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Abstract
The purpose of this study is to provide a brief review on acoustic analysis in quality evaluation and a new method for

determining bulk density of aggregate. An acoustical system was developed to measure aggregate density. The system

includes three microphones, a steel plate, a sinker, an isolated body and digital signal processing hardware. The steel plate

was placed on aggregate, followed by releasing the sinker on the steel plate. Then, the acoustic impact was analyzed using

speech recognition technology. Aggregate samples at different densities were prepared using ASTM Standard C29. Next,

using the acoustical system, audio signals were collected. A neural network was developed for sound data classification

into three aggregate densities (good density, medium density, and low density). The classification accuracy was 77.1% on

the test set and 96.5% on all data sets. The other neural network was developed for sound data classification into two

aggregate densities (good density and low density). The classification accuracy was 90.6% on the test set and 89.6% on all

datasets.

1 Introduction

A traditional method has been used for many years for

determining the density of railway ballast. According to

this method, a hammer with the wooden head is used to

snap on the rail to produce an acoustical impact. Then, an

experienced person listens carefully to the sound to dis-

tinguish good density of the ballast from bad ballast density

[1]. The authors of the present work were inspired by this

traditional method to provide a new method for

determining the density of aggregate used in road, railway,

etc. In this research, an acoustical impact was created and

then analyzed using speech recognition technology through

wavelet transforms and ANN.

2 Review

This review takes several-steps: (1) Comprehensive com-

parison of domains. (2) Extraction of journals and data-

bases; (3) sieve and collect appropriate articles; and (4) db

analysis.

Table 1 summarizes the existing abbreviations fined in

literature. Several domains have been proposed by scien-

tists, and these techniques are classified in Fig. 1. The latest

study on AE methods is shown in Fig. 1, are studied in

2012–2015, and 2015–2018 (Fig. 2).

In this section, we summarize a brief review of methods

proposed in the literature. From Fig. 1, can be concluded

that, Engineering (with[ 70%) and Material (with 26%)

are used more than the others. It also means that AE is an

effective method in solving the engineering problems.

As shown in Fig. 3, among the publications, articles and

conference papers class are most widely used. According to

the study, the frequency of the two articles and conf.

groups in total is equivalent. According to Fig. 3, more
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Table 1 The acoustic methods of non-destructive testing of building structures

