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Abstract
The use of meshfree and particle methods in the field of bioengineering and biomechanics has significantly increased. This

may be attributed to their unique abilities to overcome most of the inherent limitations of mesh-based methods in dealing

with problems involving large deformation and complex geometry that are common in bioengineering and computational

biomechanics in particular. This review article is intended to identify, highlight and summarize research works on topics

that are of substantial interest in the field of computational biomechanics in which meshfree or particle methods have been

employed for analysis, simulation or/and modeling of biological systems such as soft matters, cells, biological soft and hard

tissues and organs. We also anticipate that this review will serve as a useful resource and guide to researchers who intend to

extend their work into these research areas. This review article includes 333 references.

1 Introduction

According to Kojić et al. [1], bioengineering is defined as a

broad field of scientific, biological, medical and engineer-

ing disciplines in which living systems, processes and

materials are investigated together with non-living sub-

jects, environments, and materials, in order to advance

fundamental knowledge and improve lives. Advances in

the field of bioengineering over the years have meaning-

fully transformed medical and health care, leading to an

improved quality of life for human beings. These advances

include X-ray, electrocardiogram, heart valve replacement,

artificial kidneys, hips and knees, image-guided surgery,

computer aided tomography (CT), magnetic resonance

imaging (MRI), genomic sequencing and microarrays, laser

surgery, ultrasound, and so on. It can be seen from this list

that the scope of bioengineering is indeed very broad. This

scope includes many areas of specialty, such as biome-

chanics, biomaterials, bioinstrumentation, bioimaging,

bioinformatics, and so on.

As the title of this paper suggests, our focus lies within

the field of biomechanics, which is an integral (not to

mention the foremost) subset of bioengineering, involving

the study of the structure and function of biological sys-

tems such as humans, animals, plants, organs, and cells by

means of mechanics or mechanical methods. Therefore, we

conclude that biomechanics is closely related to engineer-

ing since it essentially adopts basic and advanced engi-

neering principles and methods, including applied

mechanics, continuum mechanics, structural analysis,

kinematics and dynamics, to analyze biological systems,

while simultaneously bearing in mind that biological sys-

tems are much more complex than man-built systems.

Past, current and potential applications of mechanical

concepts to real life problems are evident in the form of

soft matter mechanics, kinesiology, human and animal

movement, cell mechanics, tissue engineering, cancer

biomechanics, bone remodeling, musculoskeletal and

orthopedic biomechanics, cardiovascular biomechanics,

ergonomics, occupational biomechanics, sports biome-

chanics and rehabilitation, allometry, and the so-called

injury biomechanics. Over the past three decades, the use

of numerical methods in bioengineering has gained
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significant attention compared to experimental techniques.

These methods have proven to be the most economical

choice and offer the possibility of investigating locations

not accessible to experimental devices.

Many problems in the field of biomechanics may be

solved computationally using mesh-based methods such as

the finite element method (FEM). However, finite element

(FE) techniques, much like many other mesh-based meth-

ods, suffer from certain drawbacks in the modeling and

simulation of biological systems such as soft tissue and cell

deformation, minimally invasive surgical simulation as

well as modeling of microvascular blood flow.

Some of the well-documented limitations of mesh-based

methods are summarily itemized as follows. Firstly, all

contact between tool and tissue must correspond to nodal

points; hence, to prevent loss of accuracy, the density of the

nodal points must be relatively high. This requires the

application of extensive computational resources, in turn

leading to high computational cost. Secondly, mesh dis-

tortion and entanglement during the large deformation of

soft materials such as muscles, internal organs, skin, and

cells results in reduced accuracy. Although remeshing

algorithm may be employed to overcome this limitation, it

often leads to increased computational cost and effort.

Furthermore, in situations where local stresses/strains

are extremely large or during an explicit simulation of fluid

flow, such as is found with hemodynamics, the swallow

process, and cardiovascular activities, the creation of

excellent quality meshes for use within the problem

domain is a prerequisite with FEM, which ultimately leads

to a loss of manpower time etc. Lastly, it is extremely

difficult to represent complex geometry with unstructured

mesh, which is necessary for the prediction of the complex

remodeling process of biological tissues and the rupture of

such biomaterial. In addition, the accuracy and smoothness

of the stress fields obtained with meshless methods are very

useful and convenient. Since most problems in computa-

tional biomechanics involve highly complex irregular

geometries, large strains and deformation, the need for

meshfree and particle methods, which circumvents most of

the aforementioned limitations of mesh-based methods,

cannot be overemphasized.

2 Overview of Meshfree and Particle
Methods

As new phenomena and problems continue to emerge in

the world of science and engineering, the need for more

reliable and accurate computational techniques cannot be

overstated. For some biomechanical problems, the limita-

tions of conventional mesh-based computational tech-

niques, such as finite difference method (FDM), finite

element method (FEM) and finite volume method (FVM),

become more obvious. For instance, finite elements based

on a Lagrangian description of the kinematics are usually

problematic. The results obtained are generally less accu-

rate and lose their physical meaning due to the severe

distortion of the FE meshes. This (alongside many other

reasons) has motivated researchers to explore and develop

new computational techniques, especially the so-called

meshfree (or meshless) method.

The most distinctive feature of meshfree methods is that

they do not use predefined meshes, at least for field vari-

able interpolation, while the major difference between

meshfree methods and conventional numerical methods is

the manner in which the shape function is formulated.

However, once the shape function has been obtained,

meshfree methods, boundary element method (BEM) and

FEM all use the same technique both to form the system

equations and to acquire a solution to the problem under

consideration. Generally, a meshfree method involves an

algorithm that satisfies both of the following statements:

(a) definition of the shape functions depends only on the

node positions, and (b) evaluation of the nodal connectivity

is bounded in time and depends exclusively on the total

number of nodes in the domain.

The earliest documented form of the meshfree method,

known as smoothed particle hydrodynamics (SPH), was

first used in astronomical research [2]. Monaghan [3, 4]

gave the method a more precise definition by explaining it

as a kernel estimate, which revealed the inherent charac-

teristic of the meshfree method to be its kernel node basis.

In addition to astrophysics, the method also found use in

fields such as civil and mechanical engineering, materials

science, impact, penetration, and large deformation in solid

mechanics, as well as many other engineering disciplines

[5, 6].

Soon after, in 1992, a diffuse element method (DEM)

was introduced by Nayroles et al. [7]. This method uses the

moving least squares (MLS) approximation and its solution

procedure is associated only with boundary information

and node displacements; hence, the use of mesh and ele-

ments connectivity is no longer required. The MLS

approximation was first used by Lancaster and Salkauskas

[8] in curve-fitting applications. If the polynomial basis

used in MLS approximation consists of only a constant, the

method reduces to a weighted averaging technique, but if

the weight functions are singular at the nodes with which

they are prescribed, the MLS approximation becomes an

interpolation, which implies that the approximation passes

through the nodal data.

Belytschko et al. [9] made some modifications to the

diffuse element method in order to obtain better accuracy.

These modifications are as follows: the derivatives of the

shape functions were evaluated exactly, Lagrange

1548 L. W. Zhang et al.

123



multipliers were introduced to the potential energy func-

tional to enforce the essential boundary conditions, and the

integration procedure was improved by using a regular cell

structure, independent of the nodes. The resulting method

was named the element-free Galerkin (EFG) method.

Over the years, the EFG has been used widely in con-

tinuum mechanics for various class of problems since it has

proven to be a powerful numerical method. Instead of using

domain meshing, as in the finite element method, EFG uses

uniform or scattered node distribution in the problem

domain. Numerical integrations are popularly performed

using the Gauss quadrature method, which requires the use

of background cells, and hence makes the method not

‘truly’ meshfree. While the method of SPH finds applica-

tion in fluid mechanics, the methods of DEM and EFG are

more oriented to solid mechanics. Compared to SPH, these

methods offer good accuracy and stability, but are complex

and ‘more’ computationally expensive.

As only node information is needed, EFG has many

distinct advantages when compared with the traditional

finite element method in solving various engineering

mechanics problems, such as the structural and fracture

mechanics, the behavior of materials, multiphase coupling,

large deformation, and so on. Due to its superior properties,

the EFG method has been widely used in many static and

dynamic fracture mechanics problems [10–12], the mod-

eling of material discontinuity [13], and with thin plates

and shells [14, 15].

A subtle disadvantage of the EFG method is that the

final algebraic equation system is sometimes ill-condi-

tioned due to the MLS approximation used for the shape

function construction [16]. As it is difficult to determine

which of the algebraic equations is ill-conditioned, a good

solution or even a correct numerical solution may be

impossible to obtain. In addition, the need to find the

inverse of the moment matrix leads to an increase in

computation time. To overcome these problems, the

improved moving least squares (IMLS) approximation has

been developed to obtain the approximation function. Here,

an orthogonal function system with a weight function is

used as the basis function [17–19]. With the IMLS

approximation, the algebraic equation system is not ill-

conditioned and the inverse of the moment matrix can be

obtained without an increase in computational cost due to

the sparseness of the matrix.

As there are fewer coefficients in the IMLS approxi-

mation than in the MLS approximation, fewer nodes may

be employed to discretize the entire domain in the

improved element-free Galerkin (EFG) method than with

the conventional EFG method, which normally results in

higher computation speed. Furthermore, the IEFG method

has greater computational precision than the EFG method

when the same numbers of nodes are distributed on the

domain. Its accuracy and convergence have been tested for

various categories of problems ranging from the biological

population [20], where the degenerate parabolic equations

arising from the spatial diffusion of biological populations

are solved, 2D and 3D potential problems [18, 19], 2D

fracture problems [17], and elastodynamics problems [21].

