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Abstract
The paper discusses Trefftz discretization techniques with a focus on their coupling with shape functions computed by the 
method of Taylor series. The paper highlights are, on one hand the control of ill-conditioning and the solving of large scale 
problems, on the other hand the applications to non-linear Partial Differential Equations. Indeed, despite excellent conver-
gence properties, the practical use of Trefftz methods remains very limited because of their difficulty in treating nonlinearities 
and large systems.
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1  Introduction

Trefftz methods are based on complete families of shape 
functions (or T-complete according to the terminology 
introduced by Herrera [33]) that are fully exact solutions 
of the partial differential equations (PDEs). Initiated a long 
time ago by Trefftz [87], they have been developed from 
the late seventies, see [43]. Since the PDE is automatically 
satisfied, only the discretization of the boundary is needed, 
which leads to strong reductions of the number of degrees 
of freedom (DOFs) as compared to other methods like the 
finite element method (FEM) or the finite difference method. 
Many informations about Trefftz methods can be found in 
several review papers, see for instance [33, 34, 46, 51, 73] 
and [35], or in some books, see [60, 72, 75] and [52] or in 
special issues of Advances in Engineering Software, Vol-
ume 24–1 (1995), of Engineering Analysis with Boundary 

Elements, Volume 36–1 (2012), and in several issues of 
Computer Assisted Methods in Engineering and Science. 
Many classes of shape functions are quoted in those papers, 
the most widespread being the harmonic polynomials [17] 
(i.e. 1,Re(x + iy)n, Im(x + iy)n, n ≥ 1 for 2D Laplace equa-
tion), the fundamental solutions and several sorts of wave 
functions (plane, circular, spherical, corner, etc.). Most of 
the PDEs solved by Trefftz methods in the literature are 
linear, homogeneous with constant or piecewise constant 
coefficients. In this paper, extensions to any elliptic system 
of PDEs are discussed, especially in the non-linear range.

Another discretization technique, called Taylor mesh-
less method (TMM), has been presented more recently in 
Zézé et al. [104] that relies on approximated solutions of 
the PDEs in the sense of Taylor series. When applied to 
a linear PDE with constant coefficients, it coincides with 
Trefftz method associated with harmonic polynomials. The 
calculation of a Taylor series amounts to compute deriva-
tives and there are well established procedures known as 
algorithmic differentiation or automatic differentiation, see 
[29]. A generic method based on algorithmic differentiation 
has been proposed recently to solve any elliptic PDE in the 
sense of Taylor series, see [102]. Various applications to 
non-linear boundary value problems have been presented, 
from elementary ODEs in Zézé [103] and Tampango [83] to 
fully 2D and 3D non-linear large-scale systems of PDEs in 
Akpama et al. [1] and Yang et al. [102]. One central point of 
the present paper is the presentation and assessment of this 
approach to extend Trefftz methods in the non-linear range. 
In other words, one replaces the concept of a complete 
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family of exact solutions by the concept of a “complete fam-
ily of approximated solutions in the sense of Taylor series”. 
These shape functions are high degree polynomials and they 
are computed numerically by the technique of Taylor series. 
This procedure should permit extensions of Trefftz methods 
to any elliptic systems of PDEs.

Once the shape functions have been defined, the bound-
ary and interface conditions have to be taken into account. 
Indeed in many cases, it is not possible to represent the whole 
solution by a single combination of shape functions and the 
domain has to be split in several subdomains. A perfect con-
tinuity across the interface is difficult to be achieved with 
shape functions that are not small degree polynomials, so 
this continuity is generally applied in a mean sense or at 
some specific collocation points. Many techniques have been 
used, sometimes with different names. Roughly boundary 
and interface conditions can be applied from a weak form, 
which requires to mesh the domain and to compute integrals, 
or from the strong form and a discretization by collocation. 
On one hand, Trefftz method may be considered as a vari-
ant of the FEM ([108] was talking about generalized FEM), 
the most representative one being the hybrid-Trefftz initi-
ated in Jirousek and Leon [43] and Jirousek and Teodorescu 
[44] and Jirousek and Venkatesh [45]: in the hybrid-Trefftz 
method, the boundary and interface are split in elements, 
the main differences with FEM being the discontinuity of 
the main field and the possibility to choose larger elements 
because of the better accuracy of the approximation inside 
each subdomain. On the other hand, the Trefftz method can 
be applied in a meshless framework with a single approxi-
mation in the whole domain, which is often done within the 
method of fundamental solutions (MFS), see for instance [27] 
or [26]: among the notable exceptions to this one-domain 
MFS approach, there are some papers coupling MFS and 
hybrid-Trefftz method, see [93] or [94] and also the paper 
by Ingber et al. [39] who solved the diffusion equation by an 
iterative multi-domain procedure that was introduced earlier 
for radial basis functions. In this paper we shall not re-discuss 
in details all these strategies to account for boundary and 
interface conditions. Here as elsewhere, it does not seem 
possible to give a single and definitive answer to the famous 
question “to mesh or not to mesh” (see [38]), the two types 
of methods having their interest and their application fields.

The most significant advantage of Trefftz methods lies 
in a very strong reduction of the number of DOFs, due to 
the analytical solving inside each subdomain. Nevertheless 
according to Li et al. [59] , “the state-of-the-art of the analy-
sis of Trefftz methods is behind that of the boundary ele-
ment method (BEM)” and, at the same time, BEM [50, 69] 
is less popular than FEM. In other words, Trefftz methods 
are much less widespread than one might have thought by 
considering their excellent convergence properties. A first 
reason is the difficulty to control the matrix ill-conditioning 

generated by the interaction between many shape functions, 
which prevents applications to very large-scale problems. 
One can define “large-scale problems” as problems that can-
not be treated or that could be very expensive within stand-
ard numerical techniques, say problems involving at least 
several hundred thousand unknowns within an equivalent 
FEM model. Most of the applications of Trefftz methods in 
the literature do not concern such problems, even if some 
recent results have shown that very large-scale problems can 
be solved in this framework, mainly for Helmoltz-type prob-
lems [80, 91], but also for non-linear PDEs [102]. This is an 
important point in view of applications to practical engineer-
ing problems and it will be re-discussed in this paper.

Another very important point is the treatment of non-
linear PDEs. Essentially “typical PDEs addressed are linear, 
with piecewise-constant coefficients and homogeneous, i.e. 
with vanishing volume source” (from [35]). In fact a number 
of applications in the non-linear range have been presented 
in the literature, with two types of difficulties. First one has 
to find a particular solution and this is generally done by 
discretizing the domain by radial functions [27]. Second, 
because one does not have exact solutions of the tangent sys-
tem, one uses an “analog operator” (concept introduced in 
Katsikadelis [48, 49]). These two ideas permit to solve non-
linear PDEs, but the examples discussed in the literature do 
not highlight procedures sufficiently robust and efficient and 
permitting the treatment of large-scale industrial problems.

In this paper, a new attempt will be presented that is based 
on the concept of Taylor series. It should permit to solve 
any smooth elliptic system of PDEs, whether linear with 
constant coefficients, linear with variable coefficients or non-
linear. Because the control of the matrix conditioning and 
round-off errors remains a central point in view of appli-
cations to large-scale problems and therefore to practical 
engineering problems, this point will be also revisited in the 
light of recent results. The paper will be split in two sections, 
the Sect. 2 focusing on linear problems and ill-conditioning 
and the Sect. 3 on non-linear equations.

2 � About Trefftz Methods for Linear PDEs

Trefftz methods correspond to a very large class of numeri-
cal techniques with a lot of variants so that it seems impos-
sible to summarize them in simple way. That is why we shall 
limit ourselves to a very selective review of research works 
of the literature by focusing on the techniques potentially 
useful for the numerical simulation of practical engineering 
applications. In this respect, the control of the conditioning, 
the ability to solve large-scale problems and the procedures 
for non-linear problems have a fundamental interest. Our 
discussion will be centered on these three points. In Sect. 2.1 
the most popular shape functions will be presented briefly, 
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especially the polynomials built by the method of Taylor 
series. Next a short summary of the discretization techniques 
of boundary and interface conditions is done in Sect. 2.2. 
The first key point is the treatment of large-scale problems 
and the control of matrix conditioning and it is discussed in 
Sect. 2.3. Finally an additional interest of Taylor series is 
mentioned in Sect. 2.4: there are a lot of hidden informations 
in a Taylor series, which permits ones to establish conver-
gence acceleration procedures.

