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Abstract
Game theory is a field of applied mathematics that studies strategic behavior of rational factors. In other words, game

theory is a collection of analytical tools that can be used to make optimal choices in interactional and decision making

problems. Optimization in mathematics and computer science is the choice of the best member of an existing collection for

a specific purpose. Several optimization methods have been used in many problems to minimize costs or maximize profits.

From a particular point of view, it can be said that the game theory is in fact a kind of optimization. In this paper, a

combined use of game theory and optimization algorithms has been reviewed and a new categorization is presented for

researches which have been conducted in this area. In some of these combinations, game theory has been used to improve

the performance of optimization algorithms, and in some others, optimizations methods help to solve game theory

problems. Game theory and optimization algorithms are also used together to solve some other problems.

1 Introduction

Game theory can be defined as the science of modeling and

evaluation of the behavior of decision-making systems.

Game theory is trying to obtain the mathematical behavior

of a system in a strategic or game-based manner, in which,

the individual’s success in the choosing process depends

on the choice of others. In other words, one of the goals of

the game theory is to predict possible events of decision-

making games [119]. Therefore, the concepts of game

theory can be used in an environment where the roles and

actions of multiple agents affect each other. The ultimate

goal of the game theory is to find the optimal solution(s) for

players. This theory, which was founded more than half a

century ago, has been used to investigate issues of various

sciences, including computer science [151]. Computer

networks [3, 97, 102, 140], distributed computing

[1, 2, 52, 57], data warehousing and mining

[11, 66, 74, 154–156, 158–160, 180], cloud computing

[7, 25, 46, 127, 169, 183], and decision support systems

[8, 69, 157] are some of the most popular issues in the

computer science which can be modeled as a game theory

problem.

Optimization means that we look for the values among

the parameters of a function which minimize or maximize

that function. The set of all appropriate values for these

parameters is called possible solutions, and the best value

of the set of possible solutions is called the optimal solu-

tion. Considering the importance of optimization in dif-

ferent research domains, several optimization methods

have been presented so far. The optimization algorithms,

which cover both types of maximization and minimization

issues, have many applications in resource allocation,

scheduling, decision making, etc. [135].

Game theory and optimization have a conceptual over-

lap. In other words, the game theory is a kind of approxi-

mating optimization. In this paper, we review the combined

use of game theory and optimization methods in opti-

mization problems. This combination is possible in three

different ways. In the first case, game theory is used to

improve the optimization algorithms [29, 84, 138]; in the

second one, it is possible to solve the games of a game

theory problem using optimization methods [96, 121, 179];

and finally in the third case, game theory and optimization

algorithms can be used together to solve a problem

[26, 82, 148].
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The remaining parts of the paper are organized as fol-

lows: Sect. 2 describes the basic concepts of the game

theory and existing types of games. In Sect. 3, optimization

is defined and its algorithms are introduced. Classification

of the combined use of game theory and optimization

algorithms is presented in Sect. 4, and the related resear-

ches of its different categories are reviewed and evaluated.

The future direction for related researches is represented in

Sect. 5, and finally, the conclusion of the review is given in

Sect. 6.

2 Concepts of Game Theory

In this section, we introduce the most important concepts

of the game theory and the most important types of games.

The basic concepts of game theory are as follows:

Game Game is a model of an interactive state between

entities or groups of entities.

Player Players are the basic entities of the games. This

entity is the decision maker of the game that can be a

person, a group, a concept, and so on.

State States are the possible situations of the game that

the players can be in.

Action The set of all possible works that players of the

game can do in different states is called actions.

Payoff The score that awarded to the action of a player in

a game (or in one step of the game) is called payoff

which can be positive or negative.

Strategy A player’s strategy is the complete set of

actions that player can do in each state of the game. Each

player has a number of strategies that can be selected

based on the conditions and the objective(s).

Equilibrium Equilibrium is the point of a game at which

no player tends to change, and any change leads to

worsening the payoffs of all players.

2.1 Types of Strategies

Strategies of the game theory are divided into two cate-

gories of pure strategy and mixed strategy. A pure strategy

completely determine the playing strategies of players.

This strategy defines the action that a player must do for

any state. A player’s strategic set is a set of pure strategies

which is possible for that player. Each player has optimized

strategy (strategies) and the value of the game is the same

for all players [119]. Several researches have used pure

strategy for their game theory-based methods

[20, 42, 47, 70, 76, 77, 130, 173, 181, 184].

A mixed strategy is the assignment of a probability to

any pure strategy. This strategy allows a player to ran-

domly choose a pure strategy. Because probabilities are

continuous, there are infinite mixed strategies for a player,

even if the set of pure strategies is finite. It is obvious that a

pure strategy can be considered as a special case of mixed

strategy in which a specific pure strategy is selected with

probability 1, and the other strategies are selected with

probability 0. Each player can choose the pure strategy or

the mixed strategy for decision making. For deterministic

actions, the pure strategies, and for probabilistic actions,

mixed strategies are selected [119]. Mixed strategies have

been used in different game theory-based methods of the

literature [33, 34, 39, 64, 92, 129, 132, 145].

2.2 Nash Equilibrium

The point in which none of the players of the game tends to

change is the equilibrium point. The Nash equilibrium is a

game action profile, in which, assuming constant actions

for other players, condition of each player will be worse by

each change. In other words, it is an action profile that does

not motivate players to change their conditions, assuming

constant actions for other players [55, 168]. The Nash

equilibrium concept is used to analyze the results of the

strategic interaction of several decision makers. In other

words, the Nash equilibrium is a way to predict the results

of the dependent decisions which are simultaneously made

by several players.

2.3 Types of Games

Games can be categorized based on various features in the

game theory. To solve a problem using the game theory,

depending on the nature of the problem, the appropriate

type of the game should be selected. In this sub-section we

introduce some types of the games. There are also some

other categories of the types of the games. In this subsec-

tion, the most important categories of game types are

represented.

2.3.1 Static Games Versus Dynamic Games

The game in which the players make their decisions

simultaneously is a static game. In this way, each player

does not know anything about the other’s decisions when

making a decision [182]. Static games have been used in

some of researches of this area [40, 54, 59, 60, 86,

103, 123]. A dynamic game is a game in which players do

not necessarily perform their actions simultaneously. In

this way, players will consider the made decisions of other

players in their next decisions. A static game is a special

case of dynamic games. In a dynamic game, some actions

can be performed simultaneously and some other action

can be performed at different times [182]. Various
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researches have used dynamic game for optimization

[5, 12, 22, 24, 61, 98, 99, 107, 171, 196].

2.3.2 Zero-Sum Games Versus Non Zero-Sum Games

Zero-sum games are the games that their total value is

constant during the game and will not decrease or increase.

In these games, one player’s profit is associated with the

loss of another player. Zero-sum game is a win-loss game

and there is always a loser for each winner. As an example

in a two-player game, the zero-sum game condition is

defined as Eq. (1).

u1ðs1; s2Þ þ u2ðs1; s2Þ ¼ 0 ð1Þ

In which, ui and si are the utility and strategy of the

player i, respectively. Obviously, Eq. (1) means that u1 ¼
�u2 [182]. There exist some examples of using zero-sum

games for different application in the literature

[27, 31, 41, 50, 89, 108, 113, 126, 139].

In contrast, there are strategies in the non zero-sum

games that are beneficial to all players. In other words, the

total sum of the profits and losses of the involved players is

less than or more than zero [182]. Non zero-sum games

have been also used for various applications

[15, 81, 89, 90, 131, 137, 149, 150, 194].