In 1998, Atluri and Zhu [22] proposed two new mesh-

free methods based on the MLS approximation: the local

Petrov–Galerkin (MLPG) method and the local boundary

integral equation (LBIE) method [23]. The advantage of

these methods was the simplification of the integration

process. Recently, Mirzaei and his co-workers proposed a

new low-cost meshfree method, known as direct meshless

local Petrov–Galerkin (DMLPG), which ignores the role of

trial space and constructs the final stiffness matrix through

direct approximations for local weak forms and boundary

conditions [24, 25]. Liew et al. [26, 27] integrated the

superiority of differential quadrature techniques and the

MLS approximation to form the moving least-squares

differential quadrature (MLSDQ) method.

Another successful and well-used meshfree method is

the reproducing kernel particle method (RKPM) [28]. The

RKPM improves the SPH method by introducing a cor-

rection function into the kernel function to satisfy the

reproducing conditions. This modification allows the ker-

nel or the weighting function to reproduce polynomials

exactly to a specific order, thereby fulfilling the require-

ment of consistency conditions. The RKPM was proven to

be equal to the MLS approximation when the correct

function is the linear basis function [29]. Chen et al. [30]

proposed a stabilized conforming nodal integration for

Galerkin meshfree methods since integration by Gauss

quadrature and direct nodal integration adds considerable

complexity to solution procedures and leads to numerical

instability due to the under-integration and vanishing

derivatives of shape functions at the nodes, respectively.

Chen and his colleagues subsequently extended the use

of RKPM to elastic and plastic analyses and the study of

nonlinear, large deformation problems such as rubber

hyperelasticity and metal forming analysis [31–33]. More

recently, Liew et al. [34–36], Wang et al. [37], Cheng and

Liew [38] and Zhao et al. [39] also employed the RKPM to

undertake various analyses of laminated composite cylin-

drical panels and rotating cylindrical shells, rectangular,

laminated composite plates, the modeling of the human

proximal femur and two-dimensional unsteady heat con-

duction problems.

Many other variants of meshfree methods can be found

in the literature. Sulsky et al. [40] developed a particle-in-

cell (PIC) method to study solid mechanics in the free

Lagrangian description, which was also extended to form

the material point method (MPM) [41]. A partition of the

unity finite element method (PUFEM) was introduced by
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Babuška et al. [42] and further methods, such as the finite

point [43], were also devised. The finite point method

(FPM) [44, 45] uses the weighted least square interpolation

for an approximation of the problem unknowns and uses a

stabilization technique in the collocation point method for

numerical integration. The radial basis function (RBF)

method [46, 47] is another unique approximation method

based on the strong form formulation, whereby the use of

background cells for numerical integration is avoided.

Instead, it uses the radial basis functions to approximate the

field variables within the entire domain. Since its intro-

duction, the RBF method has been applied extensively in

multiquadric-biharmonic methods [48] and structural

mechanics problems [49–51].

The set of meshfree methods reviewed above, based on

MLS approximations, generally do not satisfy the Kro-

necker delta property, and hence essential boundary con-

ditions cannot be directly imposed as in the conventional

FEM method. Therefore, they are termed approximant

meshfree methods, while another set of meshfree methods

that do satisfy this property are known as the interpolant

meshfree methods. These sets of interpolant meshfree

methods are, in no particular order, now described. The

point interpolation method (PIM) was initially proposed by

Liu in 2001 [52, 53]. Due to its superior properties, such as

its ease of implementation, flexibility and satisfaction of

the Kronecker delta function property, the PIM approach

and its variants, such as the radial point interpolation

method (RPIM) [54] and the smoothed Hermite radial

point interpolation method (SHRPIM) [55] have since been

applied to solve a wide range of problems in the field of

computational mechanics.

Sukumar et al. [56] proposed the natural element

method (NEM) and natural neighbor Galerkin method

(NNGM) [57] as new variants of the meshfree method.

Here, the trial and test functions are constructed using

natural neighbor Sibson interpolants, representing a mul-

tivariate data interpolation scheme that was initially used in

data fitting. These meshfree methods are constructed using

popular geometrical and mathematical concepts such as the

Voronoi diagram [58] and the Delaunay tessellation [59].

More recently, the natural neighbor radial point interpola-

tion method (NNRPIM) has been derived out of a combi-

nation between the NEM and the RPIM [60].

Sukumar [61, 62] further advanced the prospects of

meshfree methods by formulating maximum entropy

approximation polygonal interpolants for solving compu-

tational mechanics problems; the Kronecker delta property

is satisfied weakly at the boundary and hence the essential

boundary conditions can also be imposed, as in the FEM

approach. New modifications of the maximum entropy

approach, such as the local maximum entropy approxi-

mation was proposed by Arroyo and Ortiz [63] and a

higher order method based on the local maximum entropy

method was developed by Gonźalez et al. [64], while the

numerical integration of the weak forms is performed using

a similar approach, as in the EFG and DEM methods. Other

interesting meshfree methods expounded in the literature

include the point assembly method [65], the meshless finite

element method (MFEM) [66] and the natural radial ele-

ment method (NREM) [67].

Another class of meshfree methods that are generally

referred to as particle methods is briefly described here.

The discrete element method (DSEM) [68], dissipative

particle dynamics (DPD) [69], moving-particle semi-im-

plicit (MPS) [70], and generalized finite difference (GFD)

[71] all provide outstanding results in terms of handling,

with relative ease, complex moving boundaries with scalar

and other complexities. The DPD and MPS methods, which

originated in the field of molecular dynamics, where each

particle moves according to Newton’s second law, have

been used to simulate systems of particles. These methods

have been used extensively in the literature for the solving

of a lot of biomechanics related problems.

Some of the main characteristics, advantages, and

drawbacks of meshfree methods are briefly summarized

below:

(a) The shape (or interpolation) functions of meshfree

methods can easily have higher- order continuity

since the shape functions are mostly constructed by

embedding a highly smooth window (or weight)

function with a large support domain size. Contrary

to this, even the need to construct a C1 continuous

shape function in the mesh-based methods can cause

a serious problem.

(b) As far as maintaining the same order of consistency

is concerned, numerical results reveal that the

convergence of meshfree methods is often consider-

ably better than that of mesh-based methods such as

FEM.

(c) Meshfree methods possess nonlocal properties, as

every evaluated point in the domain is covered by

the multiple shape functions of the node and this

property is determined by the size of the compact

support domain. In addition, the adoption of a

compact support domain can substantially reduce the

bandwidth of the meshfree method. Hence, meshfree

methods can achieve much higher precision levels

than mesh-based methods when used to solve large

deformation problems in engineering.

(d) Since the meshfree shape function is independent of

meshes, it can avoid the burdensome work of

meshing and re-meshing associated with FEM when

applied to the study of finite deformation, fracture

and crack propagation problems.
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(e) Although the meshfree methods possess superior

properties over mesh-based methods, they are often

more computationally expensive due to their shape

function construction cost. Additionally, the enforce-

ment of boundary condition in approximant mesh-

free method is not straightforward as in the FE

technique since they do not satisfy the Kronecker

delta property.

In this review, the mathematical formulation, numerical

implementation and programming of these meshfree and

particle methods are omitted since the focus of this article

is on their applications in bioengineering and biomechan-

ics. However, such details can be found in the following

literature [72–75] and the references cited therein.

3 Applications

Since the first appearance of the meshfree and particle

methods in the literature, their applications have spanned

many areas of science and engineering. In this section, we

comprehensive discuss their applications in the field of

biomechanics, covering key areas such as biological tis-

sues, bone remodeling, heart and cardiovascular mechan-

ics, cell mechanics, blood flow dynamics, human

swimming locomotion and bird flights, and some emerging

areas such as developmental biology.

3.1 Biological Soft Tissues

Biological soft tissues are multiphasic materials, consisting

of various amounts of living cells, extracellular matrices

and interstitial fluid, with a considerable amount of water.

The most prominent attribute of biological soft tissues is

their high elasticity; hence, they are popularly referred to as

hyperelastic. Another important characteristic is their ani-

sotropic behavior (although some may be purely isotropic),

which depends on the degree of concentration and struc-

tural arrangement of their principal constituents, such as

elastin, collagen, and so on. Owing to their strong nonlin-

earity, their ability to undergo finite deformation, their

isotropic or anisotropic nature, and their viscoelastic or

hyperelastic behaviors, the choice of an accurate material

constitutive model can be very challenging. Examples of

the biological soft tissues to be considered in this section

include the liver, collagen scaffolding, kidney and skin.

One of the foremost studies on the application of

meshfree methods to biological soft tissue simulation was

performed by De and his co-worker [76, 77]. In their

studies, they presented a novel meshfree modeling tech-

nique, called the method of finite spheres, by which they

computed the underlying virtual-based medical simulation

by enabling the user to interact with physically-based tissue

and organ models in real-time using both visual and haptic

sensory modalities. Their approach was then applied to

study the real simulation of 3D liver tissue palpation

assuming a linear elastic behavior by monitoring the tissue

deformation and tool tip reaction force. Zhu et al. [78]

implemented a point-based simulation framework for

minimally invasive surgery using the SPH method.