No. Year Area Method Case References More information

1 2018 AEEng E No [1] Rail condition assessment

2 2018 AEEng E No [2] Reinforced concrete beam

3 2018 AEM N No [3] Microcracking mechanism

4 2018 AEM E No [4] Steel strand embedded in concrete

5 2018 AEM E No [5] Characteristics of rocks

6 2018 AEM E Yes [6] Pipe material on the transmission

7 2018 AEEng E Yes [7] Corrosion damage propagation

8 2017 AEM E No [8] Brittle rock in compression

9 2017 AEco N Yes [9] Reflective SOA-based fiber

10 2017 AEM E Yes [10] Application to stress situation

11 2017 AEM E Yes [11] Monitor cement composites

12 2017 AEEng E Yes [12] Civil engineering structure

13 2017 AEM E Yes [13] Kaiser effect during compression

14 2017 AEco N Yes [14] Fiber reinforced polymer

15 2017 AEM E Yes [15] FRP and FRCM-retrofitted RC beams

16 2017 AEco N No [16] Unmanned aircraft system

17 2017 AEM E No [17] Ductile iron and copper water-distribution pipes

18 2017 AEEng E No [18] Assessment of corroded rock bolts

19 2017 AEM E Yes [19] Damage analysis of carbon nanofiber

20 2017 AEEng E No [20] Monitor stress of steel structures

21 2017 AEEng E Yes [21] Structural health monitoring

22 2017 AEEng E Yes [22] Monitoring fracture processes of CFRP

23 2017 AEM E Yes [23] Textile reinforced cement

24 2016 AEco N No [24] Vibration and acoustic radiation

25 2016 AEEng C No [25] Cementitious building materials

26 2016 AEM E Yes [26] Characterize the structural behavior of concrete

27 2016 AEM E Yes [27] Monitoring of AE in rock

28 2016 AEco N No [28] Damage evaluation

29 2016 AEEng E No [29] Crack monitoring in civil engineering

30 2016 AEco E Yes [30] Fatigue crack growth from a transverse weld toe

31 2016 AEco C No [31] AE in orthopaedics

32 2016 AEEng E No [32] Concrete-galvanized steel pull-out bond

33 2016 AEEng N Yes [33] Bridge assessment

34 2016 AEEng E Yes [34] Evaluation railway station

35 2016 AEEng E Yes [35] Assessing corrosion damage in concrete

36 2016 AEEng E Yes [36] Assessment of a prestressed concrete

37 2015 AEM E Yes [37] Monitoring of rock specimens during fatigue tests

38 2015 AEM E Yes [38] FRP/steel composite damage

39 2015 AEEng E Yes [39] Evaluation of prestressed piles

40 2015 AEM E Yes [40] Wireless monitoring of structures

41 2015 AEEng E No [41] Reinforced concrete components

42 2015 AEEng C No [42] AE in engineering

43 2015 AEEng E No [43] Prestressed concrete girders

44 2015 AEco E No [44] A wireless data acquisition

45 2015 AEEng E Yes [45] Fatigue crack localization

46 2013 AEM E Yes [46] Stress migration and evolution law of coal

47 2013 AEEng E No [47] Investigation of compressive damage mechanisms

48 2013 AEEng E Yes [48] Concrete damage detection
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Fig. 3 Comprehensive comparison of recent publication in the field of AE

Fig. 2 Comprehensive comparison of domains by researchers in recent years in the field of AE

Fig. 1 The steps of review task

Table 1 (continued)

No. Year Area Method Case References More information

49 2013 AEEng E No [49] Offshore piling

50 2013 AEEng E No [50] Rebar pull-out test

Area

AEEng: AE engineering

AEM: AE material

AEco: AE computer

Method type

N: New

E: Enhanced

C: Comparative
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than 80% of the total publications in AE, are Article and

conf. Also about 2% of the current approaches are review

while the remaining is mostly book or chapter book.

The main step is to recognize the journals and databases

that cover any related material for this review. Figure 4

displays the statistics based on CiteScore Publication by

year of the academic journals that were searched in the

review process.

In this step, we broke down the topics into subtopics that

fall under the term of ‘‘AE’’. These topics include AE

engineering (AEEng.), AE material (AEM) and AE com-

puter (AEco.). Table 1 contains the collected information

on the studied references.

2.1 A Review on the Use of Acoustic Analysis
in Quality Evaluation

Food sorting using the acoustical impact technology is used

in the food industry. For example, there is a traditional

method for distinguishing high-quality watermelon from

low-quality watermelon. According to this traditional

method, an experienced person listens carefully to the noise

caused by the finger tapping to distinguish the high-quality

watermelon from low-quality watermelon. Recently, the

automatic food sorting using the speech recognition tech-

nology has received high attention [51]. Foods such as

tomatoes, walnuts, beans, and pistachio nuts are released

on the floor and then automatic food sorting is done using

the acoustical impact technology [52, 53].

Another important application of acoustic analysis is

acoustic emission (AE) monitoring. The AE monitoring is

a procedure used to detect and locate damage in mechan-

ically loaded structures, materials, and components [54].

Usually, piezoelectric sensors are attached on the surface of

the material to record the elastic waves generated by

cracking incidents in the material. Using these sensors

provides valuable input on the failure process from early

times, certainly before the fracture is apparent by visible

macro-cracks [55].

Recently, acoustic played an important role in automatic

assessment systems and scientists have paid more attention

to this field.

Acoustic Emission testing is applied to inspect and

monitor pipelines [56], storage tanks and pressure vessels

[57], bucket trucks, bridges, aircraft [58], and a variety of

composite and ceramic components [59]. The other

acoustic methods of non-destructive testing of building

structures are presented in Table 2 [60].

2.2 A Review on the Speech Recognition
Technology

Automatic Speech Recognition is a process in which

speech signals are converted into a sequence of words as

the linguistic units [61]. The process is generally divided

into two phases: the first phase is the system of ‘‘learning’’

or ‘‘training’’ process. The second phase is the ‘‘recogni-

tion’’ or ‘‘test’’ phase of the speech signal. After pre-pro-

cessing of the unknown voice data and having feature

extraction, the information is imported into a speech model

trained using a certain decision comparison criteria, com-

pared with the speech template. Making data analysis and

Fig. 4 Comprehensive comparison of CiteScore Publication by year

1580 F. M. Nejad et al.

123



identification for the unknown speech signal on the estab-

lished speech model, then it is possible to withdraw the

final recognition results of the unknown speech signal [62].

