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Abstract
Solving practical mechanical problems is considered as a real challenge for evaluating the efficiency of newly developed

algorithms. The present article introduces a comparative study on the application of ten recent meta-heuristic approaches to

optimize the design of six mechanical engineering optimization problems. The algorithms are: the artificial bee colony

(ABC), particle swarm optimization (PSO) algorithm, moth-flame optimization (MFO), ant lion optimizer (ALO), water

cycle algorithm (WCA), evaporation rate WCA (ER-WCA), grey wolf optimizer (GWO), mine blast algorithm (MBA),

whale optimization algorithm (WOA) and salp swarm algorithm (SSA). The performances of the algorithms are tested

quantitatively and qualitatively using convergence speed, solution quality, and the robustness. The experimental results on

the six mechanical problems demonstrate the efficiency and the ability of the algorithms used in this article.

1 Introduction

The main objective of a mechanical engineer during the

design procedure of a machine element is the search for the

best compromise between both economic and technologi-

cal imperatives. The mechanical design optimization

problems involve multiple objectives and mixed variables,

in addition to several nonlinear constraints on kinematic,

geometric conditions and materials resistance. During the

three last decades, several mathematical programming

algorithms have been developed to solve problems in

various engineering and industrial applications. However,

most of these methods always require the knowledge of the

gradients of the objective function and constraints [5]. In

the majority of cases, the classical algorithms are not able

to find the global optimal solutions because usually ter-

minate when the gradient of the function is very close to

zero, and this can happen both in case of local and global

solutions [43, 46].

Unlike the deterministic methods, metaheuristic

approaches do not require the gradient information of the

optimization problem to achieve the global solution [43].

These algorithms can be broadly classified into three major

categories: evolutionary algorithms (EAs), physical algo-

rithms and swarm-based methods. The EAs mimic the

process of natural evolutionary principles [7] in order to

develop search and optimization techniques. In this class of

methods, the most well-known EAs are genetic algorithm

(GA) [24], genetic programming (GP) [33], differential

evolution (DE) [55], evolution strategy (ES) [4], and bio-

geography-based optimizer (BBO) [54].

The second group includes the algorithms that inspired

by a physical process, where Monte Carlo [16] and the

simulated annealing (SA) [32] can be considered as the first

two developed approaches in this category. Later on, other

physics-based techniques are developed such as big-bang

big-crunch (BBBC) [12], small-world optimization algo-

rithm (SWOA) [11], central force optimization (CFO) [14],

gravitational search algorithm (GSA) [45], charged system

search (CSS) [29], artificial chemical reaction optimization

algorithm (ACROA) [3], galaxy-based search algorithm

(GBSA) [47], colliding bodies optimization (CBO) [28],

black hole (BH) [21], ray optimization (RO) algorithm

[27], and curved space optimization (CSO) [40].

& Ali Riza Yildiz

aliriza@uludag.edu.tr

1 Department of Automotive Engineering, Bursa Uludağ
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The third class of metaheuristics includes swarm-based

algorithms that mimic the collective behavior of social

creatures [9]. Among the most famous methods in this

category the particle swarm optimization (PSO) [30], ant

colony optimization (ACO) [10], wolf pack search algo-

rithm [58], cuckoo search (CS) [57], dolphin partner opti-

mization (DPO) [53], bat-inspired algorithm (BA) [59] and

hunting search (HUS) [41] can be found. Furthermore,

other swarm intelligence techniques are developed

recently, such as dragonfly algorithm (DA) [36] and whale

optimization algorithm (WOA) [38]. In recent years several

metaheuristics has been successfully used for solving dif-

ferent optimization problems in various areas and real

industrial cases such as mechanical precision engineering

[1, 2, 20], structural design optimization [22, 23],

machining applications [63–66, 71], automotive industries

[26, 31, 42, 60, 62, 67–70, 72–75], and so on.

Despite the wide application of the meta-heuristic

approaches in numerous fields of engineering, their appli-

cations for mechanical design optimization problems

remains relatively inadequate. For this purpose, the main

contribution of this paper is to introduce the application of

ten recent meta-heuristic algorithms for solving six chal-

lenging mechanical problems of mixed variables type. The

problems are the coupling with a bolted rim, car side

impact, rolling element bearing, step-cone pulley, belle-

ville spring, and speed reducer problem. Among the used

algorithms: the artificial bee colony (ABC) [25], PSO [30]

algorithm, moth-flame optimization (MFO), ant lion opti-

mizer (ALO), water cycle algorithm (WCA), evaporation

rate WCA (ER-WCA), grey wolf optimizer (GWO), mine

blast algorithm (MBA), whale optimization algorithm

(WOA) [38] and salp swarm algorithm (SSA) [37]. The

performances of each used algorithm are validated in terms

of convergence speed, solution quality, and robustness. The

rest of the paper is organized as follows:

Section 2 provides a summary of the optimization

algorithms employed in this work to solve the challenging

problems. The problems and experimental results are pre-

sented and discussed in Sect. 3. Finally, Sect. 4 provides

the conclusions and future works.

2 Optimization Algorithms

In this section, each algorithm employed in this study is

presented briefly. Only the main phases are discussed, and

the interested readers by the algorithms can find all the

necessary details in the cited publications.

2.1 Artificial bee colony

The ABC algorithm has been introduced by Karaboga and

Basturk [25] to optimize mathematical problems. The

method mimics the intelligent foraging behavior of a honey

bee swarms. ABC works based on three principal phases

accordingly: food sources, employed foragers, and unem-

ployed foragers.