2.3.3 Cooperative Games Versus Non Cooperative Games

If players compete individually in a game and try to raise

their own profits alone, then it is a non-cooperative game.

Non-cooperative games focus on individual player’s

strategies and predicting their selected strategies

[18, 19, 35, 44, 88, 105, 115, 162, 178, 187, 189, 193].

On the other hand, if in a game, different groups of

players form several coalitions try to take advantage of

their coalition, then that game will be cooperative. For

example, if the set of players is N = {1, 2, 3, 4, 5, 6}, one

of the players’ coalition states can be {{1, 2, 3}, {4, 5},

{6}} [18, 28, 36, 51, 59, 63, 95, 146, 174, 176].

2.4 Evolutionary Game Theory

Evolutionary game theory means the theoretical applica-

tion of games in evolving populations in biology. In this

theory, instead of direct analysis of the properties of a

game, a community of players with different strategies is

simulated and uses natural selection methods for their

evolution. Evolutionary game theory provides a framework

for concepts, strategies, and analyzes which can model

Darwin’s competition [152]. There are two different

approaches of evolutionary game theory. The first approach

uses the concept of sustainable evolutionary strategy as the

basic tool of analysis. The second approach generates a

clear pattern of the process of changing of strategies in the

society and investigates the characteristics of its evolu-

tionary process. One of the most important differences

between the evolutionary game theory and classic game

theory is the assumption of the wisdom of players. In the

classic game theory, it is always assumed that players are

wise and intelligent. However, using the evolutionary game

theory, provide the possibility of entrance of non-intelli-

gent players to the game. Furthermore, when the classic

game theory is not able to predict the equilibrium (multiple

equilibrium situations), evolutionary game theory can

determine the point or points of equilibrium based on its

own equilibrium-solving process [152]. Recently, evolu-

tionary game theory have been used in several applications

[9, 71, 100, 112, 144, 172, 197].

3 Optimization

Optimization is the ability to find the best solution among

existing solutions. Optimization techniques are exploited in

the design and maintenance of many engineering, eco-

nomic and even social systems to minimize the costs or

maximize profits. Due to the widespread use of optimiza-

tion in different sciences, this topic has grown a lot, so that

it is studied in mathematics, management, industry, com-

puters, and many other branches of science, and different

titles, such as mathematical programming, are used to refer

it. To solve an optimization problem, it must be modeled.

Modeling means that we describe the problem with vari-

ables and mathematical relations, so that it simulates the

problem of optimization. To develop the mathematical

model of an optimization problem, the following four

components should be fully characterized:

1. The set of optimization variables x1, x2…, xn.

2. The objective function f(x) that applies on the

optimization variables and returns a real value. This

objective fuction should be minimized or maximized

(optimized) during the optimization process.

3. A set of equality or non-equality constraints that should

hold on the optimization variables.

4. The domain sets D1, D2,…, Dn as the domains of the

optimization variables x1, x2,…, xn.

Most optimization problems can be described com-

pletely by specifying the four mentioned components. It is

also possible that an optimization problem has no con-

straint or its optimization variables’ domains are the entire

space [135].

There is no comprehensive categorization for opti-

mization methods and they can be categorized from dif-

ferent specific perspectives. For example, optimization

methods can be categorized based on the number of their
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objective functions [104], using probabilistic or determin-

istic methods [124], using nature-inspired methods [16],

etc.

In general, optimization methods can be divided into

two groups of deterministic (or exact) (classic) methods

[109] and approximate (or random) (modern) methods

[122]. The deterministic methods are capable of finding the

optimal solution in a precise manner. Since a lot of com-

putational processes are required to optimization of NP-

hard problems, the deterministic methods are not appro-

priate for optimizing such problems and their execution

times grow exponentially with the dimensions of the

problems. Random methods are able to find proper solu-

tions (close to optimal) for short-time solving of NP-hard

problems [122]. Each of these categories can also be sub-

divided into other sub-categories. The most popular classic

and modern optimization methods are listed in Table 1.

There are also other algorithms that can be grouped into

classic and modern algorithms. Only the most important

algorithms are outlined here.

3.1 Multi-Objective Optimization

Multi-objective optimization is one of the most common

and widely used research areas among optimization topics.

In multi-objective optimization, we deal with problems that

have two or more objective functions which are often in

conflict. In this type of problem, you must simultaneously

optimize all objective functions. Optimization of these

functions can be minimization or maximization of all

functions or a combination of minimization and maxi-

mization [161]. Such problems are being increasingly

discussed in various branches of basic science, engineering,

and economics, and thus, appropriate methods for solving

them is required. For modeling of multi-objective opti-

mization problems, we have the components optimization

variables, constraints, and domains similar to single-

objective optimization problems modeling, and k numbers

of objective functions f1(x),…, fk(x), Which defined as

Eq. (2).

F xð Þ ¼ f1 xð Þ; . . .; fk xð Þ½ �T ð2Þ

By having several objective functions instead of an

objective function, the concept of optimality is changed.

This is because, in multi-objective optimization problems,

instead of finding a solution to global optimization, it is

always important to find an appropriate compromise and

intermediate. For this purpose, ‘‘pareto’’ presented another

concept of optimality. A solution X e X is pareto optimal

(with respect to the space X) if and only if there is no X’e X
such that v ¼ F X0ð Þ ¼ f1 x0ð Þ; . . .; fk x0ð Þð Þ dominates u ¼
F Xð Þ ¼ f1 xð Þ; . . .; fk xð Þð Þ [32].

4 Combined Use of Game Theory
and Optimization

The game theory and optimization are conceptually close

to each other. Game theory can be considered as a kind of

random optimization. In many studies, games theory and

optimization have been used together, or one of them has

been used in another’s solution. In this section, we present

a new general categorization of researches of this area.

This categorization is depicted in Fig. 1. We use four

factors to categorize the combination of optimization

methods and game theory. These four factors are using

classic or modern methods of optimization, the type of the

optimization method, single-objective or multi-objective

optimization method, and the type of the game theory. In

the following, we examine these four factors and represent

the levels of our classification.

First level: classic or modern optimization

Table 1 The most popular

classic and modern optimization

methods

Modern optimization algorithms Classic optimization algorithms

Genetic Algorithm [67] Linear Programming [30]

Particle Swarm Optimization Algorithm [75] Non-Linear Programming [14]

Imperialist Competitive Algorithm [10] Quadratic Programming [120]

Ant Colony Optimization Algorithm [37] Continuous Optimization [56]

Bee Colony Algorithm [73] Integer Programming [166]

Grey Wolf Algorithm [111] Binary Programming [170]

Shuffled Frog Leaping Algorithm [43] Mixed Integer Linear Programming [175]

Moth Flame Alrorithm [110] Deterministic Programming Problem [68]

Differential Evolution [163] Stochastic Programming Problem [147]

Coral Reefs Optimization Algorithm [142] Static Optimization Problem [85]

Simulated Annealing [164] Dynamic Optimization Problem [117]

Tabu Search [53] Convex Optimization [17]
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Fig. 1 Combined use of game theory and optimization methods
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In the first level, using a classic or a modern optimiza-

tion method is considered. Accordingly, this level is divi-

ded into two classic and modern categories.

Second level: Type of optimization method

The second level of classification is based on the type of

the used optimization method. The most popular types of

classic and modern optimization were introduced in

Table 1. Based on researches of this area, classic methods

at this level are divided into seven categories: linear pro-

gramming, non-linear programming, quadratic program-

ming, integer programming, mixed integer linear

programming, stochastic programming, and convex opti-

mization. Based on the researches of this field, modern

algorithms can be also divided into nine categories,

including genetic algorithm, Imperialist competitive algo-

rithm, ant colony optimization, particle swarm optimiza-

tion, simulated annealing, shuffled frog leaping, differential

evolution, tabu search, and coral reefs optimization

algorithm.