2.1 � Exact and Approximated Shape Functions

Let us consider the example of Poisson equation with mixed 
Dirichlet–Neumann boundary conditions:

where the data are the functions f (�), ud(�), qd(�) . Thus 
one has to vanish the domain residual (u) and the bound-
ary residual (u(u),q(u)) . Within Trefftz methods, the 
unknown is sought as a linear combination of shape func-
tions that are exact solutions of the homogeneous equation, 
here �u = 0 . In other words, the domain residual is exactly 
zero in the case of a homogeneous equation (i.e. f = 0 in 
Eq. 1) while the remaining Eqs. (2) and (3) will be taken into 
account by various techniques described in Sect. 2.2. Many 
such shape functions (called Trefftz functions) have been 
used in the literature and a complete list can be found in the 
references previously quoted. In this paper we mainly dis-
cuss three classes of Trefftz functions recalled in the Table 1: 
first the polynomials considered in the initial papers on the 
topics [43]; second the fundamental solutions studied by a 
large community; third the wave functions applied in vibro-
acoustics, the-state-of-the-art permitting nowadays to solve 
practical engineering problems. But a great merit of Trefftz 
methods is to offer many possible shape functions that can 
be adapted to each particular situation. For instance Bes-
sel and Hankel functions appear naturally for 2D Helmoltz 
equation, singular functions as (r�cos(n�), r�sin(n�), � ∉ ℕ) 
can be very important near crack tips and corners, see [59], 
and there are specific functions for exterior domains.

(1)(u) =u − f = −�u − f (�) = 0 in �

(2)u(u) =u − ud = 0 on ��u

(3)q(u) =
�u

�n
− qd = 0 on ��q

In the more general case of inhomogeneous equations 
(i.e. f ≠ 0 ), one needs to define a particular solution ŭ(�) of 
Eq. (1) and this is not an obvious task except in some cases 
(e.g. if f (�) is constant or a Dirac function). That is why one 
has to give up building exact solutions of the PDE (1) and 
one solves it numerically. The most widely used method to 
build particular solutions is based on radial functions and 
this will be re-discussed shortly in Sect. 3.2.

Here we recall the method of Taylor series [99, 104] that 
permits to build both the particular solution and the general 
solution of the associated homogeneous equation. To explain 
this old procedure, let us consider first a simple ordinary 
differential equation (ODE):

The general solution of the ODE (4) is sought in the form 
of a Taylor series centered here at the point x = x0 and trun-
cated at the order p:

So within the approach by Taylor series, the unknown u(x) 
is represented by the set of coefficients ū(n) , 0 ≤ n ≤ p . The 
given function f(x) and the domain residual (u) are repre-
sented in the same way by a set of Taylor coefficients. The 
technique consists in cancelling the Taylor coefficients of the 
residual up to the order p − 2:

Thus the Eq. (6) yields a recurrence formula permitting to 
express all the Taylor coefficients of the unknown as a func-
tion of the first two ones ū0 and ū1:

Hence this simple procedure yields a particular solu-
tion ŭ(x) and two Trefftz functions N1(x) and N2(x) , these 
three functions being polynomials of degree p. In the case 
f (x) = 1 , one can check easily that the exact solution is 
u(x) = 1 + ū0 cosh (x) + ū1 sinh (x) and that the so computed 
functions (ŭ(x),N1(x),N2(x)) are the truncated Taylor series 
of the exact solutions (1, cosh(x), sinh(x) ). This well-known 
analytical procedure was applied for a numerical purpose 

(4)(u) = −
d2u

dx2
+ u − f (x) = 0

(5)u(x) =

p∑
n=0

ū(n)(x − x0)
n

(6)
̄(n) = −(n + 2)(n + 1)ū(n + 2) + ū(n) − f̄ (n) = 0, ∀n ∈ [0, p − 2]

(7)u(x) = ŭ(x) + ū0N1(x) + ū1N2(x)

Table 1   The most popular 
shape functions Harmonic polynomials (2D case) 1,Re(x + iy)n, Im(x + iy)n, n ≥ 1

Fundamental solutions, 2D or 3D ln ri or
1

ri
, ri = |� − �i|

Wave functions ei�i .�

Radial functions (example of the multiquadric) f (ri) = (r2
i
+ c2)−

1

2 , ri(�) = |� − �i|
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and in a multi-domain framework, see for instance [77, 103] 
or [83].

In addition, the Taylor series method is easily applied 
to inhomogeneous equations. Let us consider the following 
ODE that contains a variable coefficient:

The Eq. (8) can be solved in the same way as Eq. (4) with 
only a slight modification in the recurrence formula:

The procedure has been extended to some 2D [104] and 3D 
[99] equations in a relatively simple way. To illustrate it, let 
us consider the following 2D equation where a is a given 
constant:

Here the unknown u(x, y) is written as a bi-variate truncated 
Taylor series:

So this function is represented by a set of coefficients with 
two indices ū(m, n) . The given function f(x, y) is represented 
in the same manner. The coefficients of the Taylor series of 
the residual are given by:

Thus one has obtained a recurrence formula (12) that per-
mits to compute all the Taylor coefficients of u(x, y) as a 
function of N = 2p + 1 coefficients

The particular solution and the set of polynomial solutions 
of the homogeneous equations are easily deduced from the 
recurrence formula (12): the particular solution by choos-
ing � = 0 , the first shape function N1(x, y) by choosing 
f = 0, c1 = 1, cn = 0 for n ≥ 2 , the second shape function 
N2(x, y) by choosing f = 0, c2 = 1, cn = 0 for n ≠ 2 , etc. 
Finally the sought solution of Eq. (10) is a linear combina-
tion of these 2p + 2 polynomial solutions:

The final form (14) depends on the unknown vector � ∈ N 
and it is exactly the same as in other variants of the Trefftz 

(8)(u) = −
d2u

dx2
+ (1 + x)u − f (x) = 0

(9)
̄(n) = −(n + 2)(n + 1)ū(n + 2) + (1 + x0)ū(n) + ū(n − 1) − f̄ (n) = 0

(10)(u) = −�u + au − f (x, y) = 0

(11)u(x, y) =

p∑
n=0

p−n∑
m=0

ū(m, n)(x − x0)
m(y − y0)

n

(12)

̄(m, n) = −(m + 2)(m + 1)ū(m + 2, n) − (n + 2)(n + 1)

ū(m, n + 2) + aū(m, n) − f̄ (m, n) = 0

(13)
� = {ū(0, 0), ū(0, 1),… , ū(0, p), ū(1, 0), ū(1, 1),… , ū(1, p − 1)} ∈ N

(14)u(x, y) = ŭ(x, y) +

N∑
k=1

ckNk(x, y) = ŭ(x, y) + �.�(x, y)

method. From Eq. (14), one deduces easily the correspond-
ing expression of the flux q =

�u

�n
 , whatever the type of the 

Trefftz functions:

We have just described the simplest way to build approxi-
mate solutions by using the polynomials issued from one 
Taylor series. A well-known improvement consists in replac-
ing the polynomials by equivalent rational fractions called 
Padé approximants, an example being presented in Sect. 2.4. 
It is also possible to combine several Taylor series in an 
approach called “multi-point Taylor series”. Up to now, 
these multi-point series were only applied to ODEs, see 
[62, 105]. Typical results are presented in Fig. 1, where the 
simple ODE (4) is solved with f (x) = 1 and the boundary 
conditions u(−3) = u(3) = 0 . One sees that the two-point 
Taylor series gives more accurate results than a one-point 
Taylor series leading to about the same global degree. More-
over there are cases where the two-point series converges 
while the one-point diverges. We refer to López et al. [62], 
Zézé et al. [105] for more information about this promising 
technique.