2.2 Particle Swarm Optimization

The second algorithm employed in this study is the PSO

algorithm. This approach has been originally created and

formulated by Kennedy and Eberhart [30] based on the

mathematical modeling of the social behaviors of fish or

birds. The algorithm belongs to the swarm-based methods

and begins with a random set of agents (solutions) called

particles. Each particle is characterized by two vectors

including velocity and position [31].

2.3 Moth-Flame Optimization

The MFO is a novel population-based meta-heuristic

algorithm proposed by Mirjalili [34]. The MFO approach is

based on the simulation of the special navigation technique

of moths in the night. Similarly to other meta-heuristics, it

starts the optimization procedure by creating a set of ran-

dom candidate solutions.

The moth used a mechanism called as transverse ori-

entation for navigation when traveling during night time. In

the MFO algorithm, candidate solutions are assumed to be

moths and variables of a problem are assumed to be

positions of moths in the search space [71].

2.4 Ant Lion Optimizer

ALO is a new nature-inspired intelligent technique, which

is recently developed by Mirjalili [35]. The ALO algorithm

mimics the hunting technique of ant lions in nature. The ant

lions hide at the bottom of conical pits in the sand and wait

for their prey to fall in. Then they throw sand towards prey

so that the prey is unable to escape and is consumed, after

which the pit is rebuilt for catching other ants.

2.5 Grey Wolf Optimizer

The GWO is a population-based optimization algorithm,

which is inspired by both the leadership skills as well as

hunting behavior of grey wolves in nature [39]. According

to the social hierarchy and the ability of each wolf in the

group, the grey wolves can be categorized into four prin-

cipal classes: Alpha (a), Beta (b), Delta (d), and Omega
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(x). The alpha (a) wolf is the leader of the group and

responsible for making the important decisions such as

hunting, sleeping place, time to wake, and so on [15]. The

grey wolf hunting technique involves three steps: tracking,

encircling and attacking the prey.

2.6 Water Cycle Algorithm

Another meta-heuristic algorithm used in this article is the

water cycle algorithm. This algorithm has been introduced

for the first time in 2012 by Eskandar et al. [13] in order to

optimize the constrained engineering problems. The fun-

damental idea of WCA approach is based on the water

cycle and how rivers and streams flow downhill towards

the sea in the real world. Like other population-based meta-

heuristic algorithms WCA starts with multiple random

solutions called the population of streams. Other steps are

implemented to choose the best individual or sea such as

the flow of streams to rivers or sea, evaporation and raining

processes, and evaporation rate.

2.7 Evaporation Rate Water Cycle Algorithm

The ER-WCA algorithm is introduced by Sadollah et al.

[50] for solving constrained and unconstrained optimiza-

tion problems. It is considered as an extended version of

WCA, where new concept of evaporation rate for different

rivers and streams has been added. According to the

authors, the ER-WCA shows a better balance between

exploration and exploitation steps compared to WCA

variant.

2.8 Mine Blast Algorithm

The MBA algorithm has been recently developed by

Sadollah et al. [48]. This technique is successfully used to

solve constrained engineering optimization problems and

discrete sizing optimization of truss structures [48, 49]. The

main idea of MBA procedure is based on the observation of

mine bomb explosions in real situations. In Sadollah et al.

[51] an improved variant of MBA (IMBA) is introduced for

the optimization of truss structures.

2.9 Salp Swarm Algorithm

The salp swarm algorithm has been introduced recently by

Mirjalili et al. [37] for optimizing the engineering design

problems. The SSA method simulates the intelligent nav-

igation behavior of the salps for food sources in oceans.

Like other swarm-based algorithms, SSA begins the opti-

mization process by creating a set of random candidate

solutions. In the first step, the created population is divided

into two groups: leader and followers. The leader is the

salp at the front of the chain, whereas the rest of salps are

considered as followers [37].

2.10 Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a new popu-

lation-based meta-heuristic algorithm. Proposed recently

by Mirjalili and Lewis [38], the WOA approach is based on

the simulation of the social behavior of humpback whales.

The latter is considered as the biggest mammals on the

whole earth. According to Mirjalili and Lewis [38] an adult

whale can grow up to 30 m long and 180 t weight. Despite

their huge size, these mammals are characterized by their

intelligence as well as their sophisticated way on collective

work during the hunting. In addition to the initialization

step, WOA includes encircling prey, the bubble net hunting

method and the search for prey.

Table 1 Specific parameter settings of used algorithms

Algorithm Parameter settings

ABC limit ¼ NP� n

PSO wmin ¼ 0.9, wmax ¼ 0.4; c1 ¼ 2, c2 ¼ 2

MFO Only the common parameters (FEs and NP)

ALO Only the common parameters (FEs and NP)

ER-WCA Nsr ¼ 8, dmax ¼ 1E-03

GWO Only the common parameters (FEs and NP)

WCA Nsr ¼ 8, dmax ¼ 1E-03

MBA Only the common parameters (FEs and NP)

SSA Only the common parameters (FEs and NP)

WOA Only the common parameters (FEs and NP)

Nsr is the number of rivers plus sea, dmax is the evaporation condition

constant, wmin, wmax are respectively the min and max inertia weight

0.4, c1 and c2 are acceleration factors

Table 2 FEs number and the NP size for the algorithms

Problem NP tmax FEs

Coupling with a bolted 20 250 5000

Car side impact 35 850 29,750

Rolling element 50 500 25,000

Step-cone pulley 20 750 15,000

Belleville spring 20 750 15,000

Speed reducer 25 1000 25,000
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3 Experimental Results

