
ORIGINAL PAPER

FEMPAR: An Object-Oriented Parallel Finite Element Framework

Santiago Badia1,2 • Alberto F. Martı́n1,2 • Javier Principe2,3

Received: 5 August 2017 /Accepted: 15 September 2017 / Published online: 11 October 2017

� The Author(s) 2017. This article is an open access publication

Abstract FEMPAR is an open source object oriented For-

tran200X scientific software library for the high-perfor-

mance scalable simulation of complex multiphysics

problems governed by partial differential equations at large

scales, by exploiting state-of-the-art supercomputing

resources. It is a highly modularized, flexible, and exten-

sible library, that provides a set of modules that can be

combined to carry out the different steps of the simulation

pipeline. FEMPAR includes a rich set of algorithms for the

discretization step, namely (arbitrary-order) grad, div, and

curl-conforming finite element methods, discontinuous

Galerkin methods, B-splines, and unfitted finite element

techniques on cut cells, combined with h-adaptivity. The

linear solver module relies on state-of-the-art bulk-asyn-

chronous implementations of multilevel domain decom-

position solvers for the different discretization alternatives

and block-preconditioning techniques for multiphysics

problems. FEMPAR is a framework that provides users with

out-of-the-box state-of-the-art discretization techniques

and highly scalable solvers for the simulation of complex

applications, hiding the dramatic complexity of the

underlying algorithms. But it is also a framework for

researchers that want to experience with new algorithms

and solvers, by providing a highly extensible framework. In

this work, the first one in a series of articles about FEM-

PAR, we provide a detailed introduction to the software

abstractions used in the discretization module and the

related geometrical module. We also provide some ingre-

dients about the assembly of linear systems arising from

finite element discretizations, but the software design of

complex scalable multilevel solvers is postponed to a

subsequent work.

1 Introduction

Even though the origins of the FE method trace back to the

50s, the field has drastically evolved during the last six

decades, leading to increasingly complex algorithms to

improve accuracy, stability, and performance. The use of

the p-version of the FE method and its exponential con-

vergence makes high-order approximations an excellent

option in many applications [1]. Adaptive mesh refinement

driven by a posteriori error estimates, i.e., h-adaptivity, is

an essential ingredient to reduce computational cost in an

automatic way [2]. For smooth solutions, p-adaptivity or

hybrid hp-adaptivity can further reduce computational cost

for a target level of accuracy [3]. Originally, FE methods

were restricted to nodal Lagrangian bases for structural

problems. The extension of FE methods to other applica-

tions, like porous media flow or electromagnetism, moti-

vated the design of more complex bases and require

different mappings from the reference to the physical

space, complicating the implementation of these

& Santiago Badia

sbadia@cimne.upc.edu

Alberto F. Martı́n

amartin@cimne.upc.edu

Javier Principe

principe@cimne.upc.edu

1 Department of Civil and Environmental Engineering,

Universitat Politècnica de Catalunya, Jordi Girona 1-3,

Edifici C1, 08034 Barcelona, Spain

2 CIMNE Centre Internacional de Mètodes Numèrics en

Enginyeria, Parc Mediterrani de la Tecnologia, UPC, Esteve

Terradas 5, 08860 Castelldefels, Spain

3 Department of Fluid Mechanics, Universitat Politècnica de

Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain

123

Arch Computat Methods Eng (2018) 25:195–271

https://doi.org/10.1007/s11831-017-9244-1

http://orcid.org/0000-0003-2391-4086
http://orcid.org/0000-0001-5751-4561
http://orcid.org/0000-0002-1478-2651
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-017-9244-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-017-9244-1&domain=pdf
https://doi.org/10.1007/s11831-017-9244-1

techniques in standard FE codes. Saddle-point problems

also require particular mixed FE discretizations for stability

purposes [4, 5]. More recently, novel FE formulations have

been proposed within the frame of exterior calculus, e.g.,

for mixed linear elasticity problems [6]. Physics-compati-

ble discretization are also gaining attention, e.g., in the

field of incompressible fluid mechanics. Divergence-free

mixed FEs satisfy mass conservation up to machine pre-

cision, but their implementation is certainly challenging

[7]. During the last decade, a huge part of the computa-

tional mechanics community has embraced isogeometric

analysis techniques [8], in which the discretization spaces

are defined in terms of NURBS (or simply splines), leading

to smoother global spaces. In the opposite direction, dis-

continuous galerkin (DG) methods have also been actively

developed, and novel approaches, like hybridizable DG

and Petrov-Galerkin DG methods, have been proposed

[9, 10]. As the discretization methods become more and

more complex, the efficient implementation of these tech-

niques is more complicated. It also poses a challenge in the

design of scientific software libraries, which should be

extensible and provide a framework for the (easy) imple-

mentation of novel techniques, to be resilient to new

algorithmic trends.

The hardware in which scientific codes run evolves even

faster. During 40 years, core performance has been steadily

increasing, as predicted by Moore’s law. In some years,

supercomputers will reach 1 exaflop/s, a dramatic

improvement in computational power that will not only

affect the extreme scale machines but radically transform

the whole range of platforms, from desktops to high per-

formance computing (HPC) clouds. The ability to effi-

ciently exploit the forthcoming 100x boost of

computational performance will have a tremendous impact

on scientific discoveries/economic benefits based on com-

putational science, reaching almost every field of research.

However, all the foreseen exascale growth in computa-

tional power will be delivered by increasing hardware

parallelism (in distinct forms), and the efficient exploita-

tion of these resources will not be a simple task. HPC

architectures will combine general-purpose fat cores, fine-

grain many-cores accelerators (GPUs, DSPs, FPGAs, Intel

MIC, etc.), and multiple-level disruptive-technology

memories, with high non-uniformity as common denomi-

nator [11]. This (inevitable) trend challenges algo-

rithm/software design. Traditional bulk-synchronous

message passing interface (MPI) approaches are likely to

face significant performance obstacles. Significant progress

is already being made by MPI?X [12] (with X=OpenMP,

CUDA, OpenCL, OmpSs, Kokkos, etc.) hybrid execution

models. Going a step further, asynchronous many-task

execution models (e.g., Charm??[13], Legion [14], or

HPX [15]) and their supporting run-time systems hold

great promise [16].

Traditionally, researchers in the field of scientific com-

puting used to develop codes with a very reduced number

of developers, e.g., a university department, and a limited

life span. The software engineering behind scientific codes

was poor. Codes were rigid and non-extensible, and

developed for a target application and a specific numerical

method. However, the increasing levels of complexity both

in terms of algorithms and hardware make the development

of scientific software that can efficiently run state-of-the-art

numerical algorithms on HPC resources a real challenge.

Considering to start from scratch a project of this kind has

an ever increasing level of complexity. Furthermore, due to

the huge resources required to carry out such a project, it is

natural to develop a framework that will be resilient to new

algorithmic and hardware trends, in order to maximize life

time, and to be applicable to a broad range of applications.

In this sense, object-oriented (OO) programming, which

provides modularity of codes and data-hiding, is the key for

the software design of flexible and scalable (in terms of

developers) projects.

There is a number of open source OO FE libraries

available through the Internet, e.g., deal.II [17, 18], FEniCS

[19], GRINS [20], Nektar?? [21], MOOSE [22], MFEM

[23], FreeFem?? [24], and DUNE [25]. In general, these

libraries aim to provide all the machinery required to

simulate complex problems governed by partial differential

equations (PDE) using FE techniques. In any case, every

library has its main goal and distinctive features. Some

libraries, like FreeFem?? or FEniCS, have extremely

simple user interfaces. FEniCS has its own domain specific

language for weak forms to automatically generate the

corresponding FE code (preventing p-adaptivity) and

includes a collection of Python wrappers to provide user-

friendly access to the services of the library. Other

sophisticated libraries like deal.II or DUNE have a slightly

more demanding learning curve. In general, parallel

adaptivity is at most partially supported; as far as we know,

none of the libraries above have support for parallel hp-

adaptivity, unless DG methods are being used. Some

libraries are restricted to a particular cell topology, e.g.,

deal.II is limited to hexahedral/quadrilateral (n-cubes)

meshes, while FEniCS only supports simulations on tri-

angular/tetrahedral (n-simplices) meshes.

In general, these libraries provide modules for some of

the different steps in the simulation pipeline, which

involves the set-up of the mesh, the construction of the FE

space, the integration and assembly of the weak form, the

solution of the resulting linear system, and the visualization

of the computed solution. The solution of the linear system

is clearly segregated from the discretization step in all the

scientific software libraries described above (for parallel

196 S. Badia et al.

123

computations); the linear system is transferred to a general-

purpose sparse linear algebra library, mainly PETSc

[26–28], Hypre [29], and Trilinos [30, 31]. As a result, the

coupling between the discretization step and the linear

solver step is somehow weak, since they rely on general

purpose solvers, which usually involve simple interfaces.

The strong point of these general purpose numerical linear

algebra libraries is to be problem-independent, but it also

limits their performance for specific applications, since

they cannot fully exploit the underlying properties of the

PDE operator and the numerical discretization.1 This seg-

regation has a clear impact on the type of methods to be

used. This black-box approach to general-purpose linear

solvers has favoured the use of algebraic multigrid meth-

ods, the de facto linear solver [29]. On the other hand,

geometric multigrid methods and domain decomposition

(DD) methods, which are very specific to mesh-based PDE

solvers, are not common, even though they can be superior

to algebraic methods in many cases. A geometric multigrid

method that exploits the hp-adaptive structure of the FE

space is included in deal.II, but it can only be used in the

serial case. In parallel scenarios, DD methods have cer-

tainly evolved during the last decade. Modern DD methods

do not (necessarily) rely on a static condensation of the

internal variables, which requires sparse direct methods for

the local subdomain problems. Instead, inexact solvers can

be used, e.g., multigrid methods, and linear complexity DD

preconditioners can be defined (see [33, 34]). The defini-

tion of two-level DD methods resembles the one of FE

methods, by exchanging the FE and subdomain concepts,

and their definition is strongly related to the one of mul-

tiscale FEs [35]. Furthermore, multilevel extensions can be

naturally defined. In short, state-of-the-art multilevel DD

methods can be understood (in their inexact version) as a

non-conforming multigrid method. Even though the

mathematical theory of the DD methods is very sound, high

performance implementations are quite recent (see

[36–38]). On the other hand, we are not aware of any

general purpose FE code that integrates a DD algorithm in

the solution workflow. DD methods require sub-assembled

matrices to be used, and are not supported by the majority

of the existing advanced OO FE libraries. Analogously, the

use of block-preconditioning is in general poorly sup-

ported, because it involves the discretization of additional

operators to define the approximated Schur complement,

and the corresponding block-based assembly of matrices.

On the other hand, based on the supercomputing trends,

the segregation between time discretization, linearization,

space discretization, and linear system solve, will pro-

gressively blur. As an example, nonlinear preconditioning

and parallel-in-time solvers are two natural ways to attain

the higher levels of concurrency of the forthcoming exas-

cale supercomputers [36, 39]. These facts will complicate

even more the rigid workflow of current advanced FE

libraries. In this sense, current efforts in PETSc to provide

nonlinear preconditioning interfaces can be found in [40],

relying on call-back functions, and the XBraid solver [41]

aims to provide time-parallelism in a non-intrusive way.

2 The FEMPAR Project

In this work, we present FEMPAR, an OO FE framework

for the solution of PDEs, designed from inception to be

highly scalable on supercomputers and to easily handle

complex multiphysics problems. The first public release of

FEMPAR has almost 300K lines of code written in (mostly)

OO Fortran and makes intensive use of the features defined

in the 2003 and 2008 standards of the language. The source

code that is complementary to this work corresponds to the

first public release of FEMPAR, i.e., version 1.0.0. It is

available at a git repository [42]. In particular, the first

public release was assigned the git tag FEMPAR-1.0.0,

in accordance with the ‘‘Semantic Versioning’’ system.2

FEMPAR is very rich in terms of FE technology. In

particular, it includes not only Lagrangian FEs, but also

curl- and div-conforming ones, e.g., Nédélec (edge) and

Raviart-Thomas FEs. The library supports n-cube and

n-simplex meshes, and arbitrary high-order bases for all the

FEs included. Continuous and discontinuous spaces can be

used, providing all the machinery for the integration of DG

facet (i.e., edges in 2D and faces in 3D) terms. Recently, in

a beta version of the code, B-splines have also been added,

together with the support for cut cell methods (using

XFEM-type techniques) and hp-adaptivity, but we will not

discuss these developments for the sake of brevity.

Moreover, FEMPAR has been developed with the aim to

provide a framework that will allow developers to imple-

ment complex techniques that are not well-suited in the

traditional segregated workflow commented above. FEM-

PAR also provides a highly scalable built-in numerical

linear algebra module based on state-of-the-art domain

decomposition solvers. FEMPAR can provide partially

assembled matrices, required for DD solvers; the multilevel

BDDC solver in FEMPAR has scaled up to almost half a

million cores and 1.75 million MPI tasks (subdomains) in

the JUQUEEN Supercomputer [34, 37]. It includes an

abstract framework to construct applications and precon-

ditioners based on multilevel nonoverlapping partitions.
1 A paradigmatic example is the design of scalable solvers for the

discretization of the Maxwell equations using edge elements, which

involve the discretization of additional operators (discrete gradients)

and changes of basis at the reference FE level [32]. 2 Available at http://semver.org/.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 197

123

http://semver.org/

Even though every block within the library preserves

modularity, the interface between discretization and

numerical linear algebra modules within FEMPAR is very

rich and focused on PDE-based linear systems. In the path

to the exascale, FEMPAR has been designed to permit an

asynchronous implementation of multilevel methods, both

in terms of multiphysics FEs and multilevel solvers, which

have been exploited, e.g., in [37]. It is a unique feature that

is not available in other similar libraries. The library also

allows the user to define blocks in multiphysics applica-

tions, that can be used to easily implement complex block

preconditioners [43–45]. All these blocks are very cus-

tomizable, which has already been used to develop scalable

DD solvers for electromagnetics problems and block pre-

conditioners for multiphysics problems, e.g., magnetohy-

drodynamics [44]. These distinctive features of FEMPAR,

however, are not discussed in this article but in a forth-

coming one. A general discussion of the main ingredients

of our implementation of the discretization step using FE-

like approximations is first necessary, which is the purpose

of this work.

FEMPAR has already been successfully used in a wide

set of applications by the authors of the library: simulation

of turbulent flows and stabilized FE methods [46–49],

magnetohydrodynamics [50–54], monotonic FEs [55–59],

unfitted FEs and embedded boundary methods [60], and

additive manufacturing simulations [61]. It has also been

used for the highly efficient implementation of DD solvers

[34, 37, 39, 62–66] and block preconditioning techniques

[44].

This work is more than an overview article with the

main features of the library. It is a detailed description of

the software abstractions being used within FEMPAR to

develop an efficient, modular, and extensible implemen-

tation of FE methods and supporting modules in a broad

sense. To this end, we enrich the discussion with code

snippets that describe data structures, bindings, and

examples of use.3 This document is intended to be used as a

guide for new FEMPAR developers that want to get

familiarized with its software abstractions. But it can also

be a useful tool for developers of FE codes that want to

learn how to implement FE methods in an advanced OO

framework. In any case, due to the size of the library itself,

many details cannot be exposed, to keep a reasonable

article length. The article can be read in different ways,

since it is not necessary to fully understand all the pre-

ceding sections to grasp the main ideas of a section. For

instance, the section about the abstract implementation of

polytopes in arbitrary dimensions and its related algorithms

is quite technical and a reader that is not particularly

interested in the internal design of this type and its bindings

implementations can skip it. Experienced FE researchers

can skip the short section with the basics of FE methods,

and only look at this one (if needed) when referred in

subsequent sections.

The article is organized as follows. In Sect. 3 we present

a concise mathematical description of the FE framework.

The main mathematical abstractions are expressed in

software by means of a set of derived data types and their

associated TBPs, which are described in subsequent sec-

tions. In particular, the main software abstractions in

FEMPAR and their roles in the solution of the problem are:

• The polytope, which describes a set of admissible

geometries and permits the automatic, dimension-

independent generation of reference cells and struc-

tured domains. The mathematics underlying the poly-

tope are presented in Sect. 3.14, while its software

implementation in Sect. 4.

• The polynomial abstraction and related data types,

which are presented in Sects. 3.4 and 5, respectively.

These sections describe how shape functions bases can

be generated for arbitrary orders and for n-cube and

n-simplex topologies.

• The reference FE in Sect. 6, which describes the

reference cell and defines a set of basis functions and

degrees of freedom on each cell.

• The triangulation in Sect. 7, which represents a discrete

approximation of the physical domain X.
• A set of tools required to perform numerical integration

(e.g., quadratures and geometrical maps) produced by

the reference FE and described in Sect. 8 for cell

integrals and in Sect. 9 for facet integrals.

• The FE space described in Sect. 10, built from a

triangulation and a set of reference FEs, which

represents a global space of FE functions.

• The discrete integration, an abstract class to be

extended by the user to define an affine FE operator,

which describes the numerical integration of the weak

form of the problem to be solved, described in

Sect. 11.2.

• The linear (affine) operator in Sect. 11, whose root is

the solution of the problem at hand, constructed using

the FE space and a discrete integration.

3 The code snippets are written in advanced OO Fortran 200X [67].

There is a close relationship between these language features and

those available in the C?? language [68] and we established some

code style rules to emphasize it. In particular, Fortran modules in

FEMPAR are always named with the suffix _names, to indicate the

analogy with namespaces in C??. Derived types, analog to C structs

or C?? classes, are always named with _t to distinguish them from

instances. However it should be kept in mind that, whereas structs in

C?? are passive data containers and classes are used to carry also

methods, Fortran derived data types are used in both cases since the

introduction in the 2003 standard of the so called type-bound

procedures (TBPs).

198 S. Badia et al.

123

• An example of a user driver in Sect. 12, in which the

different ingredients previously described are used to

simulate a problem governed by PDEs, the Stokes

system.

A (very simplified) graphical overview of the main soft-

ware abstractions in FEMPAR and some of their relation-

ships is shown in Fig. 1.

3 The FE Framework

In this section, we briefly introduce all the mathematical

abstractions behind the FE method for the discretization of

problems governed by PDEs. For a more detailed exposi-

tion of the topics, we refer to [69–72]. The FEs described

below (and many other not covered herein) can be for-

mulated and analyzed using the finite element exterior

calculus framework [6], which makes use of exterior

algebra and exterior calculus concepts. In this framework,

one can define FEs, e.g., div and curl-conforming ones, in

arbitrary space dimensions, using the concept of differen-

tial k-forms. However, we have decided not to use such

presentation of FE methods to simplify the exposition for

readers not familiar with these abstractions.

3.1 The Boundary Value Problem in Weak Form

We are interested in problems governed by PDEs posed in

a physical domain X � Rd with boundary C¼: oX. In

practice d ¼ 2; 3 but we are also interested in d[3 for

some particular applications (see Sect. 3.14). Let us con-

sider a differential operator A, e.g., the Laplace operator

�D, and a force term f : X ! R. Let us also consider a

partition of C into a Dirichlet boundary CD and a Neumann

boundary CN, and the corresponding boundary data uD :

CD ! R and gN : CN ! R. The boundary value problem

reads as follows: find uðxÞ such that

AuðxÞ ¼ f ðxÞ in X; BDuðxÞ ¼ uDðxÞ on CD;

BNuðxÞ ¼ gNðxÞ on CN:

ð1Þ

The operator BD is a trace operator and BN is the flux

operator. Other boundary conditions, e.g., Robin (mixed)

conditions can also be considered. We assume that the

unknown uðxÞ in (1) can be a scalar, vector, or tensor field.

(The case of multi-field problems is considered in

Sect. 3.11.)

For FE analysis, we must consider the weak form of (1).

The weak formulation can be stated in an abstract setting as

follows. Let us consider an abstract problem determined by

a Banach space X (trial space), a reflexive Banach space Y
(test space), a continuous bilinear form a : X � Y ! R,

and a continuous linear form ‘ : Y ! R. The abstract

problem is stated as: find u 2 X such that

aðu; vÞ ¼ ‘ðvÞ; for any v 2 Y: ð2Þ

The link between the two formulations is the following. Let

DðXÞ be the space of C1 functions with compact support in

X; the dual space DðXÞ0 is the space of distributions. We

have that:

aðu;uÞ¼: hAu;uiX; ‘ðuÞ¼: hgN;uiCN
þ hf ;uiX;

for any u 2 DðXÞ;

where the derivatives are understood in distributional

sense. e.g., For the Laplace operator, the bilinear form

reads aðu; vÞ¼:
R
X ru � rvdX. Furthermore, homogeneous

Dirichlet boundary conditions, i.e., u ¼ 0 on CD, are usu-

ally enforced in a strong way; the functions in Y satisfy

these boundary conditions. The extension to non-homoge-

neous boundary conditions is straightforward. One can

define an arbitrary extension EuD of the Dirichlet data, i.e.,

EuD ¼ uD on CD. Next, we define the function u0 ¼
:
u�

EuD with zero trace on CD and solve (2) for u0 with the

right-hand side

‘ðvÞ � aðEuD; vÞ: ð3Þ

Fig. 1 Main software

abstractions in FEMPAR and

some of their relationships

FEMPAR: An Object-Oriented Parallel Finite Element Framework 199

123

Let us consider two classical examples.

Example 3.1 (Heat equation) Let us consider the Poisson

problem �r � jru ¼ f with u ¼ uD on CD and onu ¼ gN;

n is the outward normal. Let us assume that j 2 L1ðXÞd�d
,

f 2 H�1ðXÞ, gN 2 H�1
2ðCNÞ, and uD 2 H

1
2ðCDÞ. Let us also

consider an extension EuD 2 H1ðXÞ such that EuD ¼ uD on

CD. The weak form of the problem reads as: find u0 2
H1

0ðXÞ such that
Z

X
jru0 � rvdX ¼

Z

X
fvdXþ

Z

CN

gvdC

�
Z

X
jrEuD � rvdX; for any v 2 H1

0ðXÞ:

The solution is u¼: u0 þ EuD.

Example 3.2 (Stokes problem) The Stokes problem con-

sists on finding a velocity field u and a pressure field p such

that

�r � ðl�ðuÞÞ þ rp ¼ f ; r � u ¼ 0;

and (for example) u ¼ uD on C, where �ðuÞ ¼ 1
2
ðruþ

ruTÞ is the strain tensor. The weak form of the problem

consists of finding ðu0; pÞ 2 X ¼: H1
0ðXÞ

� �d�L20ðXÞ such

that

l
Z

X
�ðu0Þ : �ðvÞ �

Z

X
r � vpþ

Z

X
qr � u0

¼
Z

X
v � f � l

Z

X
�ðEuDÞ : �ðvÞ �

Z

X
qr � EuD;

for any ðv; qÞ 2 X , where EuD 2 H1
0ðXÞ

� �d
is an extension

of the Dirichlet data, i.e., EuD ¼ uD on C. The solution is

u¼: u0 þ EuD.

3.2 Space Discretization with FEs

Problem (2) is an infinite-dimensional problem. In order to

end up with a computable one, we must introduce finite-

dimensional subspaces with some approximability proper-

ties. We restrict ourselves to FE schemes in a broad sense

that involve conforming and non-conforming spaces. Thus,

our aim is to explicitly build spaces X h (and Yh) with some

approximability properties. If the discrete spaces are sub-

spaces of the original ones (conforming), i.e., X h � X and

Yh � Y, the discrete problem reads as: find uh 2 X h such

that

aðuh; vhÞ ¼ ‘ðvhÞ; for any vh 2 Yh:

This is the Petrov-Galerkin problem. In the particular case

when X h ¼ Yh, we have a Galerkin problem. The previous

problem can be ill-posed for some choices of the FE

spaces, e.g., using discrete spaces that do not satisfy the

inf-sup condition for indefinite problems [5]. In some

cases, judiciously chosen perturbations of að�; �Þ and ‘ð�Þ,
represented with ahð�; �Þ and ‘hð�Þ respectively, can stabilize
the problem and make it stable and optimally convergent,

circumventing the inf-sup condition restriction. In the most

general case, we can describe any FE space as: find uh 2
X h such that

ahðuh; vhÞ ¼ ‘hðvhÞ; for any vh 2 Yh; ð4Þ

replacing the continuous bilinear form by a general discrete

bilinear form. One can also define the affine operator

F hðuhÞ ¼ ahðuh; �Þ � ‘hð�Þ 2 Y0
h; ð5Þ

and state (4) as: find uh 2 X h such that F hðuhÞ ¼ 0. This

statement is the one being used for the practical imple-

mentation of FE operators in FEMPAR (see Sect. 11).

In order to define FE spaces, we require a triangulation

T h of the domain X into a set fKg of cells. This triangu-

lation is assumed to be conforming, i.e., for two neighbour

cells Kþ; K� 2 T h, its intersection Kþ \ K� is a whole k-

face (k\d) of both cells (note that k-face refers to a geo-

metrical entity, e.g. cells, faces, edges and vertices for

d ¼ 3, see Sect. 3.14). In practice, the cells must be

expressed as a particular type of mapping over a set of

admissible geometries (polytopes, see Sect. 3.14). Thus,

for every element K 2 T h, we assume that there is a ref-

erence cell K̂K and a diffeomorphismUK : K̂ ! K. In what

follows, we usually use the notation x̂¼: U�1
K ðxÞ.

The definition of the functional space also relies on a

reference functional space as follows: (1) we define a

functional space in the reference cell K̂; (2) we define a set

of functions in the physical cell K via a function mapping;

(3) we define the global space as the assemble of cell-based

spaces plus continuity constraints between cells. In order to

present this process, we introduce the concept of reference

FE, FE, and FE space, respectively.

3.3 The FE Concept in the Reference and Physical

Spaces

Using the abstract definition of Ciarlet, a FE is represented

by the triplet fK;V;Rg, where K is a compact, connected,

Lipschitz subset of Rd, V is a vector space of functions, and

R is a set of linear functionals that form a basis for the dual

space V0. The elements of R are the so-called DOFs of the

FE. We denote the number of moments as nR. The

moments can be written as ra for a 2 N R ¼
: f1; . . .; nRg.

We can also define the basis f/aga2N R
for V such that

rað/bÞ ¼ dab for a; b 2 N R. These functions are the so-

called shape functions of the FE, and there is a one-to-one

mapping between shape functions and DOFs. Given a

200 S. Badia et al.

123

function v, we define the local interpolator for the FE at

hand as

pKðvÞ¼:
X

a2N R

raðvÞ/a: ð6Þ

It is easy to check that the interpolation operator is in fact a

projection.

In the reference space, we build reference FEs ðK̂; V̂; R̂Þ
as follows. First, we consider a bounded set of possible cell

geometries, denoted by K̂; see the definition of polytopes in

Sect. 3.14. On K̂, we build a functional space V̂ and a set of

DOFs R̂. We consider some examples of reference FEs in

Sects. 3.8, 3.9, and 3.10.

In the physical space, the FE triplet ðK;V;RÞ on a mesh

cell K 2 T h relies on: (1) a reference FE ðK̂; V̂; R̂Þ, (2) a
geometrical mapping UK such that K ¼: UKðK̂Þ, and (3) a

linear bijective function mapping ŴK : V̂ ! V̂. The func-

tional space in the physical space is defined as

V ¼: fŴKðv̂Þ �U�1
K : v̂ 2 V̂g; we will also use WK : V̂ ! V

defined as WKðv̂Þ¼
:
ŴKðv̂Þ �U�1

K . The set of DOFs in the

physical space is defined as R¼: fr̂ �W�1
K : r̂ 2 R̂g. Given

the set of shape functions f/̂a : a 2 N R̂g in the reference

FE, it is easy to check that f/a
K ¼: WKð/̂aÞ : a 2 N R̂g are

the set of shape functions of the FE in the physical space.

The reference FE space V̂ is usually a polynomial space.

Thus, the first ingredient is to define bases of polynomials;

see Sect. 3.4. The analytical expression of the basis of

shape functions is not straightforward for complicated

definitions of moments; this topic is covered in Sect. 3.5.

After that, we will consider how to build global (and

conforming) FE spaces in Sect. 3.6, and how to integrate

the bilinear forms in the corresponding weak formulation

in Sect. 3.7. We finally provide three examples of FEs in

Sects. 3.8, 3.9, and 3.10.

3.4 Construction of Polynomial Spaces

Local FE spaces are usually polynomial spaces. Given an

order k 2 N and a set N k of distinct points (nodes) in R

(we will indistinctly represent nodes by their index i or

position xi), we define the corresponding set of Lagrangian

polynomials f‘k0; . . .; ‘kkg as:

‘kmðxÞ¼
: Pn2N knfmgðx� xsÞ
Pn2N knfmgðxm � xsÞ

: ð7Þ

We can also define the Lagrangian basis

Lk ¼ f‘ki : 0� i� kg. This set of polynomials are a basis

for k-th order polynomials. We note that ‘kmðxlÞ ¼ dml, for
0�m; l� k.

For multi-dimensional spaces, we can define the set of

nodes as the Cartesian product of 1D nodes. Given a d-

tuple order k, we define the corresponding set of nodes for

n-cubes as: N k ¼: N k1 � � � � � N kd . Analogously, we

define the multi-dimensional Lagrange basis

Lk ¼ f‘km : m 2 N kg; where ‘kmðxÞ¼
:
Pd

i¼1‘
ki
mi
ðxiÞ:
ð8Þ

Clearly, ‘kt ðxsÞ ¼ dst, for s; t 2 N k
.

This Cartesian product construction leads to a basis for

the local FE spaces usually used on n-cubes, i.e., the space

of polynomials that are of degree less or equal to k with

respect to each variable x1; . . .; xd. We can define mono-

mials by a d-tuple a as paðxÞ¼: Pd
i¼1x

ai
i , and the polynomial

space of order k as Qk ¼ spanfpaðxÞ : 0� ai � ki;

i ¼ 1; . . .; dg. We have Qk ¼ spanf‘ : ‘ 2 Lkg.
The definition of polynomial spaces on n-simplices is

slightly different. It requires the definition of the space of

polynomials of degree equal or less than k in the variables

x1; . . .; xd. It does not involve a full Cartesian product of 1D

Lagrange polynomials (or monomials) but a truncated

space, i.e., the corresponding polynomial space of order k

is Pk ¼ spanfpaðxÞ : jaj � kg, with jaj ¼:
Pd

i¼1 ai. Analo-
gously as for n-cubes, a basis for the dual space of Pk are

the values at the set of nodes ~N k ¼: fs 2 N k1
: jsj � kg. It

generates the typical grad-conforming FEs on n-simplices.

3.5 Construction of the Shape Functions Basis

The analytical expression of shape functions can become

very complicated for high order FEs and non-trivial defi-

nitions of DOFs, e.g., for electromagnetic applications.

Furthermore, to have a code that provides a basis for an

arbitrary high order, an automatic generator of shape

functions must be implemented. When the explicit con-

struction of the shape functions is not obvious, we proceed

as follows.

Let us consider a FE defined by fK;V;Rg.4 First, we

generate a pre-basis fwbgb2R that spans the local FE space

V, e.g., a Lagrangian polynomial basis (see Sect. 3.4). On

the other hand, given the set of local DOFs, we proceed as

follows. The shape functions can be written as

/a ¼
P

b2N R
Uabw

b, where wb are the elements of the pre-

basis. By definition, the shape functions must satisfy

rað/bÞ ¼ dab for a; b 2 N R. As a result, let us define

Cab ¼
:
raðwbÞ. We have (using Einstein’s notation):

4 In this section, we do not make difference between reference and

physical spaces, e.g., using the �̂ symbol. In any case, all the following

developments are usually performed at the reference FE level.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 201

123

rað/bÞ ¼ raðUbcw
cÞ ¼ raðwcÞUbc ¼ dab;

or in compact form, CUT ¼ I, and thus UT ¼ C�1. As a

result, Uab ¼ C�1
ba . The shape functions are computed as a

linear combination of the pre-basis functions.

3.6 Global FE Space and Conformity

Finally, we must define the global FE space. Conforming

FE spaces are defined as: X h ¼: fv 2 X : vjK 2 Vg: The

main complication in this definition is to enforce the con-

formity of the FE space, i.e., X h � X . In fact, the con-

formity constraint is the one that motivates the choice of R̂
andW, and as a consequence, R. In practice, the conformity

constraint must be re-stated as a continuity constraint over

FE DOFs. In general, these constraints are implicitly

enforced via a global DOF numbering, even though it is not

possible in general for adaptive schemes with non-con-

forming meshes and/or variable order cells, which require

more involved constraints.

Let us define by Mh ¼
: fðb;KÞ : b 2 N RK

; K 2 T hg the

Cartesian product of local DOFs for all cells. We define the

global DOFs as the quotient space of Mh by an equiva-

lence relation � . Using standard notation, given � , the

equivalence class of a 2 Mh with respect to � is repre-

sented with ½a	 ¼: fb 2 Mh : a� bg, and the correspond-

ing quotient set is N h ¼
: f½a	 : a 2 Mhg. The set N h is the

set of global DOF and ½�	 represents the local-to-global

DOF map. We assume that the equivalence relation is such

that if two elements ðb;KÞ; ðb0;K 0Þ 2 Mh are such that

ðb;KÞ� ðb0;K 0Þ, then K 6¼ K 0.5 Using the one-to-one

mapping between moments and shape functions, the same

operator allows one to define global shape functions

/a ¼
P

ðb;KÞ� a /
b
K . We assume that the choices above are

such that they satisfy the conformity constraint, i.e.,

X h ¼ spanf/aga2N h
� X .