Third level: Single-objective or multi-objective

In the third level, the single-objective or multi-purpose

optimization problem is considered.

Forth level: Type of game theory

At this level, the type of game theory is considered.

Game theory types include classic game theory and evo-

lutionary game theory. Classic game theory can be also

divided into non-cooperative game theory and cooperative

game theory. Researches can be divided into at most two

categories of classic and evolutionary game theories.

4.1 Classic Optimization Methods

In this section, we will review the combined use of game

theory and optimization methods. Since the classic meth-

ods provide a precise optimization and game theory is a

kind of random optimization, classic methods have been

usually used to solve game theory problems. In some cases,

they have been used together to solve a specific problem.

4.1.1 Linear Programming

In an optimization problem, if the objective function(s) and

all constraint functions are linear, then that problem is a

linear programming problem. In fact, linear programming

is a method that finds the minimum or maximum value of a

linear function on a convex polygon. This convex polygon

is in fact a graphical representation of some inequality

constraints over the functions’ variables. Linear program-

ming can achieve the best result in some specific conditions

[30]. There are many algorithms for solving linear

programming problems, including simplex algorithm,

criss-cross algorithm, Karmarkar’s algorithm, affine scal-

ing, etc.

A lot of research has been carried out on the combined

use of game theory and linear programming [48, 96, 106].

In most of these studies, a game has been solved using

linear programming. That is, the game’s Nash equilibrium

is calculated. In these researches, both single-objective and

multi-objective optimizations have been considered.

A matrix game has at least one answer. In general, a

positive-matrix game can be modeled as a dual linear

programming problem. Hence, simplex algorithm can find

the answer(s) of a matrix game. The steps to solve a sim-

ulated game as a linear programming problem using the

simplex algorithm are as follows [48].

1. Create the matrix of the game.

2. If the solution is completely clear, set it as the

obtained solution of the problem.

3. Check the dominance of the rows and columns.

All dominated rows and columns should be eliminated

in this step.

4. Make sure the amount of the game is positive. To do

this, just add the resulted value of subtracting the

largest negative entry of the matrix from 1, to all

matrix entries. Consider this added value (if any) as k.

5. Suppose G is the m 9 n matrix of the game. Consider

e as n-component row vector which all of its entries are

1, and f as m-component column vector which all of its

entries are 1. Also consider z as n-component row

vector and x as m-component column vector. Given the

mentioned assumptions, create the following matrix:

G f

e 0

6. Run the simplex algorithm to the point that all

indicators are non-positive. Calculate the optimal

answers to the dual linear programming problem as

z0 and x0, and assume that t = z0 and f = ex0. We know

that t[ 0.

7. The answers of the main matrix can be calculated using

following equations:

p0 ¼ z0

t
; q0 ¼ x0

t
; andv ¼ 1

t
� k

Eliminated rows and columns will be replaced by addi-

tional zero components in strategy vectors. The type of

game that is considered in this method is non-cooperative.

In [96], there is a way to solve cooperative games. In

this strategy, for each coalition, a real-value variable is
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considered. The value of this variable is equal to the total

amount of benefits of the members of the coalition. The

appropriate coalitions are selected in the game based on

this real value. In this way, the game is modeled as a dual

linear programming problem.

In [106], an iterative approach is presented to solve the

multi-objective linear programming problem based on the

principles of game theory. This method is actually provided

for solving the problem of optimizing the utilities of sev-

eral decision makers at the same time and with the same

constraints. Decision makers are players of the game and

form coalitions to solve the problem. So the game is a

cooperative one. The proposed method consists of a basic

phase and repeats this phase to a satisfactory level. This

phase involves solving a single linear programming prob-

lem, which is easy to accomplish. The unique answers

generated in different iterations are the objective indica-

tors. These indicators are used as guidelines for deter-

mining the strategy of the next iteration, and this work

continues until the game reaches the equilibrium. The main

advantage of this method is that it can be easily extended to

multi-objective non-linear programming problems. There-

fore, it is appropriate in order to solve a range of opti-

mization problems. Lucchetti [96] and Matejas and Peric

[106] show that the linear programming can easily com-

plete a game and find point(s) of equilibrium.

4.1.2 Non-Linear Programming

If at least one of the objective functions or constraint

functions of an optimization problem is not linear, that

problem is called non-linear programming problem. Some

of the most popular algorithms for solving the non-linear

programming problems are the Lagrangian and the gradient

descendant methods [14].

In [72], by combining multi-objective optimization

method and evolutionary game theory, a multi-frequency

offsets estimation method was proposed. Multi-frequency

offsets estimation is a multi-objective search, which is

presented as a non-linear programming problem with sev-

eral objective functions. In this way, different frequency

offsets were considered as players in the evolutionary game

theory to turn the problem into find an equilibrium point in

the game. Thus, evolutionary game theory can solve a

multi-objective nonlinear programming problem. The main

advantage of the mentioned method is to avoid an objective

function has several optimum solutions.

4.1.3 Quadratic Programming

If the objective function is a quadratic one and all of the

constraint functions are linear, then it is quadratic pro-

gramming problem. The quadratic programming problem

is a special case of non-linear programming problem that is

closest to the linear programming problems. Traditional

quadratic programming models require certain parameters

with constant values. This model is widely used to solve

real world problems [120]. Researches conducted on the

combined use of the game theory and the quadratic pro-

gramming has not made much progress, and very few

studies have been presented in this regard. One research on

the combination of the game theory and the quadratic

programming is presented in [101]. In this research, a

method is proposed to find the Nash equilibrium in a game

using quadratic programming. The game considered in this

study had two players and was a non-zero sum game. This

research proved that a point is the Nash equilibrium point

in a game, if and only if, it is the answer of a quadratic

programming problem. The quadratic programming prob-

lem should be considered as a game-related dual linear

programming problem to solve zero-sum games. The main

drawback of this method is that it only considers dual

games with pure strategy and thus, is not suitable for a

wide range of games. Furthermore, the number of strategy

sets should also be limited in this method.

4.1.4 Integer Programming

Integer programming is an optimization problem, in which,

the domains of the optimization variables (Di) are integer

set (Z). This type of problem has many applications in real

problems, since many variables are integers in the real

world [166]. Given the type of objective functions in

optimization problems, integer programming can be com-

bined with other classic optimization methods, and creates

new optimization categories that can be effective in various

applications.

In [190], the basis of the optimization is integer pro-

gramming. In this study, a framework and an algorithm for

supply chain design and operations were presented. This

framework is based on mixed integer bilevel programming

and is modeled as a Stackelberg game with one leader and

one follower. The game is non-cooperative. The followers

can have discrete decisions in this game and this is the

main advantage of this framework. It is also a flexible

framework and can be expanded with different types of

optimization and different types of objective functions.

4.1.5 Mixed Integer Linear Programming

Mixed integer linear programming is a special type of

optimization which is similar to linear programming (with

linear objective function), except that the domain of some

of the variables of the problem can be non-integer num-

bers. Since most integer programming problems are linear,

all available methods and tools can be used in this area.
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Also, the use of integer variables adds a lot of abilities to

the modeling process that can not be done in linear pro-

gramming [175].