The performances of each used algorithm are validated by

solving six mechanical design problems, namely, coupling

with a bolted rim, car side impact, rolling element bearing,

step-cone pulley, belleville spring, and speed reducer

design problem. It is worth mentioning that an exterior

penalty function is adapted for MFO, ALO, SSA, WOA,

GWO, PSO and ABC algorithms to deal with constraints

design. The mathematical formulations for the engineering
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M M

Fig. 1 Schematic view of coupling with bolted rim

Table 3 Comparison of the best optimum solution for the coupling with a bolted rim

Variables Algorithm

ABC PSO MFO ALO ER-WCA GWO WCA MBA SSA WAO

d 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000

N 8.00000 8.00000 8.00000 8.00000 8.00000 8.00000 8.00000 8.00000 8.00000 8.00000

Rb 59.5000 59.5000 59.5000 59.5000 59.5000 59.5000 59.5000 59.5000 59.5000 59.5000

M 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000

fmin 3.48000 3.48000 3.48000 3.48000 3.48000 3.48000 3.48000 3.48000 3.48000 3.48000

Table 4 Statistical results of the

used algorithms for the coupling

with a bolted rim

Algorithm Best Mean Worst SD FEs

ABC 3.480000008106810 3.480001658016732 3.480041861581182 5.8746E-06 5000

PSO 3.480000006114823 3.539601555748261 4.600000000000000 2.1333E-01 5000

MFO 3.480000000000000 3.479999999999998 3.480000000000000 1.6943E215 5000

ALO 3.480000000050896 3.480000011225216 3.480000040146861 9.5005E-09 5000

ER-WCA 3.480000000000000 3.480000000268378 3.480000005923427 8.8909E-10 5000

GWO 3.480000515508404 3.480188334382009 3.480645090243778 1.5178E-04 5000

WCA 3.480000000000004 3.480000000257054 3.480000008033096 1.1405E-09 5000

MBA 3.480000003147799 3.480000051576293 3.480000454159966 7.4154E-08 5000

SSA 3.480000000223970 3.480000014291660 3.480000085511799 1.6555E-08 5000

WAO 3.480000000346666 3.482102783880349 3.552623463849053 1.0670E-02 5000
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problems can be found in the ‘‘Appendix’’. The maxi-

mization problems, in case of rolling element, are trans-

formed into a minimization one by multiplying the

objective function with - 1. The equality constraints are

converted into inequality ones; the tolerance value is 0.001

(in case of step-cone pulley problem).

The specific parameter settings of each algorithm are

given in Table 1. In order to study the convergence

behavior of the algorithms, the maximum number iterations

and the population size are equal for each case study as

shown in Table 2. To measure the robustness of the com-

pared meta-heuristics in solving the six problems we run

each algorithm 50 times. The statistical results including

the best, mean, and worst solutions as well as the standard

deviation. For more readability, the better solution obtained

among the ten optimizers is in boldface.

3.1 Design of the Coupling with a Bolted Rim
Problem

The problem was initially proposed by Giraud-Moreau

and Lafon [17]. As shown in Fig. 1, a torque M is trans-

mitted by adhesion using N bolts of diameter d placed at

radius RB. The objective function includes three terms with

weighting coefficients. d is discrete, N is an integer, RB and

M are continuous variables. The problem is subjected to

eleven inequality constraints.

Tables 3 and 4 present the best optimal solution and the

statistical simulation results obtained by the algorithms for

the coupling with a bolted rim problem. From Table 3, it

can be seen that all used approaches are able to find the

global feasible solution. However, the MFO algorithm is

the most robust in solving this problem with standard

deviation values of 1.6943E-15, followed by ER-WCA,

WCA, ALO, ABC, SSA, MBA, GWO, WOA, and PSO.

The convergence behavior of the algorithms for the first

case study is presented in the Fig. 2. From the figure, it can

be observed that both ER-WCA and WOA approaches

reach practically the best value in the 18th iteration, and

this clearly indicates how fast these latter compared to

other algorithms.

3.2 Design of the Car Side Impact Problem

This problem was originally proposed by Gu et al. [18].

The car, Fig. 3, is exposed to a side impact on the foun-

dation of the European Enhanced Vehicle Safty Committee

(EEVC) procedures. The objective is to minimize the total

weight of the car using eleven mixed variables. The eight

and the nine variables are discrete, and the rest of them are

continuous. The problem is subjected to ten inequality

constraints.

Fig. 2 Convergence speed

graph for the coupling with a

bolted rim

Barrier 

Fig. 3 Car side impact problem
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The car side impact design is considered as a real case of

a mechanical optimization problem with mixed discrete

and continuous design variables. The best optimal solutions

obtained by the methods for the problem are listed in

Table 5, and their statistical results are given in Table 6.

From Table 5, the MFO algorithm achieves the best value

among the algorithms. Regarding the robustness, it can be

observed from Table 6 that the used algorithms almost

have the same standard deviation. Among the used algo-

rithms it can be observed that the WOA is not able to find

the near optimal solution.

Figure 4 shows the comparison of the convergence

speed of the algorithms to the best value for the car side

impact. In this case, both MFO and WCA converge much

faster than the other used methods.

3.3 Design of the Rolling Element Bearing
Problem

As the third problem, the goal is to maximize the dynamic

load carrying capacity of rolling element bearing [19].

There are ten mixed design variables among them the pitch

diameter Dm, ball diameter Db, number of balls Z, inner

and outer raceway curvature coefficients fi and fo (Fig. 5)

in addition to five other variables that affect the geometry

of the bearing (KDmin, KDmax, e, e and f). All variables are
continuous except the number of balls which is discrete.

