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Abstract
Scene texts contain rich semantic information which may be used in many vision-based applications, and consequently 
detecting and recognizing scene texts have received increasing attention in recent years. In this paper, we first introduce the 
history and progress of scene text detection and recognition, and classify conventional methods in detail and point out their 
advantages as well as disadvantages. After that, we study these methods and illustrate the corresponding key issues and 
techniques, including loss function, multi-orientation, language model and sequence labeling. Finally, we describe commonly 
used benchmark datasets and evaluation protocols, based on which the performance of representative scene text detection 
and recognition methods are analyzed and compared.

1  Introduction

Texts in scene image contain high-level important semantic 
information, which is help to analyzing and understanding 
the corresponding environment. With the rapid populariza-
tion of smart phones and mobile computing devices, images 
with text data are acquired more conveniently and efficiently. 
Therefore, scene text recognition (STR) has become active 
research topic in computer vision, and its related applica-
tions are including image retrieval, automatic navigation 
and human–computer interaction, etc. [1–3]. Moreover, the 
International Conference on Document Analysis and Recog-
nition (ICDAR) initiates “Robust Reading” competition in 
2003, and since then numerous techniques and methods have 
been proposed to greatly advance the development of STR.

Text detection and recognition are two fundamental tasks 
for STR. Text detection aims to determine the position of 
text from input image, and the position is often represented 
by a bounding box. Generally, the shape of target bound-
ing box may be rectangle, oriented rectangle or quadrilat-
eral. More precisely, parameters (x, y,w, h) , (x, y,w, h, �) 
and (x1, y1, x2, y2, x3, y3, x4, y4) can be used to denotes hori-
zontal, rotated and arbitrary quadrilateral bounding box 

respectively. Text recognition aims to convert image regions 
containing text into machine-readable strings. Different from 
the general image classification, the dimension of output 
sequence for text recognition is not fixed. In most cases, text 
detection is a preliminary step of text recognition. Recently, 
many researchers begin to integrate the detection and rec-
ognition tasks into an end-to-end text recognition system. 
Considering a small lexicon, word spotting offers an effec-
tive strategy for realizing end-to-end recognition [4].

The target of traditional optical character recognition 
(OCR) is mainly document images acquired by scanner 
[5]. Since even old scanners have enough resolution for text 
image acquisition, the recognition rates of many OCR meth-
ods can easily reach 99%. Compared to traditional OCR, 
however, STR is more challenging, which are discussed as 
follows:

(1)	 Texts are often scattered in the scene image, and 
there is no prior information about their location. For 
scanned documents, the number of text lines, line spac-
ing and even the number of words are known. For scene 
texts, however, we cannot directly apply segmentation 
methods for document images since there is no such 
formatting rule.

(2)	 Scene texts often have variety of sizes, fonts and orien-
tations. Targets in scene image may contain decorated 
or specially-designed characters, such as presentation 
slides on screen, calligraphic slogans on wall, and mes-
sages on digital signboard. Such texts with multifari-
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ous appearance are difficultly recognized by traditional 
OCR engines.

(3)	 The quality of scene image acquired by digital devices 
is potentially poor. At present, scene text covers wide 
range of applications linked to wearable cameras or 
massive urban captures which are difficult or undesir-
able to control. Therefore, characters and their back-
ground often have very low contrast or perspective dis-
tortion, which results in difficulty for localization and 
recognition. Figure 1 shows some examples of scene 
text images that are not easily detected and recognized.

(4)	 There are many character-like patterns (non-character) 
in scene image. Since the background of scene image 
is often complex, there are many ambiguous objects 
such as leaves, windows or icons that are much like 
characters or words. Moreover, sometimes scene texts 
connect to other objects, which easily results in confus-
ing patterns.

In this paper, we mainly provide a comprehensive review 
about scene text detection and recognition research over the 
past decade, and highlight the key techniques. Moreover, we 
compare state-of-the-art methods and report the correspond-
ing performance on several standard benchmark datasets.

2 � Scene Text Detection

As mentioned above, scene text detection is a challenging 
problem. Similar to majority of computer vision tasks, most 
previous text detection methods are based on handcraft fea-
tures as well as prior knowledge, and since around 2015 
deep learning based methods emerge and gradually become 
the mainstream.

2.1 � Hand‑Crafted Feature Extraction Stage

Traditional text detectors focus on developing hand-crafted 
low-level features to discriminate text and non-text compo-
nents in scene image, which can be mainly classified into 
two categories, i.e., sliding window (SW) and connected 
component (CC) based methods.

2.1.1 � SW Methods

SW methods first detect text information by moving a multi-
scale sub-window through all possible locations in an image, 
and then use a pre-trained classifier to identify whether text 
is contained within the sub-window [22].

Wang et al. [6] provided an end-to-end pipeline for STR, 
where they perform multi-scale character detection via SW 
classification. Features are first extracted by chosen entries 
in a HOG descriptor computed at the window location. Then 
Random Ferns is applied to evaluate the likelihood of char-
acter in the window location. Pan et al. [7] estimated the 
text existing confidence and scale information via SW. After 
that, a conditional random field (CRF) model is proposed to 
filter out the non-text components. Similarly, Mishra et al. 
[8] used a standard SW method with character aspect ratio 
prior to detect potential locations of characters in scene 
image. Wang et al. [9] applied a convolutional neural net-
work (CNN) model with SW scheme to obtain candidate 
lines of text in given image, and thus estimate text locations. 
Jaderberg et al. [10] also applied CNN in SW fashion to 
compute text saliency map, which stays the same resolution 
as the original image through zero-padding. After that word 
bounding boxes can be generated based on these saliency 
maps.

Fig. 1   Examples of scene text images
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The main difficulties for this group of methods lie in 
designing discriminative features to train a powerful clas-
sifier, and reasonably managing the number of scanning 
windows to reduce computation complexity.

2.1.2 � CC Methods

CC methods first extract candidate components from the 
image, and then filter out non-text components using manu-
ally designed rules or automatically trained classifiers [23]. 
Compared to SW methods, such methods are more efficient 
and robust. There are two representative methods, i.e., stroke 
width transform (SWT) and maximally stable extremal 
regions (MSER).

Epshtein et al. [11] presented SWT operator to compute 
the width of the most likely stroke for image pixel. Canny 
edge detector is first used to find edges in image. After all 
the edge pixels in the opposite gradient direction being 
found, strokes are considered effective and these pixels are 
grouped into character candidates. Neumann et al. [12] gave 
a description for character detection problem, i.e., finding 
all contiguous regions in image such that probability that 
the sequence represents text has a local maximum. Based 
on the description, MSER classifier is trained to find region 
containing characters. Finally, post-processing and connec-
tion rules are applied to combine the candidate characters 
into text line. MSER method needs less priori knowledge 
and is more robust to language and oriented text. In order to 
address problems on blurry images or characters with low 
contrast, the same authors implemented character detection 
in all extremal regions (ERs) instead of just in MSERs [13, 
14]. They use incrementally computable descriptors as fea-
tures to train a sequential classifier, which can reduce the 
high false positive rate in real-time. Yin et al. [15] proposed 
a fast MSERs pruning algorithm, which can significantly 
reduce the number of character candidates to be processed. 
Character candidates are clustered into text candidates by 
the single-link clustering algorithm, whose distance weights 
and clustering threshold can be automatically learnt. Such 
new MSER based method is more robust and efficient for 
text detection.

Generally speaking, CC methods easily bring with 
numerous non-text components. Therefore, correctly filter-
ing out the false positives is critical to the success of this 
group of methods.

2.1.3 � Hybrid Methods

In order to more efficiently handle scene text with cluttered 
background information, several hybrid methods are pro-
posed, which make use of the advantages of different meth-
ods and combine with specific schemes.

