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Abstract
Pathology is an important field in modern medicine. In particular, the step of nuclei segmentation is an important step in 
cancer analysis, diagnosis, and grading because cancer analysis, diagnosis, classification, and grading are highly depend-
ent on the quality (accuracy) of nuclei segmentation. In the conventional cancer diagnosis, pathologists analyze biopsies to 
make diagnostic and prognostic assessments, mainly based on the cell morphology and architecture distribution. In recent 
years, computerized approaches are rapidly developing in the field of digital pathology, and applications related to nuclei 
detection, segmentation and classification are increasing. These approaches will play an important role of minimizing human 
intervention, integrating relevant second opinions, and providing traceable clinical information. In the past, much effort has 
been devoted to automation of nuclei segmentation and methods to deal with nuclei complex structure. This review provides 
the summary of the techniques and experimental materials used for nuclei segmentation.

1  Introduction

Cancer is one of the leading causes of mortality worldwide. 
In these years, the number of deaths due to cancer continues 
to increase, and in 2016 it became approximately 30% of the 
cause of death in Japan. In the field of histopathology, the 
evaluation of the disease status is based on cell nuclei infor-
mation of the tissue images, and appropriate treatments are 
required for each cancer and grade. Therefore, it is necessary 
to extract the region of cell nuclei accurately. However, cells 
have complex structures (see Fig. 1), and they come from 
various situations [1]. For that reason, manual analysis is 
difficult for pathologists. Digital pathology and microscopy 
images play a significant role in decision making for disease 

diagnosis, since they can provide extensive information for 
Computer-Aided Diagnosis (CAD). It realizes a quantitative 
analysis of digital images with a high throughput process-
ing rate.

Currently, there are several review papers on automated 
pathological image analysis. The review paper published by 
Gurcan et al. [2] summarized the CAD system technolo-
gies for image analysis, which covers preprocessing, nuclei 
segmentation and gland segmentation, feature extraction, 
and classification. Irshad et al. [1] provided a survey on the 
methods for nuclei detection, segmentation and classification 
in hematoxylin and eosin (H&E) and immunohistochemis-
try (IHC) stained histopathology images. Xing et al. have 
proposed the review on robust nuclei/cells detection and 
segmentation in digital pathology and microscopy images 
[3]. According to [2], despite a lot of automated methods 
for nuclei segmentation have been proposed, it is difficult 
for pathologists to find a good one to use since there are 
plenty of competing segmentation methods with different 
capbilities.

In this survey, we focus on automatic computational 
methods for nuclei/cells segmentation and review some of 
the important techniques published in the past years. Also, 
we also surveyed commonly used modality for staining, pre-
processing and some basic methods. The organization of 
this paper is as follows. Section 2 introduces the imaging 
modalities in histopathology and emphasizes the challenges 
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in computational nuclei segmentation. Section 3 provides 
the methods of preprocessing and segmentation in histo-
pathology. Section 4 addresses the challenges and clarifies 
the gap in nuclei segmentation. We show future directions 
and problems in nuclei segmentation and conclude with a 
discussion. A list of symbols and notation commonly used 
in this survey paper is shown in Table 1.

2 � Basics of Digital Pathology 
and Challenges

2.1 � Staining and Image Modality in Digital 
Pathology

In digital pathology, the microscopic examination of surgi-
cal specimen or biopsy is conducted onto glass slides to 
study cancer expression, genetic progression, and cellular 
morphology for cancer diagnosis and prognosis. For tissue 
constituents visualization under a microscope, tissue images 
are dyed with one or more stains.

H&E staining is one of the staining methods used world-
wide in the field of pathology. H&E staining has been used 
by pathologists for a long time and is still widely used for 
visualization of tissue features under a microscope. Hema-
toxylin stains nuclei in dark blue color, and eosin stains 
other structures (cytoplasm, stroma, etc.) with a pink color 

(Fig. 2a), [1]. Nuclei are diagnostically meaningful to indi-
cate benign or malignant cancer.