The problem is subjected to nine nonlinear constraints on

kinematic conditions and manufacturing requirement.

As depicted in Table 7, the best optimal solution for the

bearing design problem is - 85,546.80 and this value is

obtained by almost compared algorithms except for the

ABC, GWO, and WOA. Table 8 compares the statistical

results delivered by each method. From Table 8, it is clear

that the small value is obtained by MFO. Figure 6 shows

the convergence curve of the ten selected algorithms for the

rolling element bearing. As can be observed from the zoom

part of the Fig. 6, the ER-WCA and MBA are the fastest to

achieve the near optimal solution for this problem (after 27

iterations).

3.4 Design of the Step-Cone Pulley Problem

The four step-cone pulley problem, Fig. 7, must be

designed for minimum weight [44]. The problem includes

five variables, the diameters of each step di (i = 1,…, 4),

and the width of the pulley x. Eleven constraints are

considered, three equality constraints and eight inequality

constraints. The step pulley transmitted at least 0.75 hp,

with an input speed of 350 rpm and output speeds of 750,

450, 250 and 150 rpm.

The best optimal solutions and statistical results of the

methods for the problem are demonstrated in Tables 9 andTa
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Table 6 Statistical results of the used algorithms for the car side impact design problem

Algorithm Best Mean Worst SD FEs

ABC 23.175889625990923 23.860680484086661 25.010762794496625 3.7642E-01 29,750

PSO 22.842984930697273 23.613571153685552 26.190640350882905 7.5252E-01 29,750

MFO 22.842970873572792 22.972834963056012 23.687547312526856 2.0794E-01 29,750

ALO 22.842980706120642 23.108402571838820 23.824366429288702 2.9093E-01 29,750

ER-WCA 22.843264619959352 23.069925342953958 24.455312800924212 3.5021E-01 29,750

GWO 22.852792762688743 22.992226614913008 23.347095471895521 1.6277E-01 29,750

WCA 22.843036481964047 22.975164427881293 23.370933765943949 1.9772E-01 29,750

MBA 22.843596400842499 22.936421047192962 23.488942174549098 1.5258E-01 29,750

SSA 22.846514099392973 23.253716124255313 23.829530847339793 3.0557E-01 29,750

WOA 23.042162202328310 24.814486173621617 27.360813682283315 9.6570E-01 29,750

Fig. 4 Convergence speed

graph for the car side impact

D

d0

Dm

di

d

DmDb

ri

r0

Fig. 5 Schematic view of the

rolling element bearing
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10 respectively. According to the Table 9, expect to GWO

approaches all other algorithms can obtain the global

solution. From the statistical results, it can be observed that

SSA and MFO are the most effective in solving this

problem with lowest best values.

The convergence history of the ten methods to the best

solution for the step-cone pulley problem is given in Fig. 8.

From the figure, it is clear that the MFO and MBA can

converge rapidly to the near best solution from the initial

iterations comparing with referred algorithms (Fig. 9).

3.5 Design of the Belleville Spring Problem

The problem was originally proposed by Coello [6], where

the objective is to minimize the volume of the spring (the

schematic view of the problem is shown in Fig. 9). There

are four continuous variables including the external diam-

eter De, internal diameter Di, thickness t, and the height of

the spring h. The problem is subjected to seven nonlinear

constraints.

The best optimal value for the belleville spring problem

is achieved by PSO, WCA, ER-WCA, MBA, and SSA, as

shown in Table 11. From Table 12, it can be said that the

MBA version is the most effective in solving this problem

with the lowest standard deviation value. The WOA

approach is not able to solve this problem may need more

iterations to achieve the optimal solution. From the con-

vergence graph given in the Fig. 10, the PSO is faster than

the other employed algorithms for this problem and can

achieve the near best solution after 126 iterations.

3.6 Design of the Speed Reducer Problem

The last problem considered in the present article is the

optimization of the spur speed reducer [52], the schematic

view of the problem and the variables are given in Fig. 11.

The speed reducer must be designed for minimum volume

using seven variables, namely, the face width b, teeth

module m, number of teeth on pinion z, length of the first

shaft between bearings l1, length of the second shaft

between bearings l2, the diameter of first shaft d1 and

diameter of second shaft d2. All the variables are contin-

uous except the third one is an integer.

Table 13 lists the values of the variables and the

objective function of the best optimal solution found by the

algorithms for the problem. Also, Table 14 presents the

statistical results of each algorithm. As shown in Table 13,

ALO, GWO, SSA and WOA are not able to find the

optimal global solution value. As for the robustness

(Table 14), the MFO is the best one in solving the problem

of the speed reducer with a small standard value.

The convergence curves of the algorithms for the spur

speed reducer are shown in Fig. 12. From the zoom part ofTa
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the figure, it can be seen that ABC and WCA are the much

faster for this problem and can reach the optimal solution in

74 iterations.

3.7 Discussions

The present paper introduce the application of ten recent

meta-heuristic for six real mechanical problems, including

seven swarm techniques. Form the comparative results

presented in the previous sub-sections; it is clear that the

MFO technique exhibited an evident superiority compared

with the other employed algorithms. More specifically,

MFO is the very powerful in solving five studied problems.

For the coupling with a bolted rim and speed reducer

problems MFO is very competitive in both solution quality

and robustness. Regarding the car side impact design,

rolling element bearing and step-cone pulley problem, the

MFO algorithm is the best one by given the lowest value of

the objective function. In case of the belleville spring

problem MFO is not able to find the global optimum

solution.