The MPM approach was employed for the nonlinear

modeling of a 3D vascularized scaffold under tension,

consisting of growing microvascular fragments embedded

in a collagen gel constructed from volumetric confocal

image data and discretized with over 13.6 million material

points [79]. Since the material properties of collagen gels

are nonlinear and viscoelastic, and since there are no

available data for the material properties of individual

microvessel fragments, an uncoupled compressible neo-

Hookean hyperelastic constitutive model was used to rep-

resent both the collagen and the microvessels. Sensitivity

studies on the effects of grid resolution, material properties,

and computational algorithm were also performed.

In a bid to understand the factors that control the extent

of tissue damage due to material failure in soft tissues,

which may provide a means by which to improve the

diagnosis and treatment of soft tissue injuries, the MPM

was used to study the failure of soft tissues subjected to

large deformation using an anisotropic neo-Hookean

hyperelastic constitutive model. Furthermore, the authors

adopted a constitutive model that incorporated a strain-

based failure criterion. The efficiency of the proposed

approach was investigated using simulations of simple

tensile mechanical, slab penetration tests considering the

scenario of a penetrating injury due to a projectile such as a

bullet [80]. Liu et al. [81] also simulated the stress wave

propagation and subsequent failure evolution of hard-soft

material interaction under impact loading by applying force

to layers of different materials using the MPM approach.

Lim and De [82, 83] improved upon their previous

studies [76, 77] to account for the geometrically nonlinear

tissue response in the human kidney by performing real-

time surgery simulations. The problem geometry was

obtained by way of image segmentation using the point

collocation-based method of finite spheres in which MLS

functions are compactly supported on spherical subdo-

mains and a point collocation technique is employed as the

weighted residual scheme. In order to overcome the

problems of needle insertion inaccuracy, difficult motion

planning and the need for remeshing during real-time

minimally invasive surgical simulation, Xu et al. [84]

presented a meshfree framework for bevel-tip flexible

needle insertion through soft tissue by using two separated

sets of nodes to represent the needle and the soft tissue. In

their simulation, additional nodes were added to the tissue
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by exactly following the needle’s kinematics or dynamics

during insertion, while the interactions between the needle

and tissue were calculated and simulated through their

influence domains. Reasonable results were obtained.

However, the problem was grossly simplified as only

elastic, isotropic and linear soft tissue with a simple

geometry was considered.

Zhu et al. [85] also proposed a hybrid particle and sur-

face-based method to model the elastic behaviors of organs

with complex surfaces in the surgical environment using

the SPH method, due to the simulation resolution issues

associated with using pure particle-based methods. Hieber

et al. [86] proposed a remeshed SPH approach to achieve

improved accuracy in the simulation of the mechanical

behavior of human liver and kidney, using a linear vis-

coelastic material model. In their study, they also estab-

lished a unified formulation of fluid–structure interaction

based on particle methods. For the sake of improved

accuracy, better real-time, stability and ease in performing

virtual real-time surgery simulation, several other modified

or hybrid meshfree and particle methods have been pro-

posed in the literature [87–89].

By means of a meshless total Lagrangian adaptive

dynamic relaxation (MTLADR) algorithm, which is an

extension of the MTLED algorithm (to be introduced later),

Jin and her co-workers performed the 2D [90] and 3D [91]

modeling of soft tissue cutting in surgical simulation. They

predicted the steady-state deformation of soft tissue at all

stages of cutting, while cutting-induced discontinuities

were modeled solely through changes in nodal domains of

influence. The accuracy and computational cost effective-

ness of the proposed algorithm were compared with that of

the established nonlinear solution procedure using the

commercial FE code, ABAQUS. Abdi et al. [92] studied

the dynamic and real-time large deformations of a 3D

linear viscoelastic model of human spleen subjected to a

time-varying compressive force exerted by a surgical

grasper within a meshfree EFG based algorithm with a 3D

linear basis function, a cubic spline weight function, and

MLS shape functions whose essential boundary condition

was imposed using the penalty method.

Cao et al. [93] proposed a meshless model based on the

multi-subdomain radial basis function and the method of

fundamental solution (RBF–MFS) to explore bioheat

transfer problems such as the prediction of temperature

distribution in skin tissue, involving different materials

and/or multi-connected regions, like normal tissue, tissue

with tumor and burnt tissue. A schematic of the 2D cal-

culation geometry is presented in Fig. 1 below. The well-

known Pennes equation, which involves the effects of

blood perfusion and metabolic heat generation, is used to

simulate the thermal behavior of biological tissue [93]:

qc
ouðx; tÞ

ot
¼ r � ½kruðx; tÞ�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Conduction of heat

in tissue due to

temperature gradiant

þ xbqbcb½ua � uðx; tÞ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Heat transport between the

tissue and microcirculatory

blood perfusion

þ Qm
|{z}

Internal heat

generation due

to metabolism

þ Qrðx; tÞ
|fflfflfflffl{zfflfflfflffl}

Spatial heating

caused by external

heat sources

ð1Þ

where q; c and k are the density, specific heat, and thermal

conductivity of the tissue, respectively; wb; qb and cb rep-

resent blood perfusion, density and specific heat of blood,

respectively. ua; uðx; tÞ and Qm denote the constant arterial

temperature, tissue temperature, metabolic heat generation,

and heat source due to spatial heating, respectively.

The following boundary conditions and initial condition

are applied to the four boundaries, as shown in Fig. 1:

where q represents the boundary normal heat flux defined

as q ¼ �kou=on and n is the unit outward normal to the

boundary C of the domain of interest X. ue denotes

Fig. 1 Illustration of the computational domain for a 2D skin model

built on a rectangular area [93]

• Dirichlet boundary condition: uðx; tÞ ¼ �uðx; tÞ 2 Cu (2)

• Newman boundary condition: qðx; tÞ ¼ �qðx; tÞ 2 Cq (3)

• Convective condition: qðx; tÞ ¼ he½uðx; tÞ � ue� 2 Cc (4)

• Initial condition: uðx; 0Þ ¼ u0 2 X (5)
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environmental temperature. The time variable can be

handled using the Laplace transform or the finite difference

approach.

Tao and his colleagues solved various linear transient

skin bioheat transfer problems using the meshfree method

by combining the Laplace transform method and the RBF-

MFS method in order to reduce the overall computation

time [94]. Other approaches were also formed from the

coupling of the method of fundamental solution (MFS) and

either the dual reciprocity method (DRM) [95] or the

operator splitting method (OSM) [96], to solve nonlinear

steady state and transient bioheat transfer problems using a

2D nonlinear skin model with a temperature-dependent

blood perfusion rate within the RBF meshfree framework.

For details on the nonlinear skin bioheat model, interested

readers can refer to [95, 96] and the references therein.

Jamil and Ng [97] proposed a new meshless radial basis

collocation method (RBCM) for the heterogeneous con-

duction and simulation of the temperature inside biological

tissues using an approximation function developed using

inverse multiquadratic (IMQ) radial basis functions

(RBFs). A weighted collocation method was used to

overcome problems due to the nonlocality of the RBFs and

errors at the boundaries, domain, and interfaces in order to

obtain exponential convergence. Bourantas et al. [98, 99]

extended the Pennes bioheat equation to incorporate water

evaporation, tissue damage, and temperature-dependent

tissue properties during tumor ablation, while the conduc-

tivity of the tissue was treated as a local function in order to

simulate local variability due to the existence of the usually

unclear interfacing of healthy and pathological segments.

The meshless point collocation was implemented to solve

the resulting transient bioheat problems for 2D and 3D

problems.

In [100], the authors implemented an SPH approach to

solve the non-linear Pennes bioheat transfer equation for

skin tissue. Here, the Cattaneo and Vernotte (CV) model

was incorporated to overcome the paradox of an infinite

sound speed, using the dual-phase-lag (DPL) model for the

heat flux vector, while capturing the non-linear behavior of

the model using the temperature-dependent conductivity.

Erhart et al. [101] proposed an evolutionary-based inverse

approach for the identification of non-linear heat genera-

tion rates in living tissues by using a localized meshless

method to analyze Pennes’ bioheat equation, while the

rates of heat generation within the domain of interest were

obtained using genetic algorithm optimization. A patient-

specific meshfree approach was proposed in [102] for

numerical modeling of the mechanical deformation of tis-

sues in the female pelvic floor during childbirth.

Pyo et al. [103] implemented a physically-based non-

rigid registration method using the SPH for hepatic

metastasis volume-preserving registration between follow-

up liver computed tomography (CT) images by discretizing

the liver and hepatic metastasis as a set of particles car-

rying their individual physical properties, where the hepatic

metastasis represented particles were stiffer, as shown in

Fig. 2. In their studies, an automatic liver segmentation

method based on a level-set algorithm was adopted to

achieve optimal estimation of the initial liver shape, and

faster and more robust segmentation of the liver, while the

metastasis candidate regions were automatically detected

in the source image instead of segmentation, due to the

ambiguous boundary of, and large variability in, the shape,

size, and location of the liver.

Naeeni and Haghpanahi [104] extended the application

of meshfree methods to elastography (i.e. the measurement

and visualization of the mechanical properties of human

organs by applying a mechanical stimulation and then

imaging the resulting local displacements), by way of

studying the deformation of an elastic non-homogenous

phantom using the EFG method in the plane strain state

with respect to experimental conditions. The numerical

results were validated experimentally in order to calculate

the deformation of the phantom surface via a digital

imaging processing technique in MATLAB and were in

perfect agreement. Wachowiak et al. [105] studied the

deformation of soft tissues using the compact support

radial basis functions (CSRBFs). Data obtained from the

3D prostrate imaging of needle insertion during the

implantation of radioactive seeds for brachytherapy were

used to demonstrate the efficacy of the proposed method.