2.2 � Main Boundary Discretization Techniques

Once the PDE has been solved exactly or approximately, one 
has to account for the boundary conditions (2) and (3). In 
most of the papers in the literature, a multi-domain approach 
has to be considered, which implies to satisfy also trans-
mission conditions, i.e. the continuity of the main field u 
and of the flux q. The simplest way is the collocation tech-
nique. To account for the boundary conditions, one chooses 
M points on the boundary �j, 1 ≤ j ≤ M ( M1 points are on 
��u , M2 = M −M1 points on ��q ). Next one requires that 

(15)q(x, y) = q̆(x, y) + �.�(x, y)

Fig. 1   Accuracy of Taylor two-point versus Taylor one-point. Note 
that the degree of a two-point approximation for p = 5 is about the 
same as a one-point Taylor series for p = 10
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the boundary conditions are exactly satisfied on this cloud 
of points [60]:

In general, this simple approach fails and this is easily under-
stood in the case of a circular boundary and of a discretiza-
tion by harmonic polynomials: then the sum (14) becomes 
a Fourier series and one knows that it is not possible to 
identify a Fourier series from a too small data set. That is 
why it is recommended to use more collocation points than 
DOFs ( N < M ), see for instance [51]. In a similar way, a 
least-square collocation technique was proposed in Zézé 
et al. [104] to account for the boundary conditions within 
the framework of the Taylor meshless method. This leads to 
minimize the following function:

A free weighting parameter w has been introduced for a bet-
ter control of the matrix conditioning. The minimization of 
the function (17) leads to a classical linear problem �.� = � , 
where the matrix � is symmetric and positive definite. Many 
authors prefer to solve directly the overdeterminated prob-
lem (16) with M > N by the Singular Value Decomposition 
(SVD) that is available for instance in Matlab and that per-
mits to use easily some regularization methods, see [63]. Li 
et al. [59] recommend this procedure rather than the least-
square technique because the condition number is much bet-
ter: indeed [59, 60] prove that the condition number issued 
from least-squares is the square of that of the initial problem 
(16). This is right, but it is not clear whether SVD remains 
efficient as a linear solver for large-scale problems. Note that 
this discussion between least-squares and overdeterminated 
system is not new, see [14, 96, 97].

In the case of a splitting in two subdomains �1 and �2 , 
one needs Mr additional collocation points on the interface 
( �m , 1 ≤ m ≤ Mr ), the function to be minimized being modi-
fied as follows:

where 1(��) and 2(��) are the functions as in Eq. (17) and 
defined on the two subdomains. Variants based on Lagrange 
multipliers have been proposed in Tampango et al. [85] and 
numerical tests in Yang et al. [101] have established that 
they have about the same efficiency as the least-square col-
location based on Eq. (18).

(16)
u(�j) = ud(�j), 1 ≤ j ≤ M1, q(�k) = qd(�k), M1 + 1 ≤ k ≤ M

(17)

 (�) =

M1∑
j=1

|||u(�j) − ud(�j)
|||
2

+ w

M∑
k=M1+1

|||q(�k) − qd(�k)
|||
2

(18)

 (�
�
, �

�
) = 1(��) + 2(��) + w1

M
r∑

m=1

||u1(�m) − u2(�m)
||2

+ w2

M
r∑

m=1

||q1(�m) − q2(�m)
||2

Often the boundary discretization within Trefftz methods 
is deduced from a weak form of the boundary and interface 
conditions and a lot of variants have been proposed in the 
literature. Roughly, they can be grouped into two main cat-
egories: the hybrid-Trefftz method that introduces an inde-
pendent unknown field on the interface and the methods cou-
pling directly the fields lying on the two sides of an interface. 
For instance the boundary conditions can be treated from a 
Galerkin method as:

but also by least-square method or various variational formu-
lations [51, 58]. The same holds for transmission conditions. 
The latter class of methods was called “frameless methods” 
in Pluymers et al. [70] in contrast to Hybrid-Trefftz methods 
based on a frame consisting on an independent field defined 
on the interfaces as skeched in Fig. 2. Generally the trans-
mission conditions within wave-based methods [80, 91] are 
discretized by such frameless techniques.

In this paper, we did not try to compare the respective 
performance of collocation, frameless weak forms and 
hybrid methods. Indeed it seems difficult to find in the litera-
ture a reasoned discussion on this topics, each paper limiting 
generally to validate its own procedure.

2.3 � Matrix Conditioning and Application 
to Large‑Scale Problems

All variants of Trefftz methods have excellent properties of 
rapid convergence and of reduction of the number of DOFs 
and, from this point of view, they should be widely used 

(19)�
��u

uq∗dS − �
��q

qu∗dS = 0

Fig. 2   A classical description of an hybrid-Trefftz element �
e
 in 

2D . The unknown function on each segment of the boundary ��
e
 

is described as for 1D finite element interpolation. Hierarchical poly-
nomials can also be used, see [21]. Inside the element, another inde-
pendent function is obtained by local solution of the PDE as in (14)
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for engineering simulations. Actually this is not exactly the 
case: indeed it remains difficult to apply them to large-scale 
problems because the matrices become more and more ill-
conditioned when the size of the model increases. In this 
section, we discuss this crucial question of the application of 
Trefftz methods to large-scale problems. Of course the term 
“large-scale” has no mathematical definition. In this paper a 
numerical model will be considered as large-scale when the 
equivalent finite element model is beyond 100 000 DOFs, 
this limit being quite modest by comparison with the cur-
rent state-of-the-art in computational engineering. Moreover 
the concept of “equivalent FEM model” is not completely 
clear. For instance we have got an error of 10−2.98 with a 
FEM-mesh and of 10−3.2 with a much finer mesh: in such a 
case, what is the equivalent mesh size to get error less than 
10−3 ? Similarly one cannot define the concept of relevant 
benchmark in a absolutely indisputable way. Nevertheless 
such comparisons between numerical methods are essential 
for evaluating their efficiency and they are too rare in the 
literature concerning Trefftz methods

It is widely accepted that matrix ill-conditioning is the 
main cause of loss of accuracy of discretization techniques 
observed when increasing the number of DOFs. However, 
there is no direct relation between the condition number and 
the maximum inaccuracy that may occur in an algorithm. 
This fact can be illustrated by a very simple change of vari-
ables used recently to improve the conditioning within 
Extended FEM, see [4] and [31]. Let us consider a linear 
problem �.� = � , where the square matrix � is symmetric 
and positive definite. Thus these authors define, first a diago-
nal matrix � whose elements are dii =

1√
kii

 (no summation), 
second a “scaled matrix” � = �.�.� and finally a change 
of variables:

In this way the scaled matrix � has diagonal terms equal to 
1 and a condition number lower than the one of the initial 
matrix � . One might wonder which condition number ( � 
or � ) is the most influencing for the stability of the numeri-
cal solving. Morever with the change of variables (20), one 
deals with a better conditioned matrix, what will be evalu-
ated later.

Let us consider a significant example within 3D linear 
isotropic elasticity, from Yang et al. [99]. The domain is the 
unit ball, the exact solution is a fundamental solution with 
a source point at �0 and one considers a Dirichlet boundary 
value problem. This problem is solved by combining har-
monic polynomials of degree p on the whole domain with 
the boundary collocation technique (17). Three cases have 
been studied: a very flat response for �0 = [100, 100, 100] , 
a response with stronger gradients for �0 = [1, 1, 1] and a 
middle case for �0 = [2, 2, 2] . The maximal relative error 
is plotted in Fig. 3 as a function of the condition number of 

(20)�.�new = �
new, � = �.�new, �

new = �.�

the scaled matrix � . Twelve values of the degree have been 
chosen from p = 5 up to p = 60 . The flat function is recov-
ered very accurately for a small degree at a level very close 
to the unit round-off error within the double precision for-
mat ( 1.1 × 10−16 ). Next the error increases with the degree 
due to the propagation of the round-off approximations. It 
increases more or less linearly with the condition number 
in a log-log plot. In the two other cases, one observes first 
an exponential convergence, as expected for a Taylor series, 
up to an accuracy reversal point that occurs for p = 25 and 
p = 40 respectively. Very similar behaviors have been docu-
mented, e.g. by Schaback [81] and Cheng et al. [16] in the 
case of radial shape functions, by Pluymers et al. [70] with 
wave functions or by Ku et al. [53] with alternative shape 
functions (see the Fig. 2 in the latter paper): a very rapid 
convergence for a rather small number of DOFs is followed 
by an accuracy reversal beyond which the accuracy dete-
riorates because of the propagation of round-off errors and 
the strong influence of matrix ill-conditioning. So the chal-
lenge is clear: to what extent these losses of accuracy due to 
ill-conditioning perturb the responses for large numbers of 
DOFs? This phenomenon of accuracy reversal was called 
“Schaback uncertainty principle” in Cheng et al. [16].

