidating the pattern recognition approach for secu-
rity assessment [98, 99].

Support vector regression (SVR), the most common 
application form of SVM, has also been applied to evaluate 
the voltage stability of a power grid [100–102]. In [100], 
the SVR model has been used to assess the voltage stability 
of power system incorporating flexible alternating current 
transmission systems (FACTS) devices. In [101], the v-SVR 
and ε-SVR models with RBF and polynomial kernel func-
tions have been used in on-line prediction of voltage stability 
margin. Recently, Sajan et al. [102] proposed a hybrid model 
combining genetic algorithm (GA) with SVR for voltage sta-
bility monitoring. It was reported that the proposed GA-SVR 
model has better performance compared to the MLP neural 
networks. However, the performance of GA is imperfect, 
it encloses a sequence of processes i.e., coding, selection, 
crossover, and mutation, which could affect the speed and 
the accuracy of the optimization. Another problem is related 
to the difficulty of choosing of GA operators such as popu-
lation size, selection method, crossover rate and mutation 
rate, which have a significant impact on the convergence to 
the optimum solution. In [95, 103], tow powerful nature-
inspired algorithms namely, ant lion optimization (ALO) 
algorithm and dragonfly algorithm (DA) were employed 
to determine the optimal parameters of SVR model. The 
obtained results suggested that the two models (i.e., ALO-
SVR and DA-SVR) can be successfully applied to predict 
the voltage stability margin of power system. Yang et al. 
[104] proposed a new synchrophasor measurements-based 
voltage stability estimation method using least-square SVM 
with on-line learning. The proposed method is tested on the 
New England 39-bus system and the obtained results con-
firmed the effectiveness of this method in on-line voltage 
stability assessment.

4 � Discussions and Limitations of ML 
Techniques

The research in on-line power system voltage stability 
assessment based on ML techniques has attracted a num-
ber of researchers due to the ability of these techniques to 
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provide fast and accurate assessment of voltage stability to 
obviate power system blackouts.

In this paper, the previous research works on on-line volt-
age stability assessment using ML approaches, published 
along the past 24 years, are studied. These works were pub-
lished between 1995 and 2018. An overview of the number 
of publications by year is given in Fig. 3. This figure shows 
that there is a continuous research interest on the on-line 
voltage stability assessment using ML techniques. Between 
the years 1995 and 2000 researchers mainly focused on the 
application of ANN and from 2008 their focus was widened 
on other techniques. As can be seen from Fig. 4, over half of 
papers (48%) utilize ANN based approach. ANNs have the 
ability to identify and classify complex relationships which 
are nonlinear and result from large mathematical models. 
The main advantage of the ANN is the ability to reach com-
plicated input–output mappings through a learning process 
without explicit programming and complex modeling. Thus, 
ANNs have the potential to play an important role in energy 
management systems to provide system operators with a 

fast and reliable indication of voltage instability. A major 
limitation of the use of ANNs for on-line voltage stability 
assessment arises due to the fact that the functional rela-
tionship itself gets changed from one topology to the other 
which results in the requirement of an additional ANN for 
each new topology [38]. Another drawback appears in large-
scale power systems, in this case the ANN requires a large 
input training vectors and this leads to a low speed training 
process. Figure 5 shows the Types of ANN algorithms used 
in on-line voltage stability assessment.

SVM is a powerful and promising data classification 
and function estimation tool that attracted much attention 
in recent years. Its application in on-line voltage stabil-
ity assessment is started in 2008 and attained 17% of the 
published papers as shown in Figs. 3 and 4. According to 
the reviewed papers the SVM model gives a better perfor-
mance in terms of accuracy, speed and distribution of high-
risk cases compared to the ANN and ANFIS [71, 93, 101]. 
However, the performance of the SVM model is extremely 
dependent upon the selection of its parameters [93, 100, 
101]. Therefore, the selection of the optimal parameters is of 
great importance to obtain a good performance of the SVR 

Fig. 3   Overview of number of 
publications on voltage stability 
assessment using ML tech-
niques by year

Fig. 4   Overview of ML techniques used in on-line voltage stability 
assessment

Fig. 5   ANN types used in on-line voltage stability assessment
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model. On the other hand, the SVM learning algorithms 
suffer from exceeding time and memory requirements, if the 
training pattern set is very large [70].