Let us consider an infinite-dimensional space ~X such

that (1) X h � ~X � X and (2) for every function v 2 ~X and

global DOF a 2 N h, all the local DOFs b; b
0 2 ½a	 are such

that rbðvÞ ¼ rb0 ðvÞ, i.e., local DOF related to the same

global DOF are continuous among cells. The global

interpolator is defined as:

pXh
ðvÞ¼:

X

K2T h

pKðvÞ ¼
X

K2T h

X

b2N RK

rbðvÞ/b
K ; for v 2 ~X :

ð9Þ

It is easy to check that it is in fact a projector. In any case,

we use projection operator to refer to other projectors that

involve the solution of a global FE system, e.g., based on

the minimization of the L2 or H1 norm.

Below, we provide details about how to choose the local

DOFs R̂, the function map W, and the equivalence relation

� such that the conformity property is satisfied for grad,

div, and curl-conforming FE spaces. The case of non-

conforming methods, e.g., DG methods, can readily be

considered. In this case, the conformity constraint is not

required, which leads to much more flexibility in the def-

inition of DOFs. On the other side, these schemes require

numerical perturbations of the continuous bilinear and

linear forms in (4) that involve integrals over the facets of

FEs to weakly enforce the conformity. (Facets are ðd � 1Þ-
faces, e.g., faces in 3D and edges in 2D).

Once we have defined a basis for the FE spaces X h and

Yh using the FE machinery presented above, every FE

function uh can be uniquely represented by a vector u 2
RjN hj as uh ¼

P
b2N h

/bub. In fact, problem (4) can be re-

stated as: find u 2 RjN hj such that

ahð/b;waÞub ¼ ‘hðwaÞ; for any a 2 N h:

We have ended up with a finite-dimensional linear prob-

lem, i.e., a linear system. We note that in general, the trial

space moments can be different from the ones of the test

space, as soon as the cardinality is the same. In matrix

form, the problem can be stated as:

Solve Au¼ f; with Aab¼
:
ahð/b;waÞ; fa¼

:
‘hðwaÞ:

ð10Þ

Assuming that the bilinear form can be split into cell

contributions as ahð�; �Þ ¼
P

K2T h
aKð�; �Þ, e.g., by replacing

R
X by

P
K2T h

R
K
, the construction of the matrix is imple-

mented through a cell-wise assembly process, as follows:

A½a	½b	 ¼
X

K2T h

X

a;b2N RK

AK
ab ¼

: X

K2T h

X

a;b2N RK

aKð/b
K ;w

a
KÞ:

ð11Þ

The FE affine operator (5) can be represented as

F hðuhÞ¼
:
Au� f, i.e., it can be represented with a matrix

and a vector of size jN hj.

3.7 Numerical Integration

In general, the local bilinear form can be stated as:

aKð/b
K ;w

a
KÞ ¼

Z

K

F ðxÞdX;

where the evaluation of F ðxÞ involves the evaluation of

shape function derivatives. Let us represent the Jacobian of

the geometrical mapping with JK ¼: oUK

ox
. We can rewrite

the cell integration in the reference cell, and next consider a

5 This assumption in fact applies for FEs of any kind, since the local

functional spaces are already conforming and do not require an

equivalence class at the cell level.

202 S. Badia et al.

123

quadrature rule Q defined by a set of points/weights

ðx̂gp;wgpÞ, as follows:
Z

K

F ðxÞdX ¼
Z

K̂

F �UðxÞjJK jdX ¼
X

x̂gp2Q
F �Uðx̂gpÞwðx̂gpÞjJKðx̂gpÞj:

ð12Þ

Here, the main complication is the evaluation of

F �Uðx̂gpÞ. By construction, the evaluation of this func-

tional only requires the evaluation of oa/
b
K �Uðx̂gpÞ for

some values of the multi-index a (idem for the test func-

tions). Usually, jaj � 2 in C0 FEs, since higher-order

derivatives would require higher inter-cell continuity. The

second derivatives, which only have sense for broken cell-

wise integrals, are in fact only needed for some method

based on stabilization techniques based on the pointwise

evaluation of residuals in the interior of cells [46].

Let us consider the case of zero and first derivatives, i.e.,

the evaluation of /b
K �UKðx̂gpÞ and r/b

K �UKðx̂gpÞ. The
values of the shape functions (times the geometrical map-

ping) on the quadrature points is determined as follows:

/b
K �UKðx̂gpÞ ¼ Ŵð/̂bÞðx̂gpÞ; ð13Þ

whereas shape function gradients are computed as:

r/b
K �UKðx̂gpÞ ¼ rðŴð/̂bÞ �U�1

K Þ �UKðx̂gpÞ
¼ rx̂Ŵð/̂bÞðx̂gpÞJ�1

K ðx̂gpÞ;
ð14Þ

where we have used some elementary differentiation rules

and the inverse function theorem in the last equality; rx̂

represents the gradient in the reference space. Thus, one

only needs to provide the values of the Jacobian, its

inverse, and its determinant, from one side, and the value

of the shape functions Wð/̂bÞ and their gradients rx̂Wð/̂bÞ
in the reference space, on the other side, at all quadrature

points, to compute all the entries of the FE matrices; sec-

ond order derivatives can be treated analogously.

Quadrature rules for K̂ being an n-cube can readily be

obtained as a tensor product of a 1D quadrature rule, e.g.,

the Gauss-Legendre quadrature. Symmetric quadrature

rules on triangles and tetrahedra for different orders can be

found, e.g., in [69]. In any case, to create arbitrarily large

quadrature rules for n-simplices, one can consider the so-

called Duffy transformation [73, 74].

As it is well known, considering n-cube topologies for

K̂, Gauss quadratures with n points per direction can

integrate exactly 2n� 1 order polynomials. e.g., For a

Lagrangian reference FE of order p and an affine geo-

metrical map, we choose n ¼ pþ ceilingð1=2Þ ¼ pþ 1 per

direction to integrate exactly a mass matrix. For n-simplex

meshes, we use either symmetric quadratures (if available)

or tensor product rules plus the Duffy transformation

[73, 74]. The latter case is based on introducing a change of

variables that transform our n-simplex integration domain

into an n-cube, and integrate on the n-cube using tensor

product quadratures. It is worth noting that this change of

variables introduces a non-constant Jacobian. The deter-

minant of the Jacobian is of order at most d � 1 with

respect to each variable. To integrate a mass matrix

exactly, we must be able to integrate exactly polynomials

of order 2pþ d � 1. Therefore, we need to take n ¼
pþ ceilingðd=2Þ to exactly integrate mass matrices.

3.8 Grad-Conforming FEs: Lagrangian (Nodal)

Elements

In this section, we consider one characterization of the

abstract FE technology above. First, we are interested in

the so-called nodal FEs, based on Lagrange polynomials

and DOFs based on nodal values.

Let us consider the same order for all components, i.e.,

k1¼: ðk; . . .; kÞ.When the reference geometry K̂ is an n-cube,

we define the reference FE space as Vk ¼
: Qk1. The set of

nodes N k1
can be generated, e.g., from the equidistant

Lagrangian nodes. Let us define the bijective mapping ið�Þ
from the set of nodes N k1

to f1; . . .; jN k1jg
 N R, i.e., the

local node numbering. The set of local DOFs N RK
are the

nodal values, i.e., riðsÞ ¼
:
vðxsÞ, for s 2 N k

. Clearly, the

reference FE shape functions related to these DOFs are

/iðsÞ ¼: ‘k1s . On the other hand, we simply take ŴðvÞ¼: v.
For n-simplices, we consider the reference FE space Pk

spanned by the pre-basis fpaðxÞ : 0� ai � k; i ¼ 1; . . .; dg
and the set of nodes ~N k

(see Sect. 3.4). The set of local

DOFs N RK
are the nodal values. Since the pre-basis ele-

ments are not shape functions, we proceed as in Sect. 3.5 to

generate the expression of the shape functions basis for

arbitrary order reference FEs on n-simplices.

The global FE space is determined by the following

equivalence relation. The set of local DOFs for n-cubes is

Mh ¼: fðs;KÞ : s 2 N k1
;K 2 T hg due to the one-to-one

mapping between DOFs and nodes; we replace the set of

nodes by ~N k
for n-simplices. Furthermore, we say that

ðs;KÞ� ðs0;K 0Þ iff xs ¼ xs0 . The implementation of this

equivalence relation, and thus, the global numbering, relies

on the ownership relation between n-faces and DOFs (e.g.,

in 3D we can say whether a DOF belongs to a vertex, edge,

or face) and a permutation between the local node num-

bering in Kþ to the one in K� for nodes on F. See

Sect. 3.14 for more details. With such global DOF defini-

tion, it is easy to check that the global FE space functions

are C0 and thus grad-conforming.

Since Lagrangian moments involve point-wise evalua-

tions of functions and H1
0ðXÞ 6� C0ðXÞ for d[1, the

FEMPAR: An Object-Oriented Parallel Finite Element Framework 203

123

interpolator (9) is not defined in such space. Instead, we

consider that functions to be interpolated belong, e.g., to

the space ~X ¼: C0ðXÞ.
When one has to deal with vector or tensor fields, we

can generate them as a Cartesian product of scalar spaces

as follows. We define the local FE space Vk ¼
: ½Qk1	d and

the function map ŴðvÞ¼: v. In the vector case, the local

DOFs set is represented with Mh ¼: fði; s;KÞ : 1� i� d;

s 2 N k1
;K 2 T hg, and ði; s;KÞ� ði0; s0;K 0Þ iff i ¼ i0 and

xs ¼ xs0 . Analogously, shape functions are computed as

/a ¼:
P

ði;s;KÞ� a ‘
k1
s ei; ei represents the i-th canonical basis

vector of Rd . We proceed analogously for n-simplices.

The verification that two nodes are in the same position is

not straightforward. First, for every node s in K, we can

assign an n-face owner F (e.g., a vertex, edge, face, or cell);

cell DOFs are not replicated. Given a node s 2 N k1
of cell K

that belongs to the n-face F, it can be determined by an index

sF with respect to F and K. Analogously, another node that

belongs to the same n-face but cell K 0, is represented by s0F .

On the other hand, one can define a permutation mapping

pFðF;K;K 0; �Þ; ð15Þ

that, given the local index of a node within the n-face F

with respect to K, it provides the index in the n-face F with

respect to K 0 (see Sects. 3.13 and 3.16 for more details).

Thus, xs ¼ xs0 iff pFðF;K;K 0; sFÞ ¼ s0F .

3.9 Div-Conforming FEs

We present the so-called Raviart-Thomas FEs for vector

fields [5]; the implementation of Brezzi-Douglas-Marini

FEs is analogous. In this case, the order being used is

different at every space dimension. Let us start with

Raviart-Thomas FEs on n-cubes. In 2D, the space reads as

Vk ¼
: Qðkþ1;kÞ � Qðk;kþ1Þ, whereas in 3D it reads as

Vk ¼: Qðkþ1;k;kÞ � Qðk;kþ1;kÞ � Qðk;k;kþ1Þ; the Raviart-Tho-

mas element can in fact be considered for any dimension.

The basis for R in 3D is composed of two types of DOFs,

boundary and interior DOFs, defined as

1

kF̂0k

Z

F̂0

v � n �UF̂ qdC; q 2 Pk;

1

kK̂k

Z

K̂

v � qdX; q 2 Qðk�1;k;kÞ

� Qðk;k�1;kÞ � Qðk;k;k�1Þ;

ð16Þ

respectively6; the 2D case is straightforward, replacing the

space of shape functions for the interior moments by

Qðk�1;kÞ � Qðk;k�1Þ. The definition of the boundary facets

involves mappings from a reference facet F̂0 to all facets F̂

of the FE K, i.e., UF̂ : F̂0 ! F̂. Every boundary moment

can be associated to a function in a Lagrangian space, and

thus, a node index. As a result, the boundary DOFs can be

indexed with a node in N k1
(for d ¼ 2) on the corre-

sponding facet F, i.e., Mo
h ¼
: fðF; s;KÞ : F are facets of

K; s 2 N k1
;K 2 T hg. We say that ðF; s;KÞ� ðF0; s0;K 0Þ

iff F ¼ F0 and xs ¼ xs0 . To check whether xs ¼ xs0 holds,

we can proceed similarly as for Lagrangian elements. The

shape functions are built as in Sect. 3.5. We consider a

Lagrangian pre-basis for V, and compute the shape func-

tions via a change-of-basis. The function mapping reads as

follows:

ŴKðvÞ¼:
1

jJK j
JKv; ð17Þ

the mapping ŴK �U�1
K is the so-called contravariant Piola

transformation. One can check that the definition of this

mapping together with the assembly defined above leads to

a global FE space that is div-conforming; i.e., its functions

have continuous normal component across inter-cell facets.

Thus, Xh � Hðdiv;XÞ [5].
On n-simplices, the reference FE space is

Vk ¼
: ½Pk	d � xPk, for k ¼ 0; 1; 2; . . ., and the basis for R is

composed of the following boundary and interior DOFs:

1

kF̂0k

Z

F̂0

v � n �UF̂ qdC; q 2 Pk;

1

kK̂k

Z

K̂

v � qdX; q 2 ½Pk�1	d:

In this case, the generation of the pre-basis is not a

Lagrangian FE space of functions, but it can easily be

expressed as the span of vector functions with components

in a selected subset of Pkþ1.

3.10 Curl-Conforming FEs

The weak formulation of electromagnetic problems involve

the functional space Hðcurl;XÞ. Conforming FE spaces for

Hðcurl;XÞ must preserve the continuity of the tangential

component of the field. The so-called edge elements (or

Nédélec elements) are curl-conforming FEs [72]. As

Raviart-Thomas elements, the edge elements pre-basis on

n-cubes involves different orders per dimension and per

component. In 2D, the space reads as Vk ¼
: Qðk�1;kÞ�

Qðk;k�1Þ, whereas in 3D it reads as Vk ¼
: Qðk�1;k;kÞ�

Qðk;k�1;kÞ � Qðk;k;k�1Þ. The basis for R is composed of three

types of DOFs (in 3D), namely edge, face, and interior

DOFs, defined as:

6 The test function spaces in the definition of the moments are always

considered with respect to the corresponding domain of integration.

204 S. Badia et al.

123

1

kÊ0k

Z

Ê0

ðv � sÞ �UÊqdK; 8q2Pk�1;

1

kF̂0k

Z

F̂0

ðJT
F̂
ðv�nÞÞ �UF̂ �qdC; 8q2Qðk�2;k�1Þ �Qðk�1;k�2Þ;

1

kK̂k

Z

K̂

v �qdX; 8q2Qðk�1;k�2;k�2Þ �Qðk�2;k�1;k�2Þ �Qðk�2;k�2;k�1Þ;

respectively, where the edge map UÊ is defined as the one

for the face. The boundary DOFs can be indexed by a

triplet ðF;s;KÞ, where F can be an edge or a face in 3D,

following the same ideas as for Raviart-Thomas elements.

In this case, the function mapping reads as follows:

ŴKðvÞ¼: J�T
K v; ð18Þ

the mapping ŴK �U�1
K is the so-called covariant Piola

transformation, which leads to a global FE space that is

curl-conforming [72], i.e., its functions have continuous

tangential component across inter-cell facets.

On n-simplices, the space reads as:

Vk ¼: ½Pk	d þ Sk; where Sk ¼: fv 2 ½Pkþ1	d : vðxÞ � x ¼ 0 8 x 2 K̂g:

ð19Þ

The basis for R in 3D is composed of the following

boundary and interior DOFs:7

1

kÊ0k

Z

Ê0

ðv � sÞ �UÊq dK; 8q 2 Pk�1;

1

kF̂0k

Z

F̂0

ðJT
F̂
ðv� nÞÞ �UF̂ � q dC; 8q 2 ½Pk�2	2

1

kK̂k

Z

K̂

v � q dX; 8q 2 ½Pk�3	3:

In 2D, only the first two types of DOFs are required, where

the first one is now related to facets (edges in 2D) and the

second one are interior DOFs owned by the cell. As for

Raviart-Thomas elements, the pre-basis functions are not

Lagrangian shape functions, but they can again be

expressed as the span of vector functions with components

in a selected subset of Pkþ1. We refer to [75] for a dis-

cussion about the actual generation of a pre-basis for the

space (19) in FEMPAR.

3.11 Cartesian Product of FEs for Multi-field

Problems

Many problems governed by PDEs involve more than one

field, e.g., the Navier-Stokes equations or any multi-phy-

sics problem. Let us consider a PDE that involves a set of

unknown fields ðu1; . . .; unÞ 2 X 1 � . . .� Xn, defined as

the Cartesian product of functional spaces. We can proceed

as above, and define a FE space for every field space

separately, leading to a global FE space X 1
h � . . .� X n

h

defined by composition of FE spaces. To define the global

numbering of DOFs in the multi-field case, we consider

that two DOFs are equivalent if they are related to the same

field and satisfy the equivalence relation of the FE space of

this field.

The Cartesian product of FE spaces is enough to define

volume-coupling multi-physics problems governed on the

same physical domain, i.e., the different physics are

defined on the whole domain and coupled through volume

terms in the formulation. However, many multi-physics

problems are interface-based, i.e., the coupling between

different physics that are defined on different subdomains

is through transmission conditions on the interface. This is

the case, e.g., of fluid-structure problems (see, e.g.,

[76–79]). In these cases, different FE spaces could be

defined on different parts of the global mesh, i.e., one must

describe the set of subdomains ðX1; . . .;XnÞ of the whole

domain X in which the corresponding FE spaces are

defined.

3.12 Non-conforming Methods

Up to now, we have considered a global FE space that is

conforming, i.e., X h � X . Alternatively, one can consider

FE schemes that are not conforming. Since the original

bilinear form has no sense in general for a non-conforming

FE space X h, one shall consider a stabilized bilinear form

ah that is well-posed (stable and continuous) in the discrete

setting. In general, these schemes replace the required

inter-cell continuity for conformity by a weak imposition

of such continuity. Thus, the inter-cell continuity is

imposed weakly through penalty-like terms. DG methods

are schemes of this type [71].

In one sense, non-conforming FE spaces are simpler

than conforming ones, since the conformity is not required;

one has more flexibility in the definition of local DOFs and

the equivalence class concept is not needed, since a DOF

never belongs to more than one element. However, the

bilinear form usually requires the integration of facet

terms, i.e., terms of the type:

X

F2F h

Z

F

F ðxÞdX:

The integration of facet terms is far more complicated than

cell terms.

Let us first briefly illustrate a simple application of non-

conforming methods, namely the FE discretization of the

Poisson problem using the so-called interior penalty (IP)

7 We note that we can take JT
F̂
v instead of JT

F̂
ðv� nÞ in the definition

of the face moments, since the rows of the Jacobian matrix are the

transformation of the axes in the reference face F̂0 to the actual face F̂

of the reference cell and the space of test functions is invariant to

rotations.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 205

123

family of DG formulations [71]. Dirichlet boundary con-

ditions constraints, say uðxÞ ¼ uDðxÞ on the whole bound-

ary C of the domain X, are to be weakly imposed, as it is

natural in such kind of formulations. The global discrete

trial space X h is composed of functions that are continuous

within each cell, but discontinuous across cells, i.e.,

X h ¼ fuh 2 L2ðXÞ : uhjK 2 X hjK � H1ðKÞ; K 2 T hg, and
the discrete test space Yh ¼ X h. If we denote FX

h and FC
h

as the set of interior and boundary facets of T h, respec-

tively, the discrete weak form underlying this family of

methods reads as: find uh 2 Xh such that

X

K2T h

Z

K

ruh � rvh �
X

F2FX
h

Z

F

½½vh		 � ffruhgg

� s
X

F2FX
h

Z

F

½½uh		 � ffrvhgg

þ
X

F2FX
h

cjFj�1

Z

F

½½uh		 � ½½vh		

�
X

F2FC
h

Z

F

vhruh � n� s
X

F2FC
h

Z

F

uhrvh � n

þ
X

F2FC
h

cjFj�1

Z

F

uhvh

¼
X

K2T h

Z

K

fvh � s
X

F2FC
h

Z

F

uDrvh � n

þ
X

F2FC
h

cjFj�1

Z

F

uDvh 8vh 2 Yh;

ð20Þ

where s is a fixed constant that characterizes the particular

method at hand, c is a facet-wise positive constant referred
to as penalty parameter, and jFj denotes the surface of the

facet; s and c should be suitably chosen such that the

bilinear form ahðuh; vhÞ on the left-hand side of (20) is

well-posed (stable and continuous) in the discrete setting,

and the resulting FE formulation enjoys optimal rates of

convergence [71]. Finally, if we denote as Kþ and K� the

two cells that share a given facet, then ffwhgg and ½½wh		
denote mean values and jumps of wh across cells facets:

ffwhgg ¼ wþ
h þ w�

h

2
; ½½wh		 ¼ wþ

h n
þ þ w�

h n
�; ð21Þ

with nþ, n� being the facet outward unit normals, and wþ
h ,

w�
h the restrictions of wh to the facet, both from either the

perspective of Kþ and K�, respectively.
The computation and assembly of DOFs related to

interior nodes is straightforward. With regard to the facet

terms, assuming that we are sitting on an interior facet

F 2 FX
h , four facet-wise matrices, namely AF

KþKþ , A
F
KþK� ,

AF
K�Kþ , and AF

K�K� , are computed. (The case of boundary

facets F 2 FC
h is just a degenerated case of the one cor-

responding to interior facets where only a single facet-wise

matrix AF
KþKþ has to be computed; we omit this sort of

facets from the discussion in order to keep the presentation

short.) These hold all partial contributions of the facet to

the corresponding global entries of the coefficient matrix.

The entries of, e.g., AF
KþK� , are defined (for our particular

problem at hand) as:

AF
KþK�

� �
ab
¼ �

Z

F

½½/b
K� 		 � ffr/a

Kþgg

� s
Z

F

½½/a
Kþ 		 � ffr/b

K�gg þ cjFj�1

Z

F

½½/a
Kþ 		 � ½½/b

K� 		;
ð22Þ

with indices a and b ranging from 1 to the number of shape

functions N R of Kþ and K�, respectively.

3.13 Facet Integration

As mentioned in Sect. 3.7 for the case of cell integrals,

facet integrals involved in the computation of the facet-

wise matrix (22) cannot be in general computed analyti-

cally. These are instead computed using quadrature rules.

In general, the bilinear form that contains the facet terms

can be stated as

aFð/b
Kþ ;wa

K�Þ ¼
Z

F

F ðxÞdF:

We can consider a reference facet F̂, and a mapping UF :

F̂ ! F from the reference to the physical space. Let us

represent the Jacobian of the geometrical mapping with

JF ¼
: oUF

ox
, which has values in Rðd�1Þ�d. We can rewrite the

facet integral in the reference facet, and next consider a

quadrature rule Q on F̂ defined by a set of points/weights

ðx̂gp;wgpÞ, as follows:

AF
KþK�

� �
ab

¼
Z

F

F ðxÞdX ¼
Z

F̂

F �UFðxÞjJF jdF

¼
X

x̂gp2Q
F �UFðx̂gpÞwðx̂gpÞjJFðx̂gpÞj:

ð23Þ

jJF j is defined as:

jJF j ¼
dUF

dx

�
�
�
�

�
�
�
�
2

and jJF j ¼
oU1

F

ox̂
� oU2

F

ox̂

�
�
�
�

�
�
�
�
2

; ð24Þ

for d ¼ 2; 3, respectively.
The expression of the shape functions and their gradi-

ents in the physical space in terms of the ones in the ref-

erence space are computed by using the cell-wise maps.

Thus, two mappings UKþ and UK� among the reference

cell K̂ and the cells Kþ and K� in physical space,

respectively, are involved in the numerical evaluation of

206 S. Badia et al.

123

interior facet integrals. We can also consider the reference

facet F̂ and a map UF from this reference facet to F

(analogously as UK and K but in one dimension less in the

reference space). We can define a quadrature rule

ðx̂gp;wgpÞ in F̂. We can also define the reference facet F̂
�

of K̂ such that UK�ðF̂�Þ ¼ F, and the map UF̂� from F̂ to

F̂
�
. With this map, we can define the quadrature

ðx̂�gp ¼
:
UF̂�ðx̂gpÞ;wgpÞ with respect to the reference cell K̂.

However, the same facet F has (in general) a different

orientation depending on the cell used as reference, and so,

a different index might be assigned to the same facet

quadrature points from the perspective of either cell, i.e.,

UKþðx̂þgpÞ 6¼ UK�ðx̂�gpÞ in general. We adopt the convention

that facet quadrature points identifiers are in the local

numbering space of Kþ, and these local identifiers are

translated into the local numbering space of K�. This is

represented by the permutation PðgpÞ such that

UK�ðx̂�PðgpÞÞ ¼ UKþðx̂þgpÞ ¼ UFðx̂gpÞ:

The logic underlying this translation is equivalent to the

one discussed in Sect. 3.16; see Fig. 2 for an explanatory

illustration. As a result, we have

U�1
Kþ �UFðx̂gpÞ ¼ x̂þgp; and U�1

K� �UFðx̂gpÞ ¼ x̂�PðgpÞ:

Let us consider the evaluation of zero and first order

derivatives on facets, i.e., the evaluation of /b
Ka �UKaðx̂gpÞ

and r/b
Ka �UKaðx̂gpÞ for a 2 fþ;�g, where the quadra-

ture points belong to a quadrature in the reference facet F̂.

We note that the introduction of Ŵ is not needed for non-

conforming methods, since there is no continuity to be

enforced, and we will consider it to be the identity operator

for simplicity. The values of the shape functions (times the

geometrical mapping) on the facet quadrature points is

evaluated as follows:

/b
Ka �UFðx̂gpÞ ¼ /̂b �U�1

Ka �UFðx̂gpÞ;

whereas shape function gradients are computed as:

r/b
Ka �UFðx̂gpÞ ¼ rx̂/̂

bðx̂gpÞJ�1
K �U�1

Ka �UFðx̂gpÞ:

Without loss of generality, let us focus on the first integral

in (22). Replacing the mean value and jump operators by

their definition in (21), and taking into account that /b
K�

and r/a
Kþ vanish on Kþ and K� (by construction of X h

and Yh), respectively, we end up with the following inte-

gral to be computed numerically:

� 1

2

Z

F

/b
K�n

� � r/a
KþdF :

This integral is first mapped back to the reference facet

F̂ � Rd�1, and then it is approximated by the following

sum over quadrature points:

� 1

2

Z

F

ð/b
K�n

�Þ � r/a
KþdF

¼ � 1

2

Z

F̂

/̂b
K� �U�1

K� �UFðx̂gpÞn� �UFðx̂gpÞ

� rx̂/̂
bðx̂gpÞJ�1

K �U�1
Kþ �UFðx̂gpÞjJFjdF̂

� � 1

2

X

gp2Q
/̂b
K�ðx̂�PðgpÞÞn�ðxgpÞ

� rx̂/̂
bðx̂þgpÞJ�1

K ðx̂þq ÞjJFðx̂gpÞjwgp:

ð25Þ

Using these ideas, we can compute all the terms related to

facet integrals. Furthermore, outward normals on facets can

be computed as:

na ¼ ð�1Þoa
dUF

dx
dUF

dx

�
�

�
�
2

and na ¼ ð�1Þoa
oU1

F

ox̂
� oU2

F

ox̂

oU1
F

ox̂
� oU2

F

ox̂

�
�
�

�
�
�
2

;

ð26Þ

for d ¼ 2; 3, respectively, and a 2 fþ;�g; o is 0 or 1 and

is used to enforce the normal to be outwards. Tangent

vector(s) for a given facet can be easily computed out of

the normal vector.

3.14 Polytopes

One of the motivations of FEMPAR is to develop a

framework that can deal with arbitrary space dimensions. It

permits to readily implement space-time formulations,

which are posed in 4D. Other higher-dimensional appli-

cations include systems of PDEs posed in the phase space,

e.g., the 7D (including time) Vlasov-Maxwell equations for

the simulation of plasmas.

In this section, we provide the mathematical abstraction

of cell topologies based on the concept of polytope. This

Fig. 2 Mappings required for facet integration. The (only) quadrature

point shown in the physical space is located at

x ¼ UFðx̂1Þ ¼ UKþ ðx̂þ1 Þ ¼ UK� ðx̂�2 Þ, that is, Pð1Þ ¼ 2 in this case

FEMPAR: An Object-Oriented Parallel Finite Element Framework 207

123

abstract concept is of practical importance, because it

allows us to develop algorithms and codes that can be

applied to any topology that fits into the framework. The

framework developed herein is very general and includes

triangles and quadrilaterals in 2D, and tetrahedra, hexahe-

dra, prysms, and pyramids in 3D. Furthermore, it can also

be extended to arbitrary dimensions, to define not only

n-cubes and n-simplices but many other topologies. A

polytope is mathematically defined as the convex hull of a

finite set of points. As a consequence, a polytope is a

polyhedron. In the frame of FEMPAR, we consider poly-

topes that can be expressed as the image of the composition

of two operators. The definition of topologies for reference

FEs based on this idea can be found in [25].

The main topological information consumed by FE

codes is the description of the d-dim polytope boundary as

the assemble of ðd � 1Þ-dim polytopes, proceeding recur-

sively till 0-dim objects are obtained (vertices); we use the

contraction k-dim object to say object of dimension k.

These lower-dimensional entities describing the polytope

boundary are denoted herein as n-faces. Usually, the

nomenclature used to describe n-faces in FEs is restricted

to 3D problems. In FEMPAR and in the following exposi-

tion, we use a dimension-independent nomenclature in

order to accommodate higher-dimensional problems. We

consider the space dimension d 2 Nþ and a d-dim poly-

tope. We define the d-face as the polytope itself. The set of

ðd � 1Þ-dim polygons that compose the boundary of the

polytope are its ðd � 1Þ-faces; ðd � 1Þ-faces are usually

denoted as facets. We can proceed recursively, i.e., defin-

ing the ðk � 1Þ-faces of the polytope as the set of facets of

its k-faces till reaching 0-faces. In 3D, 3-faces are called

cells, 2-dim faces are faces, 1-dim faces are edges, and

0-dim faces are vertices. Herein, we use the term n-faces to

denote all these objects. In this work, we denote by vefs the

set of n-faces of dimension lower than the space dimension,

e.g., it only includes vertices, edges, and faces in 3D.

Let us introduce some notation. We represent the set of

bitmaps of size m with Bm. The bitmaps ð1; 1; . . .; 1Þ and

ð0; 0; . . .; 0Þ are represented with 1 and 0, respectively.

Given a domain h � Rd we use the notation ahþ b,

a 2 R, b 2 Rd to denote the domain faxþ b : x 2 hg. ej
represents the j-th canonical basis vector of Rd .

Let us define first the directional extrusion hðj;a;bÞ of h

with respect to the direction ej of type ða; bÞ. a determines

the topology of the extrusion, namely a prysm-type

extrusion (1) or a pyramid-type extrusion (0) (see also

[25]). b determines whether we want to perform the a-
extrusion (1) or do-nothing (0). Based on this, we have the

following definition.

Definition 3.3 (Directional extrusion) Given a domain

h � Rd, we define hðj;a;bÞ � Rd, with b; a 2 f0; 1g and

j ¼ 1; . . .; d, as

hðj;a;0Þ ¼
:
h; hðj;0;1Þ ¼

: fð1� zÞhþ zej : z 2 ½0; 1	g;
hðj;1;1Þ ¼

: fhþ zej : z 2 ½0; 1	g:

The directional extrusion can be used recursively to

define polytopes and their n-faces. An n-face is determined

by a topology t 2 Bd, an extrusion e 2 Bd, and an anchor

vertex v 2 Rd, using a recursive procedure as follows. The

use of directional extrusions to get different polytopes and

n-faces is illustrated in Figs. 3 and 4. One can observe how

all the lower dimensional n-faces after directional extrusion

lead to one dimension larger n-faces for different values of

a.

Definition 3.4 (n-face) Given t; e 2 Bd and v 2 Rd, we

can define the n-face h in a recursive way as follows. Let

h0 ¼: fvg; we define h¼: hd based on the following

recursion:

h0 ! h1 ¼: h0
ð1;tð0Þ;eð0ÞÞ ! . . . ! hiþ1 ¼: hi

ðiþ1;tðiÞ;eðiÞÞ

! . . . ! hd ¼: hd�1
ðd;tðd�1Þ;eðd�1ÞÞ:

ð27Þ

For our purposes, the anchor vertex v has only 0/1

entries, and thus, it can be represented as an element v of

Bd. As a result, an n-face can be uniquely represented with

ðt; e; vÞ. Based on this definition, we can define a set of d-

dim polytopes by recursion. d-dim polytopes are given by

t, and represented as n-faces with ðt; 1; 0Þ, i.e., using the

origin 0 as anchor vertex and performing extrusions in all

directions. On the other hand, a vertex v (with only 0/1

coordinates) is an n-face with ðt; 0; vÞ. Some examples of

n-face constructions using this procedure can be found in

Figs. 3 and 4. Furthermore, in these figures we show all n-

faces of the 3-cube and 3-simplex, with all the e and v

values. In our implementation of polytopes, we use Hasse

diagrams based on the composition of extrusion and anchor

vertex bitmaps to label the different n-faces of a polytope.