Despite this difficulty, some large-scale problems have 
been solved recently by Trefftz methods, most of them con-
cerning 3D Helmoltz equations and wave-based (WB) shape 
functions to compute the response of vibrating systems cou-
pling fluids and solids. The challenge is the medium-fre-
quency range, small frequencies being easily treated by FEM 
and large frequencies by acoustic models. In Van Genech-
ten et al. [91] only the fluid is represented in a one-domain 

Fig. 3   Accuracy reversal within 3D linear elasticity. One tries to 
recover the fundamental solution at the source point �0 by combin-
ing harmonic polynomials whose degree varies from p = 5 to p = 60 . 
The maximal error is plotted as a function of the condition number 
of the scaled matrix. Three locations of the source �0 = [1, 1, 1] , 
�0 = [2, 2, 2] , �0 = [100, 100, 100] and twelve values of the degree 
from p = 5 up to p = 60 are considered
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approach and tremendous gains have been obtained, with a 
ratio larger than 100 in terms of DOFs (4500 for WB and 
572,000 for FEM) and also important gains in terms of com-
putation time. In Riou et al. [80] and Cattabiani [13], the 
method is called “Variational Theory of Complex Rays”, the 
fluid and the containing shells are coupled and the studied 
systems are complex and of industrial interest. The equiva-
lent FEM models, when they were able to be solved, contain 
much more than 105 DOFs and the gains in terms of DOFs 
and computation time are of the same order as in Van Gene-
chten et al. [91]. Let us specify that [13] (PhD, chapter 5) 
solved a problem with 20,800 DOFs distributed in 40 subdo-
mains, which corresponds certainly to more than 1 million 
DOFs in an equivalent FEM model. The same order of mag-
nitude is mentionned in a recent contribution [55]. Hence 
it appears clearly that large-scale problems can be solved 
by wave-based methods, but despite these excellent results, 
the matrices remain generally very ill-conditioned, which 
is detailed in the previously quoted papers and also in Riou 
[79] and Hiptmair et al. [36]. If these wave-based methods 
have achieved such performances since few years, they have 
been developed since a long time and are the results of long 
research works, see for instance [24, 54, 56, 57, 70] or [23].

To our best knowledge, the solution of large-scale prob-
lems by alternative Trefftz methods was obtained only 
recently and by the method of Taylor series [99]. These 
authors simply combine 3D harmonic polynomials with the 
multi-domain boundary collocation technique summarized 
by the formula (18). The numerical tests concern the Laplace 
equation in a cuboid of dimensions �x × �y × 1 . The exact 
solution is u(x, y, z) = sin(�x) sin(�y)

sinh(
√
2�z)

sinh(
√
2�)

 and it serves 

as Dirichlet data. The domain is split in cubes (“elements”) 
of size 1 × 1 × 1 and the series have been computed up to the 
degree p = 10 . The computations have been performed with 
a commercial software (MATLAB R2012b) in a personal 
computer under the system Windows 10 with intel(R) 
core(TM) i5-4310U type CPU and 16GB computer 
memory.

This comparison Taylor/FEM is summarized in Table 2. 
The first significant information is the number of DOFs of 
the finite element model: more than 3 millions. Second infor-
mation: the computation times obtained with the two meth-
ods are of the same order. The most important result may 
be the condition number of the initial matrix that remains 
under control, its value 1010 being widely acceptable by the 
modern linear solvers. This means that large-scale computa-
tions can be performed by Trefftz methods provided that the 
local number of DOFs is not too large (here (10 + 1)2 = 121 ) 
and the number of subdomains is sufficiently large. Let us 
now focus more on the crucial problem of conditioning. In 
this respect, one increases the size of the domain, the sub-
domains (unit cubes), the degree and the sought solution 

remaining the same, see Table 3. The most surprising result 
is the invariance of the condition number when the domain 
size increases and this applies both for the initial matrix 
and for the scaled matrix. As a consequence, the accuracy 
does not seem influenced by the size of the domain. In other 
words, Trefftz methods could be much more widely used for 
large-scale problems provided that the domain is split into 
a sufficiently large number of subdomains. Let us remark 
also the size of the largest solved Trefftz problem: more than 
hundred thousand DOFs, corresponding to more than 4.5 
millions DOFs in an equivalent finite element calculation. A 
similar result was obtained recently by Chu et al. [18] with 
radial basis functions, with a similar conclusion as here: “the 
more subdomains, the smaller the condition number”. The 
h-convergence yields another test to assess the ability of Tay-
lor/Trefftz method to solve large-scale problems. One con-
siders the same Laplace problem in a box 10 × 10 × 1 with a 
degree p = 8 and one increases the number of subdomains. 
The condition number of the initial matrix remains under 
control ( 1014 ) even for the largest model (72,900 DOFs) 
while the condition number of the scaled matrix remains 
almost constant at a low level ( 105 − 106 ), see Table 4. At 
the same time, the accuracy improves, but much more slowly 
as with p-convergence, which is quite usual. This confirms 
once more that the ill-conditioning is not directly related to 
the size of the global problem, but only to the number of 
DOFs in each element.

A last test is presented to check the p-convergence, see 
Table 5. The result is consistent with previous results, see 
[99] or Fig. 3: one converges very rapidly with the degree 
up to a point of accuracy reversal occuring here at about 
p = 20 . At the same time, the condition number increases 
dramatically with the initial matrix as well as with the scaled 
matrix. Once again this is the paradox known as Schaback 
uncertainty principle: the number of local shape functions 
is the best way to increase the accuracy, but there is a limit 
due to ill-conditioning beyond which the convergence is 
stopped. Here this limit occurs for 441 DOFs, [76] said that 

Table 2   Laplace problem in a large box 25 × 25 × 1

Dirichlet data on the top face: sin(�x) sin(�y) . Taylor meshless 
method is compared with the FEM-code FreeFem++ [32], with the 
aim of a maximal relative error less than 10−3.The condition number 
with FreeFem++ is not reported because it is large, but not signifi-
cant, due to a treament of BCs by penalization. From Yang et al. [99]

Degrees of freedom CPU time (s) Condi-
tion 
number

Taylor, p = 10 , 
625 subdo-
mains

75625 32,8 1010

FreeFem++, P2 
tetraedra

3 213 051 98, 7
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he was not able to compute for 1000 DOFs, a similar limit 
is often mentioned with wave-based methods even if [91] 
solved Helmholtz equation with 4500 DOFs in one domain, 
but with a condition number of 1020 . Hence there is a sort 
of glass ceiling of some hundreds DOFs, sometimes more, 
that limits the size of the local model, but we did not see 
such a limit for the number of subdomains and the size of 
the full model.

The interest for a subdivision in subdomains to bypass the 
problem of ill-conditioning is not new. The first papers [39, 
47, 61, 98, 106] were based on Schwarz iterative method. 
Note that [39] did the same remark as here: “the higher the 
order of the basis functions, the worse the condition number, 
and the better the accuracy”. Various techniques are avail-
able to join the solutions in several subdomains, as sketched 

in Sect. 2.2. The numerical tests in the present paper were 
obtained with a relatively simple least-square collocation 
technique. Unfortunately we did not see in the literature any 
detailed comparison between these discretization techniques. 
Likely the existence of a splitting in a sufficiently large num-
ber of subdomains is more important than the choice among 
all these coupling methods and most of the existing methods 
should permit to solve large-scale problems when associated 
with a suitable splitting in subdomains.