Immunohistochemical (IHC) is a type of the staining 
methods, which is usually used as a cancer diagnosis to 

Table 1   Abbreviations used in the survey

Symbol Description Symbol Description Symbol Description

Acc Accuracy ACMs Active contour models ALL Acute lymphoblastic leukemia
CAD Computer-aided diagnosis CNN Convolutional neural network CS Correctly segmentation
DC Dice coefficient DP Dynamic programming EM Expectation maximization
FCM Fuzzy C-means FN False negative FPR False positive rate
GBM Glioblastoma GC Graph cut GMM Gaussian mixture models
H&E Hematoxylin and eosin IHC Immunohistochemistry LoG Laplacian of Gaussian
MO Morphological operation Ncut Normalized cut OR Overall accuracy rate
OS Over segmentation PPV Positive predictive value RBC Red blood cells
ROI Region of interest RI Rand index Sen Sensitivity
TMA Tissue microscopy array TNR True negative rate TPR True positive rate
US Under segmentation WBC White blood cells WSI Whole-slide imaging

Fig. 1   Different types of nuclei. 
a LN, b EN, c EN (cancer), d 
EN (mitosis)

Fig. 2   Examples of hematoxylin and eosin and IHC staining images. 
a H&E. b IHC
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determine whether the obtained tissue is benign or malig-
nant. Figure 2b shows an example of IHC staining images. 
IHC can help to determine the region of a tumor and we can 
select an appropriate treatment by investigating the appear-
ance of specific proteins.

Papanicolaou staining is a typical staining method for 
morphological observation. This method is also an impor-
tant method like H&E staining. Papanicolaou staining 
method is almost the same as H&E staining for the cell 
nuclei, but the cytoplasm can be represented by three kinds 
of colors. However, this method requires many steps to 
acquire results. It means that the accuracy of the obtained 
result may or may not depend on facilities. The normaliza-
tion of staining is required in the method. They are basic 
staining methods to study for cancer diagnosis and prognosis 
under a microscope.

2.2 � Challenges in Nuclei Segmentation

There are various types of nuclei, and it depends on several 
factors such as nuclide, malignant tumor, their life cycles, 
etc. In the case of white blood cells, there are several classes, 
e.g., Neutrophils, Eosinophils, Lymphocytes. For instance, 
lymphocytes are essential for immune cells that occupy most 
of the white blood cells. The variety of blood cells makes 
nuclei segmentation very difficult.

Automated nuclei segmentation is one of the well-stud-
ied topics in the field of digital pathology, and many meth-
ods have already been proposed. However, these proposed 
methods are not perfect and cannot be applied to all types 
of histopathology images due to variability caused by fac-
tors in slide preparation (dyes concentration, damages of 
the given tissue sample, etc.) and image acquisition (pres-
ence of digital noise, specific features of the slide scanner, 
etc.). Furthermore, nuclei in the given image are sometimes 
overlapped each other and distributed non-uniformity. All of 
them affect not only nuclei segmentation but also prognostic 
prediction and diagnosis. All image processing approaches 
have to overcome these issues, and also should be robust 
methods to keep accuracy high in any situation.

3 � Methods for Nuclei Segmentation

Nuclei segmentation is an important step in cancer diagnosis 
and grading, prognostic prediction. Since tissue properties 
are different in each disease stage, the information of nuclei 
is critical for evaluating disease progress and its severity. 
Therefore, various approaches are required at each step in 
the processing. Nuclei segmentation mainly consists of two 
important steps, preprocessing and segmentation. We next 
introduce the standard preprocessing methods that are used 
in nuclei segmentation methods for histopathology images. 

We further review salient nuclei segmentation methods that 
were published in the recent years.

3.1 � Preprocessing

To extract expected information from given images, pre-
processing is necessary and usually performed. In the his-
topathological image processing, the structure and status of 
cells differ depending on each disease. There are many types 
of preprocessing methods, and some of them consist of the 
combination of basic techniques.

3.1.1 � Denoising

In this process, filter techniques are often used to remove 
the noise in the images. Depending on the purpose, it is 
possible to obtain the appropriate results by emphasizing the 
feature (expansion/contraction, etc.) and blurring to reduce 
the noise component (averaging/median, etc.). For instance, 
a median filter was used in [4, 5]. A median filter can remove 
noise without blurring contours of desired objects. Under-
standing feature(s) of each filtering technique is essential in 
preprocessing.

3.1.2 � Color Processing

In image processing, color plays an important role. The out-
line of what is drawn in the image can be recognized by 
color. Images give different impressions only by changing 
the color space. The color information serves as an index 
for dividing an area and is a useful feature for distinguish-
ing objects in the image. By converting the color system of 
the given image, it is possible to make it easy to obtain the 
intended information. It is also possible to extract the area 
for analysis and diagnosis from the brightness gradient by 
extracting pixel values. Generally, RGB color space can be 
converted into several color space.