In codes, like in FEMPAR , the topology can be coded

with the bitmap t (e.g., one 32-bit integer). FEMPAR can

use any geometry that can be defined this way, for an

arbitrary space dimension. This polytope definition leads to

the following geometries. The 1-dim line segment topology

is t ¼ ð0Þ or (1); this ambiguity in 1D is inherited to higher

dimensions. In 2D, the triangle topology is t ¼ ð00Þ (or

(01)) and the quadrilateral topology t ¼ ð10Þ (or (11)). In
3D, cubes are represented by t ¼ ð1; 1; 0Þ (or (1, 1, 1)),

208 S. Badia et al.

123

tetrahedra t ¼ ð0; 0; 0Þ (or (0,0,1)), prysms by t ¼ ð1; 0; 0Þ
(or (1,1,1)), and pyramids by t ¼ ð0; 1; 0Þ (or (0,1,1)).

Cosserats in 4D are represented by t ¼ ð1; 1; 1; 0Þ (or

(1,1,1,1)). In general, 2k�1 types of k-dim topologies are

possible. n-cubes are expressed by t ¼ 1 and n-simplices

by t ¼ 0.

Given a bitmap t and a bit a, we define the bit operation
that modifies the j bit of t to a with t:ojðaÞ. Given the

chain on n-faces (27), let us assume that hi�1 is repre-

sented by ðt; e0; vÞ. The extrusionhi ¼
:
hi�1ði;
;aÞ is defined

by ðt; e0:oi�1ðaÞ; vÞ. Thus, the chain (27) can be repre-

sented as follows. Given a topology t, an extrusion e, and

an anchor vertex v, we start with ðt; e0; vÞ¼: ðt; 0; vÞ and

proceed recursively:

ðt; e0; vÞ ! ðt; e0:o0ðeð0ÞÞ; vÞ ! . . .

! ðt; e0:oiðeðiÞÞ; vÞ ! . . .

! ðt; e0:od�1ðeðd � 1ÞÞ; vÞ
 ðt; e; vÞ:
ð28Þ

E.g., in 3D, the polytope itself (or 3-face) is determined by

t ¼ ð1; 1; 1Þ and ðe; vÞ ¼ ðð1; 1; 1Þ; ð0; 0; 0ÞÞ. The chain

(28) in this case reads as follows: (We omit t in the chain

since it is the same for all elements in the recursion.)

ðð0; 0; 0Þ; ð0; 0; 0ÞÞ ! ðð0; 0; 1Þ; ð0; 0; 0ÞÞ
! ðð0; 1; 1Þ; ð0; 0; 0ÞÞ ! ðð1; 1; 1Þ; ð0; 0; 0ÞÞ:

Using the definition of the n-face, every element of the

chain has a geometrical representation. We start with the

vertex 0, next obtain the line segment fðx; 0; 0Þ :

x 2 ½0; 1	g, next the square fðx; y; 0Þ : x; y 2 ½0; 1	g, and
finally the unit cube. The previous definition is not only

useful to represent d-dim objects but all its n-faces. See

Figs. 3 and 4.

For a given n-face h
 ðt; e; vÞ, we want to define the

set Sh of all n-faces of h. In order to do so, we introduce

the following concepts.

Definition 3.5 (Oriented set extrusion) Given a set

S ¼ fh : h 2 Rdg, we define Sðj;a;bÞ, with b; a 2 f0; 1g
and j ¼ 1; . . .; d as:

Sðj;a;0Þ ¼
: S; Sðj;0;1Þ ¼

: fh; 0þ ej;hðj;0;1Þ : h 2 Sg;
Sðj;1;1Þ ¼

: fh;hþ ej;hðj;1;1Þ : h 2 Sg:

Definition 3.6 (Set of n-faces) Given an n-face ðt; e; vÞ,
we can obtain all its n-faces recursively as follows. Let

S0 ¼: fvg; we define S ¼: Sd based on the following

recursion:

S0 !S1¼: S0
ð1;tð0Þ;eð0ÞÞ ! . . .!Siþ1

¼: Si
ðiþ1;tðiÞ;eðiÞÞ ! . . .!Sd¼: Sd�1

ðd;tðd�1Þ;eðd�1ÞÞ:

ð29Þ

Fig. 3 e and v values for all the

n-faces (with the exception of

the volume) of the 3-cube, with

topology t ¼ ð111Þ

Fig. 4 e and v values for all the

n-faces (with the exception of

the volume) of the 3-simplex,

with topology t ¼ ð000Þ

FEMPAR: An Object-Oriented Parallel Finite Element Framework 209

123

All the resulting n-faces can also be written with the

ðt; e; vÞ notation commented above. In order to define this

chain as in (28) (i.e., only based on the bitmap notation),

we note the following. Given the n-face h
 ðt; e; vÞ, the
n-face hþ ej
 ðt; e; v:ojð1ÞÞ. With this ingredient, we

can implement the generator of all n-faces of an n-face

using the bitmap notation.

We also want to know the facets of an n-face. We use

the following statement. Given an n-face h
 ðt; e; vÞ and
its corresponding chain (28), the i-th element boundary

ohi ¼: ohi�1
ði;tði�1Þ;eði�1ÞÞ is the following:

ohi ¼ ohi�1; if eði� 1Þ ¼ 0;

ohi ¼ fhi�1; ohi�1
ði;0;1Þg; if tði� 1Þ ¼ 0; eði� 1Þ ¼ 1;

ohi ¼ fhi�1;hi�1 þ êi; oh
i�1

ði;1;1Þg if tði� 1Þ ¼ 1; eði� 1Þ ¼ 1;

ð30Þ

with oh1 ¼ fh0;h0 þ ê1g.
Using this definition of facets for the 3D cube, we get

the following faces: ((1, 1, 0); (0, 0, 0)) and

((1, 1, 0); (0, 0, 1)) faces (x ¼ 0 and x ¼ 1 faces),

((1, 0, 1); (0, 0, 0)) and ((1, 0, 1); (0, 1, 0)) faces (y ¼ 0

and y ¼ 1 faces), ((0, 1, 1); (0, 0, 0)) and

((0, 1, 1); (1, 0, 0)) faces (z ¼ 0 and z ¼ 1 faces), having 6

faces in total. For every one of these faces, we can use the

same definition above, to obtain the ðd � 2Þ-faces that are
in the boundary of every ðd � 1Þ-face. All these ideas can

be used for any polytope, not only n-cubes. The only dif-

ference is the type of extrusion being used in every case.

3.15 Node Generation and Indexing

FE spaces are polynomial spaces, e.g., Lagrangian poly-

nomials. (Let us note that div- and curl-conforming FEs

also rely on Lagrangian polynomials for the definition of

the pre-bases and the definition of the equivalence classes.)

In order to express these polynomials, one must define a set

of points (nodes). In the following, we define a node

generator for a given order on an arbitrary polytope, using

lexicographical notation.8

Definition 3.7 (Set of nodes) Let us consider a polytope

h 2 Rd represented by ðt; 1; 0Þ. Its set N k
of equidistant

Lagrangian nodes of order k, in lexicographical notation,

are generated recursively as follows: N k ¼: N k
d, where

N p
mþ1 ¼ fða; bÞ : a 2 N p�bð1�tðmÞÞ

m ; b 2 N p
1g;

with N q
1 ¼ fa 2 Nþ : a� qg:

ð31Þ

Given a node a 2 Nd in lexicographical notation and

assuming an equidistant distribution of nodes, its space

coordinates xa 2 Rd can readily be obtained, xa ¼
:
a=k. We

note that for n-cubes we recover the typical tensor product

definition of nodes and the corresponding truncated subset

of nodes for n-simplices. Other node generators can also be

considered, especially for very high-order elements (e.g.,

Fekete points).

It is basic in FE analysis to have an ownership relation

between n-faces and nodes. In particular, it is basic to

enforce continuity between FEs by enforcing continuity of

nodal values. In order to generate the nodes of the polytope

that belong to an n-face, we use the following construction.

First, we generate the local set of nodes, using the def-

inition above, for the n-face. Given a k-face ðt; e; vÞ in Rd,

we consider the reference k-dim polytope ðt0; 1; 0Þ, where
t0 is the restriction of t to the components that are extru-

ded, i.e., t0 ¼: t � m‘g with the mapping

m‘g : f1; . . .; kg ! fj 2 f1; . . .; dg : eðjÞ ¼ 1g. Next, we

define the local nodes of the n-face as the nodes of the

reference polytope. It defines the n-faces nodes and their

local coordinates. Finally, we define the linear mapping

from the reference k-dim polytope to the k-face. The map

can be defined with k þ 1 independent conditions. It can be

defined by enforcing that the mapping maps the anchor

vertex of the reference polytope to the one of the k-face and

the same for the extrusion of the anchor vertex to all

directions:

mð0Þ ¼ v; mðesÞ ¼ em‘gðsÞ; if t0ðsÞ ¼ 0;

mðesÞ ¼ vþ em‘gðsÞ; if t0ðsÞ ¼ 1:

Since the mapping is linear, it can be written as:

mðxÞ ¼ a0 þ x1a1 þ . . .þ xkak:

Form the first constraints we get that a0 ¼ v. For the other

constraints, we get:

mðesÞ ¼ vt0ðsÞ þ em‘gðsÞ ¼ vþ as �! as ¼ vðt0ðsÞ � 1Þ þ em‘gðsÞ:

Thus, we get:

mðxÞ ¼ vþ
Xk

s¼1

xsvðt0ðsÞ � 1Þ þ xsem‘gðsÞ þ xs; ð32Þ

and thus:

8 We note that in fact the order k is not a scalar but a vector k 2 Rd .

In principle, the use of a vector-valued order only has sense for

n-cubes. The implementation in FEMPAR makes use of a vector-

valued order, even though all entries should be the same for polytopes

that are not n-cubes. We note that the use of different orders in

different directions is basic to define high order Raviart-Thomas and

Nédélec elements on n-cubes. In the following presentation, we

consider the scalar order case for simplicity.

210 S. Badia et al.

123

mðxÞi ¼ við1�
X

fs ¼ 1; . . .; k :

t0ðsÞ ¼ 0g

xsÞ þ xm�1
‘g
ðiÞ:

We could also obtain the expression for the inverse of the

mapping m analogously. We can readily use the mapping

for lexicographical coordinates. As a result, given a k-face,

we can define its nodes with a local numbering based on

the lexicographical label of the reference k-face. The local-

to-global lexicographical label (where global is the label of

the d-dim base polytope) is obtained by applying the

mapping (32).

3.16 Global DOF Numbering and Conformity

A basic ingredient in FE analysis is the imposition of

continuity among FEs in order to build conforming global

FE spaces. This process is mathematically defined with

equivalence classes on DOFs (see Sect. 3.6). For example,

functions in the Lagrangian FE space are related to geo-

metrical nodes, and to impose continuity of a function

among FEs is equivalent to impose continuity of nodal

values in the same spatial position (see Sect. 3.8). In the

following, we provide a mechanism to identify nodes in

two different cells that share the same position to imple-

ment the required equivalence class. The situation is

slightly more involved for div-conforming and curl-con-

forming FE spaces. In these cases, one can still determine a

DOF with a node plus n-face ownership (see Sects. 3.9 and

3.10, respectively). Thus, the equivalence class in these

situations can be formulated as in Lagrangian FEs (deter-

mine nodes with the same position) at every n-face

separately.

Following Sect. 3.6, a node within a cell of our trian-

gulation can be represented as (b, K), where b is the local

cell-wise index of the node and K is the cell global index.

Given an n-face F of the cell, the same node can be rep-

resented with ðb0;F;KÞ, where b0 is an n-face-based local

index. For example, node 8 (cell-wise local index) in the

cell of Fig. 6 can also be determined as the node 1 (facet-

wise local index) of the n-face 8 (see Fig. 5). This facet-

wise local index is determined by the coordinate system

being used at the n-face. For example, the nodes of n-face 8

in Fig. 6 are ordered as (8, 12) (i.e., first 8 and then 12). On

the other hand, node indices are represented with the

coordinates in a lexicographical coordinate system, as

presented in (31). For example, node with b ¼ 8 (b0 ¼ 1 in

n-face 8) is represented with the coordinates s ¼ ð4; 1Þ
(s0 ¼ ð1Þ in the n-face).

Let us consider an n-face F in our triangulation, two

cells Kþ (source cell) and K� (target cell) sharing the n-

face, and nodes ðs0þ;F;KþÞ and ðs0�;F;K�Þ (with n-face-

wise local indices). The question that must be answered is:

are nodes ðs0þ;F;KþÞ and ðs0�;F;K�Þ in the same spatial

position? This question can be answered with the map pF
in (15) that, given the position of the node in the coordinate

system of F in Kþ, provides the one in K�.
We note that this mapping is trivial when using struc-

tured (possibly locally adapted) n-cube meshes, since the

local ordering of nodes in an n-face based on increasing

local index leads to the same ordering for all cells con-

taining that n-face; we say that the mesh is properly ori-

ented in this case. However, 2D or 3D unstructured mesh

generators might not return properly oriented meshes, and

thus the FE code has to deal with the explicit construction

and application of permutations. We also note that one can

always end up with oriented meshes for n-simplices by

simple cell-wise permutations (see, e.g., [72, Sect. 5.5] and

[80]). After reading n-simplex meshes, these meshes are

always properly oriented in FEMPAR before proceeding to

any computation. While this is also true for 2D n-cube

meshes, 3D n-cube meshes cannot be properly oriented in

general [81].

Let us consider the reference polytope K̂ associated to

Kþ and K�. In general, the n-face F has a different n-face

local index with respect to the two cells; its corresponding

Fig. 5 Numbering convention for n-faces with K̂ a quadrilateral (left)

and the status of vertices_n_face and facets_n_face
corresponding to that numbering (right). n, p(n?1), and

l(p(n?1)-1) are private member variables of type(list_t)

storing the number of entities, the start position in l(:) of the list

associated to each entity, and the identifiers associated of all lists

gathered in a single array, respectively

FEMPAR: An Object-Oriented Parallel Finite Element Framework 211

123

reference n-face is represented with F̂
þ
and F̂

�
for Kþ and

K�, respectively. In general, the map between nodes of

these two n-faces can be defined by using (32), which is

invertible (since it is linear and full rank). Using this

approach, the map can be generated for arbitrary dimension

and polytope topology. However, for the particular case of

2D/3D n-cube meshes, we have implemented this proce-

dure in a more computationally efficient manner. In par-

ticular, the required permutations (mappings) are expressed

in terms of a set of tables, which are stored and set up

(filled) by the so-called reference_fe_t abstract data

type in FEMPAR. We refer to Sect. 6.3 for detailed

implementation details. (Recall that n-simplices meshes do

not actually require this procedure as they can always be

properly (re)oriented.)

Let us consider the case of 3D n-cube meshes. Vertices

are trivial because there is only one node and no permu-

tation is needed. For edges and faces, we rely on the three

following concepts:

• Rotation index: Provides the local index of the anchor

vertex of F� with respect to the coordinate system of

Fþ. When FEs are sharing two edges, we have the

following situations. The edge can have the same

anchor vertex seen from both elements, or not. For

faces, the anchor vertex can be in 4 positions. It is

called rotation because it represents a map that keeps

invariant the reference face F̂
�
and makes the anchor

vertices of the source and target cells coincide.

• Orientation index: Given two cells sharing an n-face

with the same anchor vertex, the orientation index

codes the map from the coordinate system of the n-face

with respect to the first cell to the one with respect to

the second one.9 For edges, this map is always the

identity, because two cells sharing an edge with the

same anchor node provide the same edge-wise node

coordinates to its nodes. For faces, the situation is more

complex, because it involves 2 different possible

situations. The orientation index is equal to 0 for the

identity permutation and 1 when we have to swap

indices. We denote the base face as the face with the

lowest local index (face [011|000] in Fig. 3). Next, we

consider two cubes that share a face, restricted to the

following scenario: (1) the face is the base face in at

least one of the cubes; (2) the face has the same anchor

vertex in the two cubes. It is trivial to compute the

orientation index in these cases. The orientation index

in the more general case of two cubes sharing a face

only restricted to (2), i.e., two arbitrary faces with the

same anchor vertex, can be obtained by composition as

follows. If two faces have the same orientation index

with the base face, they have an orientation index equal

to 1, and 0 otherwise.

• Permutation index: An index obtained by composition

of the rotation and orientation indices (i.e., it ranges

from 1 and 2, and 1 and 8 for edges and faces,

respectively), that codifies the final mapping between

coordinates of two cells as the composition of a rotation

and a orientation map. We note that the composition of

all possible rotations and orientations cover all the

possible relative positions of cells for a conforming

mesh.

4 Implementation of polytope_t and Related
Data Types

In FEMPAR, the reference FE cell geometry is defined by

the polytope_t data type; see Listing 1. The input

needed to define the polytope is the space dimension

num_dimensions and the topology t in the 32-bit

integer topology.

Fig. 6 Numbering convention for the DOFs of an (scalar-valued) bi-cubic Lagrangian FE on top of a quadrilateral (left) and the status of

own_dofs_n_face for this reference_fe_t in its CG (right, top) and DG forms (right, bottom)

9 In the following, one can consider two unit cubes sharing a face.

Since all the concepts are logical one does not have to take into

account the real shape of the cells in the physical space. On the other

hand, we note that the orientation index is invariant to which of the

two cells sharing the face we select as first and second cell.

212 S. Badia et al.

123

Using the ideas in (27), (28), and (29), we create the set

of all n-faces of the polytope ðt; e; vÞ in the (private)

fill_polytope_chain TBP, which is in turn invoked

by the (public) create TBP. All n-faces of the polytope

have the same topology, and can be uniquely determined

by a 32-bit integer that represents the composition of ðe; vÞ.
We note that the ordering of n-faces based on ðe; vÞ mixes

n-faces of different dimensions and it is non-consecutive in

general. Thus, we consider an ordering based first on the n-

face dimension, and next by ðe; vÞ. The set of all n-faces

generated by the recursion (29) are stored in n_-

face_array, an array of size number_n_faces. This

array in particular provides the ðe; vÞ associated to each n-

face. The inverse mapping (from ðe; vÞ to the actual

numbering) is stored in the ijk_to_index array.

It is also possible to iterate over facets of an n-face,

based on (30). The create_facet_iterator TBP of

polytope_t creates a facet_iterator_t instance

for a given n-face. facet_iterator_t is defined in

Listing 2. The n-face ðe; vÞ is stored in root, the topology

can be extracted from its polytope pointer member

variable. The iterator over facets is described by two

integers, component and coordinate, using the ideas

in (30). The complexity of the traversal over facets is coded

in facet_iterator_next and facet_iterator_

has_finished.

Listing 2. The facet_iterator_t data type.

Listing 1. The polytope_t data type.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 213

123

With regard to the implementation of nodes within

FEMPAR, we provide the node_array_t data type to

represent the set of nodes defined in (31); see Listing 3. It

is constructed from a polytope and the order. It provides

a create TBP, where we perform (31) and fill all the

resulting nodes in the node_array array member vari-

able. We number the nodes using a consecutive numbering

with increasing lexicographical index. The node array

provides the lexicographical label in one integer. The

inverse is stored in ijk_to_index. The total number of

nodes is stored in num_nodes. Finally, the space coor-

dinates of nodes are stored in coordinates.

We also provide the node_iterator_t object (see

Listing 4), which iterates over the nodes of an n-face (s-

tored in n_face) using (31) and (32). It has a pointer to

the node_array of the base polytope. Internally, it goes

through the nodes of n_face (using (31)) (the current

node being stored in displacement), which can be

translated to the base polytope node numbering using (32)

(stored in coordinate); the coordinate is computed

on demand by calling the TBP node_iterator_cur-

rent_ijk. The own_boundary logical allows one to

iterate over the nodes considering the n-face as an open or

closed set. We note that the create TBP of

node_array_t relies on node_iterator_t.

5 The polynomial_t Abstraction

In FEMPAR, the definition of shape functions is not hard-

coded, as usually done in most FE codes. Such approach

has severe limitations: (1) it is not practical for high order

discretizations, and the code cannot be written for an

arbitrary order; (2) it involves a huge number of code lines

with the analytical expression of shape functions for a

given set of available orders (see the discussion in [82]);

and (3) it does not allow for dimension-independent code.

Instead, we consider a framework based on the concepts in

Sect. 3.5, in which one considers a pre-basis, defines the

moments, and performs a change of basis. The pre-basis is

defined using the product of 1D functions (e.g., the

Cartesian product), and the 1D function generator is written

in terms of the (arbitrary) order. Our machinery for the

generation of 1D functions has been restricted for the

moment to polynomial functions in one variable, namely

Lagrangian polynomials, monomials, and B-splines, but

the implementation can be extended to other choices. The

product of 1D functions can be a Cartesian product of 1D

Lagrange polynomials (or monomials), to define Qk spaces

on n-cubes, or a reduced combination of monomials to

define Pk spaces on n-simplices.

Listing 3. The node_array_t data type.

Listing 4. The node_iterator_t data type.

214 S. Badia et al.

123

The definition of the reference FE functional space relies

on the polynomial_t data type in Listing 5, which

represents a polynomial in one variable, i.e.,

pðxÞ ¼
Pk

i¼0 aix
k. Thus, a 1D polynomial is defined in

terms of its order k and a set of k þ 1 coefficients faigki¼0,

stored in order and the coefficients array, respec-

tively. Different type extensions of polynomial_t have

been considered so far, namely lagrange_polyno-

mial_t and monomial_t. The first one generates a

Lagrangian polynomial as in Sect. 3.4, in which the co-

efficients array has in its first order entries the

coordinates of the nodes and in the last entry the coefficient
1

Pn2N knfmgðxm�xsÞ in (7). The monomial_t extension repre-

sents xk where k is its order. It is just a trivial case of

polynomial_t for optimization purposes that is

uniquely defined by the order (the coefficients array is not

needed). We also consider the polynomial_basis_t

data type, which is just a set (array) of (polymorphic)

polynomials.

Up to this point, we have defined Lagrange polynomials

and monomials in one variable. lagrange_polyno-

mial_t and monomial_t also provide the binding

generate_basis that generates a Lagrangian and

monomial basis of polynomials, for a given order k. The

result of this subroutine is a polynomial_basis_t

that includes as many polynomials as the polynomial space

dimension. In the case of the Lagrangian basis, it imple-

ments the basis Lk in Sect. 3.4, whereas the binding for

monomials simply implements fxigki¼0.

The next step is to generate higher dimensional spaces.

We consider two types of spaces. The first one is a space

that can be generated as the Cartesian product of 1D

spaces, implemented in the data type tensor_pro-

duct_polynomial_space_t. This data type is

defined through the number of space dimensions and as

many polynomial_basis_t as space dimensions.

This data type can be applied to any combination of 1D

spaces. e.g., In the case of 1D Lagrange bases (possibly

with different order and nodes per dimension), it leads to

Listing 5. The polynomial_t data type and related data types.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 215

123

the multi-dimensional basis in (8). Thus, with this data type

and Lagrangian 1D bases we generate the Lagrangian FE

spaces on top of n-cube cells, i.e., the Qk space of

polynomials.10

Furthermore, we also consider the trun-

cated_tensor_product_polynomial_space_t

extension that generates Lagrangian FE spaces on n-sim-

plices, i.e., the Pk space of polynomials. In this case, the

generate_basis TBPs of monomial_t should be

used to create the monomial 1D bases per direction and the

order should also be the same for all directions. Otherwise,

the resulting multi-variable function would have no sense.

Next, the combination of 1D monomials only involves

terms such that jaj � k (see Sect. 3.4), to generate a pre-

basis for FE spaces on tetrahedra, i.e., the Pk space of

polynomials.

We note that with these abstract representations of

polynomial spaces one can define the reference FE local

space. However, unless one considers 1D Lagrangian basis

and tensor product polynomials on n-cubes, the resulting

basis is not the shape functions basis. Even in the case of

Lagrangian n-simplices, a change-of-basis is needed, using

the procedure in Sect. 3.5 taking nodal values as moments.

In Sect. 9.5, we show how we can define the shape function

basis for the case of div-conforming FEs of arbitrary order.

The same ideas apply for grad-conforming Lagrangian FEs

on n-simplices and curl-conforming FEs in general, but are

not included for the sake of brevity.

6 The reference_fe_t Abstraction

In this section, we introduce the reference_fe_t data

type. This data type is the OO representation of the stan-

dard mathematical definition of a reference FE presented in

Sect. 3.3, namely, a reference cell geometry K̂, a functional

space V̂, and a set of DOFs R̂ defined on top of it. The

reference_fe_t is a central abstraction in a FE library

and must be judiciously designed to be extensible and

reusable. In particular, it must not only accommodate

Lagrangian FEs, but also other (more involved/general)

spaces like Raviart-Thomas or edge FEs, DG methods, and

B-spline patches. An extensible and reusable design of

reference_fe_t should allow one to, e.g., easily

incorporate new local functional spaces that were not

originally considered, and to do so without having to

rewrite (and thus recompile) any code that is grounded on

the set of methods provided by reference_fe_t. To

this end, in FEMPAR, reference_fe_t is an abstract

data type that serves as a template equipped with a set of

member variables and deferred bindings that subclasses

have to set up and implement (i.e., override), respectively,

in order to complete the description of the concrete FE

space at hand. The definition of the reference_fe_t

data type, a classification of its member variables into three

different categories (corresponding to the three ingredients

in Ciarlet’s definition), and an enumeration of its most

relevant regular and deferred bindings, are shown in

Listing 6.

10 Analogously, one could generate serendipity elements only by

changing the generation of the multi-dimensional space in terms of

1D ones.

216 S. Badia et al.

123

Listing 6. The reference_fe_t abstract type, a classification of its member variables, and an enumeration of its most relevant regular and

deferred bindings.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 217

123

This section is structured as follows. The member

variables in each of the three aforementioned categories are

covered in detail in Sects. 6.1–6.3, respectively. In

Sect. 6.4, we discuss the OO design pattern chosen in

FEMPAR for the creation of reference_fe_t poly-

morphic instances, and describe the arguments that

uniquely define a subclass of this data type; these are in line

with its mathematical definition. In Sect. 6.5, we enumer-

ate and briefly describe the subclasses of refer-

ence_fe_t currently available in FEMPAR. We note that

the section is not self-contained as most of the deferred

bindings of reference_fe_t are not covered here.

These involve interactions with other data types in our OO

design, and will be described in the sections in which these

interactions are exposed. Code comments in Listing 6

serve as a table of contents with the article sections in

which these deferred bindings are covered.

6.1 The Reference Cell Topology

The reference cell K̂ is a polytope. Therefore, following

Sect. 3.14, it can be described with the topology, coded as

a set of d bits, where d is the dimension of the polytope.

The reference cell topology is generated using poly-

tope_t described in Sect. 4, which offers methods like

composition and local numbering of n-faces. Polytope

topologies include triangles and quadrilaterals in 2D, and

tetrahedra, hexahedra, prysms, and pyramids in 3D. The

member variables in charge of the description of the ref-

erence cell topology K̂ are shown in Lines 5–10 of List-

ing 6. The user must provide the topology and dimension

of the polytope to define K̂, stored in the member variables

topology and num_dimensions, respectively. A set

of getters return this basic information, and other related

data that can be generated out of them, e.g., the number of

n-faces in the boundary of the cell is stored in the

num_n_faces member variable. The list of vertex

identifiers per each n-face and the list of facets (of

dimension n� 1) per each n-face are stored in ver-

tices_n_face and facets_n_face, respectively;

see Fig. 5 for an illustration of these member variables and

the data type list_t used in FEMPAR to store and tra-

verse lists.

The FEMPAR data type list_t stores a set of (vari-

able-sized) lists of integer identifiers, one per each entity;

in this particular scenario, entities are n-faces. As shown in

Fig. 5, the current implementation of this data type uses a

compressed storage layout as, e.g., in compressed storage

formats for sparse graphs. In order to preserve encapsula-

tion and data hiding, list_t offers a rich set of TBPs that

lets users to set up (step by a step) a new list_t instance;

this type also provides a list_iterator_t type that

lets them to sequentially read/write each of the integer

identifiers of the list associated to an entity. The code

snippet in Listing 7 illustrates how to iterate and print the

identifiers of those vertices belonging to the n-face with

identifier n_face_lid.

The number of n-faces of any dimension can be easily

computed from ptr_n_faces_x_dim. We note that

ptr_n_faces_x_dim is not a list_t instance, since

we adopt the convention that n-faces are numbered from

the lowest to highest dimension, and thus only the p array

of the list is actually needed (see Fig. 5). In the example in

Fig. 5, the value of this array is f1; 5; 9; 10g, since we have
4 vertices (dimension 0), 4 facets or edges (dimension 1),

and 1 cell (dimension 2).

6.2 The Reference FE Space

For a given cell topology, different definitions of functional

spaces and sets of DOFs are possible, e.g., the ones of the

nodal Lagrangian grad-conforming reference FE in

Sect. 3.8, the Raviart-Thomas div-conforming reference

FE in Sect. 3.9, or the curl-conforming Nédélec reference

FE in Sect. 3.10. The member variables of refer-

ence_fe_t required to describe the functional space V̂
with support on K̂ are encompassed within Lines 13–16 of

Listing 6.

Listing 7. User-level code that illustrates how to print to screen those (local within cell) vertex identifiers belonging to n-face with (local within

cell) identifier n_face_lid.

218 S. Badia et al.

123

The local FE space V̂ is determined by the member

variables fe_type, (in some cases) field_type, and

order. fe_type uniquely identifies the concrete FE

space at hand. Possible values are provided by means of the

public parameter constants fe_type_lagrangian,

fe_type_raviart_thomas, and fe_type_ned-

elec corresponding to the reference_fe_t imple-

mentors currently supported in FEMPAR; see Sect. 6.5 for

additional details on those. field_type identifies the

‘‘type’’ of physical field being discretized, i.e., whether it is

scalar, vector-valued, etc. There are FE spaces that are

inherently vector-valued such as, e.g., Raviart-Thomas and

edge FEs. However, Lagrangian FEs can be either used to

discretize scalar, vector, or tensor-valued fields, and

field_type must be provided. We assume that V̂ can be

parameterized with respect to an order, which is stored in

order. Out of these values, we can generate additional

data, e.g., the number of shape functions is stored in

num_shape_functions. For example, for (scalar-val-

ued) bi-quadratic (2D) and tri-quadratic (3D) Lagrangian

FEs, the field_type is scalar, num_components is

equal to 1, order is equal to 2, and num_shape_-

functions is equal to 9 and 27, respectively.

6.3 The Set of Local DOFs

Additional data is required to describe the set of DOFs R̂

for V̂. In particular, the member variables encompassed

within Lines 19–23 of Listing 6 serve this purpose.

The conformity member variable determines whe-

ther the global FE space X h is conforming with respect to

the infinite-dimensional space X , i.e., whether Xh � X or

not. It is used to describe the n-face that owns every DOF,

which is required to enforce conformity of the global FE

space through equivalence classes (see Sect. 3). e.g., For

Lagrangian FEs, setting it to .true. results in a grad-

conforming global FE space, whereas setting it to .-

false. it results in a discontinuous space for DG meth-

ods. It is conceptually possible to set it to .true. on

some cells and false on others, leading to the CDG method

in [83]. On the other hand, the continuity member

variable is only determined by X , and tells us whether X
admits a trace operator. Roughly speaking, it tells us

whether we must enforce some type of continuity at the

discrete level to preserve conformity, e.g., full, tangential,

or normal traces for H1ðXÞ, Hðcurl;XÞ, and Hðdiv;XÞ,
respectively. The value of continuity is .false.

when X ¼ L2ðXÞ, since no continuity is required. When

continuity is .false., conformity must be

.true.. continuity is barely used (see discussion in

next paragraph).

The value of conformity is used to generate the

own_dofs_n_face member variable of type list_t.

This member variable stores, for every n-face, the DOFs it

owns; see Fig. 6. For CG methods, the notion of ownership

is related to the geometrical location. For DG FEs,

although node functionals are still geometrically located on

the boundary of the cell, they are nevertheless owned by

the cell, and considered as interior DOFs, since there is no

global conformity to be enforced. This array is heavily

used to generate the global DOF numbering.11 On the other

hand, the dofs_n_face member variable, determines,

for a given n-face, the set of DOFs such that their

respective shape functions are non-zero on the n-face. The

continuity member variable is (currently) only used

for DG methods in parallel distributed-memory environ-

ments. In particular, in order to decide whether to associate

or not a global DOF identifier to nodes on the interface

facets of ghost cells (and thus to be able to define non-

singular sub-assembled matrices for the DD methods in

[84] for DG discretizations). The dofs_n_face member

variable is used when continuity is .true. and a

global DOF numbering is to be generated, and also might

be used by triangulation subclasses (see Sect. 7) in order to

extract the coordinates of those nodes on top of a vertex,

edge, or face (using the dofs_n_face member variable

of the reference_fe_t instance that describes the

geometry of the cell). For example, in Fig. 6, the list cor-

responding to n-face with identifier 8 in dofs_n_face is

{4,8,12,16}.