Huang et al. [16] applied CNN to learn high-level fea-
tures from the MSREs components in image. These compo-
nents show high discriminant ability and strong robustness 
against complicated background ones. Moreover, SW model 
and non-maximal suppression (NMS) are incorporated in 
the CNN classifier so as to handle the problem of multiple 
characters connection. Gomez et al. [17] used the MSER 
algorithm to firstly obtain the initial segmentation of image. 
After that they propose a text specific selective search strat-
egy, which can group the initial regions by agglomerative 
clustering in a hierarchy where each node defines a possible 
word hypothesis. Finally a ranked list of proposals prioritiz-
ing the best hypotheses is provided for text detection. Busta 
et al. [18] proposed a stroke detector, which first finds stroke 
key-points and then uses them to obtain stroke segmentations 
for scene text. They show that compared to the traditional 
MSER method, using stroke specific key-points could detect 
more characters with less region segmentations. Cho et al. 
[20] presented Canny text detector using multi-stage algo-
rithm. ER method is first utilized to extract character candi-
dates as many as possible, and the overlapped candidates are 
eliminated by NMS. After that, the candidates are classified 
as strong text, weak text or non-text with double threshold. 
Besides strong text, candidates with low confidence, i.e. 
weak text, are selected by hysteresis. Finally, the surviving 
text candidates are grouped to compose sentence. Fabrizio 
et al. [21] presented a hybrid text detector, which adopts CC 
method to generate text candidates and also applies texture 
analysis to compose text string or discard false positives. 
CCs in image can be first obtained by employing the toggle 
mapping morphological segmentation (TMMS) algorithm. 
A shape descriptor based on fast wavelet decomposition is 
used to classify each CC as character or non- character. After 
that, a series of texture features are used to train a support 
vector machine (SVM) for post-processing. He et al. [22] 
developed contrast-enhancement maximally stable extre-
mal regions (CE-MSERs) detector, which extends the con-
ventional MSERs by enhancing intensity contrast between 
text patterns and background. Furthermore, they trained a 
text-attentional CNN that could extract high-level features 
including text region mask, character label, and binary text/
non-text information. The two schemes are incorporated to 
form an effective text detection model. Zhang et al. [19] pro-
posed a text detector which exploits the symmetry property 
of character groups. Different from traditional methods that 
mainly exploit the properties of single characters or strokes, 
this new detector could utilize context information from 
scene image to implement text lines extraction.

2.2 � Deep learning Era

Recently, deep learning has been widely used in semantic 
segmentation and general object detection, and achieved 
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great success. Accordingly, related methods are also being 
adopted in the field of text detection. In general, semantic 
segmentation based detectors first extract text blocks from 
the segmentation map generated by fully convolutional net-
work (FCN). After that, bounding boxes of text are obtained 
by complex post-processing. General object detectors, how-
ever, predict candidate bounding boxes directly by regarding 
texts as objects. Different from common objects, texts have 
clear definition of orientation, which should be predicted 
in addition to the axis-aligned bounding box information.

2.2.1 � Semantic Segmentation Based Methods

Yao et al. [24] take scene text detection as a semantic seg-
mentation problem. They use a FCN model based on holis-
tically-nested edge detection (HED) to produce global maps, 
including information of text region, individual characters 
and their relationship. And the proposed algorithm could 
detect multi-oriented and curved texts in scene image. He 
et al. [33] presented the cascaded convolutional text net-
works (CCTN), which uses two networks to implement 
coarse-to-fine segmentation for scene image. Note that 
the coarse network outputs a per-pixel heat-map indicat-
ing the location and probability of text instance, and the 
fine network outputs two heat-maps for final text detection. 
Zhang et al. [25] also implement text detection with coarse-
to-fine procedure. They first use a FCN (called Text-Block 
FCN) to predict the salient map of text blocks. After that 
MSER method is applied to extract multi-oriented text 
line candidates. Finally, they train another smaller FCN 
(called Character-Centroid FCN) to provide the character 
centroid information, based on which false text line can-
didates can be eliminated. Qin et al. [26] proposed a text 
detector based on the cascade of two CNNs. Text regions 
of interest are first produced by a FCN and then resized to 
a square shape with fixed size. The next stage is the word 
detection procedure, i.e., training a YOLO-like network to 
generate oriented rectangular bounding boxes for all words. 
Finally, a NMS stage is implemented to handle overlapping 
bounding boxes. He et al. [40] proposed a FCN architecture 
for multi-oriented scene text detection with two tasks. The 
classification task implements down-sampled segmentation 
between text and non-text for input image, and the regres-
sion task determines the vertex coordinates of quadrilateral 
text boundaries through direct regression. Zhou et al. [44] 
also proposed a FCN based model for scene text detection. 
Multiple channels of pixel-level text score map and geom-
etry could be generated in this model, which is flexible to 
produce either word level or line level predictions. Further-
more, a locality aware NMS with low time complexity is 
proposed for post-processing. Dai et al. [27] presented a 
detector based on fused text segmentation networks. Fea-
tures of each image are first extracted through a resnet-101 

backbone, and then multi-level feature maps are combined 
and fed to the region proposed network (RPN) for text region 
of interest (ROI) generation. The whole architecture could 
implement text detection and segmentation simultaneously 
and provide predictions both in the pixel and word level. 
Deng et al. [28] proposed a scene text detector (called Pix-
elLink) based on instance segmentation. The Single-Shot 
Detector (SSD) [29] like architecture is used to extract fea-
tures and perform text/non-text prediction as well as link 
prediction. The predicted positive pixels are joined together 
into text instances by predicted positive links. Finally, text 
bounding boxes are generated directly from the segmenta-
tion result without location regression. Li et al. [30] pro-
posed the progressive scale expansion network (PSENet) 
for segmentation-based text detection. In order to handle the 
closely adjacent text instances, a progressive scale expan-
sion algorithm is presented. Inspired by the idea of breadth 
first-search, the expansion starts from the pixels of multiple 
kernels and iteratively merges the adjacent text pixels until 
the largest kernels are explored. Yang et al. [31] proposed an 
IncepText architecture based on instance-aware segmenta-
tion, which could deal with scene texts with large variance 
of scale, aspect ratio, and orientation. ResNet-50 module is 
first used for feature extraction, and Inception-Text module 
is appended after feature fusion. Furthermore, deformable 
PSROI pooling [32] is applied to detect multi-oriented text.

This group of methods is suitable for handling multi-
oriented text in real-world scene image. Once text instances 
in image are very close to each other, however, simply 
using text/non-text semantic segmentation is hard to sepa-
rate them. Therefore, post-processing is often inevitable to 
improve the performance.