The ER-WCA, WCA and MBA approaches can obtain

the optimal solution for the six problems. Moreover, in

terms of the convergence speed, these algorithms are rel-

atively fastest than then the other used algorithms, that

means required less computation time to reach the near-

optimal global solution. However, the robustness of ER-

WCA, WCA, and MBA remain weak and need to more

improvement.

Table 8 Statistical results of the used algorithms for the rolling element bearing problem

Algorithm Best Mean Worst SD FEs

ABC - 85,428.24954324059 - 85,121.75442029411 - 83,859.08513871901 3.6257E?02 25,000

PSO - 85,546.80516639301 - 81,775.47830855026 - 33,705.06062190217 8.1802E?03 25,000

MFO 2 85,546.80166904321 - 85,459.04835563231 - 84,459.78493720232 2.9768E?02 25,000

ALO - 85,546.63771200170 - 84,032.86362380702 - 73,872.81645445418 3.1218E?03 25,000

ER - WCA - 85,546.80166870290 - 85,198.28541167990 - 80,481.64031630915 1.2258E ? 03 25,000

GWO - 85,529.08304433595 - 83,395.08496039196 - 43,543.45084640419 8.2245E?03 25,000

WCA - 85,546.80166903971 - 85,320.98619768269 - 80,482.38219421564 8.4006E?02 25,000

MBA - 85,546.80166870559 - 85,545.91879022206 - 85,528.98125696967 3.9311E?00 25,000

SSA - 85,546.41055632396 - 83,930.60952130405 - 74,121.96057283178 2.8890E?03 25,000

WOA - 85,433.01833538813 - 6.938418742253087 - 4.201153052797422 1.9229E?04 25,000

Fig. 6 Convergence speed

graph for the rolling element

bearing problem
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Fig. 7 Schematic view of the

step-cone pulley

Table 9 Comparison of the best optimum solution for the step-cone pulley problem

Variables Algorithm

ABC PSO MFO ALO ER-WCA GWO WCA MBA SSA WOA

d1 40.004482 40.000000 40.00000 40.00000 40.000000 40.002453 40.000000 40.000000 40.000000 40.000000

d2 54.789141 54.764326 54.76430 54.76431 54.764300 54.796662 54.764300 54.764300 54.764300 54.764326

d3 73.053184 73.013239 73.01317 73.01318 73.013176 73.034577 73.013176 73.013176 73.013176 73.013239

d4 88.432832 88.428376 88.42841 88.42840 88.428419 88.433401 88.428419 88.428419 88.428419 88.428376

x 86.009723 85.986297 85.98624 85.98625 85.986242 86.014899 85.986242 85.986242 85.986242 85.986297

fmin 16.648275 16.634521 16.63450 16.63450 16.634504 16.647961 16.634504 16.634504 16.634504 16.634521

Table 10 Statistical results of the used algorithms for the step-cone pulley problem

Algorithm Best Mean Worst SD FEs

ABC 16.648275796108361 16.791388798756639 17.468562469266608 1.8164E-01 15,000

PSO 16.634521390468590 20.938294775534292 24.848825979899701 3.3498E?00 15,000

MFO 16.634504908542510 17.839171521699303 24.777860363891968 1.4201E?00 15,000

ALO 16.634508822964680 16.789416289510655 18.015810477463781 3.6058E-01 15,000

ER-WCA 16.634509737266015 17.647333072755480 18.832978587086284 8.3766E-01 15,000

GWO 16.647961284982529 18.128588770688751 19.015492811262035 9.3755E-01 15,000

WCA 16.634508495133945 17.530376823113027 18.833029971580562 9.2296E-01 15,000

MBA 16.634507868520153 16.702535787372614 18.323714563489911 2.6279E-01 15,000

SSA 16.634504396888736 17.286354161691335 19.045457285033041 1.8164E-01 15,000

WOA 16.634521390468590 20.938294775534292 24.848825979899701 3.3498E?00 15,000
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The WOA and ABC algorithm can be considered as the

worst among the compared methods. These two algorithms

can find only the optimal solution of two problems among

the six studied problems (coupling with a bolted rim and

speed reducer). The GWO method can solve three prob-

lems of the total of six. The SSA technique is able to find

the optimal solution of five problems and fails in opti-

mizing the speed reducer problem.

As we know, the meta-heuristic algorithms require an

exact configuration of their internal control parameters for

more efficient performance. Choosing the same NP value

for all used algorithms may be an important factor in fails

some methods.

In the present study an exterior penalty is adopted to

MFO, ALO, SSA, WOA and GWO algorithms to deal with

inequality and equality constraints. Really the use of such

method is quite simple, however, deciding optimal values

of penalty terms especially for the optimization problems

with highly constraints turns out to be a difficult opti-

mization problem itself. In the future works, theses algo-

rithms will be reinforced by more advanced methods such

as the superiority of feasible points mechanism of Deb [8],

the adaptive epsilon mechanism of Takahama and Sakai

[56] and others to treat the constrains design.