The reference_fe_t data type plays a crucial role

in the algorithm in charge of assigning global DOF iden-

tifiers to node functionals distributed over the interior of

the triangulation cells and their boundary n-faces. (This

algorithm, which is is covered in detail in Sect. 10, is

grounded on the notion of equivalence classes introduced

in Sect. 3.) In particular, the function-like (regular) binding

referred to as permute_dof_lid_n_face (see

Line 32 of Listing 6) implements the mapping pF in (15).

This function takes as input the so-called permutation

index in Sect. 3.16, the local index of a node within an

n-face of given dimension (e.g., in 3D, either 0 for vertices,

1 for edges, and 2 for faces) from the perspective of a

source cell, and returns the local index of a node within that

n-face from the perspective of the target cell.12 This is in

11 We can consider three levels of DOF numbering: the cell-wise

DOF numbering (referred to as local DOFs), the subdomain-wise

DOF numbering (referred to as global DOFs), and a full domain

global DOFs. The latter numbering is never created/required in

FEMPAR. In serial environments, the latter two match.
12 We note that the responsibility of determining the permutation

index does not lay on reference_fe_t, but on the abstraction of

FEMPAR that represents the mesh of the computational domain; see

Sect. 7.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 219

123

particular the transformation that we have to apply when

global DOF identifiers have been already assigned to

n-face nodes in the source cell, and we want to transfer

them to n-face nodes in the target cell; see Sect. 10.3. This

binding, implemented in reference_fe_t, ultimately

relies on its own_dof_permutations(:) member

variable; see Line 23 in Listing 6. This allocatable array is

indexed with the n-face dimension (i.e., 1 for edges, and 2

for faces). For each n-face dimension larger than 0, it

contains a rank-2 allocatable array (i.e., type(allo-

catable_array_ip2_t) is the base type of the array),

which serves as a lookup table for the implementation of

the aforementioned transformation. In particular, the rows

are indexed with the local index of the node identifier on

top of the n-face from the perspective of the source cell,

and the columns with the permutation index; see

Sect. 3.16. The entry in the corresponding row and column

of the table provides the local index of the node within the

n-face from the perspective of the target cell. These lookup

tables are filled within the fill_own_dofs_permuta-

tions deferred binding of reference_fe_t. We note

that this latter binding, and permute_dof_lid_n_-

face, are declared as overridable bindings in Listing 6 on

purpose. This lets, e.g., subclasses of reference_fe_t

to be used in conjunction with (properly oriented; see

Sect. 3.16) n-simplex meshes to implement the former

such that the own_dof_permutations(:) member

variable is not allocated nor filled, and the latter such that

always returns the identity transformation.

6.4 Creating reference_fe_t Polymorphic

Instances

Central to any OO software system relying on abstract data

types is the approach chosen to create polymorphic

instances at runtime. For simplicity, FEMPAR follows the

so-called simple factory design pattern [85]. It takes the

form of a single stand-alone function, called

make_reference_fe, which selects the dynamic type

of the polymorphic instance to be returned at runtime based

on the values of its dummy arguments topology and

fe_type. (For example, assuming the topology of an

hexahedron and fe_type_lagrangian, then it will

select its dynamic type to be hex_lagrangian_ref-

erence_fe_t, i.e., the concrete data type implementing

Lagrangian-type FE spaces on top of n-cubes.) Before

returning, it calls a deferred binding of refer-

ence_fe_t, called create, which is responsible to

leave the reference_fe_t in a fully functional state.

The interface of this deferred binding is shown in Listing 8.

We remark that field_type is only a free parameter

for Lagrangian FEs (i.e., for a particular refer-

ence_fe_t subclass). In other words, it must be

field_type_vector for Raviart-Thomas and edge

elements. We note that despite its fix set of dummy argu-

ments interface, it has been proven to be sufficient to fully

describe all subclasses currently available in FEMPAR; see

Sect. 6.5. However, in the event that it is needed, and with

extensibility in mind, a single parameter dictionary of

\key; value[pairs might have been used instead;

FEMPAR indeed relies on an implementation of this data

type where key is a string (typically denoting the name of

the parameter), and value a scalar or arbitrary rank array of

intrinsic or even user-defined types.13

6.5 Enumeration of reference_fe_t Subclasses

There is a rather complex data type hierarchy rooted at

reference_fe_t in FEMPAR, which has been judi-

ciously designed with code re-use as the main driver. (For

example, Lagrangian FE spaces on top of n-cubes and

n-simplices share member variables and code that can be

gathered into a common base data type.) For the sake of

brevity, in this work we do not cover in full detail the

implementation of the data types in this hierarchy (except

those details given in Sects. 5 and 9.5). However, for

13 This data type is implemented within the FPL software

package [86].

Listing 8. The signature of the create binding of reference_fe_t.

220 S. Badia et al.

123

completeness, it is convenient to enumerate those ref-

erence_fe_t subclasses that, at present, are available in

this hierarchy. These subclasses, which lay at the leaves of

the hierarchy, are the following ones:

• hex and tet_lagrangian_reference_fe_t.

Space of polynomials of arbitrary degree k on top of

n-cubes (i.e., tensor-product like spaces Qk) and n-

simplices (i.e., Pk), respectively, for the discretization

of either scalar-valued, vector-valued or tensor-valued

fields; see Sect. 3.8. By selecting the ownership

relationship among node functionals and n-faces appro-

priately (see Sect. 6.3), this FE space can be either

globally continuous, or entirely discontinuous across

cell boundaries.

• hex and tet_raviart_thomas_refer-

ence_fe_t. The vector-valued Raviart-Thomas FE

of arbitrary degree k on top of n-cubes, and n-simplices,

resp., suitable for the mixed Laplacian problem and

some fluid flow problems. Global FE functions of this

space (in its conformal variant) have continuous normal

components across cell faces; see Sect. 3.9 for details.

• hex and tet_nedelec_reference_fe_t. The

vector-valued curl-conforming Nédélec FE of arbitrary

degree k on top of n-cubes, and n-simplices, resp.,

suitable for electromagnetic problems. Global FE

functions of this space (in its conformal variant) have

continuous tangential components across cell faces; see

Sect. 3.9 for details.

• void_reference_fe_t. A software artifact that

represents a FE space with no DOFs at all, neither at the

cell interiors, nor at their boundary n-faces. This sort of

software resource has been proven extremely efficient

for: (1) the numerical solution of a PDE on a

subdomain of our original discretized domain (which

thus has to be aligned with the cells boundaries); (2) the

numerical solution of a PDE using XFEM-like dis-

cretization techniques (which are grounded on FE

spaces that do not assign DOFs to cells exterior to the

embedded domain); (3) to simplify the implementation

of discretization methods for PDE problems that

involve coupling at the interface level, e.g., fluid-

structure interaction.

Apart from these reference_fe_t subclasses, there are

already concluded developments within this hierarchy in a

beta version of the code, such as B-splines [8], and other

scheduled developments, such as div-conforming FEs [7].

7 The Description of the Physical Domain: The
triangulation_t Abstraction

A central abstraction in all FE numerical simulation codes

is the one that describes the triangulation/mesh T h of the

physical domain X � Rd in which our problem is posed.

(In practice, the mesh generation for X introduces a geo-

metrical error, and the mesh is in fact over an approximated

domain Xh). In FEMPAR, this abstraction is called tri-

angulation_t. With flexibility, and code reuse in mind,

this is an abstract data type. In Sect. 7.1, we introduce

triangulation_t, and the mechanism that it provides

to its subclasses in order to preserve encapsulation and data

hiding, while still letting subclasses to store and access to

data efficiently. For completeness, in Sect. 7.2, we intro-

duce details underlying the implementation of a particular

concrete subclass of triangulation_t.

7.1 An Abstract Triangulation Representation

and Its Software Implementation

In this section, we present an abstract (conceptual) repre-

sentation of a triangulation that FEMPAR exposes to user-

level applications and other library software abstractions

that are grounded on it (see, e.g., Sect. 10). This conceptual

representation is provided by a set of abstract derived data

types (and the methods bounded to them) to which we have

converged as a result of our experience in accommodating

a wide range of state-of-the-art FE discretizations and

solver techniques within a single framework, from desk-

tops/laptops, to high-end distributed-memory supercom-

puters (see Sect. 2).

For the sake of brevity, in this work we restrict ourselves

to a subset of this representation that only provides support

to the implementation of high-order conforming and non-

conforming FE discretizations grounded on conforming

meshes in a serial computing environment. We stress,

however, that the actual (complete) representation also

incorporates concepts to express the mesh in a distributed-

memory environment (e.g., the set of cells of a subdomain

is divided into local cells and a layer of cells owned by

remote subdomains, which we denote as ghost cells). It

also provides support to the implementation of high-order

hp-adaptive (i.e., on locally refined, non-conforming

meshes) conforming and non-conforming FEs (using

hanging node constraints [82] and subface integration over

a facet between cells of different refinement level,

respectively) and to the implementation of XFEM-type

techniques (see [60] and references therein); provided an

implicit representation of the geometry of the domain, a

background mesh is able to know whether a cell is interior,

exterior or cut by the domain, and in the latter case, to

FEMPAR: An Object-Oriented Parallel Finite Element Framework 221

123

provide the coordinates of the intersection points. This

extra expressivity comes in the form of additional data

types and an extended set of methods for those data types

that are covered in this section. We stress, however, that

neither the former nor the latter ones will be covered in this

section.

Although our abstract representation of a triangulation

has been proven to have high expressivity, we do not claim,

however, that our triangulation representation is univer-

sally applicable to the implementation of arbitrary

numerical discretization and solver techniques. It indeed

has been designed such that extra extensions are foreseen

to satisfy further requirements.

The triangulation representation encompasses both

topological and geometric data. A triangulation is con-

ceived as a partition of X into a set of cells (d-faces). Each

cell is uniquely identified by a global identifier in the range

cell gid ¼ 1; . . .; num cells.14 Apart from the cells, a

triangulation is also composed by a set of lower dimen-

sional objects, i.e., a set of k-faces, for k ¼ 0; . . .; d � 1.

We will also refer to elements in this set as ‘‘vefs’’, pro-

vided that in the d ¼ 3 case, it is composed of vertices,

edges, and faces. Each of the objects in this set is uniquely

identified by a global identifier in the range

vef gid ¼ 1; . . .; num vefs.15

Apart from the cells and vefs, a triangulation also

encompasses adjacency data. This sort of data describes

how n-faces in a mesh are related to each other. We denote

by F the set of all n-faces in the mesh, by Fk the set of all k-

faces, and by Fi and Fk
i the i-th n-face (of arbitrary

dimension) and the i-th k-face (of fixed dimension k),

respectively. In conforming meshes, there are mainly two

relevant types of adjacency relationships, namely compo-

sition (m-faces that are part of a k-face for m\k) and

neighbourhood (m-faces around a given k-face for m[k).

Following [87], the set of m-faces adjacent to Fk
i , is

denoted by Fk
i hFmi (i.e., the operator h�i selects from the

set the m-faces adjacent to the one in the left). A triangu-

lation conforming with FEMPAR abstract representation

should be able to provide the composition data F3
i hFi, and

the neighbourship data FihF3i, that is, n-faces that compose

each cell and cells around n-faces.

A triangulation also includes geometry data. Cell

geometries are represented by a map UK of a polytope K̂ in

the reference space to the physical space (see Sect. 3). This

map is represented as a function of a scalar FE space (e.g.,

grounded on high-order Lagrangian FEs or B-splines), with

its DOF values being the vectors of node coordinates (i.e.,

point_t instances) in the physical space.

At the core of the software design in charge of providing

the triangulation-related data covered so far is an abstract

data type named triangulation_t. (The rationale

behind this data type being abstract will be made clear in

the course of this section.) This data type is defined as

shown in Listing 9. triangulation_t is conceived as

a template to which all subclasses have to conform. On the

one hand, it is composed by a (minimal) set of member

variables encompassing data common to any triangulation.

In particular, any triangulation is embedded in a

num_dimensions-dimensional space, and is composed

of a total number of num_cells (num_dimensions-

dimensional) cells and num_vefs vefs, respectively; see

Lines 3–5 of Listing 9, respectively. On the other hand,

triangulation_t is equipped with a set of deferred

methods that the subclasses of triangulation_t must

implement; see Lines 11–18. The rationale underlying

these methods requires further elaboration, to be discussed

in the sequel.14 We note that the actual conceptual representation of the triangu-

lation in FEMPAR differences among local (to subdomain) cell

identifiers and global cell identifiers (among the whole triangulation

of the domain) in a distributed-memory context. The second sort of

identifiers are coded as long precision integers, i.e., inte-
ger(igp), in order to accommodate simulations with more than

231 � 1 global cells.
15 As mentioned in the case of cells, the actual conceptual

representation of the triangulation in FEMPAR differences among

local (to a subdomain) vef identifiers and global vef identifiers

(among the whole triangulation of the domain) in a distributed-

memory context. Again the latter ones are long precision integers.

222 S. Badia et al.

123

In order to construct a conceptual view of triangu-

lation_t suitable for the user (and library) code needs,

FEMPAR relies on the so-called iterator OO design pat-

tern [88]. Iterators are data types that provide sequential

traversals over the full sets of objects that all together

(conceptually) comprise triangulation_t as a mesh-

like container. There are several different iterators avail-

able, each one related to a different set of objects to be

traversed. For example, cell_iterator_t provides

traversals over the set composed of all cells, while

vef_iterator_t over the one composed of all vefs.16

In our software design, iterators are created and freed by a

set of public TBPs provided by triangulation_t; see

Lines 11–18 of Listing 9. Thus, for example, the expres-

sion call triangulation%create_cell_iter-

ator(cell) creates an iterator on the cell client-space

instance, while call triangulation%free_-

cell_iterator(cell) frees it. Iterators sequentially

traverse objects in increasing order by their global identi-

fiers. However, we note that triangulation_t sub-

classes are completely free to decide how to internally

label these objects.17

As the reader might have already noted from the mini-

mal set of member variables in Listing 9 (among others),

our software design is such that we want to provide

complete flexibility to concrete subclasses of triangu-

lation_t with respect to how do they internally layout

the (topology and geometry) data to be provided. To this

end, triangulation_t is an abstract class that defers

this decision to its subclasses. There is a clear separation

among how the data is handled (i.e., stored and accessed)

by the private data structures (member variables) under-

lying triangulation_t subclasses, and the concep-

tual/abstract view of triangulation_t exposed to

FEMPAR users. This view renders triangulation_t

easily accessible and understandable. Whereas the public

interface of triangulation_t being used by client

codes is designed to be stable over time, the internals of

triangulation_t subclasses, however, are allowed to

(and are subject to) change over time (e.g., in order to

accommodate further optimizations, additional require-

ments, etc.). At the price of dynamic run-time polymor-

phism, triangulation_t subclasses might be

designed such that they strongly strive to preserve encap-

sulation and data hiding while still storing and accessing to

data efficiently. Thus, e.g., a triangulation_t sub-

class in charge of handling structured/uniform meshes of

simple domains may decide to not explicitly store the cell-

wise global vef identifiers, nor the vertex coordinates of the

mesh, but instead to provide them implicitly on demand as

a function of the global cell identifier.

Apart from encompassing the logic underlying the

actual traversal over objects of the set at hand, iterators also

have the following crucial responsibility. Following the

software concept of ‘‘accessors’’ presented in [17], they are

able to tease out the data related to the current object on

which they are seated from the global arrays and rest of

private data structures that comprise the internals of the

corresponding triangulation_t subclass. They

therefore do not explicitly store, e.g., the global vef iden-

tifiers of the current cell. Instead, they know how to fetch

16 For completeness, let us mention that triangulation_t also

offers traversals over subsets of objects conveniently selected for

acceleration purposes. For example, triangulation_t provides

an iterator over vertices, edges, and faces that lay on the interface

among subdomains, called itfc_vef_iterator_t (i.e., a subset

of the set of objects traversed by vef_iterator_t) for those

subclasses suitable for parallel distributed-memory environments.
17 Thus, e.g., a triangulation_t subclass that internally labels

the global identifiers of vefs by their dimension in increasing order

would result in a traversal with such an order. This is however a

potentially changing over time low-level implementation detail that

user programs relying on triangulation_t and its associated

iterators should not assume nor rely on.

Listing 9. The triangulation_t abstract data type.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 223

123

them from the corresponding triangulation_t sub-

class into data structures suitable for the user needs. Pro-

vided that it is the responsibility of triangulation_t

subclasses to decide how to internally layout data, iterators

are abstract data types as well, and most of its TBPs are

deferred/virtual. This also justifies why the methods in the

Lines 11–18 of Listing 9 are deferred, and why the corre-

sponding iterator dummy arguments, polymorphic allo-

catable. It is ultimately the responsibility of the concrete

subclass of triangulation_t to decide on execution

time the dynamic type of the polymorphic variable being

created.

Let us next discuss the rationale underlying the design of

iterators over cells and vefs. These data types are defined in

Listing 10, where set must be actually replaced by the

corresponding name uniquely identifying the set of objects

to be traversed by the iterator at hand, i.e., either cell or

vef. In Fig. 7, we illustrate the implementation of a partial

(selected) subset of the bindings of these data types.

The create binding of set_iterator_t takes as

input a polymorphic triangulation_t instance to be

traversed, and leaves the iterator positioned in the first

object of the set, i.e., in a state ready to start the

sequential traversal over all of its objects; see Fig. 7. This

method (like free) is not intended to be directly called by

the user. Instead, triangulation_t clients should rely

on the deferred bindings of triangulation_t pre-

sented in Listing 9. The init, next, and has_fin-

ished bindings let clients to position the iterator on the

first object of the set, move to its next object, and check

whether all of its objects have been already traversed or

not, respectively; see Fig. 7.

The actual set of (deferred) TBPs of a triangula-

tion_t iterator highly depends on the type of object

being pointed. We now briefly discuss those TBPs in the

set corresponding to cell and vef iterators that provide

support to the subset of the triangulation conceptual rep-

resentation we are focusing on. These are in particular

enumerated in Listing 11.

Fig. 7 Implementation of a partial (selected) subset of the bindings of set_iterator (see Listing 10)

Listing 10. triangulation_t ‘‘set’’ (either cell or vef) iterators.

224 S. Badia et al.

123

The TBPs in Lines 8–12 of Listing 11 are in charge of

providing data related to the composition relationship

F3
i hFi. In particular, the get_num_vefs binding returns

the number of vefs on the boundary of the mesh (i.e., the

cardinality of the composition relationship). Given the

local index of a vef in a cell (within the range

1; . . .; num vefs), get_vef positions the vef_itera-

tor_t instance on input such that it points to this vef,

while get_vef_gid, returns its global identifier;

get_vef_lid performs the inverse translation to the one

of get_vef_gid. Finally, get_vefs_gid let the cli-

ent obtain the global identifier of all vefs of the current cell

in one shot provided a user-space pointer to integer array.

The semantics of this last TBP are such that subclasses of

cell_iterator_t are not allowed to allocate the

provided pointer, but to associate it with existing (internal)

memory (for increased performance and memory leaks

avoidance).

The TBP in Line 15 of Listing 11 provides support to

the implementation of the transformation procedure

described in Sect. 3.16. In particular, this binding has to be

invoked on a cell_iterator_t instance positioned in

the source cell, and given a cell_iterator_t posi-

tioned on the target cell, and the n-face local identifier

within the former and latter cells, returns the permutation

index; see Sect. 3.16. We stress that both the rotation and

orientation indices can be always computed using the TBPs

in the previous paragraph. For example, in order to deter-

mine the rotation index, one can extract the global id of the

anchor vertex of the n-face in the target cell (by calling

Listing 11. A subset of the deferred TBPs of the cell_iterator_t and vef_iterator_t data types (follow-up to Listing 10).

FEMPAR: An Object-Oriented Parallel Finite Element Framework 225

123

get_vef_gid), and then searching for this global id in

the set of vertices that comprise the n-face in the target cell

(using an iterator over the corresponding sublist in ver-

tices_n_face; see Sect. 6.1). However, we preferred

to provide a specialized deferred binding for such purpose

in order to leave room for optimizations in triangu-

lation_t subclasses. For example, in the case of a

subclass that works with oriented meshes, then

get_permutation_index may be implemented such

that it always returns the permutation index corresponding

to the identity transformation. In the case of a subclass of

triangulation_t that is intended to remain static (or

to be adapted very infrequently) during the course of the

simulation process (see, e.g., Sect. 7.2), then it might be

beneficial for performance to precalculate all possible

permutation indices during set up into lookup tables, and

re-use them all the way through without having to perform

the aforementioned searches over and over again.

The TBPs in Lines 18–20 are in charge of providing the

cell geometry related-data. In particular, get_refer-

ence_fe returns a polymorphic pointer to the refer-

ence_fe_t instance that describes the space of functions

to which the mapping UK belongs. get_num_nodes and

get_nodes_coordinates return the number of nodes

describing the geometry of the cell, and its associated

coordinates in physical space, respectively. Instead of a

pointer to an user-space array to be associated with internal

storage (as get_vef_gids), get_nodes_coordi-

nates takes a user-space (pre-allocated) array of type

point_t instances, and fills it (because of reasons made

clear in Sect. 8.3). Assuming that reference_fe_t is a

bi-linear Lagrangian FE on a quadrilateral, then get_-

num_nodes would return 4 (one node per cell-vertex),

while get_nodes_coordinates the coordinates in

physical space of its vertices.

Any triangulation_t subclass should let its cli-

ents to classify the cells into sets. Each set is globally

identified by an integer number, named set_id. The

methods get_set_id and set_set_id let the caller to

associate a set to the current cell, or to retrieve the set to

which the cell is currently associated. Cells set identifiers

are primarily (although not only) used by fe_space_t

during its set-up; see Sect. 10. In particular, they instruct

the latter to determine which reference_fe_t instan-

ces to use on top of the cells belonging to the same set. For

example, assuming that we want to solve a scalar, single-

field PDE problem on a subdomain of our original domain

(that we assume to be aligned with the cells boundaries),

we would use two different sets. The first for the cells that

are interior to the subdomain, and the second for those that

are exterior. Then we could associate e.g., a linear

Lagrangian reference FE to cells in the first set, and

void_reference_fe_t on those cells of the second

set; see Sect. 6.5.

Sitting on a given vef, the TBPs in Lines 36–37 are in

charge of providing data related to the adjacency rela-

tionship FihF3i. In particular, get_num_-

cells_around returns its cardinality, while

get_cell_around returns a cell in this set. To be more

precise, the latter TBP positions the instance of

cell_iterator_t on input such that it points to a cell

in this set identified with an index within the range

1; . . .; get num cells aroundðÞ. The order in which the

cells around a vef are listed can be arbitrary, so that codes

relying on triangulation_t should not assume, e.g.,

that they are ordered increasingly by their global cell

identifiers. On the other hand, get_num_nodes and

get_nodes_coordinates return the number of points

on top of the vef (including those on top of the lower-

dimensional ones on its boundary), and its associated

coordinates in physical space, respectively; see

Lines 40–41. We adopt the convention that these nodes are

(locally) labeled (within the input/output array of point

coordinates to be filled) according to the reference coor-

dinate system of the first cell around the vef, i.e., the cell

obtained as vef%get_cell_around(1,cell).

The TBPs in Lines 44–48 let the client to determine

whether the vef is at the interior of the domain or on its

boundary, the vef dimension (e.g., in 3D, it would return 0,

1, and 2 for vertices, edges, and faces, respectively) and to

retrieve the set to which the vef is currently associated, or

associate a new set to it, respectively. Sets in the case of

vefs are primarily used to codify the boundary conditions

of the PDE problem at hand, as discussed in Sect. 10.4.

At this point we are already in position to show user-

level code that exploits the software design covered so far.

In particular, Listing 12 splits the whole set of triangulation

cells into two disjoint sets, those that are in contact to the

boundary of the domain, and those that are in its interior.

226 S. Badia et al.

123

7.2 An Example triangulation_t Subclass

and Rationale

In this section, we discuss how a particular subclass of

triangulation_t is internally organized in order to

efficiently provide triangulation-related data by means of

the software abstractions presented in Sect. 7.1. This sub-

class is static_triangulation_t. A static_-

triangulation_t codifies a conforming mesh, which

is set up from scratch at the beginning of the simulation,

and remains unaltered during the whole process. On the

other hand, static_cell_iterator_t and

static_vef_iterator_t are two non-abstract data

type extensions of cell_iterator_t and vef_it-

erator_t, respectively. By overriding the set of deferred

methods of the former ones, the latter ones tease out the

data related to the current object on which they are seated

from the global arrays and rest of private data structures

that comprise the internals of static_

triangulation_t.

There is no single approach to layout the data within a

given triangulation subclass. The seek of an accept-

able trade-off among memory consumption, computational

time required to set up, update (if it applies), access to

triangulation data, and the frequency on which these

operations are performed should guide its internal organi-

zation. For example, in [87], two storage layouts are pre-

sented, and its memory and computational cost for the

computation of any possible adjacency relationship is

evaluated in 3D. The first one, called one-level represen-

tation, is defined by F1
i hF0i, F2

i hF1i, and F3
i hF2i, and by

F0
i hF1i, F1

i hF2i, and F2
i hF3i (neighbourhood information).

In other words, it stores vertices of each edge, edges of

each face, and faces of each cell, together with edges

around vertices, faces around edges, and cells around faces.

The second one, called circular representation, is defined

by the composition information F1
i hF0i, F2

i hF1i, F3
i hF2i

(as above), together with the neighbourhood information

F0
i hF3i (cells around vertices). An important property of

these two storage layouts is their completeness, i.e., the

possibility to determine any adjacency without a loop over

the entire mesh. The storage requirements for a uniform

mesh of a cube domain with Nc cells are 48Nc (for hexa-

hedra) and 24Nc (for tetrahedra) in the former, and 32Nc

(for hexahedra) and 16Nc (for tetrahedra) in the latter.

However, the operation count for determining some adja-

cencies, although independent of Nc, is high. For example,

in the case of the one-level representation, to obtain the

cells around a vertex requires 48 (for hexahedra) and 140

(for tetrahedra) operations, whereas only one operation is

needed to obtain cells around facets. In the case of the

circular representation, these queries involve one and 148

(for hexahedra) or 299 (for tetrahedra) operations, respec-

tively [87]. (We recall that both kind of adjacencies are

required by FEMPAR as presented in Sect. 7.1.)

Another quite different storage data layout is the one

followed by the triangulation in the deal.II library [17],

essentially defined by the composition data F1
i hF0i,

F2
i hF1i, and F3

i hF2i (referred as hierarchical cell repre-

sentation by the authors of the library), and the neigh-

bourhood data F3
i hF2i stored cell-wise (i.e., a given cell

stores the identifiers of its cell neighbours across each face

within the cell). Besides, the (potentially non-conforming)

triangulation in this library is conceived (and explicitly

Listing 12. User-level code illustrating the usage of the data types and its associated TBPs supporting FEMPAR conceptual triangulation

representation.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 227

123

represented) as a collection of trees, where the cells of a

coarsest conforming mesh (generated by deal.II itself for

simple domains, or read from a file from several file for-

mats) form the roots, and the children branch off their

parent cells, thus forming binary-trees, quad-trees and oct-

trees in d ¼ 1; 2; and 3 spatial dimensions, respectively

[17]. While both the ancestors (i.e., the so-called ‘‘inac-

tive’’ cells) and leaf cells of the tree (i.e., the so-called

‘‘active’’ cells) are stored, only the latter ones actually form

the partition of the domain. Apart from a hierarchy of cells,

the deal.II triangulation also maintains a hierarchy of k-

faces for k ¼ 1; . . .; d � 1. Such quite complex data struc-

ture is justified by the authors for two reasons. First, it

allows for an efficient implementation of adaptive mesh

adaptation (including coarsening and refinement). The

hierarchy of n-faces aids in the process of handling the so-

called hanging node constraints required to build con-

forming FE spaces on top of non-conforming meshes. The

second reason is the implementation of (geometric)

multigrid preconditioners grounded on the adaptivity tree.

In particular, such preconditioners require that DOFs are

also associated to inactive cells. Thus, also inactive n-faces

have to explicitly exist in the triangulation. In any case,

such structure is hard to generate and maintain, and does

not fit well when integrated with parallel octree libraries

[89], like p4est [90]. The whole hierarchy must be gen-

erated from scratch on each mesh adaptivity step. How-

ever, based on our own experience, such hierarchy is not

really needed for an efficient implementation of adaptive

refinement. The second reason, i.e., the implementation of a

serial hierarchical multigrid solver in deal.II, would prob-

ably be more complicated without such a hierarchical

representation of the mesh.

While the hierarchical cell representation in deal.II has

been proven to be successful in the implementation of

highly complex hp-adaptive FE discretization [82] and

reduces memory consumption over F3
i hFi, the restriction

of the global vef identifiers to a cell (a very frequent

operation in FE codes), becomes significantly more

expensive in this storage layout as this operation requires

permutations among the reference coordinate system of the

cell that owns the vef to the one to which we are restricting

to; the same applies to the restriction of global DOF

identifiers to a cell when the DOFs are stored n-face-wise.

Furthermore, it is a non-complete storage layout. In par-

ticular, neighbourship data FihF3i has to be computed by

the user by means of a loop over all cells. Besides, it

prevents library support to loops over the facets of the

mesh, and access to the neighbouring cells, a natural

operation in the implementation of DG methods. In our

experience, facet-loop based integration of DG terms

(versus cell-loop based) leads to a software that is

significantly easier to use, as it might be designed such that

most of the complexity underlying facet integration can be

hidden to the user (see Sect. 9). Finally, although it is very

efficient for hierarchical and local mesh adaptation (within

each subdomain), the most severe drawback is its costly set

up (from scratch) for a given initial conforming coarse

mesh (this can be mitigated by reducing the coarse mesh

resolution, at the price of potentially losing geometry

modelling accuracy), and, in a distributed-memory envi-

ronment, the even more costly regeneration of an adapted

non-conforming forest of trees after a re-distribution step

among processes for dynamic load-balancing [90]. Indeed,

in [89], the latter is reported as the second more costly

operation in the simulation pipeline, only below the linear

solver step.

The static_triangulation_t data type explic-

itly stores the composition data F3
i hFi, and the neigh-

bourship data FihF3i within its internal (private) member

variables.18 The memory consumption of such complete

storage layout is 52Nc (hexahedra) and 28Nc (tetrahedra),

which is less than twice the one of the one-sided and cir-

cular representations [87]. At the price of this increased

memory consumption, static_triangulation_t is

able to provide the required adjacency data with Oð1Þ
arithmetic complexity. Besides, the cell-based storage of

the composition relationship is perfectly suited for its

migration in parallel distributed-memory environments. On

the other hand, the amount of permanent storage of this

data layout can be reduced if one exploits the fact that

neighbourship data is only required in very specific parts of

the code. For example, unstructured mesh generators usu-

ally provide only the composition data F3
i hF0i. In such a

case, static_triangulation_t requires the neigh-

bourship data F0
i hF3i (plus the reference cell topology data

encompassed within the reference_fe_t instance

mapped to each cell; see Sect. 6.1) in order to set up the

composition data F3
i hF1i and F3

i hF2i. It is also needed in

triangulation_t subclasses suitable for distributed-

memory computers, among others, to set up the data

structures required to perform nearest neighbour exchanges

of DOFs nodal values among subdomains. (We stress that

this process requires to globally identify interface DOFs

consistently among subdomains sharing such DOFs .) In

this latter scenario, this adjacency data is only required for

n-faces that lay on the inter-subdomain interface (and not

for those on the interior). The evaluation of facet integrals

(as designed in FEMPAR, see Sect. 9) also requires at least

F2
i hF3i and F1

i hF2i, in 2D and 3D, respectively. The use of

the full adjacency data can be needed for the implemen-

tation of advanced numerical discretization schemes, e.g.,

18 We note that F3
i hF3i is simply F3

i and is not stored.

228 S. Badia et al.

123

for the implementation of nodal-based shock detectors for

monotonic FEs [58, 59]. Due to the aforementioned rea-

sons, we decided to design static_triangula-

tion_t such that it permanently stores such data, but we

stress that our software design is such that a triangulation

subclass is always free to offer methods that set up and

destroy these data on demand to reduce the amount of

permanent data storage.

The static_triangulation_t data type, toge-

ther with a selected set of its bindings, is defined as shown

in Listing 13. Before going into more detail, there are two

main points to remark with respect to how this type

internally layouts its data. First, it relies all the way through

on intrinsic Fortran allocatable arrays. These sort of data

structures are perfectly suited for the particular case of

static_triangulation_t, due to its static nature.