2.2.2 � General Object Detection Based Methods

Zhong et al. [34] developed a unified framework (called 
DeepText) for text detection. An inception-RPN is pro-
posed in the framework, which could achieve a high recall 
with only hundreds of word region proposals via apply-
ing multi-scale sliding windows over the feature maps and 
designing a set of text characteristic prior bounding boxes 
with each sliding position. Gupta et al. [35] presented an 
efficient engine that could generate synthetic scene images 
with text annotations, and all synthetic images are used to 
train a fully-convolutional regression network (FCRN) for 
text detection. Since an extreme variant of Hough voting is 
adopted in FCRN, all individual predictions could be aggre-
gated across the input image. Tian et al. [36] proposed a con-
nectionist text proposal network (CTPN) to localize scene 
text. In CTPN, VGG16 backbone is first used for feature 
extraction, and then a vertical anchor mechanism is devel-
oped to predict text locations in a fine scale. Finally, a Bi-
directional long short term memory (BLSTM) is applied to 
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connect the fine scale sequential text proposals. Liao et al. 
[37] presented an end-to-end trainable scene text detector 
(called TextBoxes), which is inspired by SSD. Since SSD 
is general object detector, it cannot be directly applied for 
text detection. To address the problem, text-box layers are 
included in the architecture of TextBoxes, which could 
detect the words with extreme aspect ratios by designing 
long default boxes and irregular 1*5 convolutional filters. 
Ma et al. [38] proposed a rotation region proposal networks 
(RRPN), which is built upon the Faster-RCNN [39] archi-
tecture. Since the ground truth (GT) of a text region is rep-
resented with 5 tuples (x, y,w, h, �) , where � is the angle 
parameter, RRPN could generate inclined proposals with 
text orientation information. Jiang et al. [41] also proposed 
a Faster-RCNN based architecture, called rotational region 
CNN (R2CNN), for arbitrary-oriented text detection. They 
point out that using an angle parameter could make the net-
work hard to detect vertical texts. Therefore, the coordinates 
of the first two vertices in clockwise and the height of the 
bounding box are used to represent an inclined rectangle in 
R2CNN. Liu et al. [42] designed a small set of quadrilateral 
sliding windows to roughly recall text. In training phase, a 
shared Monte-Carlo method is proposed to compute over-
lapping area between GT and sliding window. The sliding 
window beyond the given overlapping threshold is consid-
ered as positive and used to finely localize the text. Shi et al. 
[43] proposed a novel perspective, i.e., texts are composed 
of segments and links. A segment is a part of a word or text 
line, and a link connects two adjacent segments. Both seg-
ments and links are detected by a SSD like network, and then 
they are taken as nodes and edges of a graph respectively. 
Finally, a depth-first search (DFS) algorithm is performed 
on the graph to find the connected components (word or text 
line). Liao et al. [45] presented a rotation-sensitive regres-
sion detector (RRD) based on SSD, which has two network 
branches. The regression branch extracts rotation-sensitive 
features by rotating the convolutional filters, while the clas-
sification branch extracts rotation-invariant features by pool-
ing the rotation-sensitive features.

This kind of detectors is often trained by bounding-box 
annotations just like general object detection methods do, 
which is difficult to learn fine information of text. While 
handling small-scale texts, only using single shot model 
may result in accuracy loss. Moreover, it requires designing 
anchors or default boxes with various scales, aspect ratios 
and orientations in advance.

2.2.3 � Hybrid Methods

Recently, some researchers try to combine the two kinds of 
above methods so as to correctly detect texts under more 
complex situations. He et al. [46] proposed a text atten-
tion model, which encodes strong text-specific information 

using a pixel-wise text mask. Such model could effectively 
suppress background interference in the convolutional fea-
tures. Furthermore, multi-scale inception features are aggre-
gated to encode rich local and context information for text 
prediction. The whole detector works in a coarse-to-fine 
manner. Zhong et al. [47] presented an anchor-free region 
proposal network (AF-RPN), which could generate high-
quality inclined text proposals directly without designing 
complicated hand-crafted anchors. In AF-RPN, three detec-
tion modules are attached on different pyramid levels for 
detecting small, medium and large text instances. Lyu et al. 
[48] proposed a hybrid network for multi-oriented scene text 
detection. The corner points of text region are first detected, 
and at the same time position sensitive segmentation maps 
are predicted. After that, candidate bounding boxes are gen-
erated by sampling and grouping corner points, and finally 
suppressed by using NMS. He et al. [49] presented an end-
to-end text spotter, which is based on the idea of mask 
R-CNN [50]. Especially, a text-alignment layer is designed 
by introducing a grid sampling scheme. It aims to compute 
fixed length convolutional features that precisely align to a 
detected text region with arbitrary orientation. The bounding 
box and segmentation mask of text could be jointly predicted 
in the multi-task model.

3 � Discussion

In general, traditional hand-crafted feature extraction based 
methods consist of several steps, which make the detection 
system complicated and inefficient, and easily result in error 
accumulation. Moreover, they need too many manual optimi-
zations of classification rules. Deep learning based methods, 
however, inherit the merits of machine learning. As long as 
having sufficient number of training samples, they could out-
distance the traditional methods in terms of both accuracy 
and efficiency. Figure 2 shows the focused scene text detec-
tion results on standard datasets (including ICDAR 2003, 
ICDAR 2005, ICDAR 2011 and ICDAR 2013) in terms of 
F-measure reported in literatures mentioned in Sects. 2.1 
and 2.2. The blue and red bars represent traditional and 
deep learning based methods respectively. Obviously, deep 
learning based methods achieve overwhelming performance, 
which explains why they become the mainstream recently.

4 � Scene Text Recognition

Similar to text detection, scene text recognition also experi-
ences the transition from traditional means using handcrafted 
features to deep learning era. In this section, we roughly 
classify current mainstream text recognition methods into 
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three categories: character classification based, word clas-
sification based and sequence based methods.

4.1 � Character Classification Based Methods

Bissacco et al. [51] use a deep neural network that is trained 
on HOG features for character classification. In order to 
enhance the recognition performance, a two-level language 
model is adopted: a compact character-level n-gram model 
is held in RAM and a much larger distributed word-level 
n-gram model is accessed over the network. Jaderberg et al. 
[57] proposed a CNN based architecture employing a con-
ditional random field (CRF) graphical model. In this model, 
unary terms are provided by a CNN that predicts charac-
ters at each position of the output, and higher order terms 
are provided by another CNN that detects the presence of 
n-grams. Lee et al. [60] presented recursive recurrent neural 
networks (RNNs) with attention model for text recognition. 
The RNNs could be applied for learning character-level 
language model without using n-grams. The soft-attention 
mechanism allows the model to select features flexibly for 
end-to-end training.

This group of methods finds individual characters in 
scene image and consequently recognizes them one by one. 
Complex heuristic rules or language models are often indis-
pensable to integrate characters into words due to the occur-
rences of missing or superfluous characters.

4.2 � Word Classification Based Methods

Jaderberg et al. [52] proposed a synthetic data engine, which 
could generate plenty of cropped word images with different 
styles. A CNN framework is trained using synthetic data 
without handcrafted labeling and achieves high performance 
for word recognition. Shi et al. [56] presented a variant of 
CNN for script identification under multilingual scenarios. 
In this network, feature maps that have a fixed number 
of rows but a variable number of columns are input to a 
spatially-sensitive pooling (SSP) layer, which could handle 

images with arbitrary sizes. Furthermore, a multi-stage pool-
ing scheme is adopted so as to utilize both higher and lower 
level features for recognition. Kang et al. [63] designed a 
context-aware convolutional recurrent network for word rec-
ognition. Besides a lexicon dictionary, the metadata of the 
input image, such as title, tags, and comments, are used as 
a context prior to enhance the recognition rate. Yang et al. 
[65] proposed an adaptive ensemble of deep neural networks 
(AdaDNNs), which could select and combine network com-
ponents at different iterations within a Bayesian-based for-
mulation framework for text recognition.

Word recognition is actually a multi-class classification 
task with a large number of class labels (e.g. the number 
of English words is about 90,000). The strong expression 
and computation ability of CNN make this task possible. 
However, the deformation of long word image may affect 
the recognition rate. Furthermore, this kind of methods often 
relies on a pre-defined dictionary.

4.3 � Sequence Based Methods

Shi et al. [55] proposed a convolutional recurrent neural 
network (CRNN) for image-based sequence recognition. A 
standard CNN model is first used to extract a sequential fea-
ture representation from input image. Then a bidirectional 
long-short term memory (LSTM) network is connected with 
the top convolutional layers to predict a label distribution for 
each frame of feature sequence. Finally, the connectionist 
temporal classification (CTC) is applied to find the label 
sequence with the highest probability conditioned on the 
per-frame predictions. He et al. [58] also developed a deep-
text recurrent network (DTRN) for scene text recognition. 
Similar to [55], a MaxOut CNN is responsible for encod-
ing input image into an ordered sequence, and a LSTM is 
employed to decode the CNN sequence into a word string. 
In order to deal with perspective distortion text and curved 
text, Shi et al. [59] proposed a recognizer with automatic 
rectification. The input image is first employed thin-plate-
spline (TPS) transformation, and then the rectified image is 

Fig. 2   Performance comparison of representative scene text detectors
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fed to a sequence recognition network (SRN) to obtain the 
final result. The methods mentioned above are mainly under 
an encoder-decoder framework, and use a frame-wise loss 
to optimize the model. However, the misalignment between 
the ground truth (GT) sequence and the output probability 
distribution (PD) sequence may mislead the training [68]. In 
[68], an edit probability (EP) method is proposed for accu-
rate text recognition. EP measures the probability of a text 
string conditioned on the input image under parameters for 
training attention model, meanwhile considering the pos-
sible occurrences of missing/superfluous characters.