Signal processing and feature extraction are the main parts

of the speech recognition system. Feature extraction is

considered as the heart of the system. This component

extracts those features from the input speech (signal) that

help the system identify the speaker [62]. There are many

conventional and new signal processing methods and fea-

ture extraction techniques. Some of these new techniques

are presented in the following:

Recently, a new feature extraction method has been

proposed to achieve robustness of speech recognition sys-

tems. This method combines the phase autocorrelation with

bark wavelet transform. The result shows that the word

recognition rate using this combined method is 60%,

whereas it is 41.35% for the conventional feature extrac-

tion method [63]. Other new methods offered for speaker

feature extraction are on established on the basis of For-

mants, Wavelet Entropy, and Neural Networks, In contrast

to conventional speaker recognition methods that extract

features from non-vowel signals, the proposed method

extracts the features from vowels. The results were com-

pared to those of the classical algorithms well-known for

speaker recognition and found to be superior [64]. In

another recent study, a novel feature extraction was intro-

duced with dimension reduction technique using the com-

bined signal processing and statistical approaches such as

Discrete Wavelet Transform and Multidimensional Scal-

ing. In this regard, the Support Vector Machine plays a

major role for classification of nonlinear heterogeneous

dataset [65].

3 Method

An acoustical system was developed to determine aggre-

gate density. The system includes three microphones, a

steel plate, a sinker, an isolated body, and digital signal

processing hardware. The steel plate is placed on aggre-

gate, followed by releasing the sinker on the steel plate.

Next, the acoustic impact is analyzed using speech recog-

nition technology. Figures 5, 6, 7 and 8 present the pro-

posed acoustical system.

The acoustic system has three microphones. At the

beginning, the microphones were placed inside the main

body of the system, but it was observed that in this case the

system creates random sound signals. To correct this

problem, the microphones were placed outside the main

isolated body and then covered with an isolated box

(Fig. 6).

Figure 7 shows the sinker and the steel plate. The

thickness of the steel plate is 2 mm. The inadequate

thickness of the plate leads to shaking the plate, causing the

sound signal to be random. Our observations showed that

the thickness of 2 mm is sufficient. Table 3 presents

specifications of the acoustic system used in this work.

Because of the low friction between the plate and the

sinker on the plate shakes, the randomized sound signals

are generated. To correct this problem, the underside of the

sinker was covered with a plastic sheet. Figure 9 shows the

random signals before modifying the acoustic system.

Table 2 The acoustic methods of non-destructive testing of building structures [60]

No. Method Measured physical

quantity

Application

1 Parallel

seismic

Acoustic wave passing

through time

Testing of reinforced concrete and steel foundation piles, contiguous piles, and sheet piling

2 Impulse

response

Vibration frequency Testing of concrete reinforced concrete foundation piles, slabs, and floor toppings

3 Impact-echo Vibration frequency Testing of concrete and reinforced concrete foundation slabs, floors, flooring slabs, columns,

beams, post-tensioned concrete girders, sewers, etc.

4 Ultrasonic

tomography

Ultrasonic wave

velocity

Testing of concrete and reinforced concrete flooring slabs, foundation slabs, floor toppings,

columns, beams, etc.

Fig. 5 A schematic view of the acoustical system: (1) isolated body,

(2) releaser, (3) isolated box, (4) sinker, (5) steel plate, (6)

microphone, (7) hole, (8) aggregate, (9) Patch Cable, and (10) Laptop

set
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Fig. 6 Three microphones are

placed inside the isolated black

boxes. There is a hole next to

each microphone

Fig. 7 The sinker and the steel

plate

Fig. 8 The steel plate is placed

on aggregate. Then, the sinker is

released on the steel plate

Table 3 The acoustic system details

Sinker weight 390 g Sinker and plate material Steel, ST32

Plate thickness 2 mm Height of sinker release 15 cm

Voice recording Sample rate 22,050 Hz Voice recording Microphone Genius, Mic-01C

Bitrate 128 kbit/s Height of microphone 9 cm
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We suspect that bulk density of the aggregate effects the

sound signals for the following reasons:

• Changing aggregate grading in the upper layer The

vibratory compaction causes reduction of fine sand

content on the upper surface of the aggregate, which

can affect the sound transmission.