We stress, however, that more efficient data structures (i.e.,

able to mitigate the effect of frequent/costly allocat-

able array re-allocations) would be convenient if it also had

to support mesh adaptation (e.g., a linked list, or even

better for data locality, a data structure with semantics

close to std:vector of the C?? standard template

library, which in fact is already in FEMPAR but not

included for brevity). Second, for increased data locality

during cell and vef sequential traversals (and thus a more

efficient on the memory hierarchy of modern computer

architectures) the data is not stored into cell-wise or vef-

wise local arrays, but into global arrays that are indexed

either by the global cell or vef identifiers.

A collection of reference_fe_t polymorphic

instances is stored in the reference_fes(:) array (see

Line 4 of Listing 13). These instances are uniquely iden-

tified (within the local scope of static_triangula-

tion_t) by their position in this array. For a given cell

with global identifier cell_gid, the FE space of func-

tions to which the cell mapping UK belongs, is described

by the reference_fe_t instance with identifier

cell_to_ref_fes(cell_gid) in the collection; see

Line 7. The member variables used to store the composi-

tion data F3
i hFi are encompassed within Lines 10–11 of

Listing 13. As stated above, the global vef identifiers are

stored cell-wise, in the lst_vefs_gids(:) array,

which is in turn (indirectly) addressed by the

ptr_vefs_x_cell(:) array. In particular, the ones

assigned to the vefs on cell cell_gid start and end in

position ptr_vefs_x_cell(cell_id) and ptr_

vefs_x_cell(cell_id?1)-1 of lst_vefs_

gids(:), respectively. Thus, e.g., the implementation of

the (overridden) get_num_vefs TBP in static_

cell_accessor (see Listing 12), just determines the

Listing 13. The internals of static_triangulation_t and a selected set of its bindings.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 229

123

number of vefs on the boundary of the current cell as

ptr_vefs_x_cell(cell_id?1)-ptr_vefs_x_

cell(cell_id). On the other hand, the member vari-

ables used to store the adjacency data FihF3i are encom-

passed within Lines 14–15 of Listing 13. The global

identifiers of the cells around a vef vef_gid start and end

in position ptr_cells_around(vef_gid) and

ptr_cells_around(vef_gid?1)-1 of lst_

cells_around(:), respectively.

The geometry-related data is handled by the member

variables in Lines 18–20. In particular, during the set up of

static_triangulation_t a global numbering of the

nodes of the global FE space describing the geometry of

the mesh is internally built. (The process that generates

such numbering is identical to the one described in

Sect. 10.3, so that we omit it here to keep the presentation

short.) In particular, the global node identifiers restricted to

cell cell_gid start and end in position ptr_

nodes_gids(cell_id) and ptr_nodes_gids(-

cell_id?1)-1 of lst_nodes_gids(:), respec-

tively. These global node identifiers are used to (indirectly)

address the global array of nodes coordinates in Line 20.

The cells_set_ids(:) and vefs_set_ids(:)

arrays are used to store the user-provided cell and vef set

identifiers (see Sect. 7.1), respectively, while

vefs_at_boundary(:), whether the corresponding

vef lays on the boundary of the domain or not.

Finally, the static_triangulation_create

binding sets up a new static_triangulation_t

instance. There are two options for creating a

static_triangulation_t in FEMPAR, depending

on whether the mesh is structured or unstructured. In the

first case, FEMPAR provides the machinery for the auto-

matic generation of a triangulation on simple domains

(e.g., a unit cube), currently of brick (quadrilateral or

hexahedral) cells. This function is implemented exploiting

a tensor product structure of the space, numbering cells and

vefs using lexicographical order. The second way to create

a static_triangulation_t instance is from a mesh

data file, e.g., using the GiD mesh generator [91].

8 Evaluation of Cell Integrals

In this section, we describe the data structures required to

perform the numerical integration of the local matrices. In

order to compute cell integrals (12), one needs (among

others) functionality to evaluate the shape functions and

their derivatives at the quadrature points in the physical

cell and the determinant of the Jacobian at the quadrature

points in the reference cell. In turn, the evaluation of the

shape functions and derivatives in the physical cell rely on

their evaluation (and possibly the evaluation of the Jaco-

bian) in the reference cell (see, e.g., (13) and (14)). We

note that the evaluation of Ŵ does not require any addi-

tional information; it is the identity for Lagrangian ele-

ments and only requires the Jacobian in the reference cell

for vector-valued shape functions (see (17) and (18)). In the

following, we present a set of data types that contain all

this information.

The evaluation of cell integrals involves the data type

quadrature_t that represents the quadrature Q, in-

terpolation_t, that stores the values of the shape

functions and its first derivatives (either in the reference or

physical space) at the quadrature points of Q, and a

cell_map_t that describes the mapping from a reference

to a physical cell UK (e.g., Jacobian-related data). Addi-

tionally, the data type cell_integrator_t provides

the machinery to compute the interpolation_t cor-

responding to the physical space from the one at the ref-

erence space and the cell_map_t at every cell of the

triangulation. In the following sections, we cover in detail

these software abstractions.

8.1 Numerical Quadrature

The data type that in FEMPAR represents an arbitrary

quadrature rule is called quadrature_t and is defined

as shown in Listing 14.

Listing 14. The quadrature_t data type.

230 S. Badia et al.

123

In Listing 14, coordinates(:,gp) and

weights(gp) store, respectively, x̂gp 2 Rnum dims and

wgp, for gp ¼ 1; . . .; num quadrature points. It might

readily be observed from the interface of its create bind-

ing that quadrature_t is designed to be simply a

placeholder for the quadrature points coordinates and its

associated weights. Indeed, this binding essentially allocates

coordinates(:,:) and weights(:). The code that

ultimately decides how to distribute the quadrature points

over K̂ and set up its associated weights is actually bounded

to the reference_fe_t implementors through the

deferred binding with interface shown in Listing 15.

All reference_fe_t subclasses currently available

in FEMPAR select by default a Gaussian quadrature that

exactly integrates mass matrix terms (within their imple-

mentation of the binding in Listing 15) by invoking

fill_*_gauss_legendre methods at lines Lines 13

and 14 in Listing 14. This quadrature can be solely deter-

mined from the attributes of the reference_fe_t

implementor at hand (its topology and order).19 However,

in other more demanding situations, e.g., the integration of

a trilinear weak form, the user can provide the desired

quadrature degree through the degree optional dummy

argument. If more general scenarios to the ones currently

covered (e.g., a non-Gaussian quadrature) are to be

addressed, then the interface might be modified such that

an optional parameter dictionary is passed instead.

8.2 Evaluation of Reference Cell Shape Functions

As commented in the introduction of this section, to compute

cell integrals (12), one needs to evaluate shape functions and

their derivatives in the physical cell, which in turn rely on

their evaluation in the reference cell (see, e.g., (13) and (14)).

The values of the shape functions and their first derivatives at

a set of quadrature points provided by a quadrature_t

instance are stored in the interpolation_t data type

presented below. The same data type can be used to store this

data in the reference or physical space.

Let us start with the evaluation of shape function in the

reference space. The local FE space on top of K̂ actually

depends on the particular reference_fe_t implemen-

tor at hand. Consequently, this functionality has to be

offered through a deferred binding of this abstract type.

The interface of this binding is declared in Listing 16. The

subroutine overriding it in concrete subclasses is in charge

of computing the shape functions values and derivatives at

quadrature points in the reference space and stores them in

a raw-data container of type interpolation_t (to be

discussed later in this section).

Let us remark several points related to this interface.

First, this binding is typically called only once, and the data

pre-computed and stored within the passed interpo-

lation_t dummy argument is repeatedly re-used when

transforming these values to an actual cell; see Sect. 8.4.

Listing 15. The interface of the create_quadrature deferred binding of reference_fe_t.

Listing 16. The interface of the create_interpolation deferred binding of reference_fe_t.

19 As it is well known, considering n-cube topologies for K̂, for a

Lagrangian reference FE of order p and an affine geometrical map, we

need a 1D Gaussian quadrature with pþ 1 points. For tetrahedral

meshes with the Duffy transformation, we need to take n ¼ pþ
ceilingðd=2Þ to integrate exactly mass matrices (see Sect. 3.5 for

more details).

FEMPAR: An Object-Oriented Parallel Finite Element Framework 231

123

Second, this binding is designed such that all functions are

evaluated at all quadrature points within a single call,

instead of following a (much) finer granularity approach in

which only one function is evaluated at a quadrature point

per call.20 Third, we stress that the actual implementation

of this deferred binding in FEMPAR computes shape

functions values and first derivatives in the reference space,

whereas it lets the caller to selectively decide whether to

compute or not the second derivatives of the shape func-

tions, provided that they are expensive to compute and only

required in very particular scenarios; see Sect. 3.7. Indeed,

the code implementation of this feature is of cross-cutting

nature, being reflected in several interfaces and data types

in which the cell (and face) integration functionality is

split. We will nevertheless omit here (and in the rest of

sections) details regarding second derivatives (and its

optional computation) in order to keep the presentation

simple.

Let us now discuss on the rationale underlying in-

terpolation_t. This data type is not exposed at all to

the user of FEMPAR. It is instead used as an internal low-

level container that lets the data types involved in the

implementation of cell integrals exchange the sort of data

subject to consideration. It is ultimately the responsibility

of the concrete reference_fe_t subclass to decide

how the data is actually laid out within the member vari-

ables of interpolation_t. Thus, reference_fe_t

is the only data type that can access or modify inter-

polation_t. In its current flavour, interpola-

tion_t is a concrete (i.e., non-abstract) data type with a

fixed set of multi-rank allocatable array member variables

for storing shape function values and derivatives. For

example, the one storing shape function values is a 3-rank

array, where a reference_fe_t implementor may

choose its indices, from left to right, to refer to the com-

ponent of the shape function, the shape function, and the

quadrature point, respectively. The reference_fe_t

subclass is, however, completely free to lay out the data in

these arrays, and it is in this flexibility where the extensi-

bility of the software design to accommodate several FE

space realizations resides. This, indeed has been proven to

be sufficient to (efficiently) implement all FE spaces cur-

rently available in FEMPAR, including scalar, vector, and

tensor-valued Lagrangian FEs (where higher-rank spaces

are determined as the tensor product of the scalar spaces,

and shape functions have only one non-zero component),

and genuinely vector-valued FE spaces (where more than

one component of the shape function may be non-zero).

8.3 Geometrical Mapping

A basic building block is the mapping UK among the

reference cell K̂ coordinate system and the one corre-

sponding to an actual cell K of the triangulation in the

physical space; see Sects. 3.2 and 3.3. For example, we are

able to pull back the gradients of the shape functions from

the reference to the physical space in (14) using the Jaco-

bian of the transformation evaluated at quadrature points,

or to evaluate the source term at quadrature points in real

space. The Jacobian is also required to the transform the

integral from the physical to the reference space in (12) and

to compute the Piola transformations in div and curl-con-

forming FE spaces (see (17) and (18)). The derived type

cell_map_t in FEMPAR is designed to be a placeholder

for the data required to provide this sort of services. It is

declared as shown in Listing 17. The rationale underlying

the inheritance relationship among cell_map_t and

base_map_t will be made clear in Sect. 9.

20 Here (and in many other places) we try to maximize the

granularity of each call to a deferred binding for efficiency reasons.

The reader should be aware that calling to deferred bindings with the

granularity of the latter approach would be very expensive, apart from

preventing a number of potential compiler optimizations enabled by

the former.

232 S. Badia et al.

123

The create binding of cell_map_t takes as input a

quadrature_t instance with a set of integration points

where JKðx̂gpÞ, J�1
K ðx̂gpÞ, and jJKðx̂gpÞj are to be evaluated

(see Listing 17). These geometry-related data are stored in

the jacobian(:,:,gp), inv_jacobian(:,:,gp),

and det_jacobian(gp) allocatable array member

variables of cell_map_t, respectively, and allocated

during a call to this binding. Apart from a quadrature_t

instance, cell_map_t also requires a description of the

(discrete) space of functions to which UK belongs. FEMPAR

supports mappings UK belonging to abstract FE spaces

(e.g., high-order polynomial FE spaces or spline-based

spaces). The reference_fe dummy argument of poly-

morphic type reference_fe_t serves the purpose. (We

note that dynamic run-time polymorphism in this particular

context let us re-use cell_map_t, e.g., with an arbitrary

cell topology.) It turns out that the only information that

reference_fe_t has to provide to cell_map_t are

its shape functions, first derivatives, and (on demand) sec-

ond order derivatives at the quadrature points (in the ref-

erence space). The interpolation member variable

(see Listing 17) is used by reference_fe to exchange

this sort of data with cell_map_t via a call to the

create_interpolation binding of the former (see

Listing 16) during a call to the create binding of the latter.

While the create TBP of cell_map_t is designed

to be called once, the update TBP of cell_map_t is,

however, designed to be called multiple times, once per

every cell K of the triangulation. A pre-condition of up-

date is that the nodes_coordinates(:) scratch

member variable (see Listing 17) has been loaded with the

coordinates in real space of the nodes describing the

geometry of K (stored into point_t instances). Once this

pre-condition is fulfilled, UK can be expressed as a linear

combination of the reference_fe_t shape functions

with nodes_coordinates(:) being the correspond-

ing coefficients in the expansion. At this stage, coor-

dinates_quadrature_points(:), which stores

the coordinates of quadrature points in real space, and

jacobian(:,:,:), can be easily computed. Finally,

inv_jacobian(:,:,:) and det_jacobian(:)

can be computed from jacobian(:,:,:) using

straightforward numerical algorithms.

8.4 Evaluation of Shape Functions in the Physical

Space

The user code that evaluates cell integrals in (12), may

need the value, gradient, curl, and divergence of the shape

functions at the integration points in the physical space,

provided that we want to unburden FEMPAR users from the

complexity of having to explicitly apply mapping trans-

formations. As commented in Sect. 3, the mapping that

transforms a shape function /̂aðx̂Þ in the reference FE

space into the one in the physical space

/aðxÞ ¼ ŴKð/̂aÞ �U�1
K , depends on the particular FE

Listing 17. The cell_map_t data type.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 233

123

space at hand; see Sects. 3.8, 3.9, and 3.10 for details. For

this reason, the actual code that performs these transfor-

mations is not actually bounded to cell_map_t, but to

reference_fe_t, through the deferred binding with

interface declared in Listing 18.

The interpolation_reference_cell input

dummy argument of apply_cell_map (see Listing 18)

must have been obtained from a call to the binding in

Listing 16 invoked on the same reference_fe_t

instance. The output dummy argument interpola-

tion_real_cell holds the shape functions and their

derivatives evaluated at quadrature points in physical space

(see (13) and (14)). It is also assumed that, on input,

interpolation_real_cell already contains the

data that does not have to be re-computed on each mesh

cell, e.g., the value of the shape functions on integration

points for Lagrangian FEs; see the discussion related to the

update binding below for the strategy that we follow in

order to fulfill this requirement. This leaves room for

optimization in the implementation of this deferred binding

(on subclasses), since these quantities do not have to be re-

computed on each cell. The reference_fe_t subclass

uses the cell_map_t instance (passed to the apply_-

cell_map binding, see Listing 18) as a placeholder for

the data required to provide the mapping transformations

required.

We stress, however, that interpolation_t is a low

level structure that is not designed as a data type that

FEMPAR users have to interact with, for reasons made clear

in Sect. 8.2. Therefore, we need to introduce an additional

data type in our software design, called cell_inte-

grator_t, that, among other services, is able to fetch raw

data from interpolation_t into field data types (i.e.,

scalars, vectors, and tensors) the user can be easily famil-

iarized with. This data type is declared as shown in

Listing 19.

Listing 18. The interface of the apply_cell_map deferred binding of reference_fe_t.

Listing 19. The cell_integrator_t data type.

234 S. Badia et al.

123

An instance of cell_integrator_t is created from

a quadrature rule (where the shape functions and their

derivatives are to be evaluated) and a polymorphic ref-

erence_fe_t instance describing the reference FE

space at hand; see interface of the create binding in

Listing 19. During this stage, reference_fe creates the

interpolation_reference_cell member vari-

able of cell_integrator_t via create_inter-

polation; see Listing 16. It also clones

interpolation_reference_cell into inter-

polation_real_cell, and copies the contents of the

former into the latter. This lets cell_integrator_t to

fulfill later on the pre-condition on the last dummy argu-

ment of apply_cell_map. The create binding also

associates its polymorphic pointer reference_fe

member variable to the reference_fe_t instance

provided to it on input. This pointer is required later on by

the update and get_* bindings (see discussion in the

sequel).

The update binding of cell_integrator_t

simply invokes apply_cell_map on its polymorphic

reference_fe member variable, using the instance of

cell_map_t provided on input to update, and the two

interpolation_t member variables as actual argu-

ments, respectively; see Listings 18 and 19. It leaves the

cell_integrator_t instance on which it is invoked

in a state such that it is able to provide the services it was

primarily designed for. These are offered through the

get_values, get_gradients, get_diver-

gences, get_curls, etc., generic bindings. We note

that cell_integrator_t is designed such that it can

handle either scalar, vector, or tensor-valued refer-

ence_fe_t instances (see Sect. 6.2). With this purpose

in mind, each of the aforementioned generic bindings are

overloaded with subroutines that have appropriate inter-

faces for these three types of FEs. For example, the sub-

routine overloading get_gradients in the case of

scalar-valued FEs is declared and implemented as shown in

Listing 20, with vector_field_t representing a d-di-

mensional rank-1 tensor; the interface of the one corre-

sponding to vector-valued FEs only differs from the one

above on the base type of the gradients

allocatable array dummy argument, which is of base type

tensor_field_t (i.e., data type representing a d-di-

mensional rank-2 tensor).

Let us remark some important points with respect to the

subroutines overloading the generic bindings of

cell_integrator_t. First, we note that the actual

argument passed in place of, e.g., the gradients(:,:)

dummy argument in Listing 20, is intended to be actually

declared in code written by the user of FEMPAR. Provided

that FEMPAR can support variable degree FEs on top of

different triangulation cells (see Sect. 10), the allo-

catable attribute of the gradients(:,:) dummy

argument not only unburdens the user from the complexity

of having to (pre)allocate this array, but even from the one

associated to variable degree FEs. For example, if on input,

the size of gradients(:,:) is not sufficient to hold the

data to be provided by the cell_integrator_t

instance corresponding to the reference_fe_t on top

of the current triangulation cell, then it can be re-allocated

to the appropriate size. Second, this binding is designed

such that all functions are evaluated at all quadrature points

within a single call, justifying why the dummy argument

has to be a rank-2 allocatable array.21 At this point, let us

note that all subroutines subject to consideration ultimately

rely on (deferred bindings of) reference_fe_t; see,

e.g., line 5 in Listing 20. We recall that refer-

ence_fe_t must mediate in any process that requires

retrieving data from interpolation_t; see Sect. 8.2.

8.5 Cell Integration User Code Example

At this point of the discussion, we are already in position to

show user code that evaluates the entries of the (current cell)

local matrix for the Example 3.1 presented in Sect. 3.1. This

code is sketched in Listing 21. This code would be bounded

to a subclass of the discrete_integration_t

abstract data type presented in Sect. 11.2 suitable for the

Galerkin discretization of the Poisson problem.

21 This represents another design decision in the seek of maximizing

the granularity of the calls to deferred bindings for code efficiency

reasons.

Listing 20. The code implementing the get_gradients_scalar binding of cell_integrator_t ultimately relies on a deferred binding

of reference_fe_t with the same name.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 235

123

The reader may note from Listing 21 that FEMPAR also

offers an expression syntax that lets its users code weak

forms in a way that resembles their mathematical expres-

sion. The user is in charge of explicitly writing the

expression of the numerical integration in the reference

cell, i.e., of explicitly implementing the quadrature point

summation (loop) and handling the determinant of the

Jacobian and the quadrature point weighting in (12).

However, the evaluation of the shape function and their

gradients, curls, etc., at the quadrature points in the phys-

ical space (e.g., expressions (13) and (14)) are completely

hidden to the user. This can be achieved using a feature of

modern programming languages called operator over-

loading. (We refer to [67] for a detailed exposition of this

mechanism in Fortran2003.) Common (contraction) oper-

ations among tensors are provided by means of overloaded

intrinsic and library-defined operators. For example, the

operator(*) generic interface (corresponding to the *

intrinsic operator) has to be overloaded with the single

contraction of rank-1 tensors, and the multiplication of a

rank-1 tensor by a scalar to let our code compile. A crucial

design requirement in the seek of code efficiency is that no

dynamic memory allocation/deallocation is involved as the

partial evaluation of sub-expressions proceeds (in the order

dictated by operator associativity and priority rules in

Fortran). In order to fulfill this requirement, the data types

representing vectors and tensors are declared such that their

entries are stored in an array member variable of size

known at compilation time. This size is stored in the

library-level parameter constant SPACE_DIM, defined as

the maximum number of space dimensions of the physical

space in which the physical problem is posed. By default,

FEMPAR is prepared to deal with 3D simulations, but the

code is written such that a 2D simulation might also be

performed if SPACE_DIM is equal to 3, at the price of

extra storage and computation.22 Higher dimensional

problems could be considered by compiling FEMPAR with

a larger value for SPACE_DIM. Apart from avoiding

dynamic memory allocation/deallocation during the eval-

uation of weak forms, this solution has the following

advantages: (1) there is no need to explicitly have the

number of dimensions as a member variable of the data

types representing vectors and tensors; (2) the limits of the

loops implementing tensor contraction operations are

known at compilation time, enabling compiler optimiza-

tions. We finally stress that we preferred this solution over

the usage of Fortran2003 parameterized data types [67]

due to the lack of support of this feature in some of the

most popular compilers widely available on high-end

computing environments.

9 Evaluation of Facet Integrals

This section covers the data types (and their interactions) in

which the evaluation of integrals over the facets of the

triangulation is grounded on. The integration of facet-wise

matrices and vectors (see, e.g., (23)) involves the evalua-

tion of shape functions and gradients of the neighbouring

cells at the quadrature points within the facet in the phys-

ical space and the Jacobian of the facet map at the refer-

ence space. As described in Sect. 8, the former quantities

are computed at every neighbouring cell from their values

at the reference space and the Jacobian of the cell mapping.

The evaluation of interior facet also requires the compu-

tation of the permutationPðgpÞ (see (25)) provided that the
coordinate systems of the cells surrounding the facet might

not be aligned in physical space.

22 In fact, 2D problems for PDEs that involve curl operators require

SPACE_DIM to be equal to 3.

Listing 21. User-level code illustrating the usage of cell integration data structures in order to compute the element matrix for the Example 3.1

presented in Sect. 3.1.

236 S. Badia et al.

123

In FEMPAR the assembly process of the global linear

system underlying the discrete weak problem (20) involves

two loops, over all cells and facets, respectively. In the

former loop, a cell-wise matrix AK and vector fK are

computed per each cell. These hold the partial contribu-

tions of the cell to the corresponding entries of the global

coefficient matrix and right-hand side vector, respectively.

The data structures involved in their efficient computation

have been already covered in Sect. 8. In the latter loop, and

assuming that we are sitting on an interior facet F 2 FX
h ,

four facet-wise matrices, namely AF
KþKþ , AF

KþK� , AF
K�Kþ ,

and AF
K�K� are computed (see Sect. 3.12).

Fig. 8 UML class diagram of the data types on which the numerical evaluation of facet integrals is grounded on

FEMPAR: An Object-Oriented Parallel Finite Element Framework 237

123

We depict in Fig. 8 a complete UML class diagram of

the data types involved in the evaluation of facet integrals

and their relationships. The data types the user has to

ultimately interact with are quadrature t, which holds

the facet quadrature points and weights, facet maps t,

which handles (i.e., stores, updates, provides) all the geo-

metrical related data of the facet and neighbouring cells Kþ

and K�, and, finally, facet integrator t, which stores

and updates shape function values and first derivatives, and

provides shape function values, gradients, curls, etc., of Kþ

and K� evaluated at facet quadrature points in real space.

The rest of data types in Fig. 8 are auxiliary data types, not

exposed to the user, which aid the latter two in the

implementation of their corresponding services. The reader

might readily observe in Fig. 8 that our software design is

such that the data types that provide support to the evalu-

ation of cell integrals, i.e., quadrature_t, cell_-

map_t, and cell_integrator_t (see Sect. 8), can be

re-used to a large extent for the evaluation of facet inte-

grals. As we will see in the rest of the section, some of the

methods to be invoked in order to control their respective

life cycles in the context of facet integrals are nevertheless

different from the ones to be invoked in the context of cell

integrals; see, e.g., the signature of the create_re-

stricted_to_facet binding of cell_integra-

tor_t in Fig. 8 compared to that of its create binding

in Listing 19.

9.1 Numerical Quadrature

The data type quadrature_t is designed to be a

placeholder for the facet quadrature points x̂q and its

associated weights wq. However, the code that ultimately

decides how to distribute x̂q over the reference facet F̂

coordinate system, and set up wq, is bounded to refer-

ence_fe_t, in particular through the deferred binding

with interface shown in Listing 22. We refer to Sect. 8.1

for the rationale underlying the degree optional dummy

argument of this deferred binding.

9.2 Geometrical Mappings

The facet_maps_t data type in Fig. 8 handles the

geometrical facet mapping and the two geometrical cell

mappings. The facet mapping is represented by

facet_map_t, whereas the cell mappings by cell_-

map_t; see Sects. 9.2.1 and 9.2.2, respectively.

9.2.1 Facet Mapping

As illustrated in Fig. 8, facet_maps_t is composed,

among others, of a single instance of type facet_map_t.

The member variables (and associated code) that are

common to facet_map_t and cell_map_t are fac-

tored into a superclass base_map_t (see Listing 17).

facet_map_t handles all data related to the facet map

UF , including the facet outward unit normals (see Fig. 8).

An extra 2-rank real allocatable array member variable,

outward_unit_normals(:,:), stores the facet out-

ward unit normals (with respect to Kþ by convention)

evaluated at facet quadrature points in real space, as

required by (25); n�ðxgpÞ can be simply obtained as

n�ðxgpÞ ¼ �nþðxgpÞ.
Let us now see how facet_maps_t controls the life

cycle of its facet_map_t instance. The create bind-

ing of facet_map_t takes a quadrature_t instance

with the facet quadrature points. JFðx̂gpÞ and jJFðx̂gpÞj are
evaluated at these quadrature points and stored in the

jacobian and det_jacobian member variables,

which are allocated during a call to this binding together

with outward_unit_normals(:,:). Apart from a

quadrature_t instance, facet_map_t also requires

a description of the discrete, lower dimensional space of

functions on top of the reference facet F̂ to which UF

belongs. The ref_fe_geo dummy argument of cre-

ate, of polymorphic type reference_fe_t, is pro-

vided for this purpose; in particular, facet_maps_t

sends the reference_fe_t on top of Kþ as an actual

argument to the ref_fe_geo dummy argument in order

to comply with the above described convention for the

normals. The interpolation_t member variable of

Listing 22. The interface of the create_facet_quadrature deferred binding of reference_fe_t.

238 S. Badia et al.

123

facet_map_t (see Listing 17) is used by ref_fe_geo

to exchange with facet_map_t the shape function val-

ues and their derivatives. To this end, reference_fe_t

is equipped with the create_facet_interpola-

tion deferred binding (see its signature in Listing 23) that

computes these quantities on top of the reference facet F̂.

Theupdate binding offacet_map_t is intended to be

called once per facet loop iteration, i.e., once per each facet of

the triangulation. A pre-condition of this binding is that the

nodes_coordinates(:) scratch member array of

facet_map_t (see Listing 17) has been loaded with the

coordinates in real space of the nodes that lay on the the

facet.23 The update binding takes as input dummy argu-

ments a quadrature_t instance and the real parameter

reorientation_factor in order to adjust the sign of

the facet normals (see (26)). Within update, quadra-

ture_points_coordinates(:) and jaco-

bian(:,:,:) can be easily computed from the basis shape

functions and their first derivatives, respectively. On the other

hand, det_jacobian(:) and outward_unit_nor-

mals(:,:) can be computed from jacobian(:,:,:).

The former as stated in (24), while the latter as in (26).

9.2.2 Neighbouring Cells Mappings

The facet_maps_t data type is also composed by two

instances of type cell_map_facet_restriction

_t; see Fig. 8. These instances handle all data related toUKa ,

with a being eitherþ or-. Let us thus refer to these instances

as cell_map_facet_restrictiona, and to the

polymorphic reference_fe_t instances on top of Ka as

ref_fe_geoa. In turn, cell_map_facet_re-

strictiona are composed by as many cell_map_t

instances as facets in Ka. Provided that an actual facet F can

potentially have local identifier Fa in Ka within the range

Fa ¼ 1; . . .; num facetsðKaÞ, having as many cell_

map_t instances as facets per surrounding cell let us hold

and (pre)calculate within these instances the result of eval-

uating the K̂
a
shape functions and their derivatives at the

facet quadrature points for all facets in the reference system.

To this end, the create binding of cell_map_-

facet_restrictiona is invoked (from the one corre-

sponding to facet_maps_t) with the facet quadrature q

andref_fe_geo a as input actual arguments. It then walks

over all possible local facet identifiers in the corresponding

cell, and for each local facet identifier, invokes a specialized

version of the create binding of the corresponding

cell_map_t instance, named create_restricted

_to_facet (that additionally requires the local facet

identifier); see Fig. 8. Thereference_fe_t is ultimately

responsible to exchange this sort of data with cell_-

map_t. This service is in particular provided by the cre-

ate_interpolation_restricted_to_facet

deferred binding of reference_fe_t, with signature

defined in Listing 24.

Listing 23. The signature of the create_facet_interpolation deferred binding of reference_fe_t.

Listing 24. The signature of the create_interpolation_restricted_to_facet deferred binding of reference_fe_t.

23 This can be easily fulfilled by calling the get_nodes_coor-
dinates binding of vef_iterator_t in Listing 11.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 239

123

As seen so far, thecreate binding offacet_maps_t is

designed to be called right before the actual loop over all tri-

angulation facets, and it sets up all the scratch data. It does so by

covering all possible scenarios corresponding to potential val-

ues of local facet identifiers within the two surrounding cells

(even if some of these scenarios are not actually exposed in the

triangulation). The update binding of facet_maps_t,

however, is intended to be called sitting on a particular facet F

of the triangulation, and it has to only update those two

cell_map_t instances within cell_map_facet_re-

strictiona corresponding to the particular scenario at hand,

i.e., to the particular combination of local facet identifiers Fþ

andF� of the facet onwhich it is being updated.To this end, the

update binding of facet_maps_t receives these local

identifiers in facet_lids (see Fig. 8) and then calls the

update binding of cell_map_facet_restrictionþ

and cell_map_facet_restriction� with facet_

lid=facet_lid(1) and facet_lid=facet_lid

(2), respectively. The update binding of cell_map_

facet_restriction_t picks up the cell_map_t

corresponding to facet_lid and invokes the update

bindingof the latter.Westress that no specializedversionof this

binding is required in the context of facet integration, i.e., the

same version discussed in Sect. 8.4 for cell integration can be

re-used here.24 During the update process, cell_map_-

facet_restriction_t also registers in its cur-

rent_facet_lid private member variable, the value

supplied to the facet_lid dummy argument. This lets

facet_maps_t to extract later on from cell_map_-

facet_restriction a the updated cell_map_t

instances; see discussion of facet_integrator_t in the

sequel.

9.3 Evaluation of Shape Functions in the Physical

Space

The last data type that remains to be covered is

facet_integrator_t; see Fig. 8. This data type is the

counterpart of cell_integrator_t (see Sect. 8.4) for

the case of facet integrals. In particular, it stores and updates

shape function values and derivatives, and provides the

values, gradients, curls, and divergences of the respective

fields for both Kþ and K� evaluated at facet quadrature

points in real space. As can be observed from Fig. 8, its

overall design is very close to the one of facet_maps_t,

with cell_integrator_facet_restriction_

t and the cell_integrator_t instances it is composed

of, playing the role of its counterparts in the scope of

facet_maps_t (i.e., cell_map_facet_restric-

tion_t and cell_map_t, respectively). There are,

however, two major differences among these two. First,

facet_integrator_t deals with (e.g., it is created

from) the two polymorphic reference_fe_t instances

(see ref_fea dummy arguments of its create binding in

Fig. 8) onwhich the global FE spaces of functionsX h,Yh are

grounded on. For example, the create binding of cell_

integration_facet_restrictionþ invokes the

create_restricted_to_facet binding of the

cell_integrator_t for all facets Fþ within Kþ. The

latter computes at a given facet /̂a
Kþðx̂þgpÞ, r/̂a

Kþðx̂þgpÞ
through the deferred binding create_interpola-

tion...to_facet of reference_fe_t presented in

Listing 24. Second, facet_integrator_t has to

unburden the user from the complexity underlying the fact

that the coordinate systems of Kþ and K� might not be

aligned in real space. To this end, it is equippedwith a private

lookup permutation table, called qpoints_perm(:,:)

in Fig. 8, that lets it translate facet quadrature points iden-

tifiers from the local numbering space of Kþ into the one of

K�. This table is allocated and filled during the create

binding of facet_integrator_t, in particular by

reference_fe_t through a deferred binding called

fill_qpoints_permutations. Given the facet

quadrature identifier gp and the facet permutation index pi

(see Sect. 3.16), qpoints_perm(gp,pi) stores the

value of PðgpÞ (see (25)). The permutation index is stored

within the current_permutation_index of

facet_integrator_t, extracted from the permuta-

tion_index dummy argument of theupdate binding. In

turn, this parameter is extracted from the array

facet_permutation_indices(:) of fe_spa-

ce_t in Listing 27 (see Sect. 10). We note that for n-sim-

plices, we consider a renumbering such that all facets have

the same orientation on both cells that share it, as commented

in Sect. 3.16. In this case, fill_qpoints_permuta-

tions fills the table with the identity permutation in all

columns. We note that the re-orientation of the n-simplices

can lead to mappingsUK such that jJK j\0, but this is not a

problem as soon as one takes its absolute value, e.g., in (12).