The advantages and disadvantages of the three kinds of 
methods for text recognition are summarized in Table 1.

4.4 � Hybrid Methods

In this subsection, we also review some hybrid text recogni-
tion methods, which mainly rely on intricate graphical model 
or hand-crafted feature designing, and do not strictly fall into 
the above categories. Shi et al. [71] use the tree-structured 
model to generate detection windows that contain candidate 
characters. Then a CRF model is built on the detection win-
dows to decide character locations. Finally, word recogni-
tion is implemented according to a cost function defined by 
character detection scores, spatial constraints and linguistic 
knowledge. Yao et al. [72] represent each candidate char-
acter by a set of strokelets that could capture the essential 
substructures of character at multi-scales. Coupled with 
HOG descriptor, they could train a random forest classifier 
with high performance and efficiency. Almazan et al. [54] 
proposed a word recognition method based on embedded 
attributes. On one hand, a pyramidal histogram of charac-
ters (PHOC) representation for each word is defined, which 
embeds label strings into a d-dimensional space. On the 
other hand, word image is represented using Fisher vector. 
Finally, the attributes with PHOCs could be learned by train-
ing a SVM. Lou et al. [62] represent word recognition model 
as a high-order factor graph, where hypothetical neighbor-
ing candidate characters are constructed edges of the graph 
and taken as random variables. Four factors, i.e., transition, 
smoothness, consistency, and singleton, are defined and 
applied for word parsing.

4.5 � End‑to‑end Text Spotting

Text detection and recognition are usually combined to 
implement text spotting, rather than being treated as sepa-
rate tasks. In a unified system, the recognizer not only pro-
duces recognition outputs but also regularizes text detec-
tion with its semantic-level awareness [70]. Wang et al. [9] 
applied CNN to implement end-to-end text recognition. In 
this model, NMS is used to remove overlapping candidates 
and obtain the set of line-level bounding boxes for texts. 
And then beam search technique is used to find the best seg-
mentation of words. The proposed method achieves state-of-
the art results under tasks of character recognition, lexicon 
driven cropped word recognition and end-to-end recogni-
tion. Yao et al. [53] presented a unified framework, where 
text detection and recognition share both features and clas-
sification. Furthermore, the dictionary is generated accord-
ing to Bing search, whose error correction scheme can be 
used to enhance the recognition rate. Jaderberg et al. [61] 
also proposed t an end-to-end text spotting system. Word 
level bounding box proposals are first obtained with high 
recall, and then filtered by a random forest classifier for 
improving precision. Two CNNs are used for bounding box 
regression and text recognition respectively. Moysset et al. 
[64] designed a CRNN system, in which the convolutional 
layers share parameters over the different regressors to find 
text lines locally, and a 2D-LSTM model is trained with 
CTC alignment to recognize texts. Gomez et al. [67] pre-
sented a text-specific proposal method, which first extracts 
connected components from input image, and then groups 
them by their similarity via single linkage clustering (SLC). 
Furthermore, a ranking strategy is designed to prioritize the 
best word proposals. Finally, an end-to-end word spotting 
system can be built by incorporating the word recognizers 
provided in [61]. Liao et al. [70] proposed a novel text detec-
tor called TextBoxes ++. TextBoxes ++ is an extension of 
[37], which could efficiently detect arbitrary-oriented scene 
text. Combined with a text recognizer, TextBoxes ++ can 
also be used for end-to-end text spotting.

More recently, researchers begin to design unified end-
to-end trainable deep learning network (DNN) that could 
predict both text regions and text labels in a single forward 
pass. Bartz et al. [66] presented a single DNN that could 

Table 1   Comparison of different kinds of text recognition methods

Method Strength Weakness

Character classification based Be insensitive to font variation, noise, blur and orientation Rely on complex heuristic rules or language models
Word classification based Can effectively recognize words in scene image with a 

large number of class labels
Rely on a lexicon and hardly to handle long word 

with deformation
Sequence based Do not rely on the precision of text segmentation, and can 

process arbitrary strings
Need to design proper objective function to opti-

mize the network parameters
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train text detector and recognizer from input image. Moreo-
ver, a recurrent spatial transformer is applied as attention 
mechanism, which makes the localization of the text be 
learned by the network itself. Liu et al. [69] adopted FCN 
to find bounding boxes of text, based on which a RoIRotate 
operator is introduced to extract proper features from shared 
feature maps. Finally, the features of text proposal are fed to 
RNN and CTC for text recognition.

5 � Key Techniques for Scene Text Detection 
and Recognition

In this section, state-of-the-art techniques used in current 
scene text detection and recognition methods are reviewed. 
As mentioned in Sect. 2, deep learning based methods 
have become the mainstream for text detection. Therefore, 
Sects. 4.1 to 4.3 analyze the relevant schemes and issues, 
including network architecture, loss function and multi-ori-
entation detection. With text recognition, techniques related 
to language model and sequence labeling are discussed in 
Sects. 4.4 and 4.5.

5.1 � Network Architecture

5.1.1 � Fully Convolutional Network (FCN)

FCN [73] could yield hierarchies of features for effective 
semantic segmentation (see Fig. 3). Since the merits of 
multi-scale learning and prediction conform to the nature 
of scene text, many methods [24–26, 33, 40] adopt FCN as 
their backbone for text detection. Generally, a pixel-wise 
text/non-text salient map is first obtained by using FCN, 
which produces pixel-wise labeling or labeled region con-
taining texts. After that, candidate bounding boxes of text 
could be generated. By applying skip architecture of FCN, 
receptive fields with different sizes could be helpful to 
encode both local features and global context of text.

5.1.2 � Resnet

Deeper neural networks are more difficult to train, since the 
accuracy may get saturated and degrade rapidly. To address 
the degradation problem, He et al. [74] proposed a deep 
residual learning framework (called Resnet), whose building 
block is defined as y = F(X, {Wi}) + x (see Fig. 4), where x 
and y are the input and output vectors of the layers consid-
ered, and F(X, {Wi}) is the residual mapping to be learned. 
Some text detectors [27, 31] use Resnet 50/101 as backbone 
for feature extraction.

5.1.3 � Regions with CNN (R‑CNN)

Fast R-CNN [39] is an end-to-end architecture for object 
detection. In this architecture, an input image and multiple 
regions of interest (RoIs) are input into a FCN, and softmax 
probabilities and per-class bounding-box regression offsets 
are the outputs (see Fig. 5a). Faster R-CNN [76] makes 
improvement on Fast R-CNN, which aims to reduce the 
time spending on region proposals generation (see Fig. 5b). 
A region proposal network (RPN) that shares full-image 
convolutional features with the detection network is pro-
posed, and the RPN and Fast R-CNN are finally merged 
into a single network by sharing their convolutional fea-
tures. By incorporating additional components into these 

Fig. 3   Architecture of FCN [73]

Fig. 4   A building block for residual learning [74]
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architectures, several text detection methods [34, 38, 41, 49] 
with computational efficiency are proposed.

5.1.4 � You only Look Once (YOLO)

YOLO [75] is a single convolutional network that simultane-
ously predicts multiple bounding boxes and class probabili-
ties for those boxes (see Fig. 6). Since YOLO takes object 
detection as a single regression problem, it extremely fast 
comparing with R-CNN based system. However, it may 
achieve poor precision while localizing objects with small 
size. Therefore, it cannot be directly applied for text detec-
tion. Inspired by YOLO, Gupta et al. [35] proposed a fully-
convolutional regression network (FCRN), which could 
effectively and efficiently detect texts in scene image.