A physical-based meshless method for soft tissue

deformation has also been proposed [106]. An et al. [107]

recently employed a CSRBF-based meshless method for

photon propagation model of fluorescence molecular

tomography, which is a powerful imaging modality for the

research of cancer diagnosis, disease treatment and drug

discovery. In order to analyze the performance of their

proposed meshless method, the authors designed some

numerical mouse studies to validate the simulated surface

fluorescence distribution, and in vivo mouse studies to

evaluate the tomographic reconstruction. Aras et al. [108]

proposed an analytic meshless enrichment function for

handling material discontinuities such as cuts in interactive

surgical simulation. Zhou et al. [109] recently proposed a

3D RBF model based on Marquardt’s algorithm for

numerical modeling of the real-time deformation of human

soft tissues.

In [110], the authors used a 3D SPH formulation to

simulate the penetration impact of a steel sphere on soft

tissue composed of 20% ballistic gelatin material.

Nooshabadia et al. [111] and Dehghan et al. [112]

employed the EFG method in comparison with FEM for

the large deformation of kidney, liver and gallbladder

during interaction with surgical tools/grasper. The two
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studies concluded that the meshfree method performed

better than the FEM. A similar study on the large defor-

mation behavior of liver during surgery was carried in

[113] using a new deformation model which incorporates

Kelvin viscoelasticity into the RPIM formulation. Palyanov

et al. [114] recently presented an open source software

package called Sibernetic based on the predictive–correc-

tive incompressible SPH method designed for the physical

simulation of biomechanical matter (membranes, elastic

matter, contractile matter) and environments (liquids,

solids and elastic matter with variable physical properties).

Grabski et al. [115] formulated the identification of the

time-dependent blood perfusion coefficient as an inverse

problem in which the bio-heat conduction problem is

transformed into the classical heat conduction problem.

The transformed inverse problem was then solved using the

MFS approach together with the Tikhonov regularization.

A real-time dissection (or cutting) approach for organs

such as liver, spleen and gallbladder using hybrid coupling

of geometric metaballs and physics driven meshfree

method based on MLS shape functions was recently pre-

sented by Pan et al. [116]. A combined application of

continuum damage theory and SPH technique was pro-

posed by Rausch et al. [117] to model the damage and

failure of soft tissues. Soleimani et al. [118] presented a 3D

computational model to examine biofilms in a multi-phy-

sics framework using the SPH technique based on a con-

tinuum approach. The authors employed the SPH technique

since it is uniquely robust in capturing the interface-related

processes of biofilm formation.

3.2 Bone Remodeling and Dental Studies

Bone is an inelastic organ, which forms the vertebral

skeleton; it is responsible for supporting and protecting

several other internal organs of the body. It also acts as

‘‘factory’’ where red and white blood cells are produced,

while also enhancing movement and storing essential

minerals. Generally, bones are known to have complex

structures, both internally and externally. They are formed

in various forms and sizes according to their required and

specific functions. Despite their lightweight, they are

strong, hard and perform various functions. From the

biomechanics point of view [119], bone remodeling is a

complex behavior, which entails the ability of bone to

change and grow in order to adapt itself to the applied load

history. This behavior is believed to occur as a combination

of two unique processes: the bone’s ability to change its

tissue density according to mechanical demands (internal

bone remodeling) and the bone’s ability to change its shape

for enhanced adaptation to mechanical loads (external bone

remodeling).

In 1892, Julius Wolff [120] first observed the relation-

ship between bone structure and applied loads, and con-

cluded that it was mainly associated with the evolution of

apparent density. Following Wolff’s pioneering work, this

variable (i.e. apparent density) and relationship have since

been used by many models in the literature to represent the

bone remodeling state. It has also been observed that,

depending on the model used, the mechanical stimulus

responsible for change may differ, while many of the

diverse stimuli have been defined as a function of strain,

stress or strain energy [121]. Garcia et al. [119] performed

the numerical two-dimensional simulation of proximal

femur internal bone modeling using a new damage

mechanics-based model, which comprised a generalization

of standard continuum damage mechanics (CDM) to living

materials [121]. Here, the authors proposed a modified

natural element method (NEM), called the a-NEM, which

allowed the actual shape of the geometry to be obtained

from a set point without specifying the boundary of the

domain.

Liew et al. [34] employed a meshfree method based on

the reproducing kernel particle approximation for the

simulation of the human proximal femur. Their formulation

considered treatments of nonconvex boundaries and

Fig. 2 Particles placed in the

initial shape of the liver (left),

and its magnified view (right).

Particles of a fixed size are

regularly placed in the liver.

Light-gray-lined, black-lined

and black-filled particles

represent normal liver particles,

metastasis particles and

boundary particles, respectively

[103]
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material discontinuities in the bone structure, and a pre-

processor was developed for the generation of discretized

scatter particle models. Figure 3 below shows the geome-

try, boundary, and loading conditions of a human proximal

femur model (left) and one of the meshless analysis models

discretized with 316 nodes (right).

Numerical examples have been used to study certain

stress distribution phenomena in the human proximal

femur with a consideration of the detrimental effects of

infarction, aging, and stress variations. Using the femur

bone, the hypotheses that low strain fields arise due to age-

related pore distributions causing bone absorption, and due

to bone remodeling features at the particle level, have been

studied using the SPH approach [122, 123]. Based on their

previous studies [119], Doblaré et al. [124] analyzed the

convenience and possible advantages of using meshless

methods in numerical simulations within the field of

biomechanics. With an interest in NEM, they considered its

application to the simulation of adaptive bone remodeling

based on the CDM principles by identifying the local

‘‘damage’’ variable with bone tissue porosity, by way of a

simulation of hyperelastic tendons under large strains and a

simulation of poroelastic articular cartilage. From their

studies, it was concluded that the meshfree method per-

formed with a greater degree of accuracy than traditional

FE simulations. A decrease in bone strength as a result of a

decrease in bone mass and a deterioration of bone

microstructure due to osteoporosis (a skeletal disease), and

as a result of a fracture of the trabecular bone, have been

studied using a 3D meshless model generated directly from

CT imaging data [125].

Taddei et al. [126] also implemented a meshless cell

method (MCM) approach for subject-specific strain pre-

diction in bones from CT data, which compares well with

results obtained from experimental studies. The entire

process of microcrack propagation in the cortical bone,

including the propagation of microcracks towards the

osteon, around the osteon and out of the osteon, with or

without the healing property of the bone, was studied by

Deng et al. [127]. This was achieved by using a meshfree

method to solve a nonlocal elastic theory derived from the

atomistic nonlocal nonlinear multiscale field theory. Usci-

lowska and Fraska [128], using the MFS-based meshfree

method and a procedure based on Picard iteration, esti-

mated the torsional stiffness of long bones while consid-

ering the bone as a functionally graded material (FGM),

whose shear modulus is a function of geometrical

variables.

Belinha and his co-workers [129–131] proposed a novel

anisotropic material law for the mechanical behavior of

bone tissues based on experimental data, which permits the

correlation of the apparent bone density with the obtained

level of stress. By using the proposed material law, a

biomechanical model for predicting bone density distribu-

tion was developed, based on the assumption that the bone

structure is a gradually self-optimizing anisotropic bio-

logical material that maximizes its own structural stiffness.

Meanwhile, the NNRPIM, a variant of the PIM meshfree

method, was used to obtain the strain and stress fields

required in the iterative remodeling process of the femur,

calcaneus bones and implants. Following the success

recorded in their previous studies using the NNRPIM

meshfree method, they more recently studied bone density

distribution in the vicinity of femoral implants using a

topology optimization model based on deformation energy

methods [132]. The bone tissue remodeling algorithm is

presented in Fig. 4 below.

Owing to the complexity involved in the bone healing

process and the limitations of meshing and remeshing in

the FEM, Grivas and his co-workers implemented a

meshless Local Boundary Integral Equation (LBIE)

method for cell proliferation predictions in bone healing by

Fig. 3 Geometry, boundary and

loading conditions of a human

proximal femur (left) and a

meshless analysis model

discretized with nodes (right)

[34]
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solving a cell diffusion problem [133]. They also analyzed

the nonlinear Fisher transient diffusion equation [134] for

the 2D modeling of a fractured bone by incorporating

initial cell concentrations at the periosteum, the marrow,

and between the bone and the callus (at the fractured end).

Yang [135, 136] utilized high-resolution medical images to

develop an image-based strong form collocation procedure

using a gradient reproducing kernel approximation, for the

biomaterial modeling of bone fracture, the bone remodel-

ing process and the design of bone-implant systems, as well

as the microstructure modeling of trabecular bone.

More recently, interest in the application of various

numerical methods (meshfree methods included) to den-

tistry and food processing has grown significantly. Cleary

and his colleagues [137–139] modeled the process of fluid

flow and the breakage of various kinds and shapes of food

by teeth in the oral cavity using a coupled SPH-biome-

chanical model. In their works, realistic 3D geometries and

motions of the jaws and tongue were incorporated into

simulations of fluid flow, biting, and the chewing of

foodstuffs. Saliva and liquid food were represented as a

Newtonian fluid, and the solid foodstuffs were represented

as either elastoplastic or brittle elastic solids. In another

study, a 3D dynamic SPH mastication model was proposed

to predict how consumers perceive food, based on food

breakdown and release of flavor processes [140]. Ho et al.

[141] performed a 3D swallowing simulation using the

SPH method while the haptic rendering of dental filling

materials using the SPH technique has also been imple-

mented [142].