• Increasing the empty space below the plate The

vibratory compaction causes to increase the empty

space between the coarse grains. Therefore, the empty

space below the plate increases. The increasing gap

between the sound source and a porous mass causes

increasing the sound absorption at low frequencies.

• Porosity reduction Porosity reduction results in increas-

ing the sound absorption at high frequencies. Moreover,

porosity reduction increases the velocity of the sound in

the aggregate.

4 Aggregate Samples Preparation

Aggregate samples at different densities were created

according to ASTM Standard C29. This test method covers

the determination of bulk density of aggregate in either

compacted or loose condition and calculates voids between

particles in fine, coarse, or mixed aggregates based on the

same procedure. This test method is applicable to aggre-

gates not exceeding 125 mm [5 in.] in nominal maximum

size. Figure 10 illustrates the aggregate to create samples.

The nominal maximum size of the aggregate is 40 mm.

Figure 11 shows metal container recommended by

ASTM Standard C29. Standard size container was deter-

mined according to the nominal maximum size of the

aggregate (40 mm).

The shoveling procedure for loose bulk density shall be

used only when specifically stipulated. Otherwise, the

compact bulk density shall be created by either the rodding

procedure for aggregates having a nominal maximum size

of 37. 5 mm (11/2 in.) or less, or the jigging procedure for

aggregates having a nominal maximum size greater than

37. 5 mm (11/2 in.) and not exceeding 125 mm (5 in.). As

the aggregates to create samples have a nominal maximum

size greater than 37. 5 mm, the compact bulk density shall

be created by the jigging procedure.

The measure was filled in three approximately equal

layers, each layer was compacted by placing the measure

on a firm base, raising the opposite sides alternately about

50 mm (2 in.), and allowing the measure to drop in such a

manner as to hit with a sharp slapping blow. The aggregate

particles, by this procedure, are arranged in a densely

compacted condition. According to ASTM Standard C29,

each layer shall be compacted by dropping the measure 50

Fig. 9 The random signals before modifying the acoustic system

Fig. 10 Depot for preparing

aggregate samples

A Brief Review on Acoustic Analysis in Quality Evaluation and a New Method for Determining… 1583

123



times in the manner described, 25 times on each side.

However, our observations showed that dropping the

measure 52 times, 13 times on each of four sides of the

metal container is closer to vibratory compaction at the

construction site so that we did likewise. In the present

research, we considered loose condition as low density at

compacted condition. For creating a medium density of

aggregate, each layer was compacted by dropping the

measure 12 times, 3 times on each four sides (Fig. 12).

5 Sound Data Collection

Audio signals were collected, using the acoustical system

as described in Sect. 2. Figure 13 shows collecting audio

signals using the system. 318 sound data (106 sound data

for each condition) from the surface of aggregate samples

at different bulk density. Before placing the steel plate, the

surface of the aggregate was leveled with the fingers or a

straightedge since the slope of the steel plate must be

almost zero. The slope of the steel plate causes slipping the

released sinker which effects on the sound.

6 Feature Extraction

Sound curves of the collected data were drawn using

MATLAB software (Fig. 14). The signals include 3 parts

as shown in Fig. 15. Part 1 and part 3 were removed from

the original signals so just part 2 was processed. The sig-

nals were decomposed at level 5 using one-dimensional

discrete wavelet analysis. Figure 16 shows decomposition

a recorded signal at level 5. Six features (Mean and Stan-

dard Deviation of the wavelet coefficients and energy at

low and high frequencies) were extracted from each of

sound data. To achieve the desired results, it is necessary to

limit the data to a specific range by data normalization. In

this study, the following formula was used for data nor-

malization [66]:

ai ¼ 0:1 þ 0:8
Ai � Amin

Amax � Amin

� �
ð1Þ

where Ai is an original value, ai is the normalized value,

Amax is the maximum value, and Amin is the minimum

value. Before normalization, data were passed through the

absolute value function.

7 Developing the Neural Networks

Neural network (NN) models are well suited to domains

where large labeled datasets are available since their

capacity can easily be increased by adding more layers or

more units in each layer. However, big networks with

millions or billions of parameters can easily overt even the

largest of datasets [67].