CIE L*a*b* color system is designed to approximate 
human vision. In general, the human sense tends to be pro-
portional to the logarithm of the stimulus value, not propor-
tional to the stimulus value itself. The sense of brightness 
is no exception. In [6], they transform the histopathology 
images from the RGB to the CIELAB color space, which is 
based on human eye perception, to exploit this property. In 
the three L*a*b*, defined by CIE, the a* component, which 
divides the color axis between magenta and green, was used 
for discrimination. A double-threshold was used on the a* 
channel to discriminate between connective tissue, back-
ground and myocytes [6].

Conversion of a color image is quite a common way in 
digital image processing. HSV (Hue, Saturation, Value) 
transform is widely used in image analysis methods for seg-
mentation [7]. HSV color system is more suitable to convey 
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color information compared to RGB color model, and not 
vulnerable to illumination. Hue information in the HSV 
model is a significant feature for cell segmentation because 
cell nuclei and cytoplasm will absorb different coloring 
agents, [4]. There are some studies using not only one of 
the HSV color factors [7, 8] but also all factors. There is also 
HSI color space, which is similar to HSV color space [9].

3.1.3 � Seeds Detection

In segmentation, detection, and classification of cells and 
nuclei, they are not necessarily independent. Therefore, it is 
difficult to directly segment cells from microscopic images 
when they are in contact with each other. In carrying out 
various treatments, separating contacting cells are required. 
This process needs the identification of seed points where 
there is one marker per cell. For instance,

Al-Kofahi et al. identified the seed point of cells with 
the multiscale Laplacian of Gaussian (LoG) filter [10]. LoG 
filter [11] consists of Gaussian and Laplacian filters. After 
smoothing the image with the Gaussian filter(s) to reduce 
noise, the boundary is extracted with Laplacian filter. Since 
Laplacian filter acts as a quadratic differential operation(s), 
noise is easily emphasized, but it is reduced by smoothing 
the image beforehand with Gaussian filters.

Parvin et al. [12] detected cell seed points by a method 
using repetitive voting technique. Xin Qi et al. [13] men-
tioned the views on the problems of these methods and pro-
posed a new method based on parallel seed detection and 
repulsive level sets.

3.1.4 � Color Normalization

Image processing specialists often compare some digital 
images that were captured under different light condition. 
In such cases, it is required to convert the mean and standard 
variation of the image brightness value. Such techniques are 
usually called color normalization, and many color normali-
zation techniques have been proposed. For instance, histo-
grams or quantile normalization are used for color normali-
zation. In the case of color image, distributions of three color 
channels are often normalized separately. By adjusting the 
unevenness of brightness with these techniques, the perfor-
mance of the subsequent processing can be improved. Most 
segmentation and detection methods use the RGB color sys-
tem, but it is not a perceptual color model. For that reason, 
other color models such as HSV, CIE L*a*b*, and Luv are 
usually used.

3.1.5 � Region of Interest (ROI) Detection

The region of Interest (ROI) means the area selected for 
filter or other operations. The ROI is defined and expressed 

by a binary mask. This is an image with the same size as the 
target image, The pixel values that correspond to ROI are 
set to 1, and other regions are set to 0. In some cases, the 
regions are defined based on the area that consists of poly-
gons enclosed by consecutive pixels, or by intensity ranges.

In some frameworks, noise reduction and ROI detection 
are performed simultaneously. For example, the ROIs were 
selected by excluding regions with little content and noise 
at the preprocessing step [14]. For nuclei level feature com-
putation, noise reduction is succeeded by ROI detection to 
determine the nuclei region [15].

Thresholding is common for ROI detection. Lee et al. 
[16] normalized the ROI corresponding to the nuclei region 
from the microscopic image before identifying it. After nor-
malization, using the Otsu thresholding method [17], ROI 
was detected from the image by combining global threshold-
ing and local thresholding.

3.2 � Segmentation Methods

3.2.1 � Thresholding

Thresholding is the easiest method for image segmentation. 
The basic idea of thresholding is to replace each pixel in 
the image with a white pixel if the pixel value exceeds a 
certain threshold and replace it with a black pixel if not. 
There are roughly two methods for determining the thresh-
old T to be used. The first method is a global threshold, and 
the other is a local threshold approach. A global threshold 
value can be determined by using computational methods 
like the Otsu method. A histogram of the entire image is 
obtained, and then a threshold value is determined for the 
whole image from the result of the histogram. In the local 
(adaptive) threshold approach, the average of pixel values 
and the standard deviation around the target pixel to be bina-
rized, and the threshold value is determined considering 
them. After this, the given image is converted into a binary 
image, and we can extract desired objects easily from the 
obtained binary image.