4 Conclusions

Solving the mechanical engineering design optimization

problems is considered as a real challenge for the efficiency

of each new developed meta-heuristic algorithm. More

Fig. 8 Convergence speed

graph for the step-cone pulley

problem

De

P
t

Di

Fig. 9 Schematic view of the belleville spring

Table 11 Comparison of the best optimum solution for the belleville spring problem

Variables Algorithm

ABC PSO MFO ALO ER-WCA GWO WCA MBA SSA WOA

De 11.3417 12.0099 11.9875 11.01325 12.0096 11.9790 12.0097 12.009 12.009 11.9679

Di 8.97198 10.0304 10.0023 8.728624 10.0300 9.98731 10.0301 10.0304 10.0304 9.95224

t 0.20917 0.20414 0.20418 0.206286 0.20414 0.20455 0.20414 0.20414 0.20414 0.20733

h 0.21063 0.20000 0.20000 0.200035 0.20000 0.20009 0.20000 0.20000 0.20000 0.20000

fmin 2.03345 1.97969 1.98120 1.983576 1.97969 1.98921 1.97969 1.97967 1.97967 2.03625
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specifically, these problems involve multiple objectives

and mixed variables (continuous, integer and discrete), in

addition to various nonlinear constraints on kinematic

conditions, manufacturing requirement and performance

operating. In the present article, six mechanical optimiza-

tion problems have been solved by using ten recent algo-

rithms, namely the ABC, PSO, MFO, ALO, ER-WCA,

GWO, WCA, MBA, SSA and WOA. The performances of

these methods are compared regarding the solution quality,

the convergence speed, and the robustness.

In terms of the solution quality and the robustness, MFO

was better than the other used algorithms. Also, the meta-

heuristics used in this study showed improved results for

the coupling with a bolted rim, care impact side, rolling

element bearing, and the step-cone pulley design problem

comparing with the existing results in the literature.

Finally, it can be concluded from this study that the used

algorithms are important alternatives to solve other real-

world optimization problems in such as automotive and

other industries area.
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Appendix

1. Coupling with a bolted rim

The problem can be mathematically formulated as

follows:

Objective function: f xð Þ ¼ b1
N
Nm

� �
þ b2

RBþ/4ðdÞþc
Rm

� �
þ

b3
M
MT

� �

Subject to:

Table 12 Statistical results of

the used algorithms for the

belleville spring problem

Algorithm Best Mean Worst SD FEs

ABC 2.033455172867723 2.167697042207911 2.402849534982527 7.5329E-02 15,000

PSO 1.9796958842828 2.01371597513877 2.3500038460826 9.0931E-02 15,000

MFO 1.981209838664833 2.062404058515537 2.276791770261952 6.4371E-02 15,000

ALO 1.983576526646731 2.104509773802777 2.368557356718601 9.4178E-02 15,000

ER-WCA 1.979698832186995 2.009130232145132 2.139935737221937 3.2146E-02 15,000

GWO 1.989215160312566 2.009633692436991 2.046591520162516 1.4209E-02 15,000

WCA 1.979692178773339 2.001388204296668 2.164943894944752 3.3176E-02 15,000

MBA 1.979675753382355 1.979893313247442 1.981627323155631 3.6576E-04 15,000

SSA 1.979677512235856 2.084371307163135 2.361004682872697 1.0203E-02 15,000

WOA 2.036250259240720 2.233924922245805 2.966195609880918 1.5003E-01 15,000

Fig. 10 Convergence speed

graph for the belleville spring

problem
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l 2

z1 z2

d1

d2
l 1

Fig. 11 Schematic view of the

speed reducer

Table 13 Comparison of the best optimum solution for the speed reducer problem

Variables Algorithm

ABC PSO MFO ALO ER-WCA GWO WCA MBA SSA WOA

b 3.500000 3.500000 3.500000 3.500000 3.500000 3.500881 3.500000 3.500000 3.50000 3.500411

m 0.700000 0.700000 0.700000 0.700000 0.700000 0.700096 0.700000 0.700000 0.70000 0.700000

z 17.00000 17.00000 17.00000 17.00000 17.00000 17.00101 17.00000 17.00000 17.0000 17.00000

l1 7.300000 7.300000 7.300000 7.472705 7.300000 7.302118 7.300000 7.300000 7.36496 7.300000

l2 7.715320 7.715320 7.715320 7.735382 7.715319 7.719974 7.715319 7.715320 7.75803 7.777372

d1 3.350214 3.350214 3.350214 3.350541 3.350214 3.350684 3.350214 3.350214 3.35033 3.352552

d2 5.286654 5.286654 5.286654 5.286661 5.286654 5.286708 5.286654 5.286654 5.28666 5.286675

fmin 2994.471 2994.471 2994.471 2996.521 2994.471 2995.704 2994.471 2994.471 2996.0217 2996.604
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g1ðxÞ ¼
aM

NRBKðdÞ
� 1� 0; g2ðxÞ ¼ 1� 2pRB

/5ðdÞN
� 0

g3ðxÞ ¼ 1� RB

/4ðdÞ
þ RM � 0; g4ðxÞ ¼ N � Nmax � 0

g5ðxÞ ¼ RB � Rmax � 0; g6ðxÞ ¼ NM � N � 0

g7ðxÞ ¼ RM � RB � 0; g8ðxÞ ¼ M �Mmax � 0

g9ðxÞ ¼ MT �M� 0; g10ðxÞ ¼ d � 24� 0

g11ðxÞ ¼ 6� d� 0

where KðdÞ ¼ 0:9fmRep /1ðdÞð Þ2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3ð0:16/3ðdÞf1=/1ðdÞÞ2

p ; MT ¼ 40Nm; Mmax

¼ 1000Nm; fm ¼ 0:15; f1 ¼ 0:15

a ¼ 1:5; Re ¼ 627MPa; NM ¼ 8; Nmax ¼ 100; RM ¼ 50mm;

Rmax ¼ 1000mm; c ¼ 5mm; b1 ¼ b2 ¼ b3 ¼ 1:6� d� 24;

8�N� 100; 50�RB � 100; 40�M� 100:

See Table 15.