2.4 � A Taylor Series is not Only a Polynomial

In the case of shape functions generated by the method of 
Taylor series, these shape functions appear as high degree 
polynomials. But it is known that “a reasonable number of 
terms of a perturbation series will reveal part of the analytic 
structure of the solution”, see [90]. For instance within the 
Asymptotic Numerical Method [20], one computes a solu-
tion path in terms of a Taylor series with respect to a path 
parameter. It has been established that an a posteriori analy-
sis of this series provides an accurate estimate of the radius 
of convergence, even for a vectorial series of large dimen-
sion, see [25]. More simply one can estimate the interval 
where the series is very accurate and in this way define an 
automatic continuation procedure that works even for FEM 
models involving millions of DOFs, see [64]. Moreover 
there are many acceleration procedures permitting to 
improve the solution by a posteriori calculations, see [8]. It 
would be not easy to apply these ideas inside a generic 
numerical procedure. Here one just illustrates this concept 
of hidden information and the possibility of acceleration 
procedure in the case of a Laplace problem �u = 0 in the 
unit disk � = {(x, y) | x2 + y2 ≤ 1} . The problem is solved 
by combining harmonic polynomials centered in x = y = 0 . 
The exact solution is uex =

x−x0

(x−1.2)2+(y−0.3)2
 and it serves as a 

Dirichlet data.
The Taylor series converges very slowly because the solu-

tion has a singular point (1.2, 0.3) rather close to the domain. 
A truncation at the order p = 12 leads to an error in the range 
5–10% in a large part of the domain and to an error more 
than 50% in the direction of the singular point �0 = arctan(

1

4
) . 

This series has been analyzed in Tampango et al. [84]. The 
bivariate function u(x, y) becomes univariate along rays 

Table 3   Stability of Taylor 
meshless method with respect to 
the size of the domain

Same Laplace problem as in Table 2. Three sizes of domains are considered with a degree p = 10

Domain DOFs Time (s) Log10(Error) Log10 (Cond. 
( �))

Log10 (Cond.(�))

10 × 10 × 1 12,100 3.72 −3.24 10.71 7.11
20 × 20 × 1 48,400 17.75 Idem Idem Idem
30 × 30 × 1 108,900 47.2 Idem Idem Idem

Table 4   Convergence with the number of subdomains (h-conver-
gence) within Taylor meshless method and control of the condition 
number when the size of the problem increases

The condition numbers of the scaled matrix � and of the initial 
matrix � are compared. Same Laplace problem as in Table 2, domain 
10 × 10 × 1 , degree p = 8

Number of ”elements” Time (s) Log10 (Error) Log10 
(Cond.(�
))

Log10 
(Cond.(�)

)

10 × 10 × 1 2.6 −2.1 8.6 5.3
20 × 20 × 1 13.35 −3.3 11.3 5.3
30 × 30 × 1 35.9 −3.6 14 5.8

Table 5   Convergence with the degree within Taylor meshless method

Moreover the scaled matrix � is compared with the initial matrix � . 
Same Laplace problem as in Table 2 in a small domain 2 × 2 × 1 split 
in four subdomains

Degree Matrix Time (s) Log10 (Error) Log10 
(Condition 
number)

p = 10 Initial 0.55 −3.24 10.55
p = 10 Scaled 0.58 idem 6.75
p = 20 Initial 4.62 −6.32 21.1
p = 20 Scaled 5.35 −10.05 13.3
p = 30 Initial 25.15 −1.79 31.7
p = 30 Scaled 27.69 −6.57 20.7
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(x, y) = t(cos �, sin �) . Each series in t has been transformed 
in an asymptotically equivalent rational fraction that is known 
as Padé approximants, see [5]. By this simple and very clas-
sical procedure, one gets an accurate solution with an error 
less than 10−4 in a large part of the domain and of about 0.1% 
near the singularity, see Table 6 for the details concerning this 
convergence acceleration. This illustrates clearly that a Taylor 
series represents much more than a polynomial approximation 
because a poor polynomial approximation contains accurate 
rational fractions. Moreover [84] were also able to recover very 
accurately the location of the singularity (x0, y0) = (1.2, 0.3) 
from this Taylor series at the order p = 12.

In summary, a Taylor series may contain a lot of informa-
tions that can be extracted by clever manipulations, see [5, 
84, 90]. Likely some additional efforts should be necessary to 
define robust numerical procedures to achieve this extraction.

3 � Trefftz Methods for Non‑Linear PDEs

In the previous part, we have seen that Trefftz methods could 
be much more widely applied, especially to large-scale prob-
lems, if one is able to control matrix ill-conditioning by using 
appropriate domain decompositions. In the present part, we 
are discussing a second important topics: the application to 
non-linear problems. If the previous discussion about con-
ditioning could concern many variants of Trefftz methods, 
here we mainly focus on Taylor series that yields a systematic 
procedure to get quasi-exact solutions of linearized PDEs. 
As recalled in Sect. 2.1, the computation of shape functions 
by Taylor series is a generic procedure that can be applied to 
many PDEs and this advantage seems difficult to be extended 
to other Trefftz methods.

3.1 � Linearization Algorithms

Let us consider a class of non-linear PDEs that can be written 
in a general form as:

where u is the unknown field,  is the domain residual and 
� is a real number. This PDE can be completed by bound-
ary conditions as in the Eqs. (2) and (3). Newton iterative 

(21)(u, �) = 0

method is the simplest and most widespread algorithm to 
solve non-linear equations (the parameter � can be omitted 
here):

where t(u
(i)) is the tangent operator at the point u(i) . For 

instance, if we apply it to the following PDE

where g(�) is a given function, the incremental equation (22) 
reads

Newton method has excellent properties of convergence 
and robustness. Many variants (modified Newton, Picard, 
etc.) have been proposed to relax the requirement of one 
matrix inversion per iteration, but such procedures are not 
very popular within the finite element community because of 
poor convergence properties and mostly a lack of reliability.

A very important improvement is the Newton–Raphson 
method that is a continuation method taking advantage of 
the presence of the scalar parameter � . From a starting point 
(u0, �0) considered as a quasi-exact solution of Eq. (21), one 
first uses a tangent approximation as:

This approximate “prediction solution” (upred, �pred) has to 
be corrected by Newton iterations as in Eq. (22). The main 
advantage of the method is its robustness and flexibility, 
what can be further improved by the so-called arc length 
techniques [78].

Of course the latter class of methods is very widely applied 
and is the default procedure in the most popular commercial 
finite element packages. A difficulty with such methods is the 
necessity to choose a priori the step length �� . This difficulty 
is removed with the Asymptotic Numerical Method that relies 
on Taylor series with respect to a scalar parameter like � , see 
for example [19, 20, 25, 64]. Let us consider for instance this 
simple two-point boundary value problem in the interval [0, 1] 
and depending on a scalar parameter �:

(22)
t(u

(i))v = −(u(i))

u(i+1) = u(i) + v

(23)−�u + u3 = g(�)

(24)
tv = −�v + 3(u(i))2v = (�)

(�) = g(�) − u(i)3 + �u(i)

(25)
t(u0, �0)�u = −

�
��

(u0, �0)��

upred = u0 + �u

�pred = �0 + ��

(26)
(u) = −

d2u

dx2
+ u2 − � = 0 x ∈ [0, 1]

u(0) = u(1) = 0

Table 6   Convergence acceleration along rays by Padé approximants 
from a series at order p = 12

Laplace equation and BVP described in Sect. 2.4. The table presents 
the decimal logarithm of the error along four rays. From Tampango 
et al. [84]

� = −2�∕3 � = 0 � = �0 = arctan(
1

4
) � = �∕2

Series 12 −1.55 −1.05 −0.59 −1.56
Padé [6,6] −4.41 −4.19 −2.78 −4.57
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ANM relies on Taylor series with respect to a scalar param-
eter, for instance the scalar parameter � appearing in the 
ODE (26). In fact it is often more efficient to choose another 
parameter “a” that will be specified later. So the unknown 
function and the parameter � are expanded in Taylor series:

An usual identification of the Taylor coefficients leads to a 
recurrent family of ODEs characterizing each term of the 
Taylor series (27) and (28):

Thus one gets a family of equations with variable coeffi-
cients in a very similar way as with the Newton iterative 
algorithm (22), where the unknowns are the Taylor coef-
ficients un(x) . Note that one equation is lacking to define 
the Taylor coefficient �n of the parameter; this point will be 
explained in Sect. 3.4. The series (27)–(30) characterizes 
one ANM-step and it is easy to deduce the range of validity 
of this Taylor approximation, which defines a posteriori the 
step length, see [19] and Sect. 3.4.