Thresholding approach works well and is the most effi-
ciently conducted in HSV color space. There are variety 
of variants on nuclei segmentation using thresholding [8, 
18–24, 26–33].

For instance, Lu et  al. introduced the segmentation 
method by using the local (adaptive) thresholding in cuta-
neous images [18]. Gadgil et al. used the same approach as 
the preprocessing for the nuclei segmentation [20]. Thus, 
thresholding is very important as not only merely segmen-
tation but also preprocessing for applicative segmentation. 
Table 2 provides the comparison of different thresholding 
methods for nuclei segmentation methods along with the 
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results obtained. We highlight the prominent preprocessing 
steps utilized as well.

3.2.2 � Watershed

Watershed is one of the segmentation methods and used in 
many papers [23, 28, 30, 34–41]. As the first step of this 
approach, specific pixels called makers are determined, and 
then the markers are expanded gradually like flooding. In 
Watershed, the surrounding regions of makers are called 
catchment basin, and each pixel value is treated as a local 
topography. Catchment basins are separated topographically 
from adjacent catchment basins by maximum altitude lines 
called watershed lines. It allows classifying every point of 
a topographic surface as either belonging to the catchment 
basin associated with one of the local minimum or to the 
watershed line. Details about watershed approach can be 
found in [42]. The Watershed transformation is usually 

computerized on the gradient image instead of the intensity 
image.

Segmentation using the watershed transform works well 
if the position of the front object and the background can be 
identified or marked. A marker-controlled watershed is used 
in [34, 35]. This algorithm considers the input image as a 
topographic surface and simulates its flooding from specific 
seed points or markers. Table 3 provides the details of water-
shed based approaches. The highest accuracy was reported 
by Rajyalakshmi et al. [38], wherein a modified the marker-
controlled watershed obtained the segmentation accuracy of 
95.79 (normal), 95.56 (invasive) %.

3.2.3 � Morphological Operations

Morphology is a set-theoretic approach that considers an 
image as the elements of a set and process images as geo-
metrical shapes. This approach is defined by the operation(s) 
between the processing target images and the structuring 

Table 2   Summary of thresholding based nuclei segmentation methods for histopathological images

Refs. Dataset Preprocessing and segmentation Segmentation results

[8] 70 blood smear images Otsu thresholding, HSV transform –
[18] 30 H&E cutaneous images Local region adaptive threshold selection 

module
SEN: 88.11%, PPV: 80.02%

[19] 3D confocal images Hough transform, median filter, adaptive 
thresholding

–

[20] Rat kidney images Adaptive thresholding, shape-fitting –
[21] FISH breast images Adaptive gamma correction with weighting 

distribution (AGCWD) Otsu thresholding
–

[22] 25 Pap pleural fluid images Medial filter, Otsu thresholding, MO SEN: 94%
[23] 60 WBCs images Otsu thresholding, marker controlled water-

shed, MO
Acc: 90.2% (normal), 82.4% (leukemia)

[24] 39 H&E cervical images Adaptive thresholding, ellipse fitting, Adap-
tive Nucleus Shape Modeling (ANSM)

–

[25] ISBI-2014: 945 synthetic and 16 Pap smear 
slide images ISBI-2015: 17 real extended 
depth of field images

Adaptive thresholding, local thresholding ISBI-14: DC: 89.7 ± 7.5 , FN: 13.7 ± 1.94% , 
TP: 88.2 ± 9.7% , FP: 0.2 ± 0.3% , ISBI-15: 
DC: 87.9 ± 8.7% , FN: 43.4 ± 16.8% , TP: 
87.7 ± 12.3% , FN: 0.1 ± 0.1%

[26] 150 H&E GBM images Thresholding, smoothing –
[27] 88 Wright’s staining blood smear images Otsu thresholding, mathematical morphing Neutrophil: 55%, Basophil: 60%, Eosinophil: 

87.5%, Lymphocyte: 100%, Monocyte: 90%
[28] 150 Type P63 non-counter stained ovarian 

images
Thresholding, watershed –

[29] 365 blood images (dataset1), 242 blood 
images (dataset2)

Discrete wavelet transform, Poisson distri-
bution, morphological filtering

Similarity measures: 85.1% (dataset1), Simi-
larity measures: 83.5% (dataset2)

[30] Phase contrast images H-maxima transform, marker controlled 
watershed, Otsu thresholding, MO

Precision: 93.8%, recall: 92.2%

[31] H&E stomach images k-means clustering, thresholding –
[32] 15 multi-layer cervical cell volumes Thresholding, EM algorithm, GMM DC: 86.1, FN object: 35.2%, TP pixels: 