9.4 Facet Integration User Code Example

In order to grasp how the data structures covered so far are

actually used together in practice, the Fortran pseudocode

snippet at Listing 25 shows user’s space code in charge of

24 We note that, as in Sect. 8.3, the nodes_coordinates(:)
member variable of these two cell_map_t instances has to be

loaded with the coordinates in physical space of the geometry nodes

of the two cells surrounding the facet.

240 S. Badia et al.

123

evaluating the first integral in (22) for each interior facet in

a loop over all facets. It would be bounded to a subclass of

the discrete_integration_t abstract data type

presented in Sect. 11.2 suitable for the non-conforming DG

discretization of the Poisson problem.

There are a pair of worth noting remarks about List-

ing 25. First, the call to the get_values() binding of

facet_integrator_t in Line 14 already returns the

permuted K� shape function values, i.e., shape_val-

ues_ K�(b,gp) actually stores /b
K�ðx�PðgpÞÞ. Second, it

is the so-called fe_space_t abstraction (to be covered in

Sect. 10) the one in charge of creating the facet integration

data structures on loop initialization and to update them at

each facet loop iteration (see Line 9). Therefore, the user

does not actually directly deals with all the data types

bindings and their interactions illustrated in Fig. 8. In this

example, it becomes evident that facet-loop based inte-

gration is very convenient for the implementation of DG

methods, since it very much resembles the blackboard

expressions (see, e.g., (20)).

9.5 Change-of-Basis Implementation

in a reference_fe_t Subclass

In this section, we provide a detailed presentation of how

the change-of-basis required to compute the shape func-

tions basis is implemented in a reference_fe_t sub-

class. In particular, we show the implementation for the

Raviart-Thomas div-conforming FE on n-cubes in Sect. 3.5

(see also Sect. 3.9 for details). The pre-basis, e.g.,

Qðkþ1;k;kÞ � Qðk;kþ1;kÞ � Qðk;k;kþ1Þ in 3D, has to be gener-

ated before this subroutine is called; see, e.g., the evalua-

tion of the pre-basis in Line 31 of Listing 26.

Listing 25. User-level pseudocode illustrating the usage of facet integration data structures in order to compute the first integral in (22) for each

interior facet in a loop over all facets.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 241

123

We also present how to compute the boundary moments

in (16) in Listing 26; interior moments are simpler and

omitted for the sake of brevity. The implementation of the

boundary moments requires: (1) to create the refer-

ence_fe_t that implements ½Qk1	d�1
in Line 16, (2) a

facet quadrature on the reference facet in Line 24, and (3)

the evaluation of the reference FE in the quadrature points

in the interpolation_t in Line 25. We also require a

Lagrangian (first order) FE that represents the geometry in

Line 20. Next, we loop over all the facets of the cell and

compute the values of the shape functions of the cell in the

facet quadrature, stored in the interpolation_t

instance in Line 31. With all these ingredients, we can

compute the boundary moments for the pre-basis functions

(see line 43) and assemble them in the change-of-basis

matrix. After doing the same for interior moments, we just

need to invert the change-of-basis matrix in Line 54. At

this point, we have the shape functions basis as a linear

combination of pre-basis functions. Thus, when one calls

the fill_interpolation binding of the corresponding

reference FE, it creates the pre-basis interpolation_t

instance and next applies the change-of-basis matrix to

compute the one for the shape functions basis, i.e., the

Listing 26. Implementation of the change-of-basis required for Raviart-Thomas divconforming FEs on n-cubes, following the procedure

presented in Sect. 3.5.

242 S. Badia et al.

123

placeholder where the evaluation of the shape functions

and its derivatives (at the set of quadrature points for which

the interpolation has been created) are stored. We note that

the ownership of DOFs also changes in this process. The

boundary moments (integrals of functions on facets) belong

to the corresponding facet, whereas interior moments

belong to the cell. Vertices and edges do not have DOFs in

this case. The definition of the ownership is skipped for

brevity.

10 Integration and Global DOF Handling: The
fe_space_t Abstraction

In this section, we introduce a software abstraction, refer-

red to as fe_space_t, which represents (in the most

general scenario) the mathematical concept of a global FE

space X h ¼ X1
h � . . .� X n

h obtained by means of the

Cartesian product of global FE spaces X i
h corresponding to

each of the i ¼ 1; . . .; nfield field unknowns involved in a

system of PDEs; see Sects. 3.6 and 3.11. Each X i
h is

described as a combination of: (1) an approximation Xh of

the physical domain X provided by triangulation_t,

i.e., a mesh-like container for the cells on which Xh is

partitioned, their boundary lower-dimensional objects, and

their adjacency relationships; see Sect. 7; (2) a description

of the nfield reference FEs associated to each triangulation

cell grounded on reference_fe_t; see Sect. 6.

These two basic building blocks equip fe_space_t

with the tools required to provide the following two crucial

services.25 On the one hand, it is in charge of handling (i.e.,

generating, storing, fetching) a global enumeration of the

DOFs corresponding to each X i
h taking into account the

notion of conformity; see e.g., Sects. 3.6 and 6.2. On the

other hand, it handles the data structures that are required

to evaluate integrals over cells and facets (see Sects. 8

and 9, respectively). In particular, it judiciously sets up

them, and orchestrates their respective life cycles and

interactions, while unburdening the user (to a large extent)

from the complexity (among others) inherent to high order

FEs.

The OO design of fe_space_t (as the one of many

other data types in FEMPAR, e.g., triangulation_t)

strongly strives to preserve encapsulation and data hiding

while still storing and accessing data efficiently (i.e., in a

way that leverages data locality for the efficient exploita-

tion of modern computer memory architectures). The user-

friendly view of fe_space_t is implicitly (re)con-

structed by the data types (associated interfaces and inter-

actions) that will be covered in Sect. 10.2. We now move

on the approach that we follow for the internals of

fe_space_t.

10.1 The Internal Organization of fe_space_t

In this section, we sketch how the internals of fe_spa-

ce_t are organized in order to efficiently deliver the two

services outlined above. For simplicity, we restrict our-

selves to a simplified version of fe_space_t that, to a

large extent, captures the spirit of its actual counterpart in

FEMPAR. The declaration of this simplified data type is

shown in Listing 27.26

25 We stress, however, that the full set of services provided by

fe_space_t is not actually restricted to only these two.

26 We note that fe_space_t is not actually in FEMPAR. It is a

whole data type hierarchy rooted at base_fe_space_t, not

included here for simplicity. Within this hierarchy, we have, e.g., FE

space concretizations suitable for either serial or parallel distributed-

memory environments. The one shown in the listing very much

resembles serial_fe_space_t.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 243

123

A collection of reference_fe_t polymorphic

instances is stored in the reference_fes(:) array.

These instances are uniquely identified (within the local

scope of fe_space_t) by their position in this array. The

global FE space corresponding to a given field, with

identifier f_id in the range 1; . . .; num fields (with

Listing 27. The internals of fe_space_t and a selected set of its bindings.

244 S. Badia et al.

123

num_fields equal to nfield above), is described by: (1) the

triangulation member variable (the rationale under-

lying it being polymorphic is made clear in Sect. 10.2; (2)

its restriction to each cell provided by the reference FE

space defined by the reference_fe_t instance with

identifier field_cell_to_ref_fes(f_id,c_id) in

the collection; c_id is assumed to be a positive integer in

1; . . .; triangulation%get num cellsðÞ that uniquely

identifies each cell.

The member variables used to handle the global DOF

numbering are encompassed within Lines 18–27 of List-

ing 27. The global DOF identifiers are stored cell-wise, and

field-wise within each cell, in the lst_dofs_gids(:)

array, which is in turn (indirectly) addressed by the

ptr_dofs_x_fe(:,:) array. In particular, the ones

assigned to the local nodes related to field f_id on cell

c_id start and end in position ptr_dofs_x_fe(-

f_id,c_id) and ptr_dofs_x_fe(f_id?1,

c_id)-1 of lst_dofs_gids(:), respectively, if

f id\num fields, and in position ptr_dofs_x_-

fe(f_id,c_id) and ptr_dofs_x_fe(1,-

c_id?1), respectively, if f id ¼ num fields. The

number of DOFs of the global FE space corresponding to

each field (excluding those that are subject to strong

boundary conditions) is stored in the num_dofs_x_-

field(:) array.

The member variable in Line 15 stores a reference to a

data type that describes the block layout currently selected

(i.e., it can be changed on demand) for the global matrix

and right-hand side vector of the linear system (or a

sequence of them) required for the solution of the PDE

system at hand. The role of block_layout_t in the

global DOF numbering generation process will be illus-

trated in Sect. 10.3.

The data structures that let fe_space_t handle the

evaluation of cell integrals are declared in Lines 23–29 of

Listing 27. The set_up_cell_integration binding

sets up them. The method is intended to be called by the user’s

program right before any cell integration loop. It ensures that

any (scratch) data that can be computed on its final form in the

reference cell is pre-computed for any of the triangulation cells

while minimizing the number of integration data structures

required for the particular scenario at hand. To this end,

fe_space_t is equipped with three array containers of

quadrature_t, cell_map_t and cell_integra-

tor_tobjects (seeLines 24, 26, and 28, respectively),which

are indirectly addressed by the hash_table_t member

variableswith corresponding names.27 This is required because

fe_space_t supports, e.g., non-conforming FE spaces with

variable order per cell. A unique identifier (dynamically

generated within the scope of fe_space_t) is assigned to

each of the integration objects that must be created. The

hash_table_t instances letfe_space_t transform these

unique identifiers into container array positions fromwhich the

integration objects can be fetched.

The set_up_cell_integration method loops

over all cells. Sitting on a cell, it determines an appropriate

quadrature to be used on that cell and its associated unique

identifier. (See discussion in the next paragraph for more

details.) If this quadrature has not been generated yet (i.e., if

the hash table lookup fails), then a new quadrature is created

on the next free position of the cells_quadra-

tures(:) array container, and a new identifier-position

pair is inserted into the hash table. Otherwise, the quadrature

is fetched from this array. The same process is repeated for

the cell_map_t and cell_integrator_t instances.

The former ones are uniquely determined by the combination

of the unique identifier quadrature_t just created/fet-

ched and that of the reference_fe_t instance on top of

the current cell (see Sect. 7). On the other hand, a

cell_integrator_t instance has to be associated to

each field within the current cell; the cell_integra-

tor_t instance corresponding to a field is uniquely deter-

mined by the unique identifier of the quadrature_t just

created/fetched and the one of the reference_fe_t

associated to that field (see Sect. 8.4). Therefore, the unique

identifiers of the cell_map_t and cell_integra-

tor_t instances required for the evaluation of cell integrals

over the current cell can be easily determined combining the

ones corresponding to the instances from which they are

created. We recall that the unique identifier of the refer-

ence_fe_t instance on top of the current cell, c_id, for a

given field, f_id, can be retrieved from refer-

ence_fe_id=field_cell_to_ref_fes(f_id,

c_id), while the reference_fe_t instance itself from

reference_fes(reference_fe_id).

The allocatable array member variable in line 23 (with

as many entries as triangulation cells) can be used by the

user in order to (optionally) determine the degree of the

quadrature to be used on each triangulation cell. This

member variable is allocated and initialized (during

fe_space_t creation) to a reserved flag that instructs

set_up_cell_integration to use an automatic

(default) strategy to decide the degree of the quadrature to

be used on each cell. This default strategy relies on a

deferred binding of reference_fe_t, named

get_default_quadrature_degree, which typi-

cally returns the quadrature degree for which mass matrix

terms are integrated exactly (see Sect. 8.1).28 The strategy,

27 The term hash table here reflects its usual meaning, i.e., an

associative array that maps keys to values.

28 We stress, however, that each particular reference_fe_t
subclass at hand has the freedom to implement a different strategy if

required.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 245

123

in particular, walks over all reference_fe_t instances

on top of the cell, and the one for which its (polynomial)

reference cell functional space is of maximum order

becomes ultimately responsible of creating the quadrature

via an invocation to its create_quadrature deferred

binding. Alternatively, the user may explicitly select the

quadrature degree to be used on each cell. In such a case,

create_quadrature is invoked to create a quadrature

with the degree given by the corresponding entry in the

cell_quadratures_degree(:); see Sect. 8.1. In

any case (i.e., default or explicit quadrature degree), both

the unique identifier of the reference_fe_t instance

on top of the current cell and the quadrature degree are

used to generate a unique identifier of the quadrature to be

created/fetched.

On the other hand, Lines 32–38 of Listing 27 encom-

pass those data structures required for the evaluation of

(both boundary and interior) facet integrals; see Sect. 9. A

very close rationale to the one underlying their cell coun-

terparts is followed to set up these data structures. The

set_up_facet_integration binding loops over all

facets. Sitting on a facet, it determines an appropriate facet

quadrature_t rule. The quadrature degree is either the

default or a user-defined one (via the allocatable array

member variable in Line 32). It also determines the unique

identifier of the quadrature and of the rest of the facet-

integration data structures, which are created as necessary,

while handling their interactions. Both the topology of the

two cells sharing the facet and the quadrature degree are

used to generate a unique identifier of facet quadratures.

The member variables in Lines 41–42 provide support to

the implementation on the so-called fe_facet_iter-

ator_t data type and will be covered in detail in

Sect. 10.2. Finally, the member variable num_-

fixed_dofs in Listing 27 is used by fe_space_t to

count how many DOFs are subject to strong boundary

conditions; see Sect. 10.4.

10.2 A Conceptual View of fe_space_t

Following the ideas presented in Sect. 7.1, fe_space_t

offers a number of iterators to provide traversals over its

objects, and uniform data access to its internals. Apart from

iterators over cells and vefs, fe_space_t also provides

traversals over facets by means of the so-called fe_-

facet_iterator_t data type. This iterator is essen-

tially required to implement the evaluation of jump terms

in, e.g., error estimators or DG methods in a user-friendly

manner. For reasons made clear in the course of this sec-

tion, a design goal to be fulfilled by fe_space_t itera-

tors is that they are able to provide access to the same data

as their counterpart triangulation_t iterators (see

Sect. 7.1), and that they are able to do so efficiently while

avoiding duplication of code bounded to the latter ones.

For example, fe_cell_iterator_t should be

designed such that it is also able to provide the coordinates

(in physical space) of the nodes describing the geometry of

the cell, apart from the global DOF identifiers on top of it.

Let us first discuss the design of iterators over cells and

vefs (as the one of both follows the same lines). These data

types are defined in Listing 28, where set must be actu-

ally replaced by either cell or vef.

As shown in Listing 28, fe_set_iterator_t holds

a polymorphic pointer to the fe_space_t instance to

which it has to provide data access. Dynamic polymor-

phism is exploited here with extensibility and code reuse in

mind. Any type extension of fe_space_t (e.g., the one

suitable for distributed-memory environments), can also

become the target of this polymorphic pointer, thus

enabling reuse of data and code bounded to

Listing 28. fe_space_t ‘‘set’’ (either cell or vef) iterators and the composition relationship with their counterpart triangula-
tion_t iterators (set_iterator_t).

246 S. Badia et al.

123

fe_set_iterator_t with these extensions. Of special

relevance in Listing 28 is the composition relationship

among the data type being defined and set_itera-

tor_t, i.e., its triangulation_t iterator counterpart

(see Sect. 7.1). This lets fe_set_iterator_t to fulfill

the aforementioned design goal, i.e., to provide a superset

of data over the class it is composed of, while still being

able to access to any data stored within the triangulation

scope. fe_set_iterator_t also reuses from

set_iterator_t the code underlying the sequential

traversal over all objects of the set. Indeed, as many other

TBPs of fe_set_iterator_t, init, next, and

has_finished TBPs of fe_set_iterator_t are

simply implemented as wrappers of their counterparts in

set_iterator_t. (We remark that this is possible

provided that fe_space_t is deliberately set up such that

it shares with triangulation_t a consistent global

numbering for cells and lower-dimensional objects.)

At this point it is important to remark that the

set_iterator_t instance that fe_set_itera-

tor_t aggregates is also polymorphic (see Line 3 in List-

ing 28). As stated in Sect. 10.1 (in particular, see Line 12 of

Listing 27), a fe_space_t instance is created from a

polymorphic triangulation_t instance. The create

binding of fe_set_iterator_t extracts the latter from

fe_space_t, and then calls its create_cell_iter-

ator binding (see Sect. 7.1), which becomes ultimately in

charge of determining the dynamic type of the set_it-

erator_t member variable of fe_set_iterator_t

(apart from leaving the iterator positioned in the first object

of the set). This lets fe_space_t (and its associated

iterators) to be re-used with any type extension of trian-

gulation_t (e.g., the one suitable for distributed-mem-

ory computers and/or h-adaptivity). Likewise, the free

binding of fe_set_iterator_t relies on the

free_cell_iterator binding of triangula-

tion_t in order to safely deallocate any dynamic memory

allocation performed during creation.We stress that, as in the

case of triangulation_t iterators, both the create

and free TBPs are not intended to be directly called by the

user. Instead, triangulation_t provides a set of

(public) TBPs (as many as different iterators) for this pur-

pose. For example, the expression call

fe_space%create_fe_cell_iterator(fe_-

cell_iterator) creates an iterator on the polymorphic

fe_cell_iterator client-space instance, while call

fe_space%free_fe_cell_iterator(fe...) is

in charge of safely deallocating this polymorphic instance.

The implementation of fe_facet_iterator_t is

based on a very close rationale to the one of cell and vefs

iterators, with subtle differences though; see Listing 29.

Provided that fe_facet_iterator_t is a kind of

fe_vef_iterator_t, it should provide the same set of

data access methods of the latter (e.g., the cells sharing the

facet). However, it should restrict the traversal to those vefs

that are actually facets, and to be able to provide all data

required for the implementation of jump terms over facets.

As shown in Listing 29, fe_facet_iterator_t

extends fe_vef_iterator_t. This automatically

equips the former with the data access methods of the

latter. On the other hand, it overrides those methods con-

trolling the sequential traversals over the items in the set

such that it restricts to facets, i.e., create/free/first/

next/has_finished in Listing 29. The implementation

of these methods relies on its member variable facet_-

gid, and the facet_gids(:) member variable of

fe_space_t; see Line 41 of Listing 27. For a given

facet with global identifier facet gid, facet_gids(-

facet_gid) holds the global vef identifier correspond-

ing to the facet.

Listing 29. The fe_facet_iterator_t data type.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 247

123

The actual set of TBPs of a fe_space_t iterator highly

depends on the type of object being pointed to. For com-

pleteness, we now briefly discuss those TBPs in the set

corresponding to cell and facet iterators, which provide

support for the implementation of the two services of

fe_space_t we are focusing on. These are in particular

shown in Listing 30. This listing also includes the generic

TBPs in Lines 35 and 68, although they will be discussed in

Sect. 11.1.

The TBPs in Lines 18–28, and 50–61 of Listing 30 let

the user fetch from fe_space_t the integration data

associated to the current cell and facet being pointed to,

respectively. On the other hand, the update_inte-

gration bindings in Lines 6 and 47 perform those

Listing 30. The fe_cell_iterator_t and its facet counterpart.

248 S. Badia et al.

123

computations required to update these data structures such

that they hold shape function values and derivatives eval-

uated at (current) cell and facet (quadrature points) in the

physical space. The former binding is implemented as

shown in Listing 31. Finally, the get_permuta-

tion_index TBP of fe_facet_iterator_t lets the

caller to obtain the permutation index (see Sects. 3.16 and

9.3 for further details). The implementation of this method

relies on the facet_permutation_indices(:)

member variable of fe_space_t; see Line 42 of List-

ing 27. For a given facet with global identifier facet gid,

facet_permutation_indices(facet_gid)

holds the permutation index corresponding to the facet. We

have decided to permanently store facet permutation indices

for performance reasons. These can be reused over and over

again (e.g., in a transient and/or nonlinear PDE problem)

without the overhead associated to its computation on each

traversal over the facets of the triangulation.

An update of the cell_map_t instance (associated to

the cell pointed by the fe_cell_iterator_t instance

on which this subroutine is invoked) is performed in

Line 12 of Listing 31. It is followed by a loop over the

number of fields of the PDE system at hand in order to

update the cell_integrator_t for every field in

Line 17. The update of the former requires that its

nodes_coordinates(:) scratch member variable has

been loaded with the coordinates in the physical space of

the nodes describing the geometry of the cell at hand (see

Sect. 8.3). This is in particular fulfilled in Line 10. The

coordinates fetched by this call are actually stored within

the triangulation. However, fe_cell_iterator_t can

satisfy this query provided that it is composed of a

cell_iterator_t instance; see Listing 28 and

accompanying discussion. At this point, the reader should

be already capable to grasp how the fe_facet_iter-

ator_t counterpart of this subroutine is implemented, so

that it is omitted here in order to keep the presentation

short.

Going back to Listing 30, the binding in Line 16 lets the

user fetch the field-wise global DOF identifiers that

fe_space_t has associated to the node functionals on

the current cell interior and its vefs. (The bindings in

Lines 9–13 of Listing 30, however, assist fe_space_t

on the generation of the global DOF numbering and their

usage will be illustrated in Sect. 10.3.) This binding is

implemented in Listing 32.

Listing 31. Implementation of the update_integration binding of fe_cell_iterator_t.

Listing 32. Implementation of the get_fe_dofs binding of fe_cell_iterator_t.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 249

123

In Listing 32, p_1D_ip_array_t is assumed to be a

data type with a single member variable, called p, declared

as a pointer to a rank-1 integer(ip) array. For each

field, the subroutine locates the region within the

lst_dofs_gids(:) member variable corresponding to

that field within the current cell, and then it associates to it

the corresponding pointer in fe_dofs(:). At the

expense of sacrificing type safety (in Fortran there is no

mechanism to declare a pointer to be read-only), we avoid

the costly re-allocation of user-level allocatable arrays that

would be needed in the case of non-conforming FE spaces

with highly varying degree polynomial spaces among cells.

To end up, the get_vef binding in Listing 30 sets up a

fe_vef_iterator_t instance to point to the corre-

sponding vef within the cell. As a consequence, one may

navigate over the cells, its vefs, cells around these vefs,

etc., using fe_space_t iterators all the way round.

10.3 Global DOF Numbering Generation

In this section, we discuss how fe_space_t coordinates

the building blocks covered so far in order to generate a

global enumeration of the DOFs describing the global FE

space X h ¼
: X 1

h � . . .� X n
h for general multi-field systems

of PDEs. This process is encompassed within the gen-

erate_global_dof_numbering binding of fe_s-

pace_t (see Listing 27). The code of this method is

shown in Listing 33. The block_layout dummy argu-

ment lets the caller to customize the global DOF number-

ing to be generated.29 On the one hand, this data type

specifies in how many blocks the user wants to split the

(discrete) PDE system at hand. In particular, the user may

select to generate a DOF numbering suitable for monolithic

or blocked storage linear algebra data structures, with

block_layout%get_num_blocks() returning one

and a number larger than one, respectively. On the other

hand, block_layout_t specifies the mapping of fields

into blocks, with block_layout%get_block_id(-

field_id) returning the block identifier the field with

identifier field_id is mapped to. Provided that blocked

linear algebra data structures in FEMPAR are addressed

using row/column identifiers that are local to each block,

block_layout equips the subroutine with the input

necessary to generate a block-aware global DOF number-

ing, in which the DOFs belonging to fields of the first block

are numbered first, followed by the ones of the second, and

so on. We note that block_layout_t also holds inside

how many DOFs are there per block (see Sect. 11.3). These

latter quantities are computed within generate_-

global_dof_numbering (see discussion in the

sequel).

The subroutine in Listing 33 starts checking whether it

has to actually generate a global DOF numbering. It has to

do so if there is no global DOF numbering available yet

(see predicate in Line 9), or if the one available is not

suitable for the input block_layout (see predicate in

Line 10). The bulk of generate_global_dof_num-

bering is concentrated in the private helper TBPs of

fe_space_t called fe_space_count_dofs and

fe_space_list_dofs; see Lines 14 and 15 of List-

ing 33, respectively. The code of these bindings is shown

in Listings 34 and 35, respectively. While the former

computes the number of DOFs per field and block, the

latter is in charge of the actual generation of the global

DOF identifiers.

Listing 33. The generate_global_dof_numbering binding of fe_space_t.

29 We refer to Listing 43 and its accompanying text in Sect. 11 for a

full description of the member variables and TBPs of block_lay-
out_t. In this section, we restrict ourselves to those that are relevant

for the global DOF numbering process.

250 S. Badia et al.

123

Lines 6–31 of Listing 34 are in charge of computing the

number of DOFs per field, while those in Lines-34–38,

those per block. The latter lines just determine the number

of DOFs per block by accumulating those corresponding to

fields mapped to the block (computed in the former lines).

The former lines are grounded on the notion of owner cell

of a vef; a cell is the owner of a vef if (1) the latter lays on

the boundary of the former, (2) it is the first cell for which

(1) holds in the order in which the iterator over all cells

presents them, and (3) the vef owns at least one DOF of the

global FE space subject to consideration.30 The (logical)

work array owner_cell_per_vef_visited(:)

keeps track whether the owner cell of the vefs have been

already visited (or not) as these are traversed in the nested

loop over all cells (see outer loop in Line 12), and over all

vefs within the current cell (see inner loop in Line 16).

Sitting on a cell, the algorithm first counts those DOFs

associated to node functionals logically placed in the

interior of the current cell (see line 14). It then loops over

the vefs of the current cell. If the owner cell of the current

vef has not been visited yet, and the current cell is its

owner, then the current cell is registered as the owner of the

cell, and the DOFs associated to node functionals logically

placed on this vef within the current cell are counted in

Line 22. Provided that non-conforming FE spaces do not

have DOFs on vefs, we can skip the loop over the vefs of a

cell and accelerate the process in this case (see the if clause

in Line 15 of Listing 34).

The algorithm shown in Listing 35 is in charge of the

actual generation of the global DOF identifiers. The work

array owner_cell_gid_per_vef(:,:) is used to

store the owner cell global identifier of the vefs. On the

other hand, vef_lid_in_owner_cell(:,:) array is

used as an accelerator lookup table that stores the vef local

identifiers (i.e., vef_lid) within their corresponding

owner cells if they have been already visited, and -1

otherwise. Both arrays are indexed using vef global iden-

tifiers (i.e., vef_gid). Sitting on a cell, the algorithm first

allocates global DOF identifiers for all node functionals

associated to the interior of the current cell starting from

fields_current_dof(field_id), i.e., the next freely

available global identifier; see Line 27. It then loops over

Listing 34. The count_dofs binding of fe_space_t.

30 The last requirement has been introduced to include the concept of

void FEs for multi-field problems in which some fields are not defined

on the whole domain (see Sect. 6.5).

FEMPAR: An Object-Oriented Parallel Finite Element Framework 251

123

the vefs of the current cell. If the current vef has not been

visited yet, then the current cell becomes its owner, and

both the cell and the local identifier of this vef within the

cell are registered in the corresponding work arrays. The

global DOF identifiers associated to node functionals on

this vef within the owner cell are allocated in Line 32 (as

above starting from fields_current_dof(-

field_id)). On the other hand, if the current vef has been

visited, then the global DOF identifiers associated to node

functionals on this vef within the current cell are fetched

from the corresponding ones within the owner cell in

Line 39. The binding called in this line encodes the per-

mutations described in Sect. 3.16.

As the reader might observe, Listing 35 is grounded on

several (private) helper bindings of

fe_cell_iterator_t that, at the cell level, aid in the

generation of a global DOF numbering; see Lines 9–13 of

Listing 30. These bindings ultimately rely on the ref-

erence_fe_t instances mapped to the cells of the tri-

angulation; see Sect. 10.1. In particular, sitting on a cell,

reference_fe_t instructs fe_cell_iterator_t

with the association of its node functionals to the interior of

the cell, and its lower-dimensional boundary objects

according to the notion of conformity underlying the FE

space at hand; see Sects. 3.6 and 6.2. For example, the

implementation of the gener-

ate_own_dofs_vef_numbering binding is imple-

mented as shown in Listing 36.

The code in Listing 36 extracts a list_iterator_t

from the own_dofs_n_face member variable of the

Listing 35. The list_dofs binding of fe_space_t.

252 S. Badia et al.

123

reference_fe_t instance used in the current cell for

field_id. This iterator lets it to traverse those node

functionals owned by the vef with local identifier

vef_lid (see Sect. 6.2), and thus determine the (relative)

position in lst_dofs_gids(:) of the global DOF

identifiers to be allocated for such node functionals. We

note that the logical predicate in Line 16 is evaluated to

.true. if the DOF at hand is actually free, i.e., not

subject to boundary conditions imposed in strong form; see

Sect. 10.4.

Finally, we would like to stress that error checking

statements and a major optimization that can be applied for

the single-field single-block case are not shown in the code

listings of this section in order to keep the presentation as

simple as possible. Both are present in FEMPAR. In par-

ticular, for the aforementioned case, the global DOF

numbering can be generated with a single loop over all

cells (instead of two). The call in Line 14 of Listing 33 can

be avoided, deferring the computation of the number of

DOFs per field and block to the call in Line 15.

On the other hand, there is no need to generate a global

DOF numbering from scratch when there is already one

available, a permutation from the old to the new numbering

could be computed and applied to lst_dofs_gids(:)

by a single sweep over all cells. This optimization, how-

ever, is not present in FEMPAR, as indeed we did not find

frequent the case where an application requires to change

on-the-fly the block-layout of the system of PDEs at hand.

10.4 Strong Imposition of Boundary Conditions

In this section, we discuss the mechanisms that fe_s-

pace_t provides in order to support the strong imposition

of boundary conditions. In order to grasp why these

mechanisms are needed and how fe_space_t is

designed to provide them, we must first briefly introduce

the approach chosen by FEMPAR in order to handle this

type of boundary conditions. We will use the term ‘‘fixed

DOFs’’ to refer to those DOFs sitting on the boundary

whose values are constrained (i.e., subject to strong

boundary conditions), and the term ‘‘free DOFs’’ to refer to

the remaining ones. For simplicity, let us restrict ourselves

to the Laplacian problem with inhomogeneous Dirichlet

boundary conditions uðxÞ ¼ uDðxÞ on CD discretized with

grad-conforming FEs.31 The discrete solution uh 2 X h can

be split into two parts as uh ¼ �uh þ EhuD, where:

�uh ¼
X

a2ffree DOFsg
�ua/

a þ
X

a2ffixed DOFsg
0/a

and EhuD ¼
X

a2ffree DOFsg
0/a

þ
X

a2ffixed DOFsg
uDa /

a:

The nodal values �ua are the actual unknowns of the

problem at hand. EhuD is a discrete Dirichlet data exten-

sion, which can be understood as the projection of a

Dirichlet data extension EuDðxÞ introduced in Sect. 3.1. Its

nodal values uDa are selected such that EhuD becomes a

suitable boundary FE approximation of uDðxÞ (e.g., a

boundary FE interpolation).32 The linear system to be

solved in order to compute the nodal values of �uh can be

written as:

Listing 36. Implementation of the generate_own_dofs_vef_numbering binding of fe_cell_iterator_t.

31 We stress, however, that the approach discussed in the sequel to

handle the strong imposition of boundary conditions is applicable to

more complex problems and discretizations, e.g., the Maxwell

equations discretized with curl-conforming FE spaces.
32 It is assumed that the discrete Dirichlet data extension is zero on

free DOFs, but other more general situations can also be

accommodated.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 253

123

X

b2ffree DOFsg
að/a;/bÞ�ub ¼ ð/a; f Þ

�
X

c2ffixed DOFsg
að/a;/cÞuDc 8a 2 ffree DOFsg;

ð33Þ

where its coefficient matrix has as many rows as free

DOFs, and its right-hand side is the FE discretization of the

linear form in (3); see Sect. 3.1.

In order to assemble (33), the process described in

Sect. 8 has to be slightly modified. A sweep over all tri-

angulation cells is still required. Sitting on a given cell K,

the element matrix AK and vector fK are computed as

usual. However, the rows/columns corresponding to fixed

DOFs in AK are not assembled into the global matrix. The

same applies to the entries of fK . However, fK has to be

updated before assembly in order to reflect the contribu-

tions of strong boundary conditions (see the right-hand side

of (33)). Fortunately, the users of FEMPAR are unburdened

from these subtleties. These are hidden within the

assembly generic binding of fe_cell_iterator_t;

see Listing 30 and 39. Apart from adding the contributions

of the current cell to the global coefficient linear system

and right-hand side, this binding is in charge of computing

the contribution to fK from strong Dirichlet boundary

conditions. This poses two additional requirements on

fe_space_t. In particular, (1) it should handle a global

enumeration of free and fixed DOFs, while being able to

distinguish among both kinds of DOFs; and (2) it should

offer a suitable set of bindings to project/interpolate uDðxÞ
on the boundary to get EhuD.