In [198], a scheduling mechanism for managing the

demands of home and neighborhood area in smart grids is

provided based on mixed integer linear programming and

game theory. This mechanism is presented in two cen-

tralized and distributed modes. In centralized mode, the

scheduling mechanism is first described as a linear pro-

gramming problem. However, in the following, given the

specific constraints of the problem, mixed integer linear

programming is used to formulate the problem. To solve

the formulated problem in centralized mode, branch and

bound method have been used. In distributed mode, the

problem is modeled as a distributed mixed integer linear

programming problem. The problem has been then solved

with the help of a cooperative game. In this game, players

are users who are connected to the neighborhood/local area

network. The set of strategies is also daily consumption

schedules. In this study, mixed integer linear programming

has been well utilized, but the game theory has been used

only in one state.

In [191], a method for designing a supply chain with

high tactical decision-making power was provided through

different optimization metrics (multi-objective). In the

proposed method, the problem of optimization was for-

mulated as a mixed integer linear programming problem

and integrated with the game theory. The problem of

optimization in this research is solved by the e-constraint
method. The approach is intended for both cooperative and

competitive environments. The game theory is used here as

a tool to support decision-making in order to deal with

uncertainty in the competitive scenario. In this method, the

proposed game is non-zero sum and the players are the

supply chains. In the experimental results of this research

showed that the proposed method could make stronger

decisions.

4.1.6 Stochastic Programming

Stochastic programming is a kind of mathematical pro-

gramming in which data includes random elements. In fact,

in stochastic programming, some of the optimization

variables or some of the parameters are random. In the real

world, the parameters of optimization problems are gen-

erally uncertain, and stochastic programming can serve as a

framework for modeling uncertain optimization problems.

Stochastic programming uses the probability distribution of

uncertain parameters for modeling and solving optimiza-

tion problems [147].

In [29], a model has been proposed to create optimal

bidding strategies for trading wind power in a competitive

electricity market. The purpose of this model is to

maximize the total profit of the producers in both the

energy market and the bilateral reserve market. The pro-

posed model has been created using stochastic program-

ming and game theory. The optimization variables were

wind power output, hourly location marginal price, real-

time price, and bilateral market price clearing, which were

uncertain (random) variables. The reserve price was

determined using the game theory. In fact, game theory has

been used to address the uncertainty of other market par-

ticipants’ behaviors. In the game, energy producers were

considered as players. The proposed model in this research

was an appropriate application model and it could reduce

the risk of losing money.

4.1.7 Convex Optimization

Finding at least one convex function among a set of convex

functions is called convex optimization. Convex function is

a continuous function that if two arbitrary points are con-

sidered on this function, the dotted line of these two points

always lies above the graph of the function. In an opti-

mization problem, when the objective function(s), the

constraints functions, and the domains of the optimization

variables are all convex, we have a convex optimization

problem. The main advantage of this type of optimization

problem is that every local optimal point is also a global

optimal point, and any optimization algorithm that finds a

local optimal point actually finds a global optimal point

[17].

No significant research has been carried out on com-

bining convex optimization and game theory. In [143], the

combined use of variation inequality, convex optimization,

and game theory has been investigated. This research

consists of two parts. In the first part of the study, the basic

concepts of variation inequality, convex optimization, and

game theory were investigated to use in communication

and signal processing communities. In the second part, the

results of the first part were used to solve some of the

problems of wireless ad hoc networks. The main emphasis

of this research is on variation inequality and convex

optimization and game theory is marginally used.

A summary of the researches which combine game

theory and classic optimization methods can be seen in

Table 2. The number of citations of each study of Table 2

is counted up to November 2018.

4.2 Modern Optimization Methods

In this section, we will review the combined use of game

theory and modern methods of optimization. Given the fact

that modern optimization methods are approximate (ran-

don) and game theory is also an approximated optimiza-

tion, combined use of game theory and modern
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optimization methods is expected to have various appli-

cations. It is also expected that using each approach can

improve the problem solving of the other one.

4.2.1 Genetic Algorithm

Genetic algorithm is a search technique to find an

approximate solution for optimization and search prob-

lems. Genetic algorithm is a special type of evolutionary

algorithms that uses biology evolutionary techniques such

as heritability and mutation. It is a repetition-based algo-

rithm, most of which are selected as random processes

[67]. In the genetic algorithm, first, several answers are

generated for the problem randomly or algorithmically.

This set of answers is called the initial population and each

answer is called a chromosome. Then, using the genetic

algorithm operators, the best selected chromosomes are

combined with each other and produce a mutation. Further,

the current population is combined with a new population

that results from the combination and mutation in the

chromosomes. This process is repeated as long as the ter-

mination condition of the algorithm is established and the

final result is obtained.

One of the modern optimization algorithms which have

been used in many applications in combination with the

game theory is the genetic algorithm. These applications

have been presented in both types of single-objective and

multi-objective optimizations, and in the both types of

classic and evolutionary game theory

[78, 93, 118, 125, 138, 148].

In [138], the genetic algorithm learning is modeled as an

evolutionary game theory. The study showed that the

genetic algorithm learning is an evolutionary game, in

addition to an evolutionary process. This aspect of the

genetic algorithm learning concept is very suitable for

economic applications. In this research, three propositions

have been stated. Each genetic algorithm is a dynamic

game; each genetic algorithm is an evolutionary game; in

the genetic algorithm learning process, the population tends

to move toward a Nash equilibrium point. Given these

three propositions, the main solution was presented.

In [148], a combined approach was introduced to solve

the generation expansion planning in the pool market. This

approach is a combination of game theory and genetic

algorithm. The proposed algorithm is divided into two

levels of master and slave. At the master level, a modified

game theory was suggested to evaluate the contrast of

generation company by independent system operator. At

the slave level, an improved genetic algorithm was used to

find the best solution for each manufacturing company to

decide on investment. In this application, the game theory

and the genetic algorithm were used separately in two

phases to solve a particular problem. Although the game

theory and the genetic algorithm are not modeled together,

the results of optimization in this method are still

satisfactory.

Table 2 A summary of studies related to game theory and classic optimization methods

Study Year #Citations Method Objective Game Main discussed topic

Gale et al. [48] 1951 456 Linear Programming Single Non-Cooperative Solving a matrix game

Mangasarian and

Stone [101]

1964 184 Quadratic Programming Single Non-Cooperative Solving a two-person nonzero game

Lucchetti [96] 2006 166 Linear Programming Single Cooperative Solving a cooperative game

Jin et al. [72] 2010 10 Non-Linear

Programming

Multi Evolutionary Multiple frequency offsets

estimation

Scutari et al. [143] 2010 200 Convex Optimization Single Non-Cooperative Communication and signal

processing communities

Zhu et al. [198] 2011 51 Mixed Integer Linear

Programming

Single Cooperative Consumption scheduling

Zamarripa et al.

[191]

2013 27 Mixed Integer Linear

Programming

Multi Non-Cooperative/

Competitive

Supply chain optimization

Dai and Qiao [29] 2013 59 Stochastic Programming Multi Non-Cooperative Bidding strategy optimization

Matejaš and Perić

[106]

2014 10 Linear Programming Multi Cooperative Decision making

Zappone and

Jorswieck [192]

2015 154 Linear Programming Single Non-Cooperative Energy Efficiency in Wireless

Networks

Baykasoğlu and

Özbel [13]

2016 4 Linear Programming Single Cooperative Maximum flow problem

Doudou et al. [38] 2016 9 Convex Optimization Multi Non-Cooperativ Wireless sensor networks

Yue and You [190] 2017 29 Integer Programming Single Non-Cooperative Supply chain optimization
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Konak et al. [78] proposed a new solution for reliable

server assignment under attacks. The problem was modeled

as a bi-level optimization problem in which the network

designer acted as leader and the attacker acted as a fol-

lower. A game theory-based genetic algorithm was pro-

posed to solve this bi-linear optimization problem. The

game network designer and the attacker are two players of

the game, which are interacting with a payoff matrix. There

are two categories of population for the genetic algorithm;

each category is associated with one player. Since the

problem is NP-hard, it seems necessary to use modern

optimization algorithms. The performance of the proposed

combined approach is much better than the pure genetic

algorithm. The other advantage of the proposed method is

that it can be easily modeled for other two-level opti-

mization problems of a similar structure.