Andrade et al. [143] performed the elastic-static mod-

eling of dental implants using an NNRPIM meshless

method for possible application to bone using a 2D model

composed of the occlusal material, a metal framework, an

abutment and implant screw, and cortical and trabecular

bone. The model was subjected to vertical and horizontal

loads with displacement boundary conditions in the

boundary of the bone. Figure 5 below shows the 2D model

of the dental implant, the boundary and loading condition

as well as the meshless node discretization of the model.

The results obtained from their studies show that a

higher level of cortical bone stiffness provides lower

effective stresses in the cortical bone and higher stresses in

the implant. In addition, a higher level of occlusal material

stiffness provides lower effective stresses in the implant, in

the abutment, in the metal framework and in the cortical

bone. Although the results obtained are undoubtedly

insightful, it is believed that more conditions, such as bone

material anisotropy, inelasticity, and so on, should be

considered for a more realistic simulation of implants in the

in situ condition.

Furthermore, Belinha et al. [144–146] predicted bone

density distributions on the mandible and maxillary bones

as a result of the presence of dental implants, by means of a

topology optimization model built on the deformation

energy method using Carter’s remodeling algorithm [147]

Fig. 4 Bone remodeling

algorithm based on the

NNRPIM meshless method

(modified after [131])
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within the NNRPIM meshless technique framework. Also,

using the NNRPIM meshless method, Duarte et al.

[148, 149] studied a prosthetic system consisting of two

implants connected with a bar using a 2D linear elastic

stress–strain model. The anisotropic behavior of the corti-

cal bone was simplified and implemented as an isotropic

condition; however, the obtained results were similar to

those reported in the literature using FEM in terms of

showing that a stiffer bar material induces higher stresses

on the bone tissue and lower stresses on the implants.

Yamaguchi et al. [150] compared the dynamic two-di-

mensional FEA and moving particle simulation (MGPS)

while assuming a plane strain condition in the modeling of

human enamel on a reduced scale. The MGPS was able to

produce results that were highly correlated to FEA, with

the possibility of further development and application to

more complex biomechanics problems.

Recently, Moreira and his co-workers [151, 152]

numerically analyzed the maxillary central incisor using

the NNPRIM method, by performing a complete elasto-

static analysis of the incisor/maxillary structure and then a

non-linear iterative bone tissue remodeling analysis of the

maxillary bone surrounding the central incisive, based on

Carter’s model. The computational model used in their

studies was obtained from a computerized axial tomogra-

phy (CAT) scan, which was then discretized using irregular

nodes. Tavares et al. [153, 154] performed a numerical

analysis of tooth restoration using the NNRPIM meshless

method based on a 2D model constructed from a clinical

X-ray image of an upper molar tooth with a restoration.

They observed that transverse loads from activities within

the oral cavity induce high shear stresses in the intervention

zone, leading to a recurring failure of the restoration. In a

more recent study, Belinha et al. [155] numerically

examined the remodeling of the bone tissue surrounding

the femoral stem, aiming to predict the necrosis of the

femoral head and understand the mechanical solicitations

causing the pathology, using the NNRPIM meshless

method. The NNRPIM technique has also been employed

to study the free vibration behavior of the cupula in the

inner ear [156].

3.3 Cartilage, Muscles and Ligament Modeling

Unlike the FEM, meshfree methods based on MLS

approximation and multi-quadric (MQ) functions possess

high continuity, hence the computation of higher order

derivatives does not require extra interpolations. This is

another significant advantage of the meshfree method,

which cannot be ignored. In 2002, Hon et al. [157] pre-

sented an efficient meshfree numerical algorithm using the

multi-quadric radial basis function (MQ-RBF) with a direct

collocation method to simulate a two-dimensional triphasic

(i.e. consisting of three phases: solid, water and ion) model

of charges and hydrated soft tissues. The intrinsic incom-

pressibility of the continuity equation was considered and

solved directly without the use of any penalty function.

Numerical studies on the reaction of articular cartilage in a

synovial joint subjected to mechanical loading and elec-

trochemical effects were carried out under plane stress,

plane strain, and axisymmetric conditions to show the

accuracy of the proposed method. The results obtained

Fig. 5 Schematic diagram showing a a 2D model of a dental implant, b boundary and loading conditions, and c meshfree node distribution [143]
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show a great deal of accuracy. However, for the axisym-

metric case using a domain decomposition method, an ill-

conditioning problem arises due to the full matrix resulting

from the use of the global RBF method.

Marai et al. [158] proposed a meshless incompressible

height-field cartilage model to capture the physical prop-

erties important for estimating the shape, contact area and

the deformation magnitude of cartilage at each articulation.

They used a non-invasive method for estimating individ-

ual-specific cartilage maps directly from in vivo kinematic

data and computed tomography (CT) volume images. They

further proposed an algorithm by which to compute carti-

lage surface deformations. Boyer and his colleagues

implemented a 3D fibril-reinforced poroviscoelastic model

using the SPH method to simulate articular cartilage within

the hip joint [159] and cartilage deformation [160].

Recently, Cyr and Maletsky [161] implemented a multi-

dimensional description of knee laxity, which is a product

of the individual ligament structures that provide constraint

for multiple degrees of freedom, using a meshfree radial

basis function method.

Chen et al. [162] established a 3D image based model of

skeletal muscles using the nonlinear RKPM meshfree

method formulation for hyperelasticity. The authors con-

structed their simulation model using pixel data obtained

from medical images while the material properties and

muscle fiber direction used as input at each pixel point

were obtained by way of diffusion tensor imaging (DTI).

Lastly, they adopted a multiphase multichannel level set-

based segmentation framework for individual muscle seg-

mentation using magnetic resonance images (MRIs) and

DTI. Valizadeh et al. [163] implemented a 3D patient-

specific leg-muscle pixel-based model using a coupled

isogeometric analysis (IGA) and the RKPM meshfree

discretization approach. It is noteworthy that the coupled

IGA-RKPM approach was able to preserve the geometric

exactness of IGA, circumvent the need for global volu-

metric parameterization of the problem domain, and

achieve arbitrary-order approximation accuracy while

maintaining the higher-order smoothness of the

discretization.

Pena et al. [164] employed a 3D finite-strain damage

model to study the finite deformation of visco-hyperelastic

isotropic fibrous (or fiber reinforced) soft tissue within the

NEM approach. One significant contribution of this study

is the implementation of a constitutive model that can

account for the anisotropic behavior of fibred materials,

isothermal processes using unique decoupled representa-

tions of the strain-energy density function, anisotropic

viscoelastic-damage effects, and the material and geomet-

ric elements of the consistent stiffness matrix. The accu-

racy and validity of the model were tested using various

standard tests before being applied to the study of damage

in a human ligament whose geometry was formed using

cross-sectional contours which were manually digitalized

from nuclear magnetic resonance images and whose curves

were imported into a commercial code I-DEAS.

Following the approach reported in [164], Doweidar

et al. [165] performed a comparison of implicit and explicit

natural element methods in large strain problems through

the modeling of the human lateral collateral ligament and

knee (i.e. hyperelastic quasi-static fibered materials under

large strains). The surface geometries of the ligaments were

reconstructed from a set of MRI images while those of the

femur, fibula, and tibia were reconstructed from CT ima-

ges. They concluded that the implicit NEM solver could

encounter numerical difficulties in converging to the cor-

rect solution when solving problems involving large ele-

ment deformation, highly non-linear elasticity, stress

concentration or changing contact between surfaces, which

increases the computational cost in terms of computing the

tangent stiffness matrix and solving the system of equa-

tions. In the explicit approach, the natural element equa-

tions are reformulated, such that they are solved directly

without iterations. This implies that the explicit method is

more robust in finding solutions and requires less memory

to handle large and complicated models.

Boselli et al. [166, 167] employed a combination of the

multilayer MFS approach and the force coupling method

for numerical investigation of the fluid dynamics of benign

paroxysmal positional vertigo or canalithiasis conditions

affecting the semicircular canals of the inner ear by solving

the Stoke flow equations with finite-size particles. In [168],

the authors employed a block greedy-QR algorithm that

exploits the robustness of the multilayer MFS approach in a

multilevel fashion and alleviates the over-head of multiple

source layers thereby allowing the multilayer MFS to

outperform the monolayer MFS.

3.4 Heart and Cardiovascular Mechanics

In recent years, there has been a considerable increase in

the number of research papers focusing on employing the

numerous potentials and advantages of meshfree methods

in heart mechanics and other cardiovascular related studies.

These studies are briefly reviewed in this section, with a

particular interest in their contributions to the field of

computational cardiovascular mechanics. The relevance

and advantages of meshfree methods to medical image

analysis problems, such as physically motivated multi-

frame motion analysis, nonrigid motion recovery and inter-

object image registration, were studied by Liu and Shi

[169]. They implemented the EFG method using the cubic

spline weight function and imposed essential boundary

conditions via the penalty method, to analyze a biome-

chanically constrained multi-frame heart motion through
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optimal state-space estimation using two varieties of data

constraints: the magnetic resonance (MR) tagging images

and the MR phase contrast images. The result obtained

shows that the meshfree method is more computationally

effective and accurate than the well-known FEM.

Similar to [169], the authors in [170] investigated the

use of anisotropic spatial constraints in enforcing spatial

regulations on myocardial behavior as well as the spatial

filtering of image data measurements. Other related studies,

such as the applicability of the composite material model to

the myocardium in a cardiac motion recovery experiment

(where the matrix is the collagen and the reinforcements

are the muscle fibers [171]) and the shape recovery and

motion tracking of the left ventricles [172], have also been

reported. Shi and his co-workers, using the EFG meshfree

method, undertook an individualized active cardiac

dynamics and image analysis based on the cardiac phys-

iome model for the imaging of 3D cardiac electrical

activities from body surface potential maps (BSPM) [173].