In order to satisfy (1), fe_space_t splits the whole

set of DOFs into free and fixed DOFs, and the DOFs within

each subset are labeled separately from each other as

f1; 2; . . .; jffree DOFsgjg, and f�1;�2; . . .;�
jffixed DOFsgjg, respectively. (This is nevertheless an

implementation detail that is never exposed to FEMPAR

users.) In turn, free and fixed DOF values are actually

stored into different arrays, so that they can be addressed

separately using the corresponding global identifiers in the

former and latter set, respectively; see Sect. 10.5.

The process that associates global identifiers to free DOFs

has been already covered in Sect. 10.3. The one corre-

sponding to fixedDOFs verymuch resembles the one for free

DOFs. It is, however, restricted to vertices, edges, and faces

of the triangulation that lay at the boundary, and it has to be

equipped with support from the user that lets the process

become aware of which DOFs sitting on the boundary are

actually fixed. The fixed DOFs global enumeration process

occurs during the initial set-up of fe_space_t; see

create generic binding in Listing 27. This process is

grounded on two different ingredients. On the one hand, the

user can determineC sub-regions through the sets associated

to vefs sitting on the boundary (see Sect. 7.1). For example,

the user may decide to use set identifier 1 and 2 to split the

vefs inC into those which belong toCD andCN, respectively.

On the other hand, an abstract data type, called condi-

tions_t, to be extended by FEMPAR users, lets users to

customize the strong imposition of boundary conditions. In

particular, with regard to the fixed DOFs global enumeration

process, this data type offers a deferred binding that given a

set identifier, provides a logical component mask. For each

component of the PDE system, this mask provides whether

the DOFs associated to vefs marked with this set identifier

are fixed or free. For those FE spaces for which there is no

DOF-to-component association (e.g., Raviart-Thomas or

Nédélec FEs), only the first component in the mask is taken

into account, and the rest neglected.

On the other hand, for 2), fe_space_t provides a set of

methods that let the user interpolate/project uDðxÞ on the

boundary to get EhuD in a number of suitable ways. EhuD is

ultimately stored within an instance of the fe_function_t

data type; see Sect. 10.5. Boundary projectors involve the

solution of a boundary mass matrix problem where integrals

over boundary facets have to be evaluated; see Sect. 9. Again,

all these bindings rely on the conditions_t abstract data

type. In particular, given a boundary vef set identifier, a

deferred binding of this data type returns a user-defined (scalar-

valued) function to be imposed for each component of the PDE

system at hand. In the case of Raviart-Thomas or Nédélec FEs,

the d scalar-valued functions corresponding to its components

are used to reconstruct the vector-valued function, whose tan-

gential or normal component, respectively is to be imposed.

10.5 Global FE Functions and Their Restriction

to Triangulation Cells/Facets

In this section, we introduce a convenient software

abstraction in our OO design, referred to as fe_func-

tion_t, which represents a global FE function

uh 2 X ¼: X1
h � . . .� X n

h. This data type and a subset of its

TBPs (in particular, those that are relevant for the present

section) are presented in Listing 37.

In Listing 37, the free_dof_values and

fixed_dof_values are used to store �uh and EhuD,

respectively; see Sect. 10.4. The former is a polymorphic

member variable of type array_t; see Sect. 11.1. Rely-

ing on the set of deferred bindings offered by array_t,

the code bounded to fe_function_t can be written

independently of how the entries within the concrete

implementation of array_t are laid out in memory,

enabling code re-use to a large extent. For example,

scalar_array_t is a concrete realization of array_t

that uses monolithic storage, while block_array_t

254 S. Badia et al.

123

stores the entries organized into blocks (see Sect. 11.1 for

more details). On the other hand, fixed_dof_values is

a member variable of static type scalar_array_t; see

Sect. 11.1.33 Fixed DOFs belonging to different fields

might be indeed assigned intermixed global identifiers,

significantly simplifying the enumeration process. In par-

ticular, a single sweep over all boundary objects suffices, in

contrast to Listing 33, where two sweeps over all cells are

required in order to generate a block-aware global num-

bering. From our experience, it turns out that neither

blocked storage nor a data structure suitable for distributed-

memory environments are strictly required to store EhuD,

so that we can prevent the overhead associated to run-time

polymorphism when dealing with fixed_dof_values.34

A fe_function_t instance is created from a

fe_space_t instance (to which it belongs); see signature

of the create binding in Listing 37. This binding selects

the dynamic type of free_dof_values, and therefore

its storage layout, according to the one currently selected

for the PDE system at hand; see block_layout member

variable in Listing 27. The entries of free_dof_val-

ues can be determined in a number of ways. They might

become the unknowns of a problem to be solved (e.g., by a

preconditioned iterative linear solver or sparse direct

solver), or computed from an expression involving other

fe_function_t instances, e.g., uh ¼ vh, or

uh ¼ vh þ wh, with uh; vh;wh 2 X h. (Indeed, FEMPAR

offers an expression syntax for global FE functions

grounded on overloaded operators.) Apart from these,

fe_space_t offers a pair of generic bindings, referred to

as interpolate and project, to compute the DOFs

nodal values of uh by either interpolation (using the

expression in (9)) or projection (e.g., a global L2 projec-

tion) into the FE space of a user-defined function u(x).35

Each of these generic bindings is overloaded with three

different regular bindings suitable for scalar, vector, and

tensor-valued functions, respectively. The interpolate

bindings in fe_space_t can be written independently of

the reference FE by using a TBP associated to refer-

ence_fe_t that computes the local interpolator in (6).

Apart from the software representation of a global FE

function, FE codes typically need a mechanism that, sitting

on a cell or facet of the triangulation, provides the values,

gradients, etc. of a global FE function uh ¼ u1h � . . .� unh
evaluated at quadrature points in the physical space. To this

end, FEMPAR offers a set of data types, referred to as

cell_fe_function_type_t and facet_fe_-

function_type_t, with type=scalar,vec-

tor,tensor, that represent the restriction of uih to a

given triangulation cell and facet, respectively. The two

code snippets in Fig. 9 illustrate the usage of these data

Listing 37. The fe_function_t data type.

33 In parallel environments, every processor only stores the fixed

DOF values that belong to its associated subdomain.
34 Some of the algorithms in charge of computing EhuD may require

a different storage layout from the one of scalar_array_t (e.g.,

blocked storage and/or suitable for distributed-memory computers),

and/or restrict themselves to those fixed DOFs of EhuD corresponding

to a given field (or set of fields). In such a case, EhuD is scattered in

place back and forth into temporary work space with the appropriate

layout for the algorithm at hand in charge of computing its entries

(e.g., a serial or parallel distributed-memory boundary mass problem

iterative solver). It turns out that it is not such a high performance

penalty provided that such algorithms already require to perform a

sweep over boundary facets (e.g., in order to assemble a boundary

mass matrix). During this sweep, the fixed DOFs in question can be

already counted and identified.

35 Analytical scalar, vector, and tensor-valued functions are also

supported in FEMPAR through the classes scalar_function_t,
vector_function_t, and tensor_function_t, respec-

tively. To implement an analytical scalar function f ðxÞ in FEMPAR,
the user has to extend scalar_function_t methods get_-
value, get_gradient (if used), etc., with the analytical expres-

sion, for a given point t that represents x. We proceed analogously

for vector and tensor fields. These data types are very simple and we

omit their description here.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 255

123

types, where we are assuming that uih belongs to a global

FE space of vector-valued functions.

There are three worth noting remarks in these two code

snippets. First, the update binding of both data types rely

on the gather_nodal_values binding of fe_-

function_t; see Listing 37. The latter equips cell/facet

FE functions with the ability to restrict (gather) the nodal

values of uih from global to local arrays (stored as private

scratch data within cell/facet FE function data types), while

taking care of strong boundary conditions. Second, the

update bindings require a procedure that, given the shape

functions, first derivatives, etc., evaluated at quadrature

points in physical space, and the nodal values uih restricted

to the current cell, provides the shape function values,

gradients, curls, etc., of the FE function at these quadrature

points. This service is provided by reference_fe_t by

the set of evaluate_fe_function... deferred

bindings in Lines 63–68 of Listing 6. We note that fe_-

function_t can extract the first set of data from the

cell_integrator_t and facet_integrator_t

instances accessible through fe_cell_iterator_t

and fe_facet_iterator_t (provided on input to

update), respectively. Third, facet FE functions provide

uih values, gradients, etc., at facet quadrature points from

the perspective of its two surrounding cells. This make

sense for functions uih belonging to non-conforming FE

spaces, which might be discontinuous across cell bound-

aries. Facet FE functions should also cope with the fact that

the coordinate systems of its surrounding cells might not be

aligned in physical space, so that a different local num-

bering might be assigned to facet quadrature points from

the perspective of either cell; see Sect. 9.3 for an exposi-

tion of the strategy followed to solve this issue.

11 Building FE Affine Operators

In this section, we introduce the software abstractions on

which the construction of the algebraic problem (10) in

Sect. 3 relies. These software abstractions, and their rela-

tionship, are depicted in Fig. 10. The main design goal

underlying the proposed software architecture is as follows.

In the seek of code reusability and extensibility, FEMPAR

users should have at their disposal a unique entry point

data type and associated bindings in order to build their FE

linear system, no matter whether a scalar or a system of

PDEs, no matter whether the linear algebra data structures

holding the linear system entries are either scalar (mono-

lithic) or blocked, and no matter how they are laid out in

memory (centralized, distributed-memory). In FEMPAR,

this unique entry point data type is referred to as

fe_affine_operator_t. Mathematically,

fe_affine_operator_t represents the affine operator

in (5), obtained from the discrete weak formulation of the

linear(ized) problem (4). As introduced in Sect. 3.6, the

operator can be represented (after defining bases for trial

and test FE spaces) with A and f defined in (10). The

solution of the FE problem is the only root of this operator

(as soon as the FE problem is nonsingular).

In order to seek the aforementioned goal,

fe_affine_operator_t relies on an abstract data type,

referred to as assembler_t (see Fig. 10). In a nutshell,

assembler_t offers a set of FE-assembly tailored, data

structure neutral, deferred TBPs, e.g., to assemble the

contributions of a cell or facet integral into the linear

system coefficient matrix A and/or right-hand side f. The

subclasses of assembler_t are the ones ultimately

responsible to deal with the details underlying the

Fig. 9 User-level code snippets illustrating the usage of the cell_fe_function_type_t (left) and facet_fe_function_type_t
(right) data types

256 S. Badia et al.

123

particular linear algebra data structures at hand. The latter

ones offer FE-assembly neutral interfaces to inject new

entries or add contributions to them, such that this software

piece becomes reusable and separable, e.g., to be used in

third party software projects (not necessarily FE-oriented)

as a standalone software subsystem. FEMPAR offers a rich

set of linear algebra data structures, e.g., data structures

organized by blocks, which enable the implementation of

block preconditioners for multiphysics problems (see, e.g.,

[43–45]). Apart from those required to handle the linear

coefficient matrix and right-hand side of the system,

fe_affine_operator_t also interacts with other data

types required to deliver its life cycle (i.e., its auto-gener-

ation). In particular, A and f entries are computed

according to the expressions in (10). These expressions

involve a FE space (fe_space_t) and the discrete (bi)-

linear forms of the problem at hand. To express in software

this second ingredient, we introduce the dis-

crete_integration_t abstraction; see Fig. 10.

We have structured this section as follows. In Sect. 11.1,

we first present the assembler_t abstract data type, and

the rationale underlying the design of the linear algebra

structures it is grounded on. Next, in Sect. 11.2, we intro-

duce the discrete_integration_t abstract data

type that ultimately is in charge of performing the inte-

gration of the (bi)linear forms and assembly of the discrete

affine operator. We show a particular implementation of

this data type (i.e., a subclass) for the Galerkin approxi-

mation of the Stokes problem. Finally, the fe_affine_-

operator_t data type is described in Sect. 11.3.

11.1 Linear Algebra Data Structures

and Associated Assemblers

Linear algebra in FEMPAR relies on a pair of data type

hierarchies rooted at the mathematical abstractions of a

linear algebra operator and a vector, and represented in

software by means of the linear_operator_t and

vector_t abstract data types, respectively. These

abstract data types let a number of linear algebra algo-

rithms within FEMPAR (e.g., iterative linear solvers and

block preconditioners for PDE systems) to be expressed

independently from the actual implementation of the con-

crete matrix and vector data structures being used, such as

block layout (if any), storage (e.g., dense or sparse storage

format) or memory layout (e.g., local or distributed-mem-

ory), enabling code re-use and extensibility to a large

extent. An abstract expression syntax that allows the con-

struction of complex expressions involving operations

among operators and/or vectors is also provided. This

enables the implementation of new algorithms in a compact

manner. However, because these linear algebra algorithms

are not discussed herein but postponed to a further work,

the description of the data types and associated methods in

these hierarchies will be restricted to what is necessary to

describe the assembly of the FE affine operator.

The sparse_matrix_t data type can be found at an

intermediate level in the hierarchy rooted at linear_-

operator_t. This is a crucial data type in FEMPAR,

which represents a scalar, non-distributed, sparse matrix.

Its design follows the ideas presented in [92]. This design

Fig. 10 UML class diagram of the fe_affine_operator_t abstraction and its relationship with other FEMPAR classes

FEMPAR: An Object-Oriented Parallel Finite Element Framework 257

123

(re)uses the state OO design pattern [88] to hide the actual

sparse matrix storage format to the user. Following this

pattern, sparse_matrix_t is composed of a polymor-

phic member variable of (declared) type

base_sparse_matrix_t. Its dynamic type can be

thus changed at runtime (via re-allocation). This dynamic

type represents the storage at hand being used. Current

subclasses of base_sparse_matrix_t include

coo_sparse_matrix_t, csr_sparse_matrix_t,

csc_sparse_matrix_t, corresponding to the coordi-

nate list (COO), the compressed sparse row (CSR), and the

compressed sparse column (CSC) sparse matrix storage

formats [93], respectively.

The life cycle of a sparse_matrix_t instance is as

follows. The user first invokes its create TBP, in which

one solely specifies the size of the matrix, i.e., the number

of rows and columns. This method, however, triggers a

number of subsequent actions. In particular, it allocates its

dynamic type to the one corresponding to the COO format,

and leaves it ready for the injection or addition of contri-

butions to the entries of the matrix. Although not com-

pressed, this format is ideally shaped for the injection or

addition of contributions to the entries of the matrix. These

are simply pushed back into member arrays that can grow

dynamically during the integration/assembly loop (via a

judiciously reallocation strategy to trade off cost and

memory). Other sparse storage formats, as the CSR storage

implemented in the csr_sparse_matrix_t data type

(also a type extension of base_sparse_matrix_t),

although more memory efficient, require a predefined

sparsity pattern, which has to be precomputed. They are not

thus well suited for the dynamic build up process of the

matrix. At this point the reader should note that, for such

inflexible storage formats, one typically needs an accurate

estimation of the maximum number of nonzeros per each

row (or column) to be memory efficient. This estimation,

however, can only be a quite large upper bound in complex

scenarios (e.g., hp-adaptive methods in 3D, among others).

Once the build up process finishes, the user can call a

method specially designed to leave the sparse_ma-

trix_t instance ready for being used (e.g., to perform

operations with it). This involves a compression process, in

which duplicated entries are either summed up, or filtered

(as selected by the user) and a transformation of the COO

storage format into the storage format that the user actually

requires (e.g., CSR). For simplicity, we refer to this stage

as the ‘‘compression’’ of the matrix. Once the

sparse_matrix_t instance is in this final state, it is

still possible to insert or add contributions to its entries, as

far as they belong to the sparsity pattern resulting from the

first build up process. Thus, e.g., if a transient and/or

nonlinear problem is to be solved and the triangulation of

the domain does not change, the assembly in COO format

will only be performed at the first nonlinear iteration of the

first time step.

As shown so far, the software architecture of

sparse_matrix_t is such that several (current and

future) storage formats are possible within a single

framework. This flexibility is convenient for two main

reasons. First, no given storage format is likely to be uni-

formly better in performance across all possible operations

and computer architectures. Second, FEMPAR interoper-

ability with external software dramatically increases. If a

new library, that uses its own storage format, is to be

integrated, only a new extension of base_sparse_-

matrix_t has to be added, while leveraging dozens of

thousands of lines of code already written. Apart from

sparse_matrix_t, there are other sparse matrix data

types available, suitable to handle blocks and/or dis-

tributed-memory computers. All these data types are

essentially composed in some way or another of

sparse_matrix_t instances. For example,

block_sparse_matrix_t is composed of nblocks2

sparse_matrix_t instances; see Fig. 10. It, however,

provides a set of specialized TBPs that only apply in the

blocked case, e.g., the get_block TBP that lets a client

to retrieve the sparse_matrix_t instance corre-

sponding to a given block of the matrix.

The counterpart of sparse_matrix_t in the vector

case is referred to as scalar_array_t. It represents a

scalar, non-distributed, linear algebra vector, with its

entries stored explicitly in a simple (Fortran intrinsic)

allocatable array. However, provided that it does not have

to exploit sparsity, the code bounded to this data type is

significantly simpler to the one bounded to sparse_-

matrix_t. It is equipped with a pair of generic bindings,

with signatures coming in different flavours, in order to

insert or add contributions to the vector. Likewise, there are

other vector-like data types available suitable to handle

blocks and/or distributed-memory computers. For example,

block_array_t is composed of nblocks

scalar_array_t instances; see Fig. 10.

Apart from the linear algebra data structures so far, we

need the additional data type assembler_t, which

offers FE-assembly tailored signatures to fe_affine_-

operator_t. The interface of its deferred TBPs, which

its extensions, e.g., scalar_assembler_t and

block...assembler_t, implement, are shown in

Listing 38. assembler_t has to be ‘‘general enough’’ to

handle many storage layouts and it is in charge to isolate

fe_affine_operator_t from implementation details.

With that purpose in mind, it is composed of a (polymor-

phic) matrix_t and a (polymorphic) array_t instance.

These are in turn abstract data types rooted at all the matrix

and array data types seen so far, respectively. The set of

258 S. Badia et al.

123

deferred TBPs of these two abstract data types is designed

(on purpose) to be not sufficiently rich to handle the whole

life cycle of the concrete matrix and array instances. The

high heterogeneity of the concrete subclasses of ma-

trix_t and array_t precludes it. This set of TBPs is,

in particular, restricted to allocation of memory for its

entries, initialization of its entries to a given value (e.g.,

initialization to zero), and deallocation of any internal

memory. These three operations are required by

fe_affine_operator_t during the deployment of its

life cycle. The bulk of the life cycle of the concrete sub-

classes of matrix_t and array_t is handled by the

subclasses of assembler_t. This is how it should be,

provided that assembler_t subclasses are the ones

aware of the concrete details of the corresponding ma-

trix_t and array_t subclasses. Besides, by doing this,

we can overcome the overhead associated to dynamic run-

time polymorphism, provided that the binding of fine-grain

calls to those TBPs injecting or adding contributions to the

matrix or the array can be determined at compilation time.

Going back to Listing 38, observe that assem-

bly_array (resp., assembly_matrix) takes an

intrinsic Fortran array (resp., rank-2 array) as dummy

argument for the element vector (resp., matrix). Besides, it

also gets the global DOFs identifiers on top a single cell, or

those corresponding to cells surrounding the facet (see

Lines 23, 35 and 36 in Listing 38). In the case of

scalar_assembler_t, the implementation is made

using the TBPs provided by scalar_array_t in order

to add contributions to its entries and the corresponding

TBPs of sparse_matrix_t. In the case of

block_assembler_t, the implementation is made by

looping through the blocks, obtaining a reference to the

current block with the get_block TBP, and using the

corresponding TBPs as in the previous case. The

assembly_array and assembly_matrix TBPs are

used by the fe_cell_iterator_t and fe_

facet_iterator_t data types to implement their

assembly TBPs (see Lines 35 and 68 in Listing 30 of

Sect. 10.2). For completeness, in Listing 39 we show the

Listing 38. The assembler_t abstract data type and its deferred TBPs.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 259

123

signature of the latter TBPs. These are the ones actually

used by the user in the type extension of dis-

crete_integration_t, as described in Sect. 11.2.

Finally, the compress_storage deferred TBP of

assembler_t lets fe_affine_operator_t to signal

that the build up process of the linear algebra data struc-

tures has already finished and that they can already be

‘‘compressed’’ into its final stage.

We stress that the software architecture presented in this

section provides uniform assembly interfaces to the client

that are completely independent of the underlying imple-

mentation of linear algebra data structures. The subclasses

of assembler_t are in charge of the management of

blocks (if any), whereas sparse_matrix_t is in charge

of the management of the storage schemes.

11.2 Discrete Integration of FE Operators

In this section, we introduce the abstract data type

discrete_integration_t (see Listing 40). It

defines the generic integrate binding, which is over-

loaded by the integrate_galerkin and inte-

grate_petrov_galerkin deferred TBPs, depending

on the number of fe_space_t instances being passed to

them (see, e.g., Line 8 of Listing 40 for the interface cor-

responding to the Galerkin case). A user that wants to

implement a FE problem must extend this data type and

overwrite the TBP to be used (Galerkin or Petrov-Galerkin)

in the user-defined subclass. In the overridden method, the

user must implement the evaluation of the entries of A and

f as the numerical integration of the discrete bilinear and

linear forms as in (10) (see Sect. 3).

Based on our experience, the integration part of a FE

code must exhibit a huge level of flexibility. Every time

one wants to consider a new set of PDEs or a new

expression of the discrete bilinear form, this component

must be modified. It must also have the ability to integrate

general time integration schemes that can require functions

in an arbitrary number of steps, deal with nonlinear prob-

lems that involve the need to evaluating FE functions in the

integration of the discrete forms, or including variable

physical coefficients of body force terms determined

through analytical functions. As a result, any rigidity at this

level must be eliminated. Indeed, the discrete_in-

tegration_t abstract data type only forces its sub-

classes to adhere to the signatures of the deferred TBPs

overloading integrate, and has no member variables

that subclasses are forced to handle. Using the design

previously sketched, the user has absolute flexibility to

design its own discrete_integration_t subclass,

adding the attributes and methods that can be required to

integrate and assemble the discrete forms, e.g., by adding

an arbitrary number of fe_function_t and *_func-

tion_t instances (and corresponding setters to be used at

the driver level) that can describe physical properties,

previous time step values, the solution at the previous

nonlinear iteration, etc.

The integration of cell-wise terms of the (bi)linear forms

is accomplished by traversing through all the cells using a

fe_cell_iterator instance (see Sect. 10.2), which

Listing 39. The interfaces of the assembly TBPs of ‘‘set’’ (either cell or facet) iterators.

260 S. Badia et al.

123

has access to (1) all the cell integration data (see Sect. 8)

required to compute the local cell contributions in (11) and

(2) the local-to-global DOF numbering needed for the

assembly in the global linear algebra data structures.

Analogously, the integration of facet terms, e.g., the ones

in (20) for DG formulations, requires the use of a fe_-

facet_iterator_t instance to traverse through the

facets and integrate the corresponding facet terms. The

method integrate is called during the execution of the

numerical_setup TBP of fe_affine_opera-

tor_t. It is in fact the fe_affine_operator_t the

one that decides whether to invoke the Galerkin or Petrov-

Galerkin integration, depending on whether one or two FE

spaces have been passed as actual arguments (the second

one being optional) in its create binding (see Line 15 of

Listing 42). Analogously, the FE space(s) are also passed

as actual argument(s) to the integrate_* bindings,

since they will be needed at any integration step (see Line 8

of Listing 40 for the Galerkin case).

For illustration purposes, we present in Listing 41 an

example extension of discrete_integration_t. It

shows the implementation of the deferred procedure in-

tegrate_galerkin for the approximation of the

Stokes problem using a Galerkin method. This data types

will be used in the example driver presented in Sect. 12 for

the inf-sup stable Taylor-Hood mixed FE method (see

Listing 41).36

As commented above, the integration of the (bi)linear

forms requires the cell integration machinery, which is

provided by fe_space_t through the creation of the

fe_cell_iterator_t in Line 19 of Listing 41. Apart

from controlling the loop over cells (Lines 24 and 62),

fe_cell_iterator_t provides the numerical quadra-

ture, which is in turn required to get the number of integration

points (line 31), and its associated weights (line 32). It also

provides the determinant of the Jacobian of the cell map (line

32), and the shape functions and gradients at Lines 28 to 30

(see (13) and (14)). The implementation of the (bi)linear

forms is very close to the blackboard expression, making it

compact, simple, and intuitive. This is possible through the

definition of the vector_field_t, and tensor_-

field_t data types, together with their corresponding

expression syntax available in FEMPAR. As it was carefully

discussed in Sect. 8.5, it is achieved using operator over-

loading for different vector and tensor operations, e.g., the

contraction and scaling operations. The symmetric_-

part (used at Lines 35 and 38), double_contract

(used at line 40) and trace helper stand-alone functions

(used at Lines 36 and 49) are also offered to make tensor

operations easy.We also note that this implementation is also

efficient, since all these operations are made without any

dynamic memory allocation/deallocation.

Finally, the fe_cell_iterator_t also offers a

TBP to assemble the element matrix and vector into the

assembler and to impose strong Dirichlet conditions

(line 66) using the perturbation in (3) (See Sect. 10.4). The

Dirichlet data is extracted from a fe_function_t that

represents EhuD, which must be an attribute of the concrete

discrete_integration_t. For non-conforming FE

spaces, the formulation requires also a loop over the facets

to integrate DG terms. It can be written in a similar fashion

using the tools described in Sect. 9. In this example, the

stokes_galerkin_integration_t extension has

the attribute force, which is used in Line 56 to integrate

Listing 40. The abstract data type discrete_integration_t and its deferred TBPs.

36 We note that the Stokes subclass of discrete_integra-
tion_t in Listing 41 implements the Galerkin approximation for

this problem but it is independent of the FE space being used. It can

be re-used for any conforming inf-sup stable mixed FE method, e.g.,

Taylor-Hood, conformal Crouzeix-Raviart, MINI element, etc. The

choice of the mixed FE space will be determined by the user in the

driver, when building the Cartesian two-field FE space.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 261

123

Listing 41. The implementation of a binding that overrrides the integration_galerkin TBP of discrete_integration_t for the

Galerkin approximation to the Stokes problem.

262 S. Badia et al.

123

the right-hand side. It is a vector field described by an

instance of the vector_function_t data type.

11.3 The FE Affine Operator Abstraction

A (simplified) declaration of the fe_affine_opera-

tor_t data type is shown in Listing 42. The

fe_affine_operator_t is created from a single

fe_space_t instance, or even two for Petrov-Galerkin

formulations; the second instance is optional and, when it

is not passed, the Galerkin method is used, i.e., the same

FE space is used for trial and test spaces. The user can

(optionally) configure a desired block layout. Given a

Cartesian product FE space X1
h � . . .� X nfield

h for a multi-

field problem with nfield fields (see Sect. 3.11), the block

layout represents a partition of fields into subsets.37 It is

described through the argument array field_blocks of

size num_fields equal to nfield, which indicates the block

to which each field is assigned; by default, the one-block

case is used. e.g., For the Stokes problem in Example 3.2,

one can consider a monolithic block layout with only one

block that includes both the velocity and pressure field

(field_blocks=[1,1]), or two one-field blocks

(field_blocks=[1,2] or [2,1]). Additionally, the user

must provide additional information about the diagonal

blocks, namely (1) whether the block is symmetric or not,

(2) whether symmetric storage wants to be used for the

block or not, and (3) whether the block is positive definite,

semi-positive definite, or indefinite. The user can option-

ally provide the array of logicals field_coupling (of

size num_fields � num_fields); the position ði; jÞ
determines whether the matrix entries related to trial/test

functions of the FE space i and FE space j are always zero

(in this case, the coupling is false) or not. For the Stokes

problem and the Galerkin method, the only entry that is

false (no coupling) is the pressure-pressure entry. When

this array is not provided, the case by default is that all

fields are coupled. It only implies more memory con-

sumption, e.g., to store the zero entries in the pressure-

pressure block for the Stokes problem.

The block layout information is stored in the data type

block_layout_t, sketched in Listing 43, which stores

the arrays field_blocks and field_coupling. It is

created in the binding that creates the fe_affine_op-

erator_t. It also stores a block-wise DOF numbering

generated by the fe_space_t instance, which is

instructed to do so by passing the block_layout_t38

when calling its TBP generate_global_dof_num-

bering, described in Sect. 10.3.

The fe_affine_operator_t also holds a polymor-

phic pointer to an assembler_t instance. Its dynamic

type is selected during the creation phase depending on the

number of blocks, the storage layout required, and the

(parallel or serial) environment. Finally, a polymorphic

pointer to an instance of declared type discrete_in-

tegration_t is also stored (see line 11 of Listing 42).

After the creation phase, the fe_affine_operator_t

is ready for its setup. Thanks to the design of the linear

algebra data structures in FEMPAR, it does not require a

symbolic setup, i.e., to precompute a (potential) sparsity

Listing 42. The fe_affine_operator_t data type.

37 The actual ordering of the fields in the Cartesian FE space is

determined by the user in the creation of the multi-field FE space,

which must be consistent with the implementation of the discrete

weak form. See, e.g., the creation of the mixed Taylor-Hood FE space

in Lines 11–21 of Listing 46, where the first field is the velocity field

and the second one is the pressure field, and the integration of the

weak form, e.g., in Lines 34, 37, and 42 of Listing 41, where this

numbering is respected.

38 The block-wise numbering creates independently the DOF num-

bering of every block. Thus, DOFs of different blocks can have the

same block-wise DOF label.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 263

123

pattern. The numerical_setup TBP at line 17 of

Listing 42 calls the integrate_galerkin TBP of

discrete_integration when the pointer to

trial_fe_space is not associated or inte-

grate_petrov_galerkin otherwise, as discussed in

Sect. 11.2.

12 Driver Example for the Stokes Problem

In this section, we describe the software architecture of a

driver program that approximates the solution of the Stokes

problem. To this end, it implements a Galerkin FE method

grounded on a ‘‘static’’ (i.e., non-adaptable) conforming

mesh and inf-sup stable FE spaces. In particular, we con-

sider a conforming FE space Vh �Qh, where Vh is a grad-

conforming Lagrangian space of order k þ 1, and Qh, a

grad-conforming Lagrangian space of order k, i.e., the

mixed Taylor-Hood FE [5].39

It is up to FEMPAR users to decide how to design the

software architecture of their main driver program. Any

driver program has nevertheless to follow the typical stages

needed in a simulation pipeline based on FEs. In the seek

of uniformity, the architecture presented in Listing 44

and 45 is recommended to FEMPAR users. The main pro-

gram unit relies on a number of driver-level module units,

which are not part of the FEMPAR library but developed by

the user specifically for the problem at hand. Each of these

modules defines a driver-level derived data type and its

TBPs. A central derived data type, called stokes_-

driver_t in this example, is designed to drive all the

necessary steps. In particular, it offers a public TBP, called

run_simulation, on which the driver program relies to

perform the actual simulation. The driver program is

therefore as simple and concise as shown in Listing 44.

The main data type of the driver, stokes_driver_t,

is shown in Listing 45. It is equipped with a set of member

variables of type already described in previous sections;

see comments on the right-hand side of each member

variable. The data type solver_t in Line 11 does not

exist in FEMPAR as such. There is actually a complete set

of data types that provide interfaces to high-end third party

sparse direct solvers. Besides, we have developed our own

abstract implementation of iterative linear solvers (in-

cluding, e.g., the conjugate gradient or GMRES Krylov

subspace solvers). The convergence of these solvers can be

accelerated using advanced preconditioners grounded on

the Multilevel Balancing Domain Decomposition by Con-

straints (MLBDDC) preconditioner [34, 37]. The descrip-

tion of the linear solvers software subsystem deserves

considerable space and is postponed to a future work. In

this example, it has to be understood as a data type that

provides the necessary services required to implement the

solve_system TBP at Line 20 of Listing 45. The data

type stokes_conditions_t at Line 9 extends con-

ditions_t in Sect. 10.4. It encodes the strong Dirichlet

boundary conditions data for this particular operator. The

member variable parameter_list (see Line 4) is a

parameter dictionary of \key; value[pairs. Its imple-

mentation is provided as a stand-alone external software

library called FPL [86]. The member variable

stokes_parameters (see Line 3) is a user-defined

data type that encapsulates the interaction with a command

line parser provided by the FLAP software package [94].

Both of them are used to implement the TBP in Line 14,

which parses the arguments given by the user in the

command line, and transfers them into the aforementioned

parameter_list member variable.

The run_simulation TBP (called from the main

program in Line 8 of Listing 44) is implemented with the

help of the private TBPs in Lines 17–21 of Listing 45. The

setup_triangulation TBP invokes the create

TBP of static_triangulation_t. Depending on

the command-line parameter values, the user may select to

automatically generate a structured/uniform triangulation

Listing 43. The block_layout_t data type.