5.1.5 � Single Shot Detector (SSD)

SSD [29] defines a set of default boxes for the output space 
of bounding boxes, and it simultaneously predicts the 
shape offsets and the confidences for all object categories 
(see Fig. 7). In SSD, predictions are combined from mul-
tiple feature maps with different resolutions. Compared to 
YOLO, SSD could effectively deal with objects of various 
sizes. Moreover, SSD eliminates proposal generation and 
feature resampling, which is different from R-CNN based 
network. Since SSD integrates the advantages of YOLO 
and Fast R-CNN/Faster R-CNN, many methods [37, 42, 43, 
45, 48] extend this architecture for text detection by giving 
some specific modifications, such as designing default boxes 
with larger aspect ratios or multi orientations, and adopting 
inception-style convolutional filters.

Fig. 5   Architecture of R-CNN series. a Fast R-CNN [39], b faster R-CNN [76]

Fig. 6   Architecture of YOLO [75]
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5.2 � Loss Function

Just like in general machine learning model, a loss func-
tion should be defined first in deep neural network to 
measure the gap between prediction and actual value. And 
then training algorithm seeks to minimize the loss func-
tion. The smaller the loss function is, the more robust the 
model is. Most work often takes text detection as a multi 
task learning problem, e.g. classification and regression. In 
this section, some commonly used loss functions for text 
detection are listed and discussed.

5.2.1 � Cross‑Entropy Loss Function

It is often used in tasks such as pixel/instance classifica-
tion or segmentation [25, 27, 28, 30, 31, 33, 44, 48], which 
is defined as follow

where yn and ŷn are actual value and prediction respectively. 
Note that if the same weight is put on all positive pixels, 
it may achieve poor performance while handling instances 
with small areas. Therefore, several balanced cross-entropy 
losses [28, 44] are also introduced to facilitate the training 
procedure.

5.3 � Softmax Loss Function

It should be found in many general object detection meth-
ods, which is defined as follow

where zy is the ith value on score vector for classification, 
and y is the classification label. This function is used in [34, 

(1)Lce = −
1

N

N∑
n=1

[yn log ŷn + (1 − yn) log(1 − ŷn)]

(2)Lsm = log

(
m−1∑
j=0

ezj

)
− zy

36–38, 41, 43, 45–47, 49] as the loss for distinguishing text 
(y = 1) and non-text (y = 0).

5.4 � Smooth‑L1 Loss Function

It is often used for bounding box regression task [27, 31, 34, 
36–38, 41, 43–48], which is defined as follow

in which,

where p and p ∗ are predicted value and ground truth respec-
tively, and x represents the error between p and p ∗ . Note 
that the deviation function of Smooth-L1 is also a piecewise 
function. In [42], Liu et al. defined a continuous function 
as follow

They claims that smooth-Ln loss could achieve the tradeoff 
between robustness and stability (see Fig. 8)

5.4.1 � Squared Loss Function

It is a conventional loss for regression task, which is defined 
as follow

where y and ŷ are actual value and prediction respectively. 
In [26] [35], a bounding box is parameterized in terms of the 
position of its center, width, height, orientation angle and the 
confidence that the box contains a word. While training the 
network, all the parameters are optimized by minimizing a 
multi-part squared loss function.

There are many other loss functions used for scene text 
detection. For example, the Dice loss [48] is adopted to 

(3)Lreg =
∑
i∈S

smoothL1(pi, p ∗)

(4)smoothL1(x) =

{
0.5(𝜎x)2 if |x| < 1∕𝜎2

|x| − 0.5∕𝜎2 otherwise

(5)smoothLn(x) = (|x| + 1) ln(|x| + 1) − |x|

(6)Lsqu = (y − ŷ)2

Fig. 7   Architecture of SSD [29]
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implement position-sensitive segmentation, and the IOU 
loss [44] is applied for regressing four channels of axis-
aligned bounding box since it is invariant against texts with 
different scales.

5.5 � Multi‑orientation Detection

Most of the previous work focuses on horizontal text detec-
tion and achieves pretty good performance. However, text 
in real-world situation could appear with any orientation. 
Therefore, text orientation needs to be estimated and cor-
rected for subsequent recognition procedure. Although 
many studies [81–89] have concentrated on multi-oriented 
scene text detection, the accuracy rates need to be further 
improved. With the initiating of ICDAR 2015 Competition 
Challenge 4, a large number of deep learning based meth-
ods have stood out, and achieved superior performance over 
conventional approaches.

In [24], individual characters and their relationship, i.e., 
linking orientation are considered, and the corresponding 
prediction maps are produced by training the holistically-
nested edge detection (HED) [77] based network. Since 
HED could find edges of different scales and orientations, 
it can be used for multi-orientation text detection. Similar 
work could be found in [43], where the oriented text is 
decomposed into segments and links, and the final detec-
tion results are produced via combining segments con-
nected by links. Since text lines from the same text block 
often have a roughly uniform spatial layout, a projection 
profile based skew estimation algorithm [78] is used to 
determine the possible orientation of text line in [25]. 
In [27, 33], pixel-wise text region masks with arbitrary 
shapes are taken as supervision information for training 
segmentation network so as to handle multi-orientation 
texts. In [30], the concept “kernel” is introduced, which 
denotes multiple predicted segmentation areas of text 
instance. The kernels have the similar shape and locate 
at the same central point with differ scales. A progressive 

scale expansion algorithm that could make the kernels 
grow from small to large scale, is used to obtain the final 
detections. Therefore, the prediction is robust to arbitrary 
shapes and orientations. In [31], the position-sensitive RoI 
(PSROI) pooling [79] is replaced by a deformable PSROI 
pooling, which could implement multi-oriented text detec-
tion through adding offsets to the spatial binning positions.

Note that most of above work includes segmentation 
step, which is usually time-consuming. A new trend 
inspired by general object detection has emerged recently, 
i.e., generating inclined proposals/boxes to roughly recall 
text, and then implementing bounding box regression to 
finely localize text region. Text orientation information 
could be represented by different ways, such as rotation 
anchors [38], inclined minimum area rectangle [41] or 
quadrangles inside horizontal sliding windows [42]. Dif-
ferent from previous text detection methods that rely on 
shared features for both classification and oriented bound-
ing box regression, active rotating filters (ARF) [80] are 
used to extract rotation-sensitive features in [45]. Since 
ARF convolves feature map with a canonical filter and 
its rotated clones, it can help to capture rotation sensitive 
features. In [48], scene text detection is implemented by 
localizing corner points of text bounding boxes and seg-
menting text regions in relative positions (see Fig. 9). The 
candidate boxes are generated by grouping corner points 
according to the scores of segmentation maps.

5.6 � Language Model

Strong language prior, e.g. probability distribution over char-
acter/word sequence, would make major contribution to final 
text recognition. Some characters or strings cannot be easily 
distinguished, such as the number “0” and the character “O”, 
or the string “cl” and character “d”. If a proper language 
model is adopted to consider the context information, these 
cases must be eliminated.

Fig. 8   Comparison of smooth-L1 and smooth-Ln [42]
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Inspired by the successful applying of hidden markov 
model (HMM) in voice recognition, a hybrid HMM/Maxout 
architecture is proposed in [90], which could sequence words 
into their corresponding character/inter-character regions by 
integrating a lexicon. The method is highly accurate as well 
as fast, since it takes constant time relative to lexicon size. 
Conditional random field (CRF) model is adopted to pre-
dict character position in [8, 91, 92]. The CRF is defined 
over a set of random variables, and each random variable 
denotes a potential character in word. In order to recognize 
weak character or non-dictionary words, however, it needs 
to compute unary and higher-order terms for all candidate 
characters, which results in expensive computation. In [51], 
the beam search based on n-gram model is used to obtain 
candidate characters. Beside this language model, a simple 
dictionary is also maintained for providing a soft scoring 
signal. Finally, the candidate characters are re-ranked by 
using both language model and shape model. Similarly, a 
word is taken as a composition of bag-of-n-grams in [57]. In 
order to compress encoding representation, the model only 
selects a subset of the space of all possible n-grams. Since 
the n-gram based CNN has a large number of output nodes, 
e.g. 10 k output units for n = 4 (see Fig. 10), it increases the 
training complexity. Different from the above methods, the 
recurrent neural network (RNN) is used in [60] to model the 
character-level statistics for text. In this model, character 
recognition is considered as a task of learning mappings 
from pixel intensities to character-level vectors, and does 
not need n-grams any more.