Several multi-objective problems have also been solved

with the help of genetic algorithm and game theory. For

example, in [125], a game theory-based genetic algorithm

method for solving the multi-objective optimization prob-

lem of DDM-nozzle in distributed environments was pre-

sented. In this method, the string representing the answer is

divided into two parts, each part being considered as a

player. Each player has a duty to optimize its part. That is,

each player is associated with an objective function. A

population is also considered for each player. The game is

non-cooperative. This method had better performance than

the cooperative games provided in this area. The use of

game theory in this study made it easier for parallelization.

In [118], a method for designing water distribution net-

works was proposed using game theory and genetic algo-

rithm. This was a multi-objective problem. One of the

objective functions aimed to minimize cost and the other

function aimed to maximize pressure. In this method, the

features of the genetic algorithm were well used, and in

each step of the algorithm, a large number of solutions

were updated and improved. The best solution is selected

by the game theory. The method presented in this study had

a good performance compared to other available methods.

In [93], a model was proposed to solve the land-use spatial

optimization problem. Land-use spatial is a complex

decision-making optimization problem that deals with

several opposite objective functions. In the mentioned

research, suitability and compactness in land-use were

considered as goals. The proposed model combines game

theory and genetic algorithm. The genetic algorithm was

repeated to optimize the spatial layout of each type of land-

use. The structure of the grid was used to display the

chromosomes, because it could easily be used to indicate

the area under study (ground units).

4.2.2 Imperial Competitive Algorithm

Imperialist Competitive Algorithm is a method in the field

of evolutionary computing that seeks the optimal solution

for various problems. This algorithm provides a method for

solving optimization problems by mathematical modeling

of the socio-political evolution process. Each element of

the population of this algorithm is called a country.

Countries are divided into colonies and imperialists. Each

imperialist, depending on his power, controls a number of

colonial countries and forms an empire. For the division of

colonies between the imperialists, each imperialist will be

given a number of colonies, which this number is propor-

tional to its strength. The policy of assimilation, imperi-

alistic competition, and revolution are the core of this

algorithm. The algorithm continues until a convergence

condition is fulfilled or until the total number of iterations

is completed. Finally, all the empires will fall, and we will

have only one empire, and the rest of the countries will be

under the control of this single empire [10].

Given the structure of the imperialist competition

algorithm, it can be seen that it can be a good option for use

in game theory. In [133], imperialist competition algorithm

was used as a tool for finding the equilibrium point in game

theory in multi-objective problems. The game is considered

non-cooperative. In this method, one player is considered

each objective function and for each player, an imperialist

competition algorithm is executed separately to optimize

its solution. The initial selection of players in the first

iteration is random. The game will be continued until all

objective functions are optimized and reach the Nash

equilibrium point. The proposed method has a better per-

formance than the genetic algorithm and is stronger in

terms of convergence. But the main advantage of the

proposed method is that it can be used to solve various

games and even solve many of the multi-objective opti-

mization problems.

4.2.3 Ant Colony Optimization

An ant colony optimization is inspired by the behavior of

natural ants that lives in large sets together and is one of the

most efficient algorithms for solving optimization prob-

lems. An ant colony algorithm is a clear example of col-

lective intelligence, in which factors that have not high

abilities, can work together and get together very well. This

algorithm is used to solve a wide range of optimization

problems [37].

One of the most important and most interesting behav-

iors of ants is their behavior to find food, and in particular

how to find the shortest route between food and colony.

This kind of behavior of the ants has a kind of massive

intelligence. In the real world of ants, they first accidentally
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go to find food. They then go back to the colony and leave

the pheromone. When the other ants find this path, some-

times leave the wanderer and follow it. Then, if they come

to the food, they will go home and leave the other side

behind them, in other words, strengthen the previous path.

The pheromone evaporates over time. When an ant finds a

good path from home to food, the rest of the ants are more

likely to follow the same path, and by continually rein-

forcing that path and evaporating other tracks, all the ants

are also traversed. The goal of an ant colony algorithm is to

imitate this behavior by artificial ants.

In [128], a method to optimize social information in

opportunistic networks was proposed based on the ant col-

ony algorithm and game theory. Losing data and discon-

necting is a common problem in opportunistic networks and

social information has a big role in reducing this problem. In

fact, in this research, a new routing method was proposed to

determine the relative importance of the network nodes for

solving the mentioned problem. In this research, the game

theory is used to find the shapley value of each node.

Shapley value shows the nodes’ participation in the network.

The shortest paths are also calculated by the Dijkstra algo-

rithm. This information is considered along with the random

path as the input of the ant colony optimization algorithm.

The ant colony algorithm uses pheromone and updates it to

find the deviation of social information between nodes. The

advantage of the proposed method is to increase the prob-

ability of delivery and to reduce delay in comparison with

other similar methods in this field.

In [82], a method for the rapid broadcasting of essential

messages and for increasing the life of the network in the

wireless body area network was presented using the ant

colony algorithm and the game theory. In this method, an

ant colony algorithm is used to find the shortest path to

send the required message through the sensor nodes. The

game theory is also used to increase network lifetime. The

game is considered as a static game with mixed strategies.

In this application the game theory and ant colony algo-

rithm are completely separate in two different domains,

and their features and their advantages are not used con-

currently. In the real world, this approach can be used well

as a tool for diagnosing a disease and remote treating a

patient using telecommunication technology.

4.2.4 Particle Swarm Optimization

The particle swarm optimization is a population-based glo-

bal optimization technique. This technique is inspired by the

social behavior of birds for food search. Due to its simple

search mechanism, computational efficiency, and easy

implementation, this technique has been widely used in

many optimization problems. Each particle (which is a

solution) is defined in this algorithm by the velocity vector

and position vector in the search space. In each repetition,

the new particle position is defined according to the velocity

vector and position vector in the search space. At each time

interval, the positions of particles are updated according to

the current velocity vectors, the best positions found by that

particles, and the best position found by the best particle in

the group. That is, each particle continues to search in the

space of the problem by looking for optimal particle in the

current state. Therefore, this algorithm optimizes the prob-

lem by updating particles in iterations [75].

Particle swarm optimization algorithm has been used in

many researches along with game theory. These researches

have been presented in the field of optimization of single-

objective problems as well as optimization of multi-ob-

jective problems. Both classic game theory and evolu-

tionary game theory have been also used in conjunction

with the particle swarm optimization algorithm

[26, 84, 91, 114, 116, 179].

An optimization algorithm is presented in [91], which

has combined the particle swarm optimization and the

evolutionary game theory. In this algorithm, the particles

are considered as players in the evolutionary game. These

players will seek the most profit by choosing the right

strategies. The space of strategies is the same as the search

space of the particle swarm algorithm. The fitness function

is also considered as payoff function. In this study, the

multi-start technique has been also introduced to overcome

premature convergence. The most important advantage of

the proposed algorithm is its proper convergence. The

algorithm also performs better than standard particle

swarm algorithm.