7.1 Pattern Recognition Problem 1

A neural network was developed to classify sound data into

two aggregate densities (good density and low density). A

Fig. 11 Metal container according to ASTM Standard C29

Fig. 12 Some aggregate samples at different density
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pattern recognition problem was defined. The goal here is

to choose the structure of the neural network to achieve a

desired input/output relationship. The input matrix has 6

rows (number of features) and 212 columns (number of

sound data), and the target is a matrix zero–one with 2 rows

(number of conditions) and 212 columns (number of sound

data). A backpropagation learning algorithm was employed

for learning in the MATLAB program. First, a perceptron

neural network with 6-25-2 structure was considered. The

training function was varied as shown in Fig. 17. The

method to update weight and bias values in the training

functions is presented in Table 4.

Next, the number of hidden layers was varied as 2-35 in

order to see the sensitivity of the results. Figure 17 shows

the classification percent error for training functions while

Fig. 18 presents the classification MSE according to the

number of hidden layer neurons. Finally, the number of

hidden layers was varied as 1 and 2. Based on a trial and

error approach, a 6-30-2 neural network with traincgp

function was chosen to solve the pattern recognition

problem.

7.2 Pattern Recognition Problem 2

Another neural network was developed for sound data

classification into three aggregate densities (good density,

medium density, and low density). A pattern recognition

problem was defined. Again, the goal here is to choose the

structure of the neural network to achieve a desired input/

output relationship. The input matrix has 6 rows (number

of features) and 318 columns (number of sound data), and

the target is a matrix zero–one with 3 rows (number of

conditions) and 318 columns (number of sound data). A

Fig. 13 Collecting audio signals

using the acoustical system

Fig. 14 Sound curves of some of the collected data

Fig. 15 Three parts of a recorded sound signal
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backpropagation learning algorithm was employed for

learning in the MATLAB program. First, a perceptron

neural network with 6-25-3 structure was considered. The

training function was varied as shown in Fig. 19. Then the

number of hidden layers was varied as 3-40 in order to

examine the sensitivity of the results.

Figure 19 shows the classification percent error for

training functions while Fig. 20 shows the classification

MSE according to the number of hidden layer neurons.

After varying the number of hidden layers as 1 and 2, an

ultimate 6-35-35-3 neural network with trainbr function

was chosen to solve the pattern recognition problem.

7.3 Classifier Performance Evaluation

Classification results can be displayed in a confusion

matrix. Table 5 shows a confusion matrix with the fol-

lowing entries:

Fig. 16 Decomposition a

recorded signal at level 5
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Fig. 17 The classification percent error using ‘‘training Fc’’

Table 4 The method to update

weight and bias values in the

training functions

No. Training function Updating method (for weight and bias values)

1 trainbfg BFGS quasi-Newton method

2 traincgb The conjugate gradient backpropagation with Powell-Beale restarts

3 traincgf The conjugate gradient backpropagation with Fletcher-Reeves updates

4 traincgp The conjugate gradient backpropagation with Polak-Ribiere updates

5 traingd Gradient descent

6 traingdm Gradient descent with adaptive learning rate

7 trainbr Levenberg–Marquardt optimization

8 traingdx Gradient descent momentum and an adaptive learning rate

9 trainlm Levenberg–Marquardt optimization

10 trainoss The one step secant method

11 trainrp The resilient backpropagation algorithm (RPROP)

12 trainscg The scaled conjugate gradient method
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• TPw is the number of correct positive predictions;

• FPw is the number of incorrect negative predictions;

• TNw is the number of incorrect positive predictions; and

• FNw is the number of correct negative predictions

In this paper, we have used ‘‘prediction accuracy’’,

‘‘classification precision’’ and ‘‘MCC’’ to evaluate the

model for the classification problems 1 and 2. These per-

formance measures can be calculated directly from the

confusion matrix as follows:

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN
ð2Þ

Precision ¼ TP

TPþ FP
ð3Þ

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TN þ FPð Þ TPþ NFð Þ

p :

ð4Þ

8 Results and Discussion

As described in Sect. 7, a 6-30-2 neural network with

traincgp function is developed to solve pattern recognition

problem 1 while a 6-35-35-3 neural network with trainbr

function is developed to solve pattern recognition problem

2. Error histogram was used to validate the networks per-

formance. The error histogram can give an indication of

outliers, which are data points where the fit is significantly

worse than the majority of data. It is a good idea to check

the outliers to determine if the data are of poor quality, or if

those data points are different than the rest of the dataset. If

the outliers are valid data points but are unlike the rest of

the data, then the network is extrapolating for these points.