In the next sections, we re-discuss briefly some methods 
to discretize such equations with variable coefficients.

3.2 � Trefftz Method and Non‑Linear Problems 
in the Literature

Likely the most widely applied models in mechanical engi-
neering concern fluid dynamics, plastic behavior and large 
strain solid mechanics, but there are very few applications 
of Trefftz methods to these fields. Hyper-elasticity is the 
simplest class of models in non-linear solid mechanics, but it 
seems that the only applications of Trefftz methods to hyper-
elasticity are in Akpama et al. [1] and Askour et al. [3], one 
significant result being recalled in Sect. 3.6. The first paper 
about Trefftz methods applied to plastic bodies is due to 
Zieliński [107] and it was published about 30 years ago, but 
it has been followed by less than ten other papers, see [6, 9, 
22, 40, 41, 74, 82, 95], to be compared with the hundreds 
of papers published each year in the field of computational 
plasticity. Concerning fluid flows, the linear Stokes problem 

(27)u(x) − u0(x) =

N∑
n=0

anun(x)

(28)� − �0 =

N∑
n=0

an�n

(29)−
d2un

dx2
+ 2u0(x)un(x) + fn(x) − �n = 0

(30)fn(x) =

n−1∑
k=1

uk(x)un−k(x)

was studied a long time ago by Poitou et al. [71], but non-
linear fluid models have been addressed more recently. One 
can mention some interesting papers about Navier-Stokes 
equations [10, 11, 28, 66], mainly with applications to a 
classical benchmark called “lid-driven cavity”, especially 
thanks to a domain decomposition approach. Likely these 
few papers are the most significant applications of Trefftz 
method to non-linear engineering problems involving rela-
tively large-scale models. Nevertheless these tests concerns 
only the 2D lid-driven cavity, the equivalent finite element 
calculations needing only a few tens of thousands DOFs, 
see [12].

A consistent linearization of a non-linear PDE leads 
naturally to non homogeneous equations like Eq. (24), i.e. 
equations such that it is generally not possible to get analyti-
cally an exact particular solution and a fortiori a T-complete 
family of exact solutions of the associated homogeneous 
equations. Generally this particular solution is obtained by 
radial functions, see for instance [26, 27], the r.h.s. being 
interpolated in the form:

where fk = f (rk(�)) are a family of radial functions as the 
multiquadrics ( f (r) = (r2 + c2)−1∕2, rk = |� − �k| ,  see 
Table 1) defined from a cloud of collocation points �k dis-
tributed in the body. If most of the applications in the litera-
ture are based on these radial functions, alternative shape 
functions have been proposed, like the ones introduced by 
Moldovan [65] to solve instationary problems. In this form, 
the method (generally referred as MFS-MPS [88, 89]) will 
involve two matrices, the first one to define the coefficients 
dk of the interpolation (31) from the residual (�) , the sec-
ond one to account for the boundary conditions. If one iter-
ates from u(i) = 0 in Eq. (22) or if Picard method is used 
instead of Newton method, the two matrices can be inverted 
separately and, because of this uncoupling, MFS-MPS can 
be considered in this case as a boundary only method.

The latter method can be extended to problems where 
one does not know a complete family of solutions by using 
the so-called Analog Equation Method [48]. The method 
introduces an “analog operator” like ∗ = −� and rewrites 
the Eq. (1) as

Often the Eq. (32) is solved iteratively, but such an iterative 
procedure is hazardous and the convergence is ensured only 
for small problems or for cases where the preconditioner 
∗ is not too different from the initial operator  . Anyway 
such techniques, based on the inversion of a matrix that is 
not the consistent tangent matrix, are rarely used in the most 
common finite element packages, because of their lack of 

(31)(�) ≈

ndom∑
k=1

dkfk

(32)∗v = f − ( − ∗)v
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reliability. Note that the most recent papers [2, 42] about 
non-linear meshless methods do not use a consistent tangent 
matrix and there is no evidence that their methods could be 
extended to large-scale problems.

A more general procedure, called one-stage method, has 
been proposed in Balakrishnan and Ramachandran [7] and 
Wang and Qin [92] and Chen et al. [15]. The idea is to com-
bine linearly two classes of shape functions: the solutions � 
of the homogeneous problem as previously and a family of 
radial functions � to balance the r.h.s. as in Eq. (31):

where, for instance, the radial functions Mk(�) are obtained 
analytically from fk(�) via the analog operator: ∗(Mk) = fk . 
The global problem combines the boundary conditions and 
the interpolation inside the domain as in Eq. (31). In other 
words, the shape functions �(�) and �(�) follow from the 
analog operator while the discretized system follows from 
the consistent tangent operator. This one-stage method is 
generic and it works well, but it is no longer boundary-only 
because Eq. (33) couples the boundary variables � and the 
volume variables � . Therefore it looses the first advantage 
of Trefftz method that is to avoid the domain discretization. 
In the next section, it will be shown that this drawback can 
be bypassed by using the Taylor series method that permits 
to solve the PDE analytically.

3.3 � Generic Procedures to Solve Non‑Linear PDEs 
by Taylor Series

One now describes the method of Taylor series to solve lin-
earized PDEs, as previously presented in Sect. 2.1. More 
precisely, one tries to compute the particular solution and 
the T-complete family of solutions of the associated homo-
geneous problem, these solutions being approximated in the 
sense of Taylor series. The principle is to vanish the trun-
cated Taylor series of the residual. For instance if one comes 
back to the non-linear Poisson Eq. (23) and one linearizes 
it as in Eq. (24), one needs to compute the Taylor series of 
the residual (24), i.e. the Taylor series of the given function 
g(�) , of the Laplacian �u(i) and of products like w = (u(i))

2 , 
vw, (u(i))3 = wu(i) . Each field is represented by a truncated 
series, here written in the 3D case:

The latter representation (34) can be written in a more com-
pact form by using multi-indices m = (m1,m2,m3) as in Nei-
dinger [67]

(33)v(�) = �.�(�) + �.�(�)

(34)

u(x, y, z) =

p∑
m1=0

p−m1∑
m2=0

p−m1−m2∑
m3=0

ū(m1,m2,m3)(x − x0)
m1 (y − y0)

m2 (z − z0)
m3

(35)u(�) =

p∑
|m|=0

ū(m)(� − �
�
)m

where |m| = m1 + m2 + m3.
In the solving method by Taylor series, one vanishes the 

Taylor series of the residual. For instance in the case of the 
equation (24), the Taylor coefficients of the residual of the 
linearized equation can be written as:

The calculations of derivatives, as in the first term �v(m) are 
straightforward:

As for the non-linear terms as (u(i))2 , (u(i))2 × v , (u(i))2 × ui , 
etc, they can be easily deduced from the following product 
formula:

where j ≤ m means “ j1 ≤ m1 and j2 ≤ m2 and j3 ≤ m3 ”. By 
combining with Eqs. (37) and (38), the Eq. (36) yields a 
recurrence formula permitting to compute all the Taylor 
coefficients ū(m1,m2,m3) as a function of the first ones 
ū(m1,m2, 0) and ū(m1,m2, 1) , i.e. of all the bidimensional 
Tay l o r  c o e f f i c i e n t s  o f  (x, y) → u(x, y, z0)  a n d 
(x, y) →

�u

�z
(x, y, z0) . As explained in Sect. 2.1, the polyno-

mial-particular-solution and all the polynomials-Trefftz-
functions can be extracted from the recurrence formula (36). 
Recently the Föppl-Von Karman plate equations have been 
solved in this manner, see [86].