This approach was further used for the recovery of subject-

specific deformation from MRI, and in integrating func-

tional and structural images for simultaneous cardiac seg-

mentation and deformation recovery.

Wang and Ruby extended the application of the mesh-

free method of fundamental solution (MFS) to potential

inverse electrocardiography (PIE) problems involving the

reconstruction of epicardial potentials from measured body

surface electrocardiograms and heart-torsion geometry

[174, 175]. Li et al. [176] implemented a meshless FEM

approach for the solving of the electrocardiogram (ECG)

forward problem. A coupled meshfree-BEM approach was

proposed by Wang et al. [177] for electrocardiographic

simulations involving personalized heart-torso structures,

volumetric myocardial transmembrane potential (TMP)

dynamics and TMP-to-body surface potential (BSP) map-

ping. This approach was then used to study normal cardiac

conditions, different bundle branch block (BBB) conditions

(by removing corresponding sites of earliest excitation in

the ventricles), and ectopic activities (i.e. ventricular

pacing).

A fast motion tracking method based on the meshfree

kernel method for tagged MRI-based quantitative cardiac

analysis was proposed by Chen et al. [178]. Chen and his

colleagues also implemented a 3D cardiac motion and

strain estimation approach, integrating the robust point

matching (RPM) and meshfree deformable models

[179–181] by using tagged MR images. A similar study

involving 3D cardiac motion reconstruction from CT data

and tagged MR images has also been performed [182, 183].

Stabilized beating heart surface motion estimation, neces-

sary for robotic surgery, has also been studied [184, 185].

In [186], the authors proposed a voxel-based adaptive

meshfree method for cardiac electrophysiology simulation

by solving the modified FitzHugh–Nagumo (FHN) equa-

tions. Pashaei et al. [187] proposed a fast estimation of

electrical activation time in the ventricular wall by

approximating the path and elapsed time that an electro-

physiological signal would need to travel over two points

in any given 3D geometry. The EFG method has also been

proposed to simulate the propagation of myocardial elec-

trical activation in canine ventricular and human heart

models, constructed from a digitized virtual Chinese

dataset without explicit mesh constraints using an FHN

monodomain model [188].

The mechanical behavior of mitral valve opening was

studied by way of a particle-based SPH approach using the

fluid–structure interaction (FSI) model [189]. Yu et al.

[190] implemented a multiscale model of calcium

dynamics in ventricular myocytes with realistic transverse

tubules using both the meshfree method and FEM at dif-

ferent scales. Here, the meshfree method was used to

predict spatial–temporal calcium concentration in a large

domain while the FEM was implemented to treat the sys-

tem of nonlinear reaction–diffusion equations on the geo-

metrical model. This system of equations has also been

computed in a similar study using the local radial basis

function collocation method (LRBFCM) [191].

The use of SPH has been extended to the study of the

pulsatile flow in the heart’s left ventricles [192], and to the

evaluation of shear stress accumulation in blood compo-

nents in normal and dysfunctional bileaflet mechanical

heart valves [193]. More recently, Skatulla and his co-

workers studied how gel injections influence the mechanics

and performance of the left ventricle with myocardial

infarction during a full heartbeat using the EFG method

[194]. They also proposed an EFG based reduced order

method (ROM) called the proper orthogonal decomposition

with interpolation (PODI) in a bid to reduce the huge

overall computation time associated with complex and

nonlinear [195, 196] and patient-specific [197] real-time

simulations in cardiac mechanics. Lluch et al. [198]

employed the SPH method for image-based cardiac elec-

trophysiological modeling by solving the macroscopic

biophysical mono-domain model Mitchel-Schaeffer toge-

ther with a diffusion term on a left ventricle.

Sack et al. [199] employed the EFG method for the

simulations of the left ventricle undergoing passive filling

by modeling the cardiac tissue with fibers as one-dimen-

sional Cosserat continua instead of using the anisotropic

strain energy functions which do not elucidate on the

complex heterogeneous material composition of cardiac

tissues. A meshfree MFS method involving the combina-

tion of live confocal imaging and computational fluid

dynamics was employed by Boselli and Vermot [200] to

analyze the wall dynamics, the flow field, the wall shear

stress and overcome difficulties related to live imaging of

Meshfree and Particle Methods in Biomechanics: Prospects and Challenges 1559

123



blood flow in the developing zebrafish heart. In a more

recent study, Mao et al. [201] presented a fully-coupled

fluid–structure interaction study for transcatheter aortic

valve dynamics using SPH technique. The approach pre-

sented by the authors is able to assess the hemodynamics

responses of bio-prosthetic heart valves (BHVs) and blood

flow in the left ventricle.

3.5 Brain Mechanics

There is no doubt that the brain is one of the most delicate,

complex, and important organs in living animals and

humans. Even slight damage to the brain due to injury as a

result of impact, exposure to radioactive radiation, and so

on, could lead to loss of life or sanity. In this section, we

review various studies involving the use of meshfree

methods in relation to the brain’s electric and magnetic

potential distributions, deformation, real-time surgical

simulations, and indentation.

In 2005, von Ellenrieder et al. [202] proposed a finite

points mixed method (FPMM) which used a collocation

technique to discretize the quasi-static Maxwell equations

and compute the electroencephalography (EEG) forward

problem solution. This was undertaken in order to obtain

the electric potential distribution generated by a source of

electric activity inside the brain, using both a three-layer

model representing the brain, skull and scalp and a more

detailed and accurate M layers model which included

cerebrospinal fluid and differences between gray and white

matter. The results obtained show that the meshless method

performed better than BEM and FEM in terms of order of

accuracy, the sparseness of assembled matrices, computa-

tion cost, and so on. This study was based on previous work

by the authors, who aimed to understand the effect of

perturbations in the geometry of the head model on the

accuracy of EEG source parameter estimation [203].

Peng et al. [204] recently studied the effect of head

models and dipole source parameters on EEG fields using a

point least squares (PLS) based meshless method. Similar

to the EEG forward problem, the magnetoencephalography

(MEG) forward problem, which involves computing the

scalp potential and magnetic field distribution generated by

a set of current sources and analyzing the complex acti-

vation patterns in the human brain, was studied using the

SPH method, by Ala and co-workers [205, 206] and the

MFS method via the method of particular solutions

(MOPS) [207]. In their studies, the three-layered and

multilayered model was used, the magnetic field was

computed by way of the Biot–Savart law and numerical

experiments were carried out in a realistic single-shell head

geometry. They also formulated the coupled M/EEG for-

ward problem by means of Maxwell’s equations [208]. The

results obtained were shown to be in satisfactory agreement

with analytical solutions. A novel approach for estimating

the electric potential and the spatial current density distri-

bution in the brain due to transcranial stimulation using the

method of fundamental solutions (MFS) has recently been

proposed [209].

Horton et al. [210–212], Miller et al. [213, 214] and

Zhang et al. [215] implemented an algorithm based on the

EFG method, total Lagrangian explicit dynamics and

geometrically nonlinear formulation, which they called a

meshless total Lagrangian explicit dynamics (MTLED)

algorithm. The MTLED algorithm was designed for use in

real-time surgical simulation, the subject-specific biome-

chanical simulation of brain indentation, and brain image

registration. The implementation steps and procedure for

this approach are reproduced in Fig. 6. The validity of the

algorithm was exemplified by a simplified 3D simulation of

a craniotomy induced brain shift, including the brain,

ventricles, tumor, subarachnoid space and skull, computa-

tion of the reaction force acting on a biopsy needle, and the

indentation of brain tissue. Brain geometry was constructed

from MRI images and discretized with nodes, while

background cells were used for the numerical integration

and explicit time integration was performed via the central

difference method. The results obtained compared well

with those obtained using LS-DYNA (commercial FEM

software).

In a similar study, Berger et al. [216] coupled the FEM

and meshfree methods for the modeling of brain defor-

mation in response to tumor growth. Using the MTLED

algorithm, Chowdhury et al. [217] implemented a modified

moving least squares approximation for predicting soft

tissue deformation using a regularized weight function with

almost interpolating properties, and hence making the

imposition of the essential boundary condition easier. The

improved algorithm was used for the simulation of 2D

brain deformation. In order to overcome the problems

associated with brain atlas to patient registration in the

presence of tumors, Diaz and Boulanger [218] proposed a

novel method that brings closer the atlas and the patient’s

image by simulating the mechanical behavior of brain

deformation under a tumor pressure. In their study, a

meshfree total Lagrangian explicit dynamic (MTLED)

algorithm was implemented to deal with the tumor mass-

effect simulation, and a new tumor growth model for the

simulation, which uses the shape of the segmented tumor

from multi-modal MRI data instead of assuming an unre-

alistic regular shape. In a more recent study, Marques et al.

[219] presented a brain impact stress analysis using

advanced discretization meshless techniques in which the

realistic geometry of the brain was constructed from

medical images.
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3.6 Arteries, Blood Flow and Transport
in Capillaries

It is a well-known and established fact that three-dimen-

sional blood flow is governed by the Navier–Stokes (N-S)

equations, together with the continuity equation, while

mass transfer through the arterial wall and within the blood

lumen, when coupled with the blood flow, can be modeled

using the convection–diffusion equation. In this section, we

review previous works where meshfree or particle methods

have been employed to study artery related issues, such as

atherosclerosis, blood flow and red blood cell (RBC)

dynamics, and mass transportation in microcapillaries.