A new hybrid optimization algorithm has been also

proposed in [84] using an enhanced particle swarm algo-

rithm and evolutionary game theory. In this algorithm, the

mass of particles is the same as our population. Each

particle is considered as a player with three strategies.

These three strategies are tracking own memory, tracking

the best neighbor, or moving just by inertia. The payoff

value is also the average performance that is obtained by

tracking a strategy. In this study, another algorithm is

proposed to overcome the potential premature conver-

gence. The second algorithm is based on the combination

of the first algorithm and the standard particle swarm

algorithm. The second algorithm consists of two types of

particles, one relating to the first algorithm, and another to

the particle swarm algorithm. The main advantage of this

research was that, in contrast to previous studies whose

results had been empirically investigated, in this research

the efficiency of the presented methods was proved

theoretically.

Wang et al. [179] investigated the effect of using the

particle swarm algorithm to update strategies for the evo-

lution of cooperation in prisoner’s dilemma and Snowdrift
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games on a square lattice. In this research, a model has

been introduced for updating strategies in these games in

an evolutionary manner, using the particle swarm algo-

rithm. Experimental results showed that using the strategy

update mechanism based on the particle swarm algorithm

could promote collaboration in both games. This research

provides an overview of the evolution of collaboration in

these two games, which can be useful in understanding

collaboration in natural and social systems.

In the mentioned previous studies, evolutionary game

theory was used along with the particle swarm algorithm.

In [114], a method for solving generation expansion plan-

ning in the pool market was presented using classic game

theory and particle swarm algorithm. The proposed algo-

rithm is divided into two levels of master and slave. At the

master level, a modified game theory was suggested to

evaluate the contrast of generating companies by inde-

pendent system operator. At the slave level, the particle

swarm algorithm was used to find the best solution for each

manufacturing company to decide on investment. In this

method, game theory and particle swarm algorithm are

used separately to solve this problem. The authors of this

study have also proposed a combined method of the game

theory and genetic algorithm which have been examined in

the genetic algorithm section. Comparing the results of

these two methods, it can be concluded that, by combining

the game theory and the particle swarm algorithm, more

benefit can be gained in comparison with the combine use

of the game theory and the genetic algorithm.

In [116], a combinational framework of game theory

and particle swarm algorithm has been proposed to solve

the problem of generation expansion planning in the power

market. This framework consists of three levels. The first

level is a PSO-based optimizer that provides optimal gen-

eration expansion plans. The second level is a coordinator

that responsible for clearing market prices, maintaining

open dynamicity, and maintaining system security. The

third level is a demand block that considers the interactions

of the demand entities. The game theory has been used as a

decision support tool in competitive situations. For this

purpose, a Stackelberg game has been introduced that

includes three types of players, namely leader, suppliers

and demand entities. In this research, game theory is used

to model the problem and the particle swarm algorithm is a

part of the framework which is responsible to optimization.

In [26], a new method for publishing collaborative

content in multimedia clouds has been presented. This

method is based on the particle swarm optimization algo-

rithm, game theory, and evolutionary game theory. In this

method, the optimal number of service users and non-ser-

vice users in each location-based multimedia user group is

determined by an improved particle swarm algorithm.

Also, a game-based matching technique is proposed to

determine the match between service users and non-service

users. In order to avoid the blindness and selfishness of

non-service users in the selection of service users, an

evolutionary game is used. A Stackelberg game is also used

to obtain optimal pricing policies and bandwidth alloca-

tions for service users. The proposed method in this

research reduces the average publishing time of content

and total cost of multimedia cloud users. Particle swarm

algorithm, game theory, and evolutionary game theory are

used for different purposes and separately in this research.

4.2.5 Simulated Annealing

Simulated annealing algorithm is a simple and effective

optimization algorithm for solving optimization problems.

Due to its ability to solve different problems and specially

to find the absolute minimum value, it is a very important

modern optimization algorithm. The simulated annealing

algorithm starts the optimization process with an initial

solution and then moves to neighboring solutions in an

iterating loop. If the neighbor’s solution is better than the

current one, the algorithm puts it as the current solution,

otherwise the algorithm accepts it as the current solution

with the probability exp(-DE/T). DE is the difference

between the values of the objective function for the current

solution and the neighboring solution, and T is a parameter

called temperature. At each temperature, several iterations

are executed, and then the temperature is slowly reduced.

In the initial steps, the temperature is set very high, so it is

more likely to accept worse solutions. With the gradual

reduction of temperature, in the final steps, there will be

less chance of accepting worse solutions, and so the algo-

rithm converges to a good solution [164].

In [121], researchers have used simulated annealing

algorithms to find points of equilibrium in a game. A

method for solving games using simulated annealing

algorithms was presented. In this study, a special version of

the simulated annealing algorithm called fuzzy adaptive

simulated annealing has been introduced. Since the popu-

lation-based simulated annealing algorithm is not avail-

able, a multi-start version is used in this method, which

includes a pre-processing step. With this step, the algo-

rithm is able to find some promising starting points. These

points help the algorithm not be caught in the local minima.

Unlike many of the modern algorithms that may not find all

the points of equilibrium in a problem (that has more than

one point of equilibrium); the proposed method will find all

the points of equilibrium in the problem. Thus, it can be

said that the remarkable advantage of the combination of

game theory and simulated annealing algorithm is that it

can be used to find all the points of equilibrium (if any) in

the games. Another advantage of this method is that it does

not pay attention to a particular type of game and the
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simplest game is considered. Therefore, this method is

applicable to any type of game.

4.2.6 Shuffled Frog Leaping Algorithm

Shuffled frog leaping algorithm is an evolutionary and

population-based algorithm. This algorithm is fast and has

great global search capability. Shuffled frog leaping

algorithm combines deterministic and random methods.

The deterministic method allows the algorithm to

exchange messages efficiently. The random method

guarantees the flexibility and resilience of the algorithm.

The algorithm starts with random selection of frog groups

(a set of solutions). Then, groups of frogs are divided into

several subgroups. Each of these subgroups can perform

local search independently and in a different way. This

algorithm uses the memetic method to search locally

among frogs subgroups. Frogs of a subgroup can affect

other frogs in the same subgroup and thus, frogs evolve in

this subgroup. To achieve a good objective, the weights of

good frogs should be increased and the weights of bad

frogs should be decreased. After the evolution of some

memetics, subgroups are combined. This combination

causes that the memetics are optimized in the global

domain and new subgroups of frogs are created. Local

search and global search are combined to satisfy the

convergence condition. The rapid convergence is one of

the most prominent advantages of the shuffled frog leap-

ing algorithm [43].

A combined method of game theory and shuffled frog

leaping algorithm for bandwidth scheduling in the net-

worked learning control system have been presented in

[188]. In the study, the resource allocation problem is

modeled as a non-cooperative and fair game and it is

proved that there is only a unique equilibrium point for the

game. An improved shuffled frog leaping algorithm was

proposed in this study with a combination of local search

and information exchange between network groups. The

advantage of the proposed method is that the convergence

rate is very high.