If the PDE involves more intricate functions u → f (u) , the 
implementation of derivation rules like Eq.  (38) can be 
avoided by using the techniques of algorithmic differentia-
tion, cf [29]. According to the method presented in Grie-
wank et al. [30] and Neidinger [67], one can proceed in two 
stages. First the computation of multi-directional derivatives 
is split in a number of derivatives of univariate functions 
t ∈ R → u

�
(t) = u(�0 + t�) , various directions � being cho-

sen. For instance the mixed second derivative �
2u

�x�y
 can be 

obtained from derivatives in the three directions �1 = (1, 0) , 
�2 = (0, 1) and �3 = (1, 1) :

(36)
tv(m) = −�v(m) + 3u(i)

2
v(m) = (m), 0 ≤ |m| ≤ p

(37)

�v(m1,m2,m3) = (m1 + 2)(m1 + 1)v(m1 + 2,m2,m3)

+ (m2 + 2)(m2 + 1)v(m1,m2 + 2,m3)

+ (m3 + 2)(m3 + 1)v(m1,m2,m3 + 2)

(38)

(vw)(m) =
∑
j≤m

v(j)w(m − j)

=

m1∑
j1=0

m2∑
j2=0

m3∑
j3=0

v(j1, j2, j3)w(m1 − j1,m2 − j2,m3 − j3)

(39)

[
d2u

�3

dt2
(t)

]

t=0

=

[
d2u

�1

dt2
(t)

]

t=0

+

[
d2u

�2

dt2
(t)

]

t=0

+ 2

[
�2u

�x�y

]

�=�0
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So we come to calculate the derivatives of univariate func-
tions t → f (u(t)) , where the function u(t) is given by its Tay-
lor series and f(u) is a combination of elementary functions 
(as products, exponential, fraction, etc.) whose derivation 
rules are known, as explained in Table 7. The computation 
rules of some of these elementary functions is reported in 
this table in the case of the function f (u) = u2∕(1 + eu) 
that combines five elementary operations. These elemen-
tary operations can be implemented directly from these 
formulae, but they can also be implemented once at all in 
a small library so that the combination of these elemen-
tary rules will be done automatically via the method of 
operator overloading, cf [29]. For instance, in the case of 
the function of Table 7, the user has only to implement 
u → f (u) = u2∕(1 + eu) . We refer to Yang et al. [99] for more 
details and various applications.

3.4 � A Simple Example Solved by Asymptotic 
Numerical Method

As a first non-linear application, we consider the simple 
boundary-value-problem (26) in the interval [0, 1] and we 
solved it by the Asymptotic Numerical Method. With account 
of the truncated series (27) and (28), this is equivalent to solv-
ing the linear ODEs (29) at each order n. Remark that an equa-
tion is lacking because the expansion parameter a has not yet 
been defined. The most used parameter is a sort of linearized 
arc-length introduced in Cochelin [19] that permits to compute 
responses including extrema of the function a → �(a):

where the bilinear form ⟨., .⟩ can be chosen in vari-
ous ways. Here we defined it from a set of nb points: 
⟨u, v⟩ = ∑nb

i=1
u(xi)v(xi).

The expansions (27) and (28) are reported both in 
the boundary value problem (26) and in the arc-length 
Eq. (40). One deduces a family of equations at any order 

(40)a = ⟨u − u0, u1⟩ + (� − �0)�1

in the expansion with respect to the path parameter ”a”. 
At the first order O(a), the system is

where the unknown is {u1, �1} and the starting point of the 
ANM-step u0(x) is assumed to be known. One can eliminate 
�1 by letting u1(x) = 𝜆1û(x) , and therefore û(x) is the solu-
tion of

Because of the Eq. (41), the first term of the expansion of 
the parameter � is given by

the latter Eq. (43) having two solutions corresponding to 
backward and forward traveling direction. The system at 
order O(an) is

where fn(x) has been defined in Eq. (30) and depends on 
the solutions uk(x), k ≤ n − 1 at the previous orders. Then 
the solution of the linear Eq. (44) can be written in the form 
un(x) = 𝜆nû(x) + unl

n
(x) , where unl

n
(x) is the solution of the 

following boundary value problem:

and, from Eq. (44), the Taylor coefficient �n is given by

Next one has to solve the ODEs (42) and (45) and this is 
done by the Taylor meshless method. For this simple exam-
ple, a single domain will be sufficient.

At this level, one has built a Taylor series with respect 
to the path parameter “a” a → {u(x, a), �(a)} . An important 
advantage of ANM lies in the domain of validity [0, amax] 
that can be defined a posteriori and depends strongly on 

(41)

⎧
⎪⎨⎪⎩

−
d2u1

dx2
+ 2u0u1 = �1

u1(0) = u1(1) = 0

⟨u1, u1⟩ + �2
1
= 1

(42)

{
−
d2û

dx2
+ 2u0û = 1

û(0) = û(1) = 0

(43)𝜆2
1
=

1

1 + ⟨û, û⟩

(44)

⎧⎪⎨⎪⎩

−
d2un

dx2
+ 2u0un + fn(x) = �n

un(0) = un(1) = 0

⟨u1, un⟩ + �1�n = 0

(45)

⎧
⎪⎨⎪⎩
−
d2unl

n

dx2
+ 2u0u

nl
n
= −fn(x)

unl
n
(0) = unl

n
(1) = 0

(46)𝜆n = −
⟨unl

n
, u1⟩

⟨û, u1⟩ + 𝜆1

Table 7   Five successive elementary operations are needed to define 
the function f (u) = u2∕(1 + eu)

On the right column, the generic rules to compute the Taylor coef-
ficients (or the high order derivatives) of each elementary operation

1 V = u.u
V̄(n) =

n∑
k=0

ū(k)ū(n − k)

2 W = eu

W̄(n) =
1

n

n−1∑
k=0

(n − k)w̄(k)ū(n − k)

3 X = 1 X̄(0) = 1, X̄(n) = 0 for n ≥ 1

4 Y = X +W Ȳ(n) = X̄(n) + W̄(n)

5 G = V∕Y
Ḡ(n) = [V̄(n) −

n−1∑
k=0

Ḡ(k)Ȳ(n − k)]∕Ȳ(0)
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the radius of convergence of the series. A simple way to 
define this number amax is to require that the last term of 
the series is small with respect to the first term, see [19]:

where � is a small and given accuracy parameter, typically 
� = 10−6 or � = 10−10 . For the smallest values of � , the num-
ber of steps is a bit larger, but the accuracy is excellent and, 
more importantly, the path-following is very reliable.

The results of the numerical tests for � ∈ [0, 60] are 
presented in Fig. 4. Five ANM-steps were necessary to 
achieve this non-linear computation. Here the step lengths 
obtained by the criterion (47) are more or less smoothly 
distributed in the interval [0, 60], but in other cases, for 
instance cases with bifurcation points as in Tian et al. 
[86], one finds very short steps close to the bifurcation 
and much larger steps elsewhere. On the right of Fig. 4, 
one has checked the accuracy of the solution measured by 
the residual. The accuracy increases very rapidly with the 
degree of the polynomial u(x), from a residual of about 
10−1 for a small degree p = 5 up to a very small residual 
( ∼ 10−8 ) for a degree p = 30 , which is in agreement with 
the p-convergence of TMM observed in Sect. 2 for linear 
problems. Generally within ANM, the accuracy deterio-
rates slowly with the number of steps, which appears in 
Fig. 4 and was often observed with finite elements, see 
[19]. This slight loss of accuracy is easily controlled by 
limiting the step sizes via a relevant choice of the accu-
racy parameter � in the criterion (47).

3.5 � Application to a Large‑Scale Non‑Linear 
Problem

In Sect. 2.3, it was established that large-scale problems 
can be solved by splitting the domain into hundreds sub-
domains, the solution technique having excellent computa-
tional properties: strong reduction of the number of DOFs by 

(47)amax =

{
�
||uN||
||u1||

}1∕(N−1)

comparison with the finite element method, exponential con-
vergence with the degree, moderate computational cost. Is it 
possible to extend these properties in the non-linear range?