87.4%, FP pixels: 0.1%
[33] 2078 glioma nuclei images Optimal thresholding, level set, hierarchical 

mean shift
–
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elements. The two basic morphological operations are Ero-
sion and Dilation. The effect of these operations is to shrink 
(enlarge) the boundaries of foreground pixels. Two other 
major operations in morphological approach are Opening 
and Closing. The opening operation is an erosion of an 
image followed by dilation, and it eliminates small objects 
and lines. Closing is a dilation of an image followed by ero-
sion, and it fills small holes in the image. White and Black 
Top-Hat Transforms are two other operations derived from 
morphology. They allow extracting small elements and 
details from given images. The white top-hat transform is 
defined as the difference between the original image and the 
opening images. The Black Top-Hat Transform is defined 
as the difference between the original image and the closing 
images. There are methods that exploit morphological oper-
ations along with other other techniques such as threshold-
ing [22, 43], level sets [7, 48], k-means clustering [44, 45], 
and PCA [45], Hough transform [47]. Table 4 provides an 
overview of these morphological techniques in nuclei seg-
mentation. As can be seen, highest accuracy was obtained by 

a hybrid method that uses anisotropic diffusion filtering, and 
morphological toggle filter [46] on two different datasets.

3.2.4 � Active Contour Models (ACMs) and Level Sets

Active contour models (ACMs) or deformable models and 
these are widely used in image segmentation [49–54]. In 
the approaches, a segmentation boundary is expressed as 
deformable splines, and an energy function, which is defined 
by gradient information, determines the shapes by seeking 
to minimize the energy function [62]. In case of nuclei seg-
mentation, the contour points that yield the minimum energy 
level form the boundary of nuclei. The energy function is 
often defined to penalize discontinuity in the curve shape 
and gray-level discontinuity along the contour [63].

There is two main form of ACMs. An explicit parametric 
representation of the contour, which is called Snakes [64], is 
robust to image noise and boundary gaps as it constrains the 
extracted boundaries to be smooth. It is, however, difficult 

Table 3   Summary of watershed based nuclei segmentation methods for histopathological images

Refs. Dataset Preprocessing and segmentation Segmentation results

[34] 39 H&E breast images Marker controlled watershed DC > 0.8
[35] 19 H&E breast images Marker controlled watershed Radial symmetry markers: 79.2%, 

regional minima markers: 79.6%
[36] 52 DAB colorectal TMA and WSI Watershed OR: 80.3%
[37] Ki-67 breast images Watershed –
[38] 120 H&E breast images Modified marker controlled watershed, MO, 

Otsu thresholding, Hough transform
Acc: 95.79% (normal), 95.56% (invasive)

[39] H&E breast images Marker controlled watershed Precision: 92%, recall: 92%
[40] Human breast TMA, MCF-10A, 

Mouse Embryos
Oriented watershed, DP –

[41] 423 H&E lymphoma images Watershed, hierarchical k-means clustering –

Table 4   Summary of mathematical morphology filters based nuclei segmentation methods for histopathological images

Refs. Dataset Preprocessing and segmentation Segmentation results

[7] 15 computational brain tumor cluster (CBTC) 
images

HSV transform, level set to V component, MO –

[43] 24 H&E breast images Adaptive thresholding, MO –
[44] 20,148 Pap smear cell images k-means clustering, MO, polar transform –
[45] 132 H&E prostate TMA k-means clustering, morphological cleaning, 

Principal Component Analysis(PCA)
–

[46] 365 blood images (dataset1), 242 blood images 
(dataset2)

Gram-Schmidt, Anisotropic Diffusion Filter 
(ADF), Self-dual Multi-scale Morphological 
Toggle Filter (SMMTF)

Similarity metrics: 90.1% (data-
set1), 86.8% (dataset2)

[47] Cervical cancer images GMM, EM, MO, AIC, Hough transform Recall: 94.9%, precision: 91.46%
[48] 265 ALL images, 150 blood images, 300 WBC 

images
MO, level set using geometric active contours RI: 0.931
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for Snakes to separate or segmentation in the case of mul-
tiple objects. Alternatively, the ACMs called Level Set is 
specifically designed to handle topological changes [13, 
48, 55–61], but they are not robust to boundary haps and 
have other deficiencies as well [65]. The basic idea is to 
determine level curves from a potential function. These are 
iterative schemes thereby making computationally expensive 
to apply on large-scale histopathological images e.g. whole-
slides. However, as can be seen in Table 5 active contours 
with level set implementations have been applied to nuclei 
segmentations.