39 The pressure field belongs to L2ðXÞ. Thus, a discontinuous

pressure FE space could have been also considered as well. It would

still be L2ðXÞ-conforming. This is the case of, e.g., the conformal

Crouzeix-Raviart mixed FE.

264 S. Badia et al.

123

for simple domains (e.g., a unit cube), currently of brick

(quadrilateral or hexahedral) cells, or read it from a mesh

data file, e.g., using the GiD unstructured mesh generator

[91]. The FE space is built in setup_fe_space TBP,

sketched in Listing 46.

An array with base type p_reference_fe_t, a data

type that wraps a polymorphic pointer to a refer-

ence_fe_t instance, is allocated in Line 8 of Listing 46.

The reference_fe_t instances for the velocity and

pressure fields are created by calling make_refer-

ence_fe in Lines 11 and 21, respectively; see Sect. 6.4.

The interpolation order of the numerical scheme is read

from command-line in Line 5. We select order equal to

k þ 1 and k in Lines 11 and 21, respectively. The dummy

argument continuity determines whether X admits a

trace operator. In this particular example, we could con-

sider continuity=.false. if we wanted to use a

discontinuous pressure space. The create TBP of

fe_space_t (Line 35) performs the composition of the

reference FEs to build the Cartesian product space X h.

Finally, we call the set_up_cell_integration TBP

of fe_space_t in Line 38 to set up all the data struc-

tures required to evaluate cell integrals in Listing 40.

The implementation of the setup_fe_affine_op-

erator binding is shown in Listing 47. It first invokes the

create TBP of fe_affine_operator_t in Line 6.

We state monolithic storage for the global coefficient

matrix (Line 13), that it is symmetric (Line 9), that we

want symmetric storage, i.e., to only store its upper triangle

(Line 8), and the fact that it is indefinite (Line 10). The

definition of field_coupling in Line 14 reflects that the

pressure diagonal block is null. We also pass an instance of

fe_space_t in Line 11 and an instance of the subclass

stokes_integration_t in Line 12.

Before we set up the operator in Line 27, we create a

fe_function_t instance in Line 18. In Line 19, by

means of the services provided by fe_space_t, we

interpolate the analytical function to be prescribed on the

boundary for the velocity field (retrieved from

stokes_conditions), fixing the strong Dirichlet

DOFs of the fe_function_t instance at hand. As a

result, this FE function represents EhuD, with the zero

extension to free DOFs; see Sect. 10.4. This FE function is

passed to the stokes_integration_t instance in

Line 24. Finally, we trigger the operator auto-construction

in Line 27.

Listing 44. The main program for the solution of the Stokes problem.

Listing 45. The main data type of the Stokes driver.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 265

123

The solve_system TBP (see Line 20 of Listing 45)

invokes either a direct or preconditioned iterative solver to

obtain the free DOFs nodal values of our FE function (see

Sect. 10.5). Provided that this%solution on input to

solve_system is such that it vanishes on free DOFs (see

discussion in previous paragraph), a common practice used

in FEMPAR drivers to save space is to re-use the space

devoted for free DOFs in this%solution to store the

free DOFs nodal values of the solution of the problem at

hand. We stress that all solvers in FEMPAR are such that

they only solve for free DOFs. In our experience, this

decision dramatically simplifies the development of some

preconditioners, provided that they can be developed

without taking care of strong Dirichlet boundary conditions.

Finally, the write_solution TBP (see Line 21 of

Listing 45) is in charge of the generation of simulation

results in data files for later visualization using, e.g.,

VisIt [95] or Paraview [96]. To this end, write_solu-

tion relies on a format independent, extensible abstrac-

tion, referred to as output_handler_t. It lets the user

to register an arbitrary number of FE functions (together

with the corresponding FE space these functions were

generated from) and cell data arrays (e.g., material prop-

erties or error estimator indicators), to be output in the

appropriate format for later visualization. Among its

responsibilities, this (abstract) data type generates the data

to be written to the (potentially parallel-distributed) file

system in neutral, cell-oriented data structures, dealing

with (potentially) non-conforming (discontinuous), and

variable degree FE spaces among cells. The user may also

select to apply a differential operator to the FE function,

such as divergence, gradient or curl, which involve further

calculations to be performed on each cell, or to customize

those cells to be output (e.g., only those that belong to the

interior of the geometry in unfitted FE simulations) via

their own implementation of cell iterators.

The generation of the actual data files in the appropriate

format is in charge of the implementations (extensions) of

output_handler_t. FEMPAR currently offers two

implementations of output_handler_t (although

many others could be implemented as well by the growing

community of FEMPAR developers given the extensible

software architecture designed). vtk_output_han-

dler_t lets the user to generate their data in the standard-

open model VTK [97]. It currently relies on Lib_VT-

K_IO [98], which (by now) does not actually exploit

parallel MPI I/O but instead uses a naive single file per

MPI task scheme. vtk_output_handler_t is

Listing 46. The implementation of the setup_fe_space binding for the Stokes problem.

266 S. Badia et al.

123

therefore the recommended option for serial computations

or parallel computations on a moderate number of pro-

cessors. The second one, xh5_output_handler_t,

lets the user generate their data in XDMF [99]. XDMF

separates the description of the raw data, referred to as

‘‘light data’’, from the data itself, referred to as ‘‘heavy

data’’. The light data is expressed using a set of XML-

based constructs that are suited to represent the distributed-

memory data structures in FEMPAR. XDMF in turn sup-

ports the heavy data to be stored using HDF5 [100]. HDF5

is, among others, a data model and file format designed

with the parallel I/O data challenge in mind. By means of a

set of supporting open source libraries, referred to as par-

allel HDF5 libraries, FEMPAR takes advantage of the

underlying distributed file system without having to deal

with the high complexity of other lower-level implemen-

tations, such as raw MPI I/O. In particular, the latter ser-

vice is provided by XH5For [101], a stand-alone software

library, which we developed from scratch, and lets the user

to read/write parallel partitioned FEM meshes taking

advantage of the Collective/Independent MPI-IO provided

by the PHDF5 library for the efficient generation of the

vast amount of data typically resulting from a large-scale

scientific computing simulation.

13 Conclusions

In this work, we have thoroughly described the approach

that we have followed in FEMPAR in order to abstract in

software the numerical approximation of problems

governed by PDEs using FE methods. The mathematical

framework of FEs has been split into a number of

(mathematically motivated) derived data types and their

interaction, resulting into a well-separated, robust, and

stable set of customizable software abstractions for the

development of widely applicable FE solvers. These

tools equip FEMPAR users with the machinery needed to

perform all the steps in the simulation pipeline, including

mesh import/generation, DOFs enumeration, evaluation/

assembly of the algebraic system of linear equations via

FE integration, solution of the linear system, and output

of computational results in the appropriate format for

later visualization. In order to achieve this goal, the

software architecture of FEMPAR has been thoroughly

designed by means of advanced OO software re-engi-

neering techniques (including the recurrent application of

OO design patterns [85, 88]) in order to increase its ease

of use, extensibility, flexibility, and reusability. FEMPAR

software architecture has been implemented using the

latest OO features of the Fortran03/08 standard, namely,

information hiding and data encapsulation, inheritance

via type extension, and dynamic run-time polymorphism.

This version of the Fortran standard is already widely

(and robustly) supported by most of the compilers typi-

cally available on high-end computing environments. A

judiciously set of programming techniques let us achieve

a reasonable trade-off among extensibility and perfor-

mance, while avoiding in most cases the computational

overheads frequently associated with abstract OO soft-

ware libraries.

Listing 47. The implementation of the setup_fe_affine_operator binding for the Stokes problem.

FEMPAR: An Object-Oriented Parallel Finite Element Framework 267

123

The software abstractions covered in this work include:

• The definition of reference FEs, which relies on the

concept of polytopes to define the cell topology in

arbitrary dimensions, a machinery to define multi-dimen-

sional polynomial functions of arbitrary order in an easy

and automatic way, and a general procedure for the

generation of the shape function bases and local DOFs.

• The global FE space abstraction, which relies on

reference FE(s) and a triangulation of the physical

domain. It is responsible to define the local-to-global

DOF numbering, which must respect conformity (if

needed). The FE space also provides tools for the

numerical integration of (bi)linear forms, e.g., map-

pings from the reference to the physical space, etc., in

cells and facets (for DG methods).

• The FE affine operator generated after the discretization

of the original problem (probably after a linearization

step). The FE solution is the only root (as soon as the

problem is well-posed) of this operator. This operator,

once the trial and test functions and the discrete

(bi)linear forms of the problem at hand are defined, is

represented through a matrix and a vector whose entries

can be computed by numerical integration using the FE

space.

FEMPAR has been used for more than 4 years now by a

team of about 10 researchers of different research institu-

tions and universities. During the initial OO re-design,

derived data types (attributes and bindings) were gradually

modified to accommodate new features that had not been

considered, to fix expressivity limitations or even depen-

dency knots of the original design. The software architec-

ture to which we have converged, although certainly

subject to future change, has been already proven to be

capable to satisfy a number of users’ software require-

ments, even when the application problems involved

complex and advanced features (e.g., the development of

growing geometries in 3D printing technology). We con-

sider that this steady regime, which has been attained after

years of development, and a tremendous man-month power

effort, is the proof that the software abstraction in FEMPAR

is of practical relevance not only for prospective users and

developers, but also for researchers that want to learn about

the OO implementation of FE methods. It has motivated

the decision of the authors to promote the library as a

community software project, to open it to external users

and new collaborators, to publish the library in an public

git repository [42], and to write this article. In particular,

the architecture described here corresponds to the first

public release of FEMPAR, to which we assigned the git tag

FEMPAR-1.0.0.

The first public release of FEMPAR has almost 300K

lines of (mostly) Fortran code. Thus, a document like this

one, with a quite detailed description of the services pro-

vided by the library and the motivation underlying our

software design, can be a very valuable resource to com-

plement the source code, which can become overwhelming

in itself. In this paper, we have restricted ourselves to the

construction of FE operators for body-fitted FE spaces.

However, a major (and unique compared to other FE sci-

entific software packages available on the Internet)

cornerstone of FEMPAR is an abstract OO framework for

the implementation of widely applicable highly scalable

multilevel DD solvers.40 By letting this framework to be

highly coupled with the numerical integration data struc-

tures of the application, on the one hand, and to be highly

customizable, on the other, one can derive optimal pre-

conditioners for the particular structure of the discrete

operator at hand, and tackle new problems and challenges,

while leveraging the distributed-memory implementation

ideas [37] on which the framework is grounded on. Cus-

tomizable building blocks in the framework include the

fine-grid to coarse-grid DOFs aggregation, the constraint

matrix underlying the imposition of continuity of coarse

DOFs functionals across coarse objects, the weighting

operator underlying the injection among the continuous

and discontinuous spaces, and the kind of solvers to be

used for the Dirichlet, Neumann constrained local prob-

lems, and the coarsest-grid global problem [103]. How-

ever, we postpone the discussion about solvers,

preconditioners, data structures suitable for parallel dis-

tributed-memory computers, and other more exotic dis-

cretization techniques in FEMPAR, like B-splines and

XFEM methods, to subsequent works.

Acknowledgements The authors want to thank Jesús Bonilla, Oriol

Colomés, Eric Neiva, Hieu Nguyen, Marc Olm, Vı́ctor Sande, and

Francesc Verdugo (in alphabetical order) for their strong commitment

to the FEMPAR project, the implementation of some of the software

described in this work, and their thorough review of preliminary

versions of this document. The resources needed to develop a sci-

entific library library like FEMPAR would have not been feasible

without excellent research funding. In this sense, SB sincerely thanks

the support of the European Research Council through the Starting

Grant No. 258443—COMFUS: Computational Methods for Fusion

Technology under the the FP7 Program and the two related Proof of

Concept Grant No. 640957—FEXFEM: On a free open source

extreme scale finite element software and Proof of Concept Grant No.

737439—NuWaSim: On a Nuclear Waste Deep Repository Simulator

under the H2020 Program. SB gratefully acknowledges the support

received from the Catalan Government through the ICREA Acadèmia

Research Program.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of

interest.

40 Indeed, the multilevel DD solvers within FEMPAR are since 2014

in the High-Q club of the most scalable European codes, maintained

by the Jülich supercomputing center [102].

268 S. Badia et al.

123

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Guo B, Babuska I (1986) The h-p version of the finite element

method. Comput Mech 1(1):21–41

2. Ainsworth M, Oden JT (2011) A posteriori error estimation in

finite element analysis. Wiley, New York

3. Melenk JM, Wohlmuth BI (2001) On residual-based a posteriori

error estimation in hp-FEM. Adv Comput Math

15(1–4):311–331

4. Nedelec JC (1980) Mixed finite elements in R3. Numer Math

35(3):315–341

5. Brezzi F, Fortin M (1991) Mixed and hybrid finite element

methods. Springer, Berlin

6. Arnold DN, Falk RS, Winther R (2006) Finite element exterior

calculus, homological techniques, and applications. Acta Numer

15:1–155

7. Neilan M, Sap D (2016) Stokes elements on cubic meshes

yielding divergence-free approximations. Calcolo

53(3):263–283

8. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric

analysis: CAD, finite elements, NURBS, exact geometry and

mesh refinement. Comput Methods Appl Mech Eng

194(39–41):4135–4195

9. Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified

hybridization of discontinuous Galerkin, mixed, and continuous

Galerkin methods for second order elliptic problems. SIAM J

Numer Anal 47(2):1319–1365

10. Demkowicz L, Gopalakrishnan J (2010) A class of discontinu-

ous Petrov-Galerkin methods. Part I: the transport equation.

Comput Methods Appl Mech Eng 199(23–24):1558–1572

11. Ang J, Barrett R, Benner R, Burke D, Chan C, Cook J, Donofrio

D, Hammond S, Hemmert K, Kelly S, Le H, Leung V, Resnick

D, Rodrigues A, Shalf J, Stark D, Unat D, Wright N (2014)

Abstract machine models and proxy architectures for exascale

computing. In: Co-HPC’14 Proceedings of the 1st international

workshop on hardware–software co-design for high performance

computing. IEEE, pp 25–32

12. Gropp W (2015) Is MPI?X enough for exascale? Keynote for

international high performance computing forum, Tianjin, China

13. Kale LV, Krishnan S (1993) CHARM??: a portable concurrent

object oriented system based on C??. ACM SIGPLAN Not

28(10):91–108

14. Bauer M, Treichler S, Slaughter E, Aiken A (2012) Legion:

expressing locality and independence with logical regions. In:

Proceedings of the international conference on high performance

computing, networking, storage and analysis, SC ’12, Los

Alamitos, CA, USA, IEEE Computer Society Press,

pp 66:1–66:11

15. Kaiser H, Heller T, Adelstein-Lelbach B, Serio A, Fey D (2014)

Hpx: A task based programming model in a global address

space. In Proceedings of the 8th international conference on

partitioned global address space programming models, PGAS

’14, New York, NY, USA, ACM, pp 6:1–6:11

16. Janine Bennett PI, Robert Clay PM, Baker G, Gamell M,

Hollman D, Knight S, Kolla H, Sjaardema G, Slattengren N,

Teranishi K et al (2015) ASC ATDM level 2 milestone# 5325:

asynchronous many-task runtime system analysis and assess-

ment for next generation platforms. Technical Report

SAND2015-8312, Sandia National Laboratories

17. Bangerth W, Hartmann R, Kanschat G (2007) deal. II–a general-

purpose object-oriented finite element library. ACM Trans Math

Softw 33(4):24

18. Bangerth W, Davydov D, Heister T, Heltai L, Kanschat G,

Kronbichler M, Maier M, Turcksin B, Wells D (2016) The deal.

II library, version 8.4. J Numer Math 24:135–141

19. Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A,

Richardson C, Ring J, Rognes ME, Wells GN (2015) The

FEniCS project version 1.5. Arch Numer Softw 3(100):9–23

20. Bauman P, Stogner R (2016) GRINS: a multiphysics framework

based on the libmesh finite element library. SIAM J Sci Comput

38(5):S78–S100

21. Cantwell CD, Moxey D, Comerford A, Bolis A, Rocco G,

Mengaldo G, De Grazia D, Yakovlev S, Lombard JE, Ekelschot

D, Jordi B, Xu H, Mohamied Y, Eskilsson C, Nelson B, Vos P,

Biotto C, Kirby RM, Sherwin SJ (2015) Nektar??: an open-

source spectral/element framework. Comput Phys Commun

192:205–219

22. MOOSE (Multiphysics Object-Oriented Simulation Environ-

ment) Framework. http://mooseframework.org/

23. MFEM—a free, lightweight, scalable C?? library for finite

element methods. http://mfem.org/

24. Hecht F (2012) New development in FreeFem??. J Numer

Math 20(3–4):251–265

25. Dedner A, Nolte M (2012) Construction of local finite element

spaces using the generic reference elements. In: Dedner A,

Flemisch B, Klöfkorn R (eds) Advances in DUNE. Springer,

Berlin, pp 3–16

26. Balay S, Abhyankar S, Adams MF, Brown J, Brune P,

Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D,

Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S,

Zhang H, Zhang H (2016a) PETSc web page

27. Balay S, Abhyankar S, Adams MF, Brown J, Brune P,

Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D,

Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S,

Zhang H, Zhang H (2016b) PETSc users manual. Technical

report ANL-95/11—Revision 3.7, Argonne National Laboratory

28. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient

management of parallelism in object oriented numerical soft-

ware libraries. In: Arge E, Bruaset AM, Langtangen HP (eds)

Modern software tools in scientific computing. Birkhäuser Press,

Berlin, pp 163–202

29. Falgout RD, Yang UM (2002) hypre: a library of high perfor-

mance preconditioners. In: Computational science—ICCS 2002.

Springer, Berlin, pp 632–641

30. Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda

TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger

AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams

A, Stanley KS (2005) An overview of the trilinos project. ACM

Trans Math Softw 31(3):397–423

31. The Trilinos Project. https://trilinos.org

32. Toselli A (2006) Dual-primal FETI algorithms for edge finite-

element approximations in 3D. IMA J Numer Anal

26(1):96–130

33. Dohrmann CR (2007) An approximate BDDC preconditioner.

Numer Linear Algebra Appl 14(2):149–168

34. Badia S, Martı́n AF, Principe J (2015) On the scalability of

inexact balancing domain decomposition by constraints with

overlapped coarse/fine corrections. Parallel Comput 50:1–24

35. Efendiev Y, Hou TY (2009) Multiscale finite element methods:

theory and applications. Springer, New York

36. Klawonn A, Lanser M, Rheinbach O (2015) Toward extremely

scalable nonlinear domain decomposition methods for elliptic

FEMPAR: An Object-Oriented Parallel Finite Element Framework 269

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://mooseframework.org/
http://mfem.org/
https://trilinos.org

partial differential equations. SIAM J Sci Comput 37(6):C667–

C696

37. Badia S, Martı́n A, Principe J (2016) Multilevel balancing

domain decomposition at extreme scales. SIAM J Sci Comput,

pp C22–C52

38. Zampini S (2016) PCBDDC: a class of robust dual-primal

methods in PETSc. SIAM J Sci Comput 38(5):S282–S306

39. Badia S, Olm M (2017) Space–time balancing domain decom-

position. SIAM J Sci Comput 39(2):C194–C213

40. Brune P, Knepley M, Smith B, Tu X (2015) Composing scalable

nonlinear algebraic solvers. SIAM Rev 57(4):535–565

41. Falgout R, Friedhoff S, Kolev T, MacLachlan S, Schroder J

(2014) Parallel time integration with multigrid. SIAM J Sci

Comput 36(6):C635–C661

42. FEMPAR: Finite Element Multiphysics PARallel solvers. https://

gitlab.com/fempar/fempar

43. Elman HC, Silvester DJ, Wathen AJ (2005) Finite elements and

fast iterative solvers: with applications in incompressible fluid

dynamics. Oxford University Press, Oxford

44. Badia S, Martı́n AF, Planas R (2014) Block recursive LU pre-

conditioners for the thermally coupled incompressible induc-

tionless MHD problem. J Comput Phys 274:562–591

45. Cyr E, Shadid J, Tuminaro R (2016) Teko: a block precondi-

tioning capability with concrete example applications in Navier–

Stokes and MHD. SIAM J Sci Comput 38(5):S307–S331

46. Colomés O, Badia S, Codina R, Principe J (2015) Assessment of

variational multiscale models for the large eddy simulation of

turbulent incompressible flows. Comput Methods Appl Mech

Eng 285:32–63

47. Colomés O, Badia S (2016) Segregated Runge–Kutta methods

for the incompressible Navier–Stokes equations. Int J Numer

Methods Eng 105(5):372–400

48. Colomés O, Badia S, Principe J (2016) Mixed finite element

methods with convection stabilization for the large eddy simu-

lation of incompressible turbulent flows. Comput Methods Appl

Mech Eng 304:294–318

49. Colomés O, Badia S (2017) Segregated Runge–Kutta time

integration of convection-stabilized mixed finite element

schemes for wall-unresolved LES of incompressible flows.

Comput Methods Appl Mech Eng 313:189–215

50. Badia S, Codina R, Planas R (2013a) On an unconditionally

convergent stabilized finite element approximation of resistive

magnetohydrodynamics. J Comput Phys 234:399–416

51. Badia S, Planas R, Gutiérrez-Santacreu JV (2013b) Uncondi-

tionally stable operator splitting algorithms for the incom-

pressible magnetohydrodynamics system discretized by a

stabilized finite element formulation based on projections. Int J

Numer Methods Eng 93(3):302–328

52. Planas R, Badia S, Codina R (2011) Approximation of the

inductionless MHD problem using a stabilized finite element

method. J Comput Phys 230(8):2977–2996

53. Smolentsev S, Badia S, Bhattacharyay R, Bühler L, Chen L,

Huang Q, Jin HG, Krasnov D, Lee DW, de les Valls EM,

Mistrangelo C, Munipalli R, Ni M-J, Pashkevich D, Patel A,

Pulugundla G, Satyamurthy P, Snegirev A, Sviridov V, Swain P,

Zhou T, Zikanov O (2015) An approach to verification and

validation of MHD codes for fusion applications. Fusion Eng

Des 100:65–72

54. Badia S, Codina R, Planas R (2015) Analysis of an uncondi-

tionally convergent stabilized finite element formulation for

incompressible magnetohydrodynamics. Arch Comput Methods

Eng 22(4):621–636

55. Badia S, Hierro A (2015) On discrete maximum principles for

discontinuous Galerkin methods. Comput Methods Appl Mech

Eng 286:107–122

56. Badia S, Hierro A (2014) On monotonicity-preserving stabilized

finite element approximations of transport problems. SIAM J Sci

Comput 36(6):A2673–A2697

57. Hierro A, Badia S, Kus P (2016) Shock capturing techniques for

adaptive finite elements. Comput Methods Appl Mech Eng

309:532–553

58. Badia S, Bonilla J (2017) Monotonicity-preserving finite ele-

ment schemes based on differentiable nonlinear stabilization.

Comput Methods Appl Mech Eng 313:133–158

59. Badia S, Bonilla J, Hierro A (2017) Differentiable monotonicity-

preserving schemes for discontinuous Galerkin methods on arbi-

trary meshes. Comput Methods Appl Mech Eng 320:582–605

60. Badia S, Verdugo F (2017) Robust and scalable domain

decomposition solvers for unfitted finite element methods.

arXiv:1703.06323 [math]

61. Chiumenti M, Neiva E, Salsi E, Cervera M, Badia S, Davies C,

Chen Z, Lee C (2017) Numerical modelling and experimental

validation in selective laser melting (submitted)

62. Badia S, Martı́n AF, Principe J (2013) Implementation and

scalability analysis of balancing domain decomposition meth-

ods. Arch Comput Methods Eng 20(3):239–262

63. Badia S, Martı́n AF, Prı́ncipe J (2013) Enhanced balancing

Neumann–Neumann preconditioning in computational fluid and

solid mechanics. Int J Numer Meth Eng 96(4):203–230

64. Badia S, Nguyen H (2016) Balancing domain decomposition by

constraints and perturbation. SIAM J Numer Anal

54(6):3436–3464

65. Badia S, Martı́n AF, Nguyen H (2016) Physics-based balancing

domain decomposition by constraints for heterogeneous prob-

lems. Working paper or preprint

66. Badia S, Martı́n A, Principe J (2014) A highly scalable parallel

implementation of balancing domain decomposition by con-

straints. SIAM J Sci Comput 36(2):C190–C218

67. Adams JC, Brainerd WS, Hendrickson RA, Maine RE, Martin

JT, Smith BT (2009) The Fortran 2003 handbook. Springer,

London,

68. Rouson D, Xia J, Xu X (2011) Scientific software design: the

object-oriented way, 1st edn. Cambridge University Press, New

York

69. Ern A, Guermond J-L (2004) Theory and practice of finite

elements. Springer, Berlin

70. Brenner SC, Scott R (2010) The mathematical theory of finite

element methods. Springer, softcover reprint of hardcover 3rd

ed. 2008 edn

71. Quarteroni A (2014) Numerical models for differential prob-

lems. Springer Milan, Milano

72. Monk P (2003) Finite element methods for Maxwell’s equa-

tions. Clarendon Press, Oxford

73. Duffy M (1982) Quadrature over a pyramid or cube of inte-

grands with a singularity at a vertex. SIAM J Numer Anal

19(6):1260–1262

74. Dunavant DA (1985) High degree efficient symmetrical Gaus-

sian quadrature rules for the triangle. Int J Numer Meth Eng

21(6):1129–1148

75. Olm M, Badia S, Martı́n AF (2017) Simulation of high tem-

perature superconductors and experimental validation. arXiv:

1707.09783 [physics]

76. Badia S, Quaini A, Quarteroni A (2008a) Modular vs. non-

modular preconditioners for fluid-structure systems with large

added-mass effect. Comput Methods Appl Mech Eng

197(49–50):4216–4232

77. Badia S, Nobile F, Vergara C (2008b) Fluid-structure partitioned

procedures based on Robin transmission conditions. J Comput

Phys 227(14):7027–7051

270 S. Badia et al.

123

https://gitlab.com/fempar/fempar
https://gitlab.com/fempar/fempar
http://arxiv.org/abs/1703.06323
http://arxiv.org/abs/1707.09783
http://arxiv.org/abs/1707.09783

78. Badia S, Quaini A, Quarteroni A (2008c) Splitting methods

based on algebraic factorization for fluid–structure interaction.

SIAM J Sci Comput 30(4):1778

79. Badia S, Nobile F, Vergara C (2009) Robin–Robin precondi-

tioned Krylov methods for fluid-structure interaction problems.

Comput Methods Appl Mech Eng 198(33–36):2768–2784

80. Rognes M, Kirby R, Logg A (2009) Efficient assembly of H(div)

and H(curl) conforming finite elements. SIAM J Sci Comput

31(6):4130–4151

81. Agelek R, Anderson M, Bangerth W, Barth W (2017) On ori-

enting edges of unstructured two- and three-dimensional

meshes. ACM Trans Math Softw (to appear)

82. Bangerth W, Kayser-Herold O (2009) Data structures and

requirements for hp finite element software. ACM Trans Math

Softw 36(1):1–31

83. Badia S, Baiges J (2013) Adaptive finite element simulation of

incompressible flows by hybrid continuous–discontinuous

Galerkin formulations. SIAM J Sci Comput 35(1):A491–A516

84. Dryja M, Galvis J, Sarkis M (2007) BDDC methods for dis-

continuous Galerkin discretization of elliptic problems. J Com-

plex 23(4–6):715–739

85. Freeman E, Robson E, Sierra K, Bates B (eds) (2004) Head first

design patterns. O’Reilly, Sebastopol

86. FPL—Fortran parameter list. https://gitlab.com/fempar/FPL

87. Beall MW, Shephard MS (1997) A general topology-based mesh

data structure. Int J Numer Meth Eng 40(9):1573–1596

88. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design pat-

terns: elements of reusable object-oriented software. Addison-

Wesley, Boston

89. Bangerth W, Burstedde C, Heister T, Kronbichler M (2012)

Algorithms and data structures for massively parallel generic

adaptive finite element codes. ACM Trans Math Softw

38(2):14:1–14:28

90. Burstedde C, Wilcox LC, Ghattas O (2011) p4est : scalable

algorithms for parallel adaptive mesh refinement on forests of

octrees. SIAM J Sci Comput 33(3):1103–1133

91. GiD—the personal pre and post processor. http://www.gidhome.

com

92. Filippone S, Buttari A (2012) Object-oriented techniques for

sparse matrix computations in Fortran 2003. ACM Trans Math

Softw 38(4):23:1–23:20

93. Saad Y (2003) Iterative methods for sparse linear systems, 2nd

edn. Society for Industrial and Applied Mathematics

94. FLAP—Fortran command Line Arguments Parser for poor

people. https://github.com/szaghi/FLAP

95. Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire

D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H,

Fogal T, Sanderson A, Garth C, Bethel EW, Camp D, Rübel O,

Durant M, Favre JM, Navrátil P (2012) VisIt: an end-user tool

for visualizing and analyzing very large data. In: High perfor-

mance visualization-enabling extreme-scale scientific insight,

pp 357–372

96. Ayachit U (2015) The paraview guide: a parallel visualization

application. Kitware Inc, Clifton Park

97. Schroeder W, Martin KM, Lorensen WE (1998) The visualiza-

tion toolkit: an object-oriented approach to 3D graphics, 2nd

edn. Prentice-Hall, Inc., Upper Saddle River

98. Lib_VTK_IO—Pure Fortran (2003?) library to write and read

data conforming the VTK standard. https://gitlab.com/fempar/

Lib_VTK_IO

99. XDMF—eXtensible data model and format. http://www.xdmf.

org/index.php/Main_Page

100. The HDF Group. Hierarchical data format version 5. http://

www.hdfgroup.org/HDF5, 2000–2017

101. XH5For—XDMF parallel partitioned mesh Input/Output on top

of HDF5. https://gitlab.com/fempar/XH5For

102. Brömmel D, Wylie BJN, Frings W (2015) JUQUEEN extreme

scaling workshop 2015. Technical Report FZJ-2015-01645,

Jülich Supercomputing Center

103. Dohrmann CR (2003) A preconditioner for substructuring based

on constrained energy minimization. SIAM J Sci Comput

25(1):246–258

FEMPAR: An Object-Oriented Parallel Finite Element Framework 271

123

https://gitlab.com/fempar/FPL
http://www.gidhome.com
http://www.gidhome.com
https://github.com/szaghi/FLAP
https://gitlab.com/fempar/Lib%5fVTK%5fIO
https://gitlab.com/fempar/Lib%5fVTK%5fIO
http://www.xdmf.org/index.php/Main%5fPage
http://www.xdmf.org/index.php/Main%5fPage
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
https://gitlab.com/fempar/XH5For

	FEMPAR: An Object-Oriented Parallel Finite Element Framework
	Abstract
	Introduction
	The FEMPAR Project
	The FE Framework
	The Boundary Value Problem in Weak Form
	Space Discretization with FEs
	The FE Concept in the Reference and Physical Spaces
	Construction of Polynomial Spaces
	Construction of the Shape Functions Basis
	Global FE Space and Conformity
	Numerical Integration
	Grad-Conforming FEs: Lagrangian (Nodal) Elements
	Div-Conforming FEs
	Curl-Conforming FEs
	Cartesian Product of FEs for Multi-field Problems
	Non-conforming Methods
	Facet Integration
	Polytopes
	Node Generation and Indexing
	Global DOF Numbering and Conformity

	Implementation of polytope_t and Related Data Types
	The polynomial_t Abstraction
	The reference_fe_t Abstraction
	The Reference Cell Topology
	The Reference FE Space
	The Set of Local DOFs
	Creating reference_fe_t Polymorphic Instances
	Enumeration of reference_fe_t Subclasses

	The Description of the Physical Domain: The triangulation_t Abstraction
	An Abstract Triangulation Representation and Its Software Implementation
	An Example triangulation_t Subclass and Rationale

	Evaluation of Cell Integrals
	Numerical Quadrature
	Evaluation of Reference Cell Shape Functions
	Geometrical Mapping
	Evaluation of Shape Functions in the Physical Space
	Cell Integration User Code Example

	Evaluation of Facet Integrals
	Numerical Quadrature
	Geometrical Mappings
	Facet Mapping
	Neighbouring Cells Mappings

	Evaluation of Shape Functions in the Physical Space
	Facet Integration User Code Example
	Change-of-Basis Implementation in a reference_fe_t Subclass

	Integration and Global DOF Handling: The fe_space_t Abstraction
	The Internal Organization of fe_space_t
	A Conceptual View of fe_space_t
	Global DOF Numbering Generation
	Strong Imposition of Boundary Conditions
	Global FE Functions and Their Restriction to Triangulation Cells/Facets

	Building FE Affine Operators
	Linear Algebra Data Structures and Associated Assemblers
	Discrete Integration of FE Operators
	The FE Affine Operator Abstraction

	Driver Example for the Stokes Problem
	Conclusions
	Acknowledgements
	References