5.7 � Sequence Labeling

As mentioned in Sect. 3.1, many character classification 
based text recognition methods firstly detect individual 
characters in image, and sequently recognize each character 
using CNN models. In order to train a strong character detec-
tor, however, we need a large number of labeled character 
images, which is unrealistic in most cases. Word classifica-
tion based methods assign a class label to each word, and 
treat text recognition as an image classification problem. 
Such methods often train CNN models with a huge num-
ber of classes. For English there are about 90 K words, and 
for Chinese however, the number of potential words may 
exceed 1 million. Moreover, CNN models are often hard 
to deal with long words (the number of characters is large). 
Recently, the state-of-the-art methods consider text spot-
ting as a sequence labeling problem. These methods could 
generate an ordered high level sequence from input image, 
and have properties of handling text with arbitrary lengths, 
lexicon free and avoiding the character segmentation. Some 
key techniques are reviewed as follows.

5.7.1 � Recurrent Neural Network (RNN)

RNN is an important branch of DNN family, which does 
not need the position information of each element in a 
sequence image. In [55, 58, 59], a CNN model is first 
used to convert text image into a sequence of features, 
and then sequential features are fed to a RNN model for 
learning context information and generating a predicted 
sequence. Traditional RNN is hard to transmit the gradient 
information consistently over long time due to the vanish-
ing gradient problem. The RNN model adopted in [55, 
58, 59] is the long-short term memory (LSTM) structure. 
To be more precisely, two LSTMs, one forward and one 
backward, are combined into a bidirectional LSTM (see 
Fig. 11).

5.7.2 � Connectionist Temporal Classification (CTC)

In CNN + LSTM model [55, 58], the length of the LSTM 
outputs may not consistent with that of the target string. 

Fig. 9   Corner points and 
position-sensitive maps predic-
tion [48]

Fig. 10   The N-gram encoding model [57]
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Therefore, the CTC [93] is applied to approximately map 
the LSTM sequential output into its target string:

where B is the projection that removes the repeated labels 
and the non-character labels.

6 � Evaluation and Comparison

Scene text detection and recognition have received increas-
ing attention in computer vision and document analysis, and 
many approaches and methods have been proposed so far. 
Therefore, it is impossible to give fair evaluation and com-
parison for all of them. In this section, we first summarize 
the widely used datasets and protocols for text detection and 
recognition. After that, we mainly survey published results 
of the representative methods for comparison.

(7)S∗
w
≈ B(argmax

�

P(�|p))

6.1 � Benchmark Datasets

In this section, we describe the widely used benchmark 
datasets for tasks of text detection and recognition, whose 
features are summarized in Table 2.

ICDAR 2003 [94]. It is the first released benchmark for 
scene text detection and recognition from ICDAR Robust 
Reading Competition. There are 258 natural images for train-
ing and 251 natural images for testing. All the text instances 
in this dataset are in English and are horizontally placed.

ICDAR 2011 [95]. It inherits from ICDAR 2003 and has 
made some modification. There are 229 natural images for 
training and 255 natural images for testing.

ICDAR 2013 [96]. It also inherits from ICDAR 2003 and 
has made some modification. There are 229 natural images 
for training and 233 natural images for testing.

ICDAR 2015 [97]. It is from the Incidental Scene Text 
Challenge of the ICDAR 2015 Robust Reading Competi-
tion. The dataset includes 1500 natural images in total, 
which are acquired using Google Glass. The text instances 
(annotated by 4 vertices of the quadrangle) are usually 
skewed or blurred in ICDAR 2015, since they are acquired 
without user’s prior preference or intention.

ICDAR 2017 MLT [98]. It is a large scale multi-lingual 
text dataset, which is composed of complete scene images 
with 9 languages. There are 7200 training images, 1800 
validation images and 9000 testing images in this dataset.

MSRA-TD500 [99]. It has 500 high resolution natural 
scene images, where the text instances present with multi 
orientations and the language types include both Chinese 
and English. There are 300 images for training and 200 
images for testing.

COCO-Text [100]. It is the largest benchmark that could 
be used for text detection and recognition so far. The orig-
inal images are from the Microsoft COCO dataset, and 
173,589 text instances from 63,686 images are annotated 

Fig. 11   The structure of deep bidirectional LSTM [55]

Table 2   Benchmark datasets for 
text detection and recognition

Dataset Annotation Orientation Language Task End-to-end

ICDAR 2003 Character/word Horizontal English Detection/recognition Yes
ICDAR 2011 Word Horizontal English Detection/recognition Yes
ICDAR 2013 Character/word Horizontal English Detection/recognition Yes
ICDAR 2015
Incidental

Word Multi oriented English Detection/recognition Yes

ICDAR 2017
MLT

Word Multi oriented Multi lingual Detection/recognition Yes

MSRA-TD500 Text line Multi oriented English/Chinese Detection No
COCO-Text Word Horizontal English Detection/recognition Yes
SVT Word Horizontal English Detection/recognition Yes
RCTW-17 Text line Multi oriented Chinese Detection Yes
IIIT 5 k Character/word Horizontal English Recognition No
SynthText Character/word Horizontal English Detection/recognition No
Synth90 k Word Horizontal English Recognition No
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in COCO-Text. There are 43,686 images for training and 
20,000 images for validation/testing.

Street View Text (SVT) [101]. It consists of 350 images 
annotated with word-level axis-aligned bounding boxes 
from Google Street View. It contains smaller and lower 
resolution text, and not all text instances within it are 
annotated.

RCTW-17 [102]. It contains various kinds of image, 
including street views, posters, menus, indoor scenes and 
screenshots for competition on reading Chinese text in image. 
The dataset contains about 8000 training images and 4000 test 
images, whose annotations are similar to ICDAR2015.

IIIT 5 k [103]. It contains 5000 cropped word images 
downloaded from Google image search. There are 2000 
images for training and 3000 images for testing. Each image 
has an associated 50 word lexicon (IIIT5 k-50) and 1 k word 
lexicon (IIIT5 k-1 k).

SynthText [104]. It contains 858,750 synthetic images, 
where texts with random colors, fonts, scales and orienta-
tions are rendered on natural images carefully to have a real-
istic look. The texts in this dataset are annotated in character, 
word and line level.

Synth90 k [105]. It contains about 9 million synthetic 
cropped word images, and covers 90 k different English 
words. Similar to SynthText, the synthetic data in Synth90 k 
is highly realistic. There are approximate 8 million images 
for training and 900 k images for testing.

6.2 � Evaluation Protocols

In this section, we summarize evaluation protocols for text 
detection and recognition. The task of text detection could be 
commonly evaluated using ICDAR or DetEval protocol, and 
the task of text recognition could be commonly evaluated using 
word recognition accuracy or end-to-end recognition protocol.

6.2.1 � ICDAR Detection Protocol

First, the best match m(r,R) for a rectangle r in a set of rec-
tangles R is defined as follow

where mp denotes the match between two rectangles of text 
instances, which can be calculated as the area of intersection 
divided by the area of the minimum bounding box contain-
ing both rectangles. Then, the metrics of precision ( P ), recall 
( R ) and F-measure(F ) can be defined as follows

where T  and E are respectively the sets of ground-truth and 
estimated rectangles, and rt and re are respectively a ground-
truth and an estimated rectangle. � is weight parameter, 
which is often set to 0.5.