3.2.5 � Graph Cuts

Graph-based image segmentation approaches model one 
image as a weighted graph, in which each node associates 
a pixel or superpixels in the image and each edge weight 
between two nodes corresponds to the similarity between 

neighboring pixels of superpixels. According to a specific 
criterion, the graph is partitioned into multiple sets, each 
representing an object segment in the image [3]. Max-flow/
min-cut algorithms have been widely applied to image 
segmentation in the field of computer visions and medical 
image analysis.

In graph Cuts algorithm, graphs are created from input 
images, and graph division is realized using max-flow/min-
cut algorithm [40, 66, 67]. The graph consists of nodes cor-
responding to each pixel of the image, and terminals called 
source and sink. The edge connecting each node is called 
n-link, and the edge connecting source (S) and sink (T) ter-
minals from each node is called t-link. The input object and 
background are called seed and the graph is divided into the 
object (nuclei), and the background by using max-flow/min-
cut algorithms for the created graph. Details on graph cuts 
algorithm can be found in [68]. Table 6 provides a summary 
graph cut based methods for nuclei segmentation.

Table 5   Summary of active contours, level sets based nuclei segmentation methods for histopathological images

Refs. Dataset Preprocessing and segmentation Segmentation results

[13] 234 H breast images Level set based on interactive model Precision: 0.90, recall: 0.78
[49] 100 H&E breast images EM driven geodesic active contour with over-

lap resolution (EMaGACOR)
SEN: 80%, PPV: 86%

[50] MITOS, renal cell carcinoma (RCC) Localized active contour models –
[51] H&E bone marrow biopsy Dual-channel ACM Acc: 95.99 ± 4.52%

[52] 668 rat kidney fluorescence microscopy 
images

3D active contours with inhomogeneity cor-
rection

Acc: 91.87% (DS-II), 89.65% (DS-III), 
87.71% (DS-IV), 89.10% (DS-V)

[53] 30 H lung images ACMs, 3D cell density estimation Acc: 0.953 ± 0.017 , 0.947 ± 0.016

[54] Breast cancer images (MITOS) Localized active contour models –
[55] 44 H&E prostate images Level sets –
[56] 8 prostate images Multiphase vector-based Level Set, FCM with 

spatial constraint
Precision: 84%, recall: 85%

[57] Cervical Pap smear images Level sets, Gaussian and Wiener filters –
[58] 20 H&E breast images Level set, 2D difference of Gaussian filter –
[59] 180 cervical images Median filter, Otsu thresholding, distance 

regularized level set evolution (DRLSE)
DC: 0.852 ± 0.076 , TPR (pixel level): 
0.885 ± 0.101 , FPR (pixel level): 
0.0015 ± 0.001 , FNO (object level): 
0.361 ± 0.158

[60] Cervical Pap smear images Level set, Gaussian and Wiener filters, Gray 
level co-occurrence matrix (GLCM)

–

[61] 89 H&E breast cancer slides Level set which combines boundary and 
region information

–

Table 6   Summary of graph 
cut based nuclei segmentation 
methods for histopathological 
images

Refs. Dataset Preprocessing and segmentation Segmentation results

[66] 440 H&E 
GBM 
images

Multi-reference GC (MRGC), LoG filter, GMM Precistion: 0.75, recall: 0.85

[67] 450 fluo-
rescence 
synthetic 
images

Distance-Map-Constrained Multiscale LoG 
filter, GC, iterative MO

CS: 89.37%, OS: 1.53%, US: 
6.38%, Miss-seg: 0.83%, False-
seg: 1.89%
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3.2.6 � K‑Means Clustering

K-means clustering is one of the basic clustering techniques.
and also, it is an iterative method used for partitioning the 
given image to K clusters (regions). Many techniques using 
K-means approach has been proposed like [9, 31, 41, 44, 
69–74]. The basic algorithm of k-means is as follows.

a)	 Pick K cluster centers, either randomly or based on some 
heuristic.

b)	 Assign cluster label to each pixel in the image that min-
imizes the distance between the pixel and the cluster 
center.

c)	 Recompute the cluster centers by averaging all the pixels 
in the cluster.

d)	 Repeat steps b) and c) until convergence is attained or 
no pixel changes its cluster.