In this case, more data collection can be helpful. Figure 21

indicates the error histogram for the chosen neural network

to solve problem 1 (a) and problem 2 (b). The blue, green,

and red data represent training, validation, and testing data,

respectively. As these histograms show the number of

outliers is not significant.

MSE curve is used to obtain additional verification of

the network performance. Figure 22b indicates the mean

squared errors for training, testing, and validation data. The

training stopped when the validation error increased, which

occurred at iteration 25. As shown in Fig. 22b, the result is

reasonable because of the following considerations:

• The final mean-square error is small.

• The test set error and the validation set error have

similar characteristics.

• No significant overfitting occurred by iteration 19

(where the best validation performance occurs).

Classification results are shown in a confusion matrix. A

confusion matrix contains information about actual and

predicted classifications done by a classification system.

Each column of the matrix represents the instances in a

predicted class while each row representing the instances in

an actual class. Accuracy and precision performance

measures were used to evaluate the model for the
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Fig. 18 The classification percent error with the number of hidden

layer neurons
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Fig. 19 The classification percent error according to the training Fc
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Fig. 20 The classification MSE according to the number of hidden

layer neurons

Table 5 The confusion matrix for two-class classification problem

Predicted positive Predicted negative

Predicted positive TP FP

Predicted negative FN TN
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classification problems 1 and 2. Classification accuracy is

the number of correct predictions made divided by the total

number of predictions made. Precision is the number of

true positives divided by the number of true positives and

false positives.

MCC (Matthews correlation coefficient) is the other

performance measure to evaluate the model for the clas-

sification problems. This coefficient is used as a measure of

the quality of the classifications. The MCC takes into

account true and false positives and negatives and is gen-

erally regarded as balanced.

Figure 23 illustrates the confusion matrixes for training,

testing, and validation, and three kinds of data combined

for the classification problem 1. According to the matrixes,

the prediction accuracy is 89.9% on the train set, 87.5% on

the validation set, 90.6% for the test set, and 89.6% for all

datasets. Figure 24 presents the test confusion matrix and

all confusion matrix for classification problem 2. Accord-

ing to the matrixes shown in Fig. 19b, the neural network

prediction accuracy is 77.1% on the test set and 96.5% for

all datasets. The other useful performance measures (the

MCC and the Precision) were listed in Table 3. These

performance measures show that the classification of good

density and low density was successful. The third row of

Table 6 shows the MCC values. The MCC is, in essence, a

correlation coefficient between the observed and predicted

classifications, which returns a value between - 1 and

? 1. A coefficient of ? 1 represents a perfect prediction, 0

no better than a random prediction, and - 1 indicates total

disagreement between prediction and observation. As

shown Table 6, the MCC values for the classification

problems 1 and 2 are in the range of 0.8–0.98, which is

acceptable.

As described earlier, the accuracy of the classification of

three density condition in problem 2 is less than that of two

density conditions in problem 1, but the classification of

good density and low density in problem 2 is almost as

accurate as the classification of good density and low

density in problem 1. Hence, we can state that adding the

samples with medium density did not increase or decrease

the accuracy of the classification of good density and low

density.

9 Conclusion

An acoustical system was developed to determine bulk

density of aggregate. This system is placed on the surface

of the aggregate and produces a sound data, as described in

Sect. 2. The sound data are analyzed for feature extraction

Fig. 21 Error histogram for problem 1 (a) problem 2 (b)

Fig. 22 Training, validation, and test performance (MSE)
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so that to define a pattern recognition problem. As one of

the pattern recognition problem-solving, artificial neural

network (ANN) method was used to develop a pattern

recognition system to classify sound data into three

aggregate densities (good density, medium density, and

low density). The classification accuracy was 77.1% on the

test set and 96.5% for all datasets. Another neural network

was developed to classify sound data into two aggregate

densities (good density and low density). The classification

Fig. 23 Training, validation,

and test confusion matrixes

(problem 1)

Fig. 24 The test confusion

matrix and all confusion

matrixes (problem 2)
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accuracy was 90.6% on the test set and 89.6% for all

datasets.
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