6.2.2 � DetEval Detection Protocol

Since standard ICDAR detection protocol is unable to handle 
the cases of one-to-many and many-to-many matches among 
the ground truth and detections, it always underestimates 
the performance of text detection algorithms. To address 
the problem, Wolf et al. proposed the DetEval protocol to 
comprise the area overlap and the object level evaluation. 
In this protocol, the metrics of precision ( P′ ) and recall ( R′ ) 
can be defined as follows

where MatchD and MatchG are functions that consider the 
different types of matches:

(8)m(r,R) = maxmp(r, r
�)|r� ∈ R

(9)P =

∑
re∈E

m(re, T)

�E�

(10)R =

∑
rt∈T

m(rt,E)

�T�

(11)F =
1

�∕P + (1 − �)∕R

(12)P� =

∑
i MatchD(Di,G, tr, tp)

�D�

(13)R� =

∑
j MatchG(Gj,D, tr, tp)

�D�
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where fsc(k) is a parameter function that controls the amount 
of punishment, and it is often set to 0.8.

6.2.3 � Yao’s Detection Protocol

While handling texts with arbitrary orientation, the overlap 
ratio computed in the way of standard ICDAR protocol is 
possibly not accurate. Therefore, Yao et al. [81] proposed 

(14)MatchD(Di,G, tr, tp) =

⎧
⎪⎨⎪⎩

1 ifDi matches against a single detected rectangle

0 if Di does not match against any detected rectangle

fsc(k) ifDi matches against several (→ k) detected rectangles

(15)MatchG(Gj,D, tr, tp) =

⎧
⎪⎨⎪⎩

1 if Gj matches against a single detected rectangle

0 if Gj does not match against any detected rectangle

fsc(k) if Gj matches against several ( → k) detected rectangles

an evaluation protocol that considers true or false positives 
based on the overlap ratio between the estimated mini-
mum area rectangles and the ground truth rectangles. If 
the included angle between the estimated rectangle and the 
ground truth rectangle is less than �∕8 and their overlap ratio 
exceeds 0.5, the estimated rectangle is considered a correct 
detection. Multiple detections of the same text line are taken 
as false positives. Thus, the metrics of precision ( P′′ ) and 
recall ( R′′ ) can be defined as follows

Table 3   Performance of 
different text detection methods 
evaluated on ICDAR datasets

The significance of bold in the tables means the best result acquired by the method

Method Year ICDAR2011 ICDAR2013 ICDAR2015 ICDAR2017

P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

Yao [24] 2016 – – – 88.88 80.22 84.33 72.26 58.69 64.77 – – –
Zhang [25] 2016 – – – 88 78 83 71 43 54 – – –
He [33] 2016 88 79 84 90 83 86 – – – – – –
Zhong [34] 2016 85 81 83 87 83 85 – – – – – –
Gupta [35] 2016 91.5 74.8 82.3 92 75.5 83 – – – – – –
Tian [36] 2016 89 79 84 93 83 88 74 52 61 – – –
Qin [26] 2017 – – – 90 83 86 79 65 71 – – –
Dai [27] 2017 – – – 88.6 80 84.1 – – –
Liao [37] 2017 88 82 85 88 83 85 – – – – – –
Ma [38] 2017 – – – 90 72 80 82.17 73.23 77.44 – – –
He [40] 2017 – – – 92 81 86 82 80 81 – – –
Jiang [41] 2017 – – – 93.55 82.59 87.73 85.62 79.68 82.54 – – –
Liu [42] 2017 – – – – – – 73.23 68.22 70.64 – – –
Shi [43] 2017 – – – 87.7 83 85.3 73.1 76.8 75 – – –
Zhou [44] 2017 – – – – – – 83.27 78.33 80.72 – – –
He [46] 2017 – – – 89 86 88 80 73 77 – – –
Deng [28] 2018 – – – 88.6 87.5 88.1 85.5 82 83.7 – – –
Li [30] 2018 – – – – – – 89.3 85.22 87.21 77.01 68.4 72.45
Yang [31] 2018 – – – – – – 93.8 87.3 90.5 – – –
Liao [45] 2018 – – – 92 86 89 88 80 83.8 – – –
Zhong [47] 2018 – – – 94 90 92 89 83 86 75 66 70
Lyu [48] 2018 – – – 92 84.4 88 89.5 79.7 84.3 74.3 70.6 72.4
He [49] 2018 – – – 91 89 90 87 86 87 – – –
Liu [69] 2018 – – – – – 92.82 – – – 81.86 62.3 70.75
Liao [70] 2018 – – – 92 86 89 87.8 78.5 82.9 – – –
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where TP is the set of true positive detections, while E and T  
are respectively the sets of estimated rectangles and ground 
truth rectangles.

6.2.4 � Text Recognition Protocols

Given cropped word image, word recognition accuracy is 
a commonly used evaluation metric, which is defined as 

(16)P�� = |TP|∕|E|
(17)R�� = |TP|∕|T|

the ratio of the correctly recognized word number to the 
ground truth number. For holistic scene image containing 
texts, there are two protocols for evaluation, i.e., word spot-
ting and end-to-end. Word spotting only examines whether 
the words in lexicon appear in input image, and it ignores 
symbols, punctuations, numbers and words whose length is 
less than three. End-to-end protocol concerns both detec-
tion and recognition results, and it needs to recognize all 
the words precisely, no matter whether the lexicon contains 
these strings. F-measure is also adopted by the two proto-
cols. Performance comparison

Table 4   Performance of 
different text detection methods 
evaluated on other public 
datasets

The significance of bold in the tables means the best result acquired by the method

Method Year MSRA TD500 COCO-Text SVT RCTW-17

P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

Yao [24] 2016 76.51 75.31 75.91 43.23 27.1 33.31 – – – – – –
Zhang [25] 2016 83 67 74 – – – – – – – – –
He [33] 2016 79 65 71 – – – – – – – – –
Gupta [35] 2016 – – – – – – 26.2 27.4 26.7 – – –
Tian [36] 2016 – – – – – – 68 65 66 – – –
Dai [27] 2017 87.6 77.1 82 – – – – – – – – –
Ma [38] 2017 82.1 67.7 74.2 – – – – – – – – –
He [40] 2017 77 70 74 – – – – – – – – –
Shi [43] 2017 86 70 77 – – – – – – – – –
Zhou [44] 2017 87.28 67.43 76.08 50.39 32.4 39.45 – – – – – –
He [46] 2017 – – – 46 31 37 – – – – – –
Deng [28] 2018 83 73.2 77.8 – – – – – – – – –
Yang [31] 2018 87.5 79 83 – – – – – – 78.5 56.9 66
Liao [45] 2018 87 73 79 64 57 61 – – – 77.5 59.1 67
Lyu [48] 2018 87.6 76.2 81.5 61.9 32.4 42.5 – – – – – –
Liao [70] 2018 – – – 60.87 56.7 58.72 – – – – – –

Fig. 12   The learned context sur-
rounding the text by deformable 
PSROI pooling [31]

Fig. 13   Rotation sensitive 
regression [45]
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In this section, we reported the experimental results 
of representative text detection and recognition methods 
on some public datasets through a comprehensive litera-
ture review. Since different methods may conduct experi-
ments on different benchmark datasets, and even on the 
same dataset they may adopt different training sets (such 

as using synthetic dataset for pre-training, or using special 
data augmentation scheme to enlarge the number of train-
ing samples), it is impossible for us to make an absolutely 
fair comparison. However, we can witness the development 
of state-of-the-art methods in this field and acquire some 
inspiration.