In basic k-means clustering techniques, Euclidean distance 
is usually used for the distance between the cluster center 
and the data when the cluster is comparatively isotropy. As 
more highly technique, fuzzified k-means clustering method 
“Fuzzy c-means” is sometimes used. The fuzzy c-means 
method uses possibilities that shows how the clusters over-
lap each other for clustering. The nuclei segmentation using 

k-means clustering method are proposed in [75, 76]. The 
segmentation method using superpixel algorithm is also pro-
posed, and these are called simple linear iterative clustering 
(SLIC) [77, 78]. For instance, Cheikh et al. [77] applied the 
SLIC approach, that clusters pixels in the five-dimensional 
color and image plane space to efficiently generate compact, 
nearly uniform small regions. The result of their approach 
using the SLIC algorithm was better than watershed-based 
methods. The differences are typically based on the pixel 
value, texture, and location, or a weighted combination of 
these factors. Its robustness depends mainly on the initializa-
tion of clusters [3]. Table 7 details the k-means clustering 
based approaches applied to nuclei segmentation.

3.2.7 � Segmentation with Deep Learning Techniques

Deep learning is based on artificial neural networks (ANN) 
which is a system imitating the mechanism of human nerve 
cells (neurons). Although the performance of deep learning 
approaches heavily depends on the number of learning data, 
the algorithm of deep learning is generally smart compared 
to other methods. In these years, this approach is often used 
for automatic classification and segmentation, Fig. 3. The 
algorithm can classify and segment by learning features 

Table 7   Summary of k-means clustering based nuclei segmentation methods for histopathological images

Refs. Dataset Preprocessing and segmentation Segmentation results

[9] 1030 smear WBC images HSI transform, k-means clustering Neutrophil: 97.6%, Lymphocite: 97.0%, Monocyte: 
97.8%, Eosinophil: 89.4%, Basophil: 89.7%

[69] 55 H&E prostate WSI k-means clustering, entropy thresholding, multiscale 
difference of Gaussian

Acc: 97.6%

[70] H&E lymphocyte images Landmark based Spectral Clustering (LSC), Gabor 
filter

TPR: 80.70%, TNR: 94.37%, Acc rate: 92.49%, DC: 
74.74

[71] 1030 smear WBC images HSI transform, colour k-means clustering Neutrophil: 93.6%, Lymphocite: 95.0%, Monocyte: 
98.8%, Eosinophil: 90.4%, Basophil: 86.7%

[72] 85 H&E colon images k-means clustering –
[73] Leukemia images k-means clustering –

Fig. 3   An example of convo-
lutional neural network (CNN) 
architecture used in [81]
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from mass data, and several methods have already been 
established. These methods are introduced in literature [79].

Deep Belief Network (DBN) [80], Fig. 4, was developed 
as one of the methods of deep learning. After this, vari-
ous architectures such as Stacked Auto Encoder (SAE) and 
Convolutional Neural Network (CNN) appeared. CNN is the 
common and worldwide neural network method for image 
processing. CNN has obtained great success in various tasks 
of computer vision and biomedical image analyses. Gener-
ally, when we use traditional and typical neural networks and 
handle two-dimensional (matrix) data like an image, the data 
structure should be converted into one-dimensional (vector) 
data for learning. On the other hand, since CNN can handle 
the two-dimensional data as learning data, it is expected that 
CNN works well the data that has information of positional 
relationship(s). Figure 3 illustrates an example of the basic 
architecture of CNN. CNN consists of convolution layer(s) 
and pooling layer(s). The convolution layer compresses the 
features in small area of the given image, and the pooling 
layer generates new feature maps obtained by the convolu-
tional operation.

In [82–87], the authors used CNN approach for nuclei 
segmentation and classification. For instance, Kumar 
et al. [82] presented a detection method of boundary using 

three-class CNN (CNN3) for touching nuclei. In the lit-
erature, they used The Cancer Genome Atlas (TCGA) to 
make experimental materials [88]. They carried out color 
normalization as preprocessing. By adding the third class, 
it is possible to find inter-nuclear boundaries irrespective of 
the configuration of the crowded nuclei.

Isaksson et al. [84] proposed semantic nuclei segmen-
tation method using CNN. Figure 5 shows their network 
design. Due to the limitation of the number of annotated 
data, they chose to expand it artificially using data augmen-
tation. The data augmentation is used for rotation, enlarge-
ment, and reduction when the experimental data is not 
enough. In [85], Fu et al. also used data augmentation for 
their experiment. Consequently, Isaksson et al. [84] got a 
segmentation accuracy of 78%.