2. Car side impact design

The problem can be mathematically formulated as fol-

lows:Objective function: f xð Þ ¼ 1:98þ 4:90x1 þ 6:67x2þ
6:98x3 þ 4:01x4 þ 1:78x5 þ 2:73x7

Subject to:

g1ðxÞ ¼ 1:16� 0:3717x2x4 � 0:00931x2x10 � 0:484x3x9
þ 0:01343x6x10 � 1

Table 14 Statistical results of

the used algorithms for the

speed reducer problem

Algorithm Best Mean Worst SD FEs

ABC 2994.471067504619 2994.471075844169 2994.471115543837 9.2123E-06 25,000

PSO 2994.471069674640 3070.655058796543 3209.297397650784 5.8657E?01 25,000

MFO 2994.471066146822 2.994471066147108 2.994471066151665 7.3921E210 25,000

ALO 2996.521745443848 3005.644279605541 3014.379001168207 4.7422E?00 25,000

ER-WCA 2994.471066146826 2996.744541331202 3007.436552164085 4.3876E?00 25,000

GWO 2995.704434912354 3001.556162056451 3009.944296784721 4.1218E?00 25,000

WCA 2994.471066147307 2996.203773574547 3016.578575484153 4.8705E?00 25,000

MBA 2994.471371019410 2944.744437623391 2994.484788566012 2.4195E-03 25,000

SSA 2996.021720467607 3005.574377149090 3015.662612037751 4.63871E?00 25,000

WOA 2996.604340024459 3.042915023571878 3233.598124214217 4.0888E?01 25,000

Fig. 12 Convergence speed

graph for the speed reducer

problem
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g2ðxÞ ¼ 0:261� 0:0159x1x2 � 0:188x1x8 � 0:019x2x7

þ 0:0144x3x5 þ 0:0008757x5x10 þ 0:080405x6x9

þ 0:00139x8x11 þ 0:00001575x10x11 � 0:32

g3ðxÞ ¼ 0:214þ 0:00817x5 � 0:131x1x8 � 0:0704x1x9

þ 0:03099x2x6 � 0:018x2x7 þ 0:0208x3x8

þ 0:121x3x9 � 0:00364x5x6 þ 0:0007715x5x10

� 0:0005354x6x10 þ 0:00121x8x11 � 0:32

g4ðxÞ ¼ 0:074� 0:061x2 � 0:163x3x8 þ 0:001232x3x10
� 0:166x7x9 þ 0:227x22 � 0:32

g5ðxÞ ¼ 28:98þ 3:818x3 � 4:2x1x2 þ 0:0207x5x10
þ 6:63x6x9 � 7:7x7x8 þ 0:32x9x10 � 32

g6ðxÞ ¼ 33:86þ 2:95x3 þ 0:1792x10 � 5:057x1x2
� 11:0x2x8 � 0:0215x5x10 � 9:98x7x8
þ 22:0x8x9 � 32

g7ðxÞ ¼ 46:36� 9:9x2 � 12:9x1x8 þ 0:1107x3x10 � 32

g8ðxÞ ¼ 4:72� 0:5x4 � 0:19x2x3 � 0:0122x4x10
þ 0:009325x6x10 þ 0:000191x211 � 4

g9ðxÞ ¼ 10:58� 0:674x1x2 � 1:95x2x8 þ 0:02054x3x10
� 0:0198x4x10 þ 0:028x6x10 � 9:9

g10ðxÞ ¼ 16:45� 0:489x3x7 � 0:843x5x6 þ 0:0432x9x10
� 0:0556x9x11 � 0:000786x211 � 15:7

where 0:5� x1 � x7 � 1:5; x8; x9 2 ð0:192; 0:345Þ and

�30� x10; x11 � 30:

3. Rolling element bearing

The problem can be mathematically formulated as

follows:

Objective function:

f ðxÞ ¼
Cd ¼ fcZ

2
3D1:8

b if Db � 25:4mm

Cd ¼ 3:647fcZ
2
3D1:4

b if Db [ 25:4mm

(

Subject to:

g1ðxÞ ¼
/0

2 sin�1 Db

Dm

� �� Z þ 1� 0; g2ðxÞ ¼ 2Db � KDmin D� dð Þ� 0

g3ðxÞ ¼ KDmax D� dð Þ � 2Db� 0; g4ðxÞ ¼ fBx � Db� 0

g5ðxÞ ¼ Dm � 0:5 Dþ dð Þ� 0; g6ðxÞ ¼ 0:5þ eð Þ Dþ dð Þ � Dm � 0

g7ðxÞ ¼ 0:5 D� Dm � Dbð Þ � eDb � 0; g8ðxÞ ¼ fi � 0:515� 0

g9ðxÞ ¼ fo � 0:515� 0

where

fc ¼ 37:91 1þ 1:04
1� c
1þ c

� �1:72
fi 2fo � 1ð Þ
fo 2fi � 1ð Þ

� �0:41
( )10=3

2
4

3
5
�0:3

;

c ¼ Db cos a
Dm

; fi ¼
ri
Db

; fo ¼
ro
Db

/0 ¼ 2p� 2 cos�1

� D� dð Þ=2� 3 T=4ð Þf g2þ D=2� T=4� Dbf g2� d=2� T=4f g2

2 D� dð Þ=2� 3 T=4ð Þf g D=2� T=4� Dbf g

 !

where T ¼ D� d � 2Db; D ¼ 160; d ¼ 90; bx ¼ 30;