Tang et al. [220] implemented MRI-based 2D and 3D

models, coupled with multi-component plaque structure

and fluid–structure interactions, to predict plaque progres-

sion and prevent potential rupture using the MLPG mesh-

free method. In their studies, blood flow was assumed to be

laminar, Newtonian, viscous, and incompressible, the

artery wall and plaque material were assumed to be

hyperelastic, isotropic, incompressible and homogeneous

while the NS equations with arbitrary Lagrangian–Eulerian

(ALE) formulations were used as the governing equations.

They concluded that plaque progression has a negative

correlation with structural stress and flow shear stress

conditions. Similar studies were also carried out using the

meshless GFD method with and without fluid–structure

interactions [221–223]. The authors also studied 3D vis-

cous flow in stenotic tubes/arteries while incorporating the

effect of large wall deformation and collapse [224], and the

Fig. 6 Summarized implementation procedure of the MTLED algorithm (modified [212])
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effect of stenosis asymmetry, on steady blood flow and

artery compression using a 3D FSI interaction model by

solving the governing models (the N-S equations and

hyperelastic Mooney–Rivlin model), by means of the GFD

method [225, 226].

More recently, Belinha et al. [227] implemented a 2D

elastoplastic model to analyze the biomechanical behavior

of atherosclerotic plaque tissue in an artery using the

NNRPIM meshless method. Sinnott and his colleagues

[228] studied how arterial pressures affect the considera-

tion of internal carotid artery angle as a risk factor for the

carotid atherosclerotic disease. This was achieved by using

the SPH meshfree method to simulate Newtonian flow

through clinical, rigid walled, carotid bifurcation, and it

was observed that varying the angle without changing

boundary pressure conditions produces minimal change in

flow and wall shear stress (WSS). In addition, the impor-

tance of the internal carotid artery (ICA) in maintaining a

well-behaved flow was identified.

El Zahab et al. [229] developed a localized collocation

meshless method (LCMM) to model laminar incompress-

ible blood flow in the interconnection between a bypass

graft and an artery. Using the same method, coupled with

the genetic algorithm, they further studied how blood flow

in the synthetic bypass graft end-to-side distal anastomosis

(ETSDA) can be improved by optimizing ETSDA shape

[230, 231]. Tanaka and Takano [232] developed a micro-

scopic blood model in which plasma fluid was discretized

by SPH particles, and RBC was expressed by internal SPH

particles surrounded by elastic membrane particles. To

verify their model, they numerically analyzed two popular

phenomena of blood flow: the tank-tread motion of an RBC

under a constant shear field and the axial migration or

pinch effect of RBCs in Poiseuille flow.

The authors in [233] proposed a physical meshless soft

tissue model possessing viscoelastic creep characteristics

and a range-based SPH method with variable smoothing

length for simulation of blood flow effect in the virtual

surgery training system. They also simulated kidney soft

tissue cutting experiment using the proposed model and

method. The results of their studies show significant

improvement in the cutting and simulation effect in terms

of the viscoelasticity of the soft tissue cutting and the

pressure and viscous force of blood flow. Jichuan et al.

[234] proposed a software component approach for GPU

physics-based simulation of blood flow, internal fluidic

structure and hand circulation by using an improved SPH

method for the fluid dynamics of blood flow and an FE

modeler for the interaction with arterial wall. Caballero

et al. [235] investigated the capability of the SPH technique

to simulate the bulk blood flow dynamics in two realistic

left ventricular (LV) models.

Tsubota et al. [236] studied the motion of RBCs in 2D

blood flow using the MPS method. The cases considered in

their study included the motion and deformation of a single

RBC between parallel plates, primary thrombogenesis

caused by platelet aggregation, and the collective behavior

of multiple RBCs. Chui and Heng [237] also proposed a

particle-based rheologic modeling method for virtual

catheterization training applications. They simulated the

effect of blood rheology through an SPH formulation of

non-Newtonian flow, and a pure Lagrange particle formu-

lation for fluid–structure interaction was proposed for the

simulating of blood-vessel interaction by modeling the

vessel wall structure as virtual particles. SPH has also been

used to simulate how malaria parasites reduce the

deformability of infected red blood cells [238] and to

model the near-wall dynamics of leukocytes in flow [239].

Although the SPH approach has been widely employed for

modeling blood flow, the difficulty of discretizing complex

continuum geometries into pseudo-particles was recently

overcome by mean of a multiblock approach [240] in

which the whole problem domain is divided into simpler

blocks, which are then discretized into evenly sized

pseudo-particles.

The DPD particle method has been employed by various

researchers and research group to investigate blood flow in

circulation and devices [241–244] and RBC dynamics

[245–252] as well as lipid bilayer-cytoskeleton [253].

Similar studies on blood flow, RBC dynamics and throm-

bus formulation have also been carried out using the SPH

method [254–259], the modified particle binary level set

(MPBLS) method [260], multi-particle collision (MPC)

dynamics based on meshless membrane model [261] and

the MPS method [262, 263]. Ariane et al. [264] propose a

mesh-free and discrete (particle-based) multi-physics

approach for modeling the hydrodynamics in flexible bio-

logical valves.

In a bid to further understand the rheology of RBC

aggregation, Liu and Liu [265] introduced a new three-

dimensional model that coupled NS equations with cell

interactions to investigate RBC aggregation and its effect

on blood rheology. In their studies, the RKPM meshfree

technique was used to model the RBCs in order to over-

come the challenges associated with the large deformation

of RBCs. The efficiency of their model was validated with

studies on the peeling force of an RBC rouleau, the effects

of shear-rate dependent viscosity on cell aggregation, the

effect of RBC deformability on blood viscosity and the

Fahraeus–Lindqvist effect. More recently, Ghehsareh et al.

[266] presented numerical solutions of a mathematical

model of blood flow in the deforming (expanding and

contracting) porous channel using the integration radial

basis function collocation method.
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3.7 Cell Mechanics

Cellular systems, which are also referred to as nature’s

building blocks, are one of the most studied systems since

these unique microscopic units control the overall macro-

scopic behavior of both animals and plants. From a

biomechanics point of view, plant cells are intuitively

slightly simpler than animal cells due to their high degree

of immobility within the organism. In this section, we

present a summary of some key studies and investigations

in the literature relating to cell mechanics, in which

meshfree or/and particle methods are employed.

In [267], Van Liedekerke and his colleagues employed

the SPH method to simulate and study the micromechanics

of single-plant parenchyma cells and aggregates. The

micromechanics of biological cells was investigated by the

same authors [268] through the coupling of SPH (to model

the cell fluid) with the discrete element method (DSEM), in

order to model the viscoelastic cell wall as an isotropic

incompressible neo-Hookean solid. In their studies, cell

wall hydraulic conductivity (permeability) was built in

through a constitutive relation in the SPH formulation, the

force transmission and stresses in the biological par-

enchyma cells were predicted and the mechanics (both

during and after cell failure) was also modeled.

Following the works of Van Liedekerke, Karunasena

and his co-workers [269, 270] simulated the microscale

large deformation behavior of different plant food materi-

als and plant cell shrinkage during drying using a coupled

SPH-DSEM approach. To predict various macroscopic

properties in the transverse plane of wood—namely, spruce

earlywood, spruce latewood and poplar—a combination of

three approaches was used by Perré et al. [271]. In their

study, the authors implemented the lattice Boltzmann

method (LBM), MPM and peridynamic approaches to

predict thermal conductivity and mass diffusivity, compute

rigidity and compression at large deformation, and predict

the fracture pathway in the cellular arrangement,

respectively.

Nakamura et al. [272] analyzed RBC deformation

behavior in various flow fields, such as the Couette flow,

unsteady shear flows and stenosed flows, so as to determine

whether the extent of RBC deformation given by a defor-

mation index can be correlated with the external fluid shear

stress, by implementing a spring-based model and solving

the motion equation defined for each node with a given

mass. The mechanics of platelet aggregation in hemody-

namic flows was modeled using a combination of the

immersed boundary method and parametric radial basis

function (IB-RBF) by tracking the motion and behavior of

a collection of individual platelets as they interacted with

the suspending fluid, one another and the vessel walls

[273].

Liew and his co-workers employed an atomistic-con-

tinuum model to study the elastic properties, buckling and

post-buckling, vibration and dynamic behaviors of micro-

tubules [274–278]. Wang et al. [279, 280] also imple-

mented a nanoscale quasi-continuum (QC) model for

exploring the mechanical behaviors of human erythrocyte

membranes using the higher order Cauchy-Born rule and

meshfree method. A 3D multiscale Cauchy-Born meshfree

model was proposed by Ademiloye and co-workers

[281, 282] as an improvement to the 2D QC model

employed in [279, 280, 283] for numerical modeling of the

deformability of RBC membrane parasitized by Plasmod-

ium falciparum. This methodology and its semi-analytical

variant has been employed to examined the large defor-

mation behavior [284, 285] of healthy RBC membrane,

biomechanical properties of malaria-infected RBC mem-

brane [286] as well as the effects of thermal treatments on

healthy RBC membrane deformability [287] and its

biomechanical responses under various loading conditions

[288, 289].