4.2.7 Differential Evolution

Differential evolution is a random and population-based

optimization algorithm. This algorithm is presented to

overcome the main drawback of the genetic algorithm,

namely the lack of local search. The main difference

between the genetic algorithm and the differential evolu-

tion algorithm is the ‘‘selection’’ operator. In the selection

operator of the genetic algorithm, the chances of choosing

a solution as one of the parents depends on its merits,

however, in the differential evolution algorithm, all the

solutions have the same chance of being choosed and their

selection chances do not depend on their merits. When a

new solution was generated using a self-adjusting mutation

operator and the crossover operator, the new solution is

compared with the previous one and will be replaced if it is

better. In this algorithm, unlike other algorithms, to create

new generation, the mutation operator is applied before

applying the crossover operator. In a differential evolution

algorithm, no particular distribution is used for applying

the mutation operator, but the length of the mutation step is

equal to the value of the distance between the current

members. To create the initial population, uniform distri-

bution is usually used. At each step of the algorithm, the

members approach each other and this convergence will

lead to find an optimal solution [163].

In [49], a method is proposed to design a nano-CMOS

voltage-controlled oscillator, which is a multi-objective

problem. The proposed method is based on the combina-

tion of three algorithms, namely, particle swarm opti-

mization, differential evolution algorithm, and an improved

differential evolution algorithm that has been developed

with evolutionary game theory. In the third algorithm, a

combined use of evolutionary games and differential evo-

lution algorithm has been considered. Evolutionary game

theory is used here as a self-adjusting mechanism in the

differential evolution algorithm. The performance of the

proposed method was better, in terms of the quality of the

solution, than the solution which was obtained from the

standard differential evolution algorithm and its solution

was more optimal. The cost of finding more optimal

solutions for the proposed method was the execution time.

The required time to find the solution using the proposed

method is twice the execution time of the standard differ-

ential evolution algorithm.

A combined method of game theory and differential

evolution algorithm has been represented in [21] to solve

the multi-objective problem of trajectory optimization of

space maneuver vehicles. In this research, a modified game

theory-based approach based on an adaptive differential

evolution algorithm has been proposed to find the solution

of the problem. The differential evolution algorithm in this

method uses two types of crossovers, binomial and expo-

nential. It also uses a consistent strategy to update the

mutation operator. To increase the quality of the solutions,

control logic is also considered in the proposed framework.

The proposed method in this study has more appropriate

convergence speed comparing other methods of this area.

Also, the quality of the solutions obtained by this method is

appropriate.
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4.2.8 Tabu Search

Tabu search is an optimization algorithm that can solve

various optimization problems, especially graph-based

problems and combinatorial problems. This algorithm

works almost like local search algorithms, except that it

uses tabu list to avoid getting stuck at a local optimal point.

Tabu search algorithm starts from an initial solution and

then, the algorithm chooses the best solution of the

neighbors. If this solution is not in the tabu list, the algo-

rithm moves to the neighbor’s solution; otherwise, the

algorithm will check the breathing criterion. Based on the

breathing criterion, if the neighbor’s solution is the best

solution so far, the algorithm will move to it, even if that

solution is in the tabu list. After this moving, the tabu list is

updated and the previous move, by which we proceeded to

the neighbor’s solution, is placed in the tabu list in order to

prevent the algorithm from returning to that solution and

creating a cycle. After placing the previous move on the

tabu list, a number of moves that were previously on the

tabu list will be removed from the list. The duration of

movement in the tabu list is determined by a parameter

called tabu tenure. Moving from the current solution to the

neighbor’s solutions continues to the end condition [53].

A method for finding Nash equilibrium in games has

been presented in [165], using tabu search and best-re-

sponse dynamics. The games in this research have n

players and pure strategies. To solve games with these

features, we need to create a payoff matrix. If the number

of players is high, creating a payoff matrix would be dif-

ficult and would require a lot of calculations. The proposed

method does not require the total payoff matrix, and only

creates payoffs that are related to the search. Tabu search

helps to avoid the problem of loop in the proposed method.

There is a general tabu list in the case of explicit memory,

however in the case of using attribute-based memory; there

will be an individual tabu list for each player. One of the

conditions for stopping in this method is to find the Nash

equilibrium and the other stop condition is to exceed the

allowed number of iterations. The proposed method is

appropriate in terms of execution time because it does not

require full payoff matrix. The main drawback of the

proposed method is that it only considers games with pure

strategies and does not pay attention to the games with

mixed strategies.

4.2.9 Coral Reefs Optimization Algorithm

The coral reefs algorithm is a natural-inspired evolutionary

optimization method based on the simulation of coral reefs

processes. The coral reefs algorithm begins with the initial

population corals in a square grid (reef). Cells of the square

grid are empty in the beginning of the algorithm. Using

sexual and asexual reproduction operators, the reproduc-

tion process of corals are simulated. To form the coral

reefs, a coral larva tries to find a place on the reef. This

placement depends on the power of the larva (how much

the solution is appropriate), or the amount of the chance to

find an empty place. At the end of each step of the algo-

rithm, corals depredation process is performed to eliminate

inappropriate solutions to ensure the existence of empty

space in the reefs for the next steps. The steps continue to

the end condition [142].

In [45], a new method has been presented for managing

elastic resources allocation in cloud environments using the

coral reefs optimization and game theory. This is a multi-

objective optimization to maximize demand satisfaction

and to minimize cost and resource consumption. In this

method, the coral reefs algorithm is used to model cloud

elasticity in a cloud-data center. The game theory opti-

mizes the resource reallocation schema with respect to the

cloud provider’s goals, and actually provides the solution

of the problem. Players of this game are virtual machines.

The advantage of the proposed method is the convergence

speed in very large clouds. It also has great scalability and

can work well with a large number of virtual machines and

large clouds.

A summary of the researches which combine game

theory and modern optimization methods can be seen in

Table 3. The number of citations of each study of Table 3

is counted up to November 2018.

4.3 Hybrid Methods

In addition to the researches which are discussed in the

previous sub-sections, there are other researches that use

the combination game theory and optimization methods.

These studies cannot be categorized in the proposed

structure, as they do not directly use a classic or a modern

optimization algorithm. Some of other researchers have

combined the game theory with a number of classic or

modern optimization methods. The most important

researches of this extra category have been represented in

[4, 65, 83, 87, 134, 185, 186, 195]. We will look at these

studies in this sub-section in a nutshell.

The research presented in [134] is a basic research in the

field of multi-objective optimization using game theory,

which is based on many of the classic methods. In [87], a

combined game-based algorithm is proposed to optimize

the integrated process planning and scheduling (IPPS)

problem in production systems. The problem was first

modeled using the game theory and then, was solved using

a hybrid algorithm that combines the genetic algorithm and

tabu search. In [83], a new multi-objective optimization

method was proposed to solve the dynamic weapon target

assignment problem with evolutionary game theory. In the
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Table 3 A summary of studies related to game theory and modern optimization methods

Study Year #Citations Algorithm Objective Game Main discussed topic

Riechmann [138] 2001 144 Genetic Algorithm Single Evolutionary Genetic algorithm learning

Périaux et al. [125] 2001 104 Genetic Algorithm Multi Non-Cooperative DDM-nozzle optimization problem

Saguan et al. [141] 2004 11 Genetic Algorithm Single Non-Cooperative Power system management

Sureka and

Wurman [165]

2005 48 Tabu Search Single Non-Cooperative Solving a normal game

Rajabioun et al.

[133]

2008 128 Imperialist Competitive

Algorithm

Multi Non-Cooperative Solving a nonlinear game

Liu and Wang [91] 2008 30 Particle Swarm

Optimization

Algorithm

Single Evolutionary Presenting a combined optimization

method

Shayanfar et al.

[148]

2009 33 Genetic Algorithm Single Non-Cooperative Generation expansion planning

Annamdas and

Rao [6]

2009 40 Particle Swarm

Optimization

Algorithm

Multi Non-Cooperative Improve the particle swarm optimization

algorithm

Kusyk et al. [80] 2010 9 Genetic Algorithm Single Cooperative Multi-agent systems

Moghddas-

Tafreshi et al.