0:5 Dþ dð Þ�Dm � 0:6 Dþ dð Þ; 0:15 D� dð Þ�Db � 0:45

D� dð Þ; 4� Z� 50; 0:515� fi � 0:6; 0:515� fo � 0:6; 0:6

�KDmax � 0:7; 0:3� e� 0:4; 0:02� e� 0:1; 0:6� fi �
0:85:

4. Step-cone pulley

The problem can be mathematically formulated as

follows:

Objective function:

f ðxÞ ¼ qx d21 1þ N1

N

� �2
( )

þ d22 1þ N2

N

� �2
( )"

þ d23 1þ N3

N

� �2
( )

þ d24 1þ N4

N

� �2
( )#

Subject to:

h1ðxÞ ¼ c1 � c2 ¼ 0; h2ðxÞ
h3ðxÞ ¼ c1 � c4 ¼ 0; g1;2;3;4ðxÞ

g5;6;7;8ðxÞ ¼ Pi � 0:75� 745:6998ð Þ

where:

Table 15 Discrete values for

bolts
d de ¼ /1ðdÞ d2 ¼ /2ðdÞ p ¼ /3ðdÞ bm ¼ /4ðdÞ sm ¼ /5ðdÞ

6 5.0620 5.3500 1.00 7.50 14.50

8 6.8270 7.1880 1.25 9.50 18.50

10 8.5930 9.0260 1.50 12.50 23.50

12 10.358 10.863 1.75 13.50 26.50

14 12.124 12.701 2.00 15.50 29.50

16 14.124 14.701 2.00 17.00 32.00

20 17.655 18.376 2.50 21.00 40.00
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– Ci indicates the length of the belt to obtain speed Ni and

is given by

Ci ¼
pdi
2

1þ Ni

N

� �
þ

Ni

N � 1
� �2

4a
þ 2a; i ¼ 1; . . .; 4

– Ri is the tension ratio and is given by

Ri ¼ exp l p� 2 sin�1 Ni

N
� 1

� �
di
2a

	 
	 
� �
; i

¼ 1; . . .; 4

– Pi is the power transmitted at each step

Ri ¼ stx 1� exp �l p� 2 sin�1 Ni

N
� 1

� �
di
2a

	 
	 
� �� �
pdiNi

60
;

¼ 1; . . .; 4

q1 ¼ 7200 kg/m3; a ¼ 3m; l ¼ 0:35; s ¼ 1:75MPa; t
¼ 8mm; 40� di � 100; 16�x� 100:

5. Belleville spring

The problem can be mathematically formulated as

follows:

Objective function:f ðxÞ ¼ 0:07075p D2
e � D2

i

� �
t

Subject to:

g1ðxÞ ¼ S� 4Edmax

1� l2ð ÞaD2
e

b h� dmax

2

� �
þ ct

� �
� 0

g2ðxÞ ¼
4Ed

1� l2ð ÞaD2
e

h� d
2

� �
h� dð Þt þ t3

� �� �
� Pmax � 0

g3ðxÞ ¼ dl � dmax � 0; g4ðxÞ ¼ H � h� t� 0

g5ðxÞ ¼ Dmax � De � � 0; g6ðxÞ ¼ De � Di � 0

g7ðxÞ ¼ 0:3� h

De � Di

� �
� 0

where a¼ 6
pln Kð Þ

� �
K�1
K

� �2
;b¼ 6

pln Kð Þ

� �
K�1
K �1

� �
; c¼ 6

pln Kð Þ

� �

K�1
2

� �
P¼log10log10 8:122e6lþ0:8ð Þ�C1

n ; h¼ 2pN
60

� �2 2pl
Ef

� �
R4

4
�R4

o

4

� �
;

Pmax¼1000lb;dmax¼0:2in:;S¼200KPsi;E¼ 30e6 psi;l¼
0:3;H¼2in:;Dmax¼12:01in:;K¼De

Di
; d lð Þ¼f að Þa; a¼h

t :

5�De � 15; 5�Di � 15; 0:2� t� 0:25; 0:2� h� 0:25:

See Table 16.

6. Speed Reducer

The problem can be mathematically formulated as fol-

lows:Objective function: f xð Þ ¼ 0:7854bm2 3:3333z2þð
14:9334z� 43:0934Þ� 1:508b d21 þ d22

� �
þ 7:4777 d31 þ d32

� �
þ0:7854 l1d

2
1 þ l2d

2
2

� �
Subject to:

g1ðxÞ ¼
27

bm2z
� 1� 0; g2ðxÞ ¼

397:5

bm2z2
� 1� 0

g3ðxÞ ¼
1:93l31
mzd41

� 1� 0; g4ðxÞ ¼
1:93l32
mzd42

� 1� 0

g5ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745l1
mz

� �2
þ16:9� 106

r

110d31
� � � 1� 0;

g6ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745l2
mz

� �2
þ157:5� 106

r

85d32
� � � 1� 0

g7ðxÞ ¼
mz

40
� 1� 0; g8ðxÞ ¼

5m

b
� 1� 0

g9ðxÞ ¼
b

12m
� 1� 0; g10ðxÞ ¼

1:5d1 þ 1:9

l1
� 1� 0

g11ðxÞ ¼
1:1d2 þ 1:9

l2
� 1� 0

where 2:6� b� 3:6; 0:7�m� 0:8; 17� z� 28; 7:3 � l1 �
8:3; 7:3� l2 � 8:3; 2:9� d1 � 3:9 and 5� d2 � 5:5:
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