Let us consider the non-linear Poisson Eq. (23) that can 
be seen as a non-linear version of the Laplace equation dis-
cussed in Sect. 2.3. The domain is the cuboid �x × �x × 1 , 
the exact solution is uex(x, y, z) = sin(�x) sin(�y)

sinh(
√
2�z)

sinh(
√
2�)

 and 

the right-hand side is g(�) = (uex)
3 . One tries to recover this 

function uex as the solution of a non-linear Dirichlet problem. 
The domain is split into cubic elements of size 1 × 1 × 1 . 
This non-linear problem is solved by the Newton method, 
the inhomogeneous equation obtained at each Newton itera-
tion being solved with the help of a toolbox based on Algo-
rithmic Differentiation, as explained in Sect. 3.3 and in Yang 
et al. [102].

First let us study the convergence with the degree for a 
domain 10 × 10 × 1 split in 100 cubic elements. The accu-
racy of the computation, measured by the maximal error or 
the maximal residual, is presented in Table 8 for the degrees 
p = 5 , 8, 10, 15 and 18. One recovers the same exponential 
convergence as for the linear case, the error varying from 
14% for a degree p = 5 up to 10−8.8 for p = 18 . The same 
trend is found by looking at the residual. In this case, the 
number of Newton iterations is small and, of course, it is 
larger when one wants to obtain a very high accuracy.

Last one looks at the computation time to get an error 
lower than 10−3 , which requires a degree p = 10 . Three 
domains were considered, where the solution with the 
largest domain requires about 4.5 millions of DOFs in an 
equivalent FEM-calculation (see Table 2). The conver-
gence of the non-linear process is obtained after only two 
iterations. The CPU times necessary to achieve these non-
linear calculations is presented in Table 9 and it is com-
pared with an equivalent linear problem (Laplace equa-
tion as in Sect. 2.3). Thus the evolution of this non-linear 
computation time is quite similar to the linear case, with 
an additional cost of about 20–30% per iteration, which 
is probably due to the use of algorithmic differentiation.

Fig. 4   Solution of the ODE (26) 
by coupling five ANM-steps 
and a TMM-discretization. On 
the left, solution in the center of 
the interval versus the param-
eter � . On the right, evolution 
of the residual according to the 
degree p 
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Thus one can solve very efficiently non-linear Partial 
Differential Equations by combining linearization tech-
niques as Newton algorithm and Taylor series to compute 
a Trefftz family of quasi-exact solutions of the linearized 
system. In the next section, an application to large elastic 
deformations is presented.

3.6 � Application to Large Strain of an Hyperelastic 
Body

After the two academic models of the Sects. 3.4 and 3.5, 
one applies the Taylor–Trefftz method to large strain elastic-
ity, also called hyperelasticity, that has a very large field of 
applications to rubber, polymers or biological materials, see 
for example [68] and [37]. The simplest hyperelastic model 
is the so-called Saint Venant–Kirchhoff material, whose 

unknowns are the deformed position � = [X, Y] → �(�) , 
the Lagrange strain � and the Piola–Kirchhoff stress tensors 
� and � . The governing equations are as follows:

With this Saint Venant-Kirchhoff material, the stress-strain 
law � → � is linear and isotropic, but there are many other 
constitutive laws in the literature, see [68] and [37]. The 
techniques of algorithmic differentiation, as sketched in 
Sect. 3.3 and in Yang et al. [102], could permit to compute 
easily the derivatives of these constitutive laws and thereby 
to solve the system (48) by Taylor series.

A benchmark was built, where the system (48) has an 
exact solution as follows:

where the exact solution corresponds to the deformed shape 
pictured in Fig. 5: for instance the point � = (1, 0) moves to 
� = (2, 0) so that the length of the bottom side doubles. Here 
a Dirichlet boundary value problem is solved.

Thus this benchmark involves large deformations and it 
is no longer possible to solve it by the pure Newton algo-
rithm that diverges. Hence we switch to the Newton–Raph-
son method that permits to reach the final state with a small 
number of steps (six to eight) and two to five iterations per 
step, the number of iterations depending on the required 
accuracy as mentioned in Table 8. The required discretiza-
tion is quite simple, a single Taylor series being sufficient 
to recover accurately the exact solution. A curve “accuracy 
versus degree” is plotted in Fig. 5: once again, one converges 
exponentially with the degree, up to a very high accuracy 
( 10−6 ) for a degree p = 20 , but a very small number of DOFs 
( 4p + 2 = 82).

This establishes that the Trefftz–Taylor discretization 
method is able to solve non-linear PDEs of practical interest, 
in cases where the simplest non-linear algorithms (Newton, 

(48)

⎧⎪⎨⎪⎩

2� =t
��.�� − �

� = �Tr(�)� + 2��

� = ��.�

div� + �(�) = �

(49)�
��

=

(
X + Xe−5Y

Y + Ye−5Y

)

Table 8   The p-convergence of TMM for the non-linear Poisson 
Eq. (23) in the domain 10 × 10 × 1 cut in 100 subdomains. From Yang 
et al. [102]

Degree of the polynomials p = 5 p = 8 p = 10 p = 15 p = 18

Number of Newton itera-
tions

1 2 2 3 3

log10(max error) −0.85 −2.07 −3.16 −6.55 −8.83
log10(max residual) −1.1 −1.79 −2.74 −4.88 −6.76

Table 9   Computation time of TMM for the non-linear Poisson 
Eq. (23) with a degree p = 10

Three sizes of domains are considered. The linear case (Laplace 
equation) is presented for the sake of comparison

Domain Log10 (Error) CPU time CPU time 
per itera-
tion

10 × 10 × 1 Non-linear −3.12 11.7 s 5.85 s
10 × 10 × 1 Linear −3.25 4.5 s 4.5 s
20 × 20 × 1 Non-linear −3.12 55 s 27.5 s
20 × 20 × 1 Linear −3.25 22.6 s 22.6 s
30 × 30 × 1 Non-linear −3.12 156 s 78 s
30 × 30 × 1 Linear −3.25 63.7 s 63.7 s

Fig. 5   A 2D hyperelastic bench-
mark. On the left: the rectangle 
[0, 1] × [0, 0, 5] is deformed, 
the length of the bottom side 
being doubled. On the right, 
the p-convergence curve ”error 
versus degree”
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Picard) fail. Of course this work has to be extended for 3D 
domains, alternative constitutive laws and for benchmarks 
needing much more unknowns.

4 � Conclusion

Trefftz methods are discretization techniques for PDEs 
permitting very important reductions of the number of 
unknowns, but they remain unrecognized because of two 
difficulties that are discussed in this paper. First they are 
unable to solve large-scale problems due to a lack of control 
of matrix ill-conditioning. Second there are no relevant algo-
rithms to solve non-linear engineering problems, especially 
algorithms based on the consistent tangent matrix.

This paper clearly established that most of the problems 
due to ill-conditioning may be bypassed by a suitable split-
ting into subdomains. Indeed in the case of shape functions 
computed by Taylor series, the ill-conditioning is mainly 
related to the degree that must be limited at a relatively large 
level ( p ≤ 15 ) or ( p ≤ 25 ), but such a limitation was never 
observed for the number of subdomains that can be chosen 
very large. That is why we were able to solve problems that 
need several millions of DOFs in an equivalent finite ele-
ment calculation. Similar performances had been obtained 
with wave-based functions and likely comparable results 
could be obtained with alternative shape functions as the 
fundamental solutions.

The treatment of non-linear PDEs has also been dis-
cussed, mainly within the framework of the Taylor–Trefftz 
method, where the shape functions are polynomials built by 
vanishing the Taylor series of the residual: that is why this 
method is generic and can be applied to all the equations 
such that these derivatives of the residual can be computed. 
Three types of applications were presented: a simple dif-
ferential equation linearized by the Asymptotic Numerical 
Method, a very large-scale problem in the case of a non-
linear Poisson equation and a benchmark with large elas-
tic deformations. There is no reason why the scope of the 
method could not be extended to other non-linear PDEs, for 
instance, to fluid flows, to hyperelasticity or to unilateral 
contact, etc.

In the case of polynomials shape functions, a limitation 
could come from the difficulty to account for singular solu-
tions, but it seems that there are methods to remove it, see 
[100].
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