Recently, segmentation and classification using deep 
learning approaches are used widely to obtain state-of-the-
art for disease analysis and diagnosis in various biomedical 
imaging domains. As can be seen in Table 8, CNN models 
obtain good nuclei segmentations across datasets in H&E 
stained images with consistently high accuracy. However, 
the interpretability of such deep CNN models is not easy 
and despite the adaptability across datasets, deep learning 
models still require fair bit of training that in turn requires 

Fig. 4   Deep belief network 
(DBN) architecture used in [80]

Fig. 5   CNN design used in [84], 
which was based on the U-Net 
model
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high computational cost. Nevertheless, using deep learning 
models and especially CNN models are useful in avoiding 
adhoc filtering, thresholding and feature selection steps in 
the previous nuclei segmentation techniques surveyed. We 
also note the lack of large-scale histopathological datasets 
dedicated to nuclei segmentations benchmarking, and cur-
rent deep learning models require domain related training 
data in achieving higher accuracy.

4 � Discussion and Conclusion

Since late 1990’s, research projects on nuclei segmentation 
have been reported, but the number of the published papers 
is not many because the digital equipment was accessible 
in the limited medical/clinical areas. Thanks to the recent 
developments in digital pathology, a lot of methods for can-
cer detection and grading approaches have been proposed. 
Accordingly, the number of published papers on nuclei seg-
mentation methods has been increasing. However, most of 
the studies use their in-house datasets as experimental mate-
rials. Of course, there are various image modalities, staining 
method, and it is impossible to do in the same condition. 
Therefore, evaluation criteria depends on pathologists. Due 
to this reason, evaluating the obtained results may or may 
not be correct. To evaluate the performance of these meth-
ods under the same condition, we need public datasets for 
histopathological image processing and analysis. Currently, 
there are several public datasets for nuclei/cell detection and 
segmentation approaches, but they cannot cover all situa-
tion completely. More datasets will be required to expand 
the field of histopathological image processing and analysis.

We should also address the development of a more robust 
method that can be used with different staining, scanner, 
lighting conditions, and magnifications. Segmentation meth-
ods such as thresholding, region growing, and watershed 
approaches can locate cell nuclei but do not work well when 
they try to segment the touching and overlapping nuclei. 
Deep learning based on neural networks are well-suited 

to tackle nuclei segmentation under complex conditions. 
Due to the lack of availability of large-scale labeled data 
in the histopathological community, crowd-sourced or gen-
erative adversarial networks (GANs) based approaches can 
be employed. We envisage top performing deep learning 
models, in particular, methods based on the already suc-
cessful CNNs can further be expanded to include domain-
specific priors for improving the histopathological nuclei 
segmentation.

It is still one of the hot topics for nuclei segmentation to 
deal with overlapped and clustered nuclei. Several meth-
ods for the challenges have been proposed so far, but the 
problem has not been completely solved yet. The methods 
such as thresholding [25, 32, 33], marker-controlled water-
shed [34, 35], level set [13, 59], graph cut [67] approaches 
have been developed to separate overlapping, touching and 
clustered nuclei. By using these methods, cell nuclei that 
are slightly touching/overlapping can be separated, but they 
sometimes do not work well when there are many touching/
overlapping nuclei in the given image. Also, these meth-
ods are not suitable for large scale nuclei segmentation, 
for example in whole-slide images. For instance, when we 
use marker-controlled watershed, true nuclei markers are 
needed. ACMs, clustering and graph-based methods may 
need plenty of computational costs when applying to WSI. 
Therefore, the demand for establishing a robust nuclei seg-
mentation method, which is adaptable to WSI and a large 
number of overlapping and touching nuclei, will be grown in 
the field of image analysis for digital pathology and micros-
copy images.
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Table 8   Summary of machine learning (deep learning) based nuclei segmentation methods for histopathological images

Refs. Dataset Preprocessing and segmentation Segmentation results

[82] 30 breast, kidney, liver, and prostate WSIs Deep learning, CNN 92%
[83] 31 brain, 51 NET, and 35 breast cancer images CNN, iterative region merging, 

local repulsive deformable 
model

Mean dice values, brain: 0.85, NET: 0.92, breast 
cancer: 0.80

[84] H&E prostate images CNN, deep learning 78%
[85] Rat kidney fluorescence images Deep CNN Dataset1, 2, 3: 94.25, 95.24, 93.21%
[89] 33 H&E breast images Deep neural network Acc: 94.4%
[86] 917 Pap smear images, H&E cervical images CNN Sen: 98.2 ± 1.2% , Acc: 98.3 ± 0.3%

[87] U2OS, NIH3T3 Deep CNN U2OS/NIH3T3 (1,2,4 and 8 frames) RI: 97% (1, 2, 4 
and 8)/87, 89, 91, 92%
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