As shown in Fig. 4, 14% of reviewed papers use DTs 
method. On-line voltage stability assessment based on DTs 
system has also its advantages and drawbacks. DTs are of 
interest because they are more understandable by users 
for their simpler rules [95]. The problem of using DTs for 
voltage stability assessment from substation field measure-
ments has not yet been fully explored. It is also imperative 
to develop a systematic approach to generate a sufficient and 
realistic knowledge base for off-line training of DTs [66].

The FL and ANFIS based techniques are used for vari-
ous power system problems, however, its application in on-
line voltage stability assessment remained very modest (see 
Figs. 3 and 4). The main advantage of FL system is its ability 
to compute with words than numbers (Uses linguistic vari-
ables), thus, the exploitation of the tolerance for imprecision 
and thereby lowers the cost of solution [70]. Though FL is 
able to translate the expert knowledge into a mathematical 
framework, there is no systematic method to determine a 
reliable fuzzy rules and membership functions, especially for 
large-scale power systems. Another drawback of FL system 
being in rules robustness i.e., fuzzy rules generated for one 
system may not work well for other systems. The ANFIS is a 
well-developed fuzzy inference system that takes advantages 
of fuzzy logic and neural network. The complexity of inter-
nal parameters selection and the high computational costs 
are the main disadvantages of this technique [101].

An overview of the reviewed papers collected from vari-
ous online databases, journals and conference proceedings 
is summarized in the Table 1. Columns 1 and 2 of this Table 
contain the reference number and the method used. Columns 
3 and 4 contain the input and the output of each ML tech-
nique. Column 5 contains the system used to test the pro-
posed approach. It can be noted from Table 1 that the imple-
mented techniques use six basic inputs: voltage (magnitudes 
and phases), load real and reactive powers, generators real 
and reactive powers, PMU measurements, real power flows 
and power injections at load buses. Table 1 shows also that 
studies often employ loadability margin and voltage stability 
indices as the output of ML techniques. Loadability margin 
and voltage stability indices are simple, require less compu-
tation efforts and are suitable for on-line applications. On 
the other hand, some studies proposed the use of the stat of 

the system (secure or insecure) as the indicator of voltage 
stability. However, this kind of indicators cannot provide 
enough details about how the systems are near to their sta-
bility limits. As another type of inputs or voltage stability 
indicators, [24, 31] used energy margin, [37] used minimum 
singular value and [104] used the induction motor slip. But 
in contrast to voltage stability indices these indicators can-
not accurately estimate the voltage stability margin and their 
computational complexity is very high.

5 � Conclusion

Voltage instability phenomenon is considered the main 
threat to stability, security and reliability in modern power 
systems. Due to the load changes and sudden contingen-
cies occurrence, off-line voltage stability monitoring can 
no longer ensure a secure operation of the power system. 
Hence, fast and efficient methods to assess power system 
voltage stability are of great importance to experts and 
industrials in order to avoid a risk of large blackouts. In this 
paper, a review of the major research works applying ML 
techniques in on-line voltage stability monitoring has been 
presented. Firstly, a brief description of each ML technique 
is reported and then a detailed review of the previous stud-
ies discussing the application of this technique in on-line 
voltage stability assessment has been presented. Finally, a 
comparative study of these techniques has been performed. 
It can be concluded that the implementation of ML tech-
niques in on-line voltage stability assessment can enhance 
the power systems stability, thus, reduce the possibility of 
blackouts. However, further improvements are still needed to 
make these techniques compatible with on-line applications.
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