Table 5   Cropped word 
recognition accuracy (%) on 
ICDAR datasets

The significance of bold in the tables means the best result acquired by the method

Method Year IC03-50 IC03-Full IC03 IC11-50 IC11-Full IC13 IC15

Wang [9] 2012 90 84 – – – – –
Bissacco [51] 2013 – – – – – 82.83 –
Shi [71] 2013 87.44 79.3 – 87.04 82.87 – –
Jaderberg [52] 2014 98.7 98.6 – – – 90.8 –
Yao [72] 2014 88.48 80.33 – – – – –
Shi [55] 2015 98.7 97.6 89.4 – – –
Jaderberg [57] 2015 97.8 97 89.6 – – 81.8 –
He [58] 2016 97 93.8 – – –
Shi [59] 2016 98.3 96.2 90.1 – – 88.6 –
Lee [60] 2016 97.9 97 88.7 – – 90 –
Jaderberg [61] 2016 98.7 98.6 93.3 – – 90.8 –
Lou [62] 2016 – – – – – 86.2 –
Yang [65] 2017 – – – – – 85.21 79.78
Bartz [66] 2017 – – – – – 90.3
Bai [68] 2018 98.7 97.9 94.6 – – 94.4 73.9

Table 6   Cropped word 
recognition accuracy (%) on 
other public datasets

The significance of bold in the tables means the best result acquired by the method

Method Year SVT-50 SVT IIIT5 K-50 IIIT5 K-1 k IIIT5 K

Wang [9] 2012 70 – – – –
Bissacco [51] 2013 90.93 – – – –
Shi [71] 2013 – 73.51 – – –
Jaderberg [52] 2014 95.4 80.7 97.1 92.7 –
Almazan [54] 2014 87.01 – 88.57 75.6 –
Yao [72] 2014 – 75.89 80.2 69.3 38.3
Shi [55] 2015 96.4 80.8 97.6 94.4 78.2
Jaderberg [57] 2015 93.2 71.7 95.5 89.6 –
He [58] 2016 93.5 – 94 91.5 –
Shi [59] 2016 95.5 81.9 96.2 93.8 81.9
Lee [60] 2016 96.3 80.7 96.8 94.4 78.4
Jaderberg [61] 2016 95.4 80.7 97.1 92.7 –
Lou [62] 2016 – 80.7 – – –
Bartz [66] 2017 – 79.8 – – 86
Bai [68] 2018 96.6 87.5 99.5 97.9 88.3

Table 7   End-to-end F-measures 
(%) on ICDAR03, ICDAR11, 
ICDAR13 and SVT

Method Year IC03-50 IC03-Full IC03 SVT-50 SVT IC11 IC13

Wang [9] 2012 72 67 – 46 – – –
Jaderberg [61] 2016 90 86 78 76 53 76 76
Gupta [35] 2016 – – – 67.7 55.7 84.3 84.7
Gomez [67] 2017 92 90 75 85 54 – –
Liao [37] 2017 – – – 84 64 87 –
Liao [70] 2018 – – – 84 64 – –
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Tables 3 and 4 report text detection performance of differ-
ent methods on eight datasets. As mentioned in Sect. 2, deep 
learning based methods become the mainstream recently for 
text detection. Here we only give results of this group of 
methods. As is shown in Table 3, at present the F-measures 
on ICDAR2013 and ICDAR2015 both exceed 90%. Espe-
cially, the performance on ICDAR 2015 has increased dras-
tically from 54% (Zhang et al. [25]) to 90.5% (Yang et al. 
[31]) in terms of F-measure. In [31], deformable PSROI 
pooling is applied to add offsets to the spatial binning posi-
tions in PSROI pooling (see Fig. 12), which can greatly 
enhance the performance of multi-oriented text detection. 
As is shown in Table 4, the F-measures on the other four 
datasets all achieve unprecedented levels so far. On the 
largest COCO-Text dataset, the performance has increased 
drastically from 33.31% (Yao et al. [24]) to 61% (Liao et al. 
[45]) in terms of F-measure. In [45], a rotation sensitive 
regression network (see Fig. 13) is adopted, which can be 
helpful to achieve better detection result. It can be observed 
that abundant technologies of general object detection and 

semantic segmentation have been extended for scene text 
location, and the current trend is applying deep learning 
framework to training an end-to-end text detector.   

Tables 5, 6, 7 and 8 report text recognition performance 
of different methods on six commonly used datasets. As 
is shown in Tables 5 and 6, the method of Bai et al. [68] 
achieve relatively high performance on all ICDAR data-
sets. In [68], edit probability (EP) is proposed to train 
attention based text recognition model. By applying a 
sequence generation mechanism for lexicon-free predic-
tion, this method can effectively recognize out-of-training-
set words, and obtain the best result on ICDAR 2003 and 
ICDAR 2013 without strong or weak lexicon. As is shown 
in Tables 7 and 8, the methods of Liao et al. [70] and Liu 
et al. [69] achieve the state-of-the-art performance. Since 
TextBoxes ++ [70] extends directly from TextBoxes [37] 
that mainly handles horizontal texts, it obtains relatively 
high F-measures on ICDAR 2013 and SVT dataset. Note 

Table 8   Word spotting and end-to-end F-measures (%) on ICDAR13 and ICDAR15

The significance of bold in the tables means the best result acquired by the method

Method Year Word Spotting End-to-end

IC13-100 IC13-Full IC13 IC13-100 IC13-Full IC13

Gomez [67] 2017 85.37 83.58 70.71 81.16 79.49 68.54
Liao [37] 2017 94 92 87 91 89 84
Liu [69] 2018 95.94 93.9 87.6 91.99 90.11 84.77
Liao [70] 2018 96 95 87 93 92 85

Method Year Word Spotting End-to-end

IC15-50 IC15-Full IC15 IC15-50 IC15-Full IC15

Gomez [67] 2017 56 52.26 49.73 53.3 49.61 47.18
Liao [37] 2017 - - - - - -
Liu [69] 2018 87.01 82.39 67.97 83.55 79.11 65.33
Liao [70] 2018 76.45 69.04 54.37 73.34 65.87 51.9

Fig. 14   Illustration of RoIRo-
tate [69]
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that the performance improvement of TextBoxes ++ is 
spectacularly significant on SVT dataset due to its train-
ing on low-resolution images. In [69], the RoIRotate 
operator is proposed to connect detection and recognition 
in a unified network, and it can apply transformation on 
oriented detection bounding boxes to obtain axis-aligned 
feature maps (see Fig. 14). Therefore, such unified net-
work achieves obvious advantages on oriented ICDAR 
2015 dataset. Note that there is no general text recogni-
tion method yet, and each method only performs well on 
certain datasets. As long as the text regions are properly 
localized, traditional methods have already achieved rela-
tively high cropped word recognition accuracy. However, 
present methods attempt to construct an end-to-end frame-
work without complicated pre- or post-processing for both 
text detection and recognition.

7 � Conclusions

Scene text detection and recognition have received increas-
ing attention in computer vision due to its potential applica-
tions in numerous fields. This paper mainly reviews detec-
tion and recognition methods proposed in the last decade. 
We comprehensively classify these methods and highlight 
the key techniques. Furthermore, more than 10 benchmark 
datasets and the corresponding evaluation protocols are 
described in the paper. Finally, we report the results of more 
than 40 representative methods and compare their perfor-
mance. Although great progress has been achieved in text 
detection and recognition recently, we also find out some 
problems that should be addressed.

Since most methods focus on text in English, there is 
still ample room remained for performance improvement 
on non-Latin or multi-lingual datasets, such as RCTW-17, 
MSRA-TD500 and ICDAR 2017 MLT. It is potentially to 
construct a common text detection engine based on character 
detectors, since character is the most basic element for vari-
ous languages. Some weakly supervised scene text detec-
tion frameworks [106, 107] have been proposed recently, 
and they can train robust scene text detectors with a small 
amount of annotated character images. We consider that this 
work worthy to be further studied in the future. The results 
on ICDAR 2015 and COCO-Text are also unsatisfactory. 
It means that we need to tackle the problem of incidental 
and diversified text detection. Enhancement and rectification 
methods [22, 31] should be integrated in the conventional 
deep learning models so as to obtain better performance in 
the future work. Moreover, many existing text recognition 
methods achieve poor performance with general lexicons. 
Schemes of applying large scale language information [108, 
109] and sequence leaning [55] have been proposed for text 
recognition, which should be further studied.
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