Zeng and his co-workers [290–292] developed a multi-

scale soft matter model as a generalization of the Fluid

Mosaic Model [293], and as an extension of Helfrich’s

membrane model [294] for stem cells, in order to model

soft contact and adhesion between cells and their extra-

cellular substrates using a Lagrange-type meshfree Galer-

kin formulation. To validate the proposed model, the

response of cells in four different stiffness substrates and in

a stiffness-varying substrate, as well as conformation

change due to substrate elasticity and three-dimensional

(3D) cell spreading, were investigated. More recently,

Pothapragada et al. [295] developed a phenomenological

3D coarse-grained molecular dynamics (CGMD) particle-

based platelet model to describe the filopodia formation

and imitate the complex shape change observed during

early stage platelet activation. Heck et al. [296] proposed a

viscoelastic SPH technique with extended boundary con-

ditions for numerical modeling of extracellular matrix in

contact with a migrating cell.

3.8 Human Swimming Locomotion and Bird
Flights

Cohen and his colleagues employed the SPH method to

perform numerical simulations of dolphin kick [297] and

fixed glide pose towing [298] swimming drills. The authors

also studied the locomotion of marine animals such as

dolphins and sharks [299], the pitching effects of buoyancy

during free-style, backstroke, butterfly and breaststroke

swimming techniques [300], the role of hand during free-

style swimming drill [301], as well as the prediction of
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loading on the body during elite platform diving [302]. In

their pioneering work, McCarthy et al. [303] investigated

the impact of a bird on an aircraft wing leading edge

structure using the PAM-CRASH software. They showed

that the SPH technique was able to capture the breakup of

the bird into debris particle after the collision.

In a similar study, Guida et al. [304] employed an SPH-

Lagrangian approach to study the impact of bird-strike on

the leading edge wing of aircraft by modeling the bird

geometry with SPH nodes and the impacted structure using

Lagrangian elements. The authors further investigated the

impact, failure after impact and high strength at impact

properties of glass fibre laminate combination sandwich

composite. However, the bird geometry (i.e. hemispheri-

cal-ended cylinder) used for their simulations [303, 304] is

unrealistic.

Grimaldi et al. [305] presented a study on aircraft

windshield-surround structure with an innovative configu-

ration that satisfies the bird-strike requirement according to

the European and US aviation regulations 25.631 on the

‘‘Bird-strike Damage’’ using a coupled FE-SPH approach.

In addition, the authors presented a parametric analysis on

the square windshield model to investigate the effect of the

target geometry, the impact angle, and the plate curvature

on the impact response of the windshield structure with the

aim of defining possible guidelines for the design of a bird-

proof airplane windshield. The effects of using realistic and

substitute bird models as well as the influence of bird

geometry on aircraft impacts from various orientations

were studied by Hedayati and Ziaei-Rad [306]. The authors

concluded that impact from bird bottom side is the most

damaging scenario, while the tail side impact is the less

dangerous one.

Vignjevic et al. [307] employed the particle to node and

the particle to surface contact algorithms for the treatment

of contact between the bird, modeled using SPH particles

and the aircraft blade (modeled as FE mesh) in a bird-strike

analysis. The influence of bird shape, bird impact location

and impact timing were then investigated in their para-

metric study. It has also been reported in the open literature

that during bird strikes, the geometry configuration of bird

severely affects the displacement and the von Mises stress

of some rotary engine primary compressor blades and if the

bird strikes the ‘‘up’’ sites, some blades may develop

plastic deformation which will adversely affect the safety

work of the engine [308].

Jun et al. [309] studied the dynamic plastic responses of

the sidewall structure of an aircraft nose using the coupled

SPH-FE method in PAM-CRASH software. Zhang and Fei

[310] employed the SPH method to investigate the effect of

bird geometry and impact orientation in bird striking on a

rotary jet-engine fan. The authors implemented a more

realistic bird model in terms of bird geometry and material

constitutive model. They concluded that bird geometry and

impact orientation had a significant effect on the impact

force, impact duration and kinetic energy loss of the bird.

3.9 Other Applications

The use of a point-cloud method (a form of meshfree

method based on the nodal discretization of a problem

domain) for image-based stress analysis in biological sys-

tems, such as aorta inflation and skull impact, was

demonstrated by Qian and Lu [311]. A 3D material point

human head model constructed from CT scanned images

was used to study the dynamic response of the human head

under the impact of a 3D cylindrical lead projectile [312],

while the penetration of projectile into the human head was

studied using SPH method [313]. Recently, a discrete

particle-based method capable of representing the entire

boiling process, including nucleation, bubble formation,

growth, bursting, vapor and steam formation at the fluid-

free surface was proposed using the meshfree SPH method

[314].

Huafeng and Liu [315] applied the EFG method to

several image analysis problems involving domain evolu-

tion and domain mapping, such as object segmentation and

multi-frame cardiac motion analysis. Chen et al. [316, 317]

proposed a 3D object-constrained meshless deformable

algorithm for prostrate segmentation and registration in

image-guided radiotherapy (IGRT) using CT, on board

cone beam CT images and certain recent dose delivery

technologies, such as intensity modulated radiation therapy

(IMRT). A coupled RBF interpolation and statistical shape

model were used to establish a comparison between

ultrasound (US) and magnetic resonance (MR) based 3D

prostate shapes [318]. In this study, the authors first used

RBF interpolation to construct a 3D point distribution

model for each prostate, before a modified principal axis

transformation was utilized for the rigid registration of the

US and MR images of the same prostate in preparation for

shape comparison. Lastly, statistical shape models were

used to capture the segmented 3D prostate geometries for

successive cross-modality comparison.

A point-based simulation and cutting of herniated disc

soft-tissue in the context of interactive surgery simulation

was implemented by Haq et al. [319] using the MLS

approximation scheme. In their study, an intrinsic meshless

distance-based enrichment technique capable of handling

discontinuities was implemented to perform the cutting

operation smoothly. Using the MTLED algorithm, com-

bined with fuzzy tissue classification (which relies on the

Fuzzy C-Means algorithm to compute and assign material

properties using fuzzy membership functions for the

specified image intensity clusters for each voxel in the

image), Li et al. [320, 321] presented a patient-specific
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meshless model for whole-body image registration. An

et al. [322], in their recent article, proposed a meshless

reconstruction method capable of reducing position error,

for fluorescence molecular tomography (FMT), based on

the compactly supported radial basis function.

By combining RBFs with partial differential equation-

based nonlinear level set evolution equation, Li and Li

[323] presented a meshless numerical algorithm for image

segmentation that is robust to initialization and more

computationally efficient. Aggarwal et al. [324] recently

proposed an RKPM meshfree method for large deformation

mechanics of protein structure by studying the mechanics

and conformational change of proteins and their assem-

blies. The authors simulated the atomic force microscopy

(AFM) indentation of cowpea chlorotic mottle virus

(CCMV) native capsid by defining meshfree nodes at the

a-carbon positions of the atomic coordinates and analyzed

the conformational change of protein assemblies and dis-

cussed the importance of coarse-graining methods. A local

meshless collocation method for solving the partial dif-

ferential equations arising from modeling of wound healing

processes was presented by the authors in [325].

A degenerate parabolic equation arising in the spatial

diffusion of the biological population has also been ana-

lyzed using the element free kp-Ritz method [326] and

IMLS-Ritz meshfree method [20]. The authors in [327]

investigated the relationships between peristaltic contrac-

tion, relaxation, and fluid transport in the human colon

using the SPH method, by coupling the flow of luminal

content and wall flexure. Recently, Montanino et al. [328]

presented a meshfree approach for modeling the cornea-

aqueous humor interaction during air puff test. Dehghan

and co-workers [329, 330] simulated the behavior of cancer

cell invasion of surrounding tissue as well as the process of

tumor growth using meshless techniques. Fu et al. [331]

proposed a domain-type meshless collocation method,

called method of approximate particular solutions (MAPS),

for numerical investigation on the effect of tumor on the

thermal behavior inside the skin tissue. The Galerkin-based

meshfree method has also been employed by the authors in

[332, 333] for numerical simulation of reaction–diffusion

systems in developmental biology, which is one of the

emerging areas of interest in computational biomechanics.

4 Concluding Remarks and Prospects

This review aims to assist researchers working with

meshfree and particle methods within the fields of bio-

engineering and computational biomechanics by providing

them with the key references for use in their research, as

well as ideas for future research areas considered to be of

paramount importance. The above-mentioned aims were

achieved with the comprehensive review of applications of

meshfree and particle methods in bioengineering and

biomechanics. We made an extensive effort to include all

the important contributions in the current areas of interest

highlighting the most pertinent literature available to

researchers studying and working in the field of computa-

tional biomechanics.

We observed that the meshfree and particle methods

have been widely employed for various problems in com-

putational biomechanics; however, the use of conventional

meshfree methods such as EFG, RKPM and MLPG in

biofluid mechanics and FSI related studies is limited. The

superior performance of these methods in handling prob-

lems involving large deformation and complex geometry

without loss of accuracy can be harnessed to investigate

and solve important problems in emerging areas in com-

putational biomechanics. These emerging areas and areas

with significant research opportunities include fetal and

neonatal skeletal development, tumor growth and cancer

metastasis, brain concussion and morphogenesis, intrathe-

cal cerebrospinal fluid dynamics, multiscale biomechanics,

in silico regenerative mechanics, data-driven modeling,

rupture mechanics, 3D printing and mechanics of medical

devices.

Considering the enormous advantages of meshfree and

particle methods, coupled with the constantly increasing

interest in bioengineering and biomechanics, we are con-

fident that this fascinating and potentially useful area of

research will continue to aid in the improvement of human

health through its novel and insightful contribution to the

world of science and technology.
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