[114]

2011 41 Particle Swarm

Optimization

Algorithm

Single Non-Cooperative Generation expansion planning

Xu et al. [188] 2012 11 Shuffled Frog Leaping

Algorithm

Single Non-Cooperative Bandwidth scheduling

Nikjoofar and

Zarghami [118]

2013 7 Genetic Algorithm Multi Non-Cooperative Water distribution networks

Oliveira and

Petraglia [121]

2014 10 Simulated Annealing Single Non-Cooperative Solving a normal sgame

Kontogiorgos et al.

[79]

2014 2 Particle Swarm

Optimization

Algorithm

Single Non-Cooperative Complex interactions in deregulated

markets

Konak et al. [78] 2015 20 Genetic Algorithm Single Non-Cooperative Network reliability

Liu et al. [93] 2015 39 Genetic Algorithm Multi Non-Cooperative Land-use spatial optimization

Neshat and Amin-

Naseri [116]

2015 23 Particle Swarm

Optimization

Algorithm

Single Non-Cooperative Generation expansion planning

Ganesan et al. [49] 2015 17 Differential Evolution Multi Evolutionary Optimizing a nano-CMOS voltage-

controlled oscillator

Prabha et al. [128] 2016 4 Ant Colony

Optimization

Algorithm

Single Non-Cooperative Routing in opportunistic networks

Leboucher et al.

[84]

2016 16 Particle Swarm

Optimization

Algorithm

Single Evolutionary Presenting a combined optimization

method

Ficco et al. [45] 2016 20 Coral Reefs

Optimization

Algorithm

Multi Non-Cooperative Cloud Resource Allocation

Latha et al. [82] 2017 8 Ant Colony

Optimization

Algorithm

Single Non-Cooperative Wireless body area network

Wang et al. [179] 2017 4 Particle Swarm

Optimization

Algorithm

Single Evolutionary Evolution of cooperation in Prisoner’s

Dilemma and Snowdrift game

Chunlin et al. [26] 2017 3 Particle Swarm

Optimization

Algorithm

Multi Evolutionary/

Non-

Cooperative

Collaborative content dissemination

Chai et al. [21] 2017 4 Differential Evolution Multi Non-Cooperative Trajectory optimization of space

manoeuvre vehicle
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proposed method, for each objective function, a solution is

obtained first. Then every solution is considered as a player

in a game, and the winner of the game will be the final

solution to the problem. In [185], a dynamic method was

developed for determining the placement of virtual

machines in data centers using evolutionary game theory.

In this research, it has been proved that the proposed

method can provide optimal solutions. Xiao et al. [186] has

presented a new method for multi-disciplinary design

optimization in non-cooperative environments based on

game theory. The proposed method is based on the pro-

gramming of gene expression. [4] examined recent meth-

ods for optimizing energy consumption and increasing the

lifetime of the network using game theory in wireless

sensor networks. This research provides an overview of the

applications of game theory in wireless sensor networks

and their various optimization problems. In Zhao et al.

[195], using an algebraic formulation and optimization

control, a new approach is proposed to optimize a class of

dynamic games with random inputs. In this study, games

are considered as a network evolutionary game, which is

formulated based on the Markov process. In [65], a

sequential game has been developed to solve the multi-

objective clustering problem. The main objective of this

method is to optimize the inherently conflicting goals. This

method is very appropriate for medium-size datasets.

A summary of the researches which combine game

theory and hybrid optimization methods can be seen in

Table 4. The number of citations of each study of Table 4

is counted up to November 2018.

5 Directions for Future Researches

Considering the works reviewed in the previous section, we

can find that the combination of game theory and opti-

mization methods is common and popular research area.

By combining the game theory and various optimization

algorithms, new methods for optimization can be presented

and existing optimization methods can be improved. This

hybrid use can be also exploited in various applications.

Here is some of the research areas of the combined use of

game theory and optimization methods.

5.1 Presenting New Methods Based on Proposed
Categorization

The proposed categorization shows that there are many

categories in which, no research has yet been provided. For

example, there is no game theory-based multi-objective

integer programming optimization approaches. Evolution-

ary games can be also used to improve the efficiency of this

category of optimization. There are also such conditions for

ant colony algorithms in the modern optimization branch.

No combined method for multi-objective optimization

using ant colony algorithms and classic or evolutionary

game theory has been represented in the literature. Fur-

thermore, it is possible to complete the proposed catego-

rization by introducing combined game theory-based

optimizations using other optimization methods, such as

Gray Wolf Algorithm [111], Moth Flame Algorithm [110]

and Bees Colony Algorithm [73].

Table 4 A summary of studies related to game theory and hybrid optimization methods

Study Year #Citations Objective Game Main discussed topic

Rao [134] 1987 140 Multi Non-Cooperative/Competitive solving a general multi objective optimization

problem

Rao and Freiheit

[136]

1991 115 Multi Cooperative Mechanical and structural design

Li et al. [87] 2012 73 Multi Non-Cooperative Integrated process planning and scheduling

Leboucher et al.

[83]

2014 10 Multi Evolutionary Dynamic weapon target assignment

Xiao et al. [185] 2015 31 Single Evolutionary Optimizing the placement of virtual machines

Xiao et al. [186] 2015 28 Multi Non-Cooperative Multi-objective multidisciplinary design

AlSkaif et al. [4] 2015 66 Single/

Multi

Non-Cooperative/Competitive/

Evolutionary

Wireless sensor networks

Chen et al. [23] 2015 151 Single Non-cooperative Simultaneous wireless information and power

transfer

Zhao et al. [195] 2016 4 Single Evolutionary Solving dynamic games

Heloulou et al. [65] 2017 10 Multi Non-Cooperative Multi-objective clustering
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5.2 More Attention to Modern Algorithms Based
One Solution

Considering the modern methods studied in this study, it

can be concluded that most researches in the field of

optimization are based on population-based algorithms

such as genetic algorithm, ant colony algorithm, particle

swarm optimization, and imperialist competition algo-

rithm. The works performed in the field of algorithms

based on one solution are limited to only two simulated

annealing and tabu search. It is possible to use other such

algorithms, including GRASP search [153], variable

neighborhood search [62], guided local search [177] and

iterated local search [94] in combination with the game

theory.

5.3 Use of Combined Methods in Other
Applications

In many reviewed studies, combined methods based on

game theory and optimization algorithms are presented to

solve a particular problem. In addition to the raised issues,

combined methods can be used in various applications.

Examples include data mining, decision support systems,

computer networks, and etc.

6 Conclusion

The game theory is a set of analytical tools that can be

used to model strategic situations. The main objective of

game theory is to find an optimal solution for players.

Optimization is the process of finding the best (optimal)

solution among existing solutions. In the simplest case,

the goal of optimization problem is maximizing or min-

imizing a real function. Optimization can be determin-

istic or random. Game theory can act as a random

optimization. Due to the proximity of the concept of

game theory and optimization, many studies have used

their combination to solve various problems. Also, in

some studies, one of them has been used to improve the

other. In this article, we have reviewed the studies that

combine game theory and optimization algorithms and

have also presented a new categorization for these stud-

ies. The proposed categorization is based on four factors

including classic or modern optimization, the type of

optimization method, single- or multi-objectives opti-

mization and the type of game theory. Using this cate-

gorization, methods that use the combination of games

theory and optimization algorithms can be better studied,

and thus, new research can be presented in this regard.
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