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1 Introduction

The presence of uncertainty is inevitable in the life cycle 
analysis and design optimization of an industrial output. In 
order to illustrate its omnipresence, manufacturing varia-
tions can be considered as a classical example of one of the 
major sources of uncertainties inherently associated with 
a product [1]. Deterministic approaches may not always 
converge to the desired optima, especially when the design 
solution is highly sensitive to such variations. In such criti-
cal situations, it could lead to either unsafe or over safe 
outcomes. Therefore, incorporating uncertainty in product 
analysis and design is necessary to yield economically via-
ble solutions.

Robust design optimization (RDO) is one of the most 
popular approaches which take into account the effect of 
uncertainties into the design optimization formulation 
[2–4]. RDO has been observed to improve product quality 
significantly, and yield insensitive solutions, even in real 
time industrial applications [5, 6]. Over the last two dec-
ades, it has gained much attention across various domains, 
such as, telecommunications and electronics [7–9], aero-
space [10–12], automobile [13–15], ship design [16–18], 
structural mechanics [19–21], structural dynamics and 
vibration control [22, 23] and fatigue analysis [24–26].

RDO establishes a mathematical framework for opti-
mization motivated to minimize the propagation of input 
uncertainty to output responses [27, 28]. A graphical rep-
resentation presented in Fig.  1 illustrates the concept of 
RDO. Out of the two optimal solutions, x2 is more robust 
as compared to x1, since the former does not affect the 
objective function f (x) much, and hence is less sensitive. 
Broadly, the problem formulations of RDO generally con-
stitute of maximizing the performance, minimizing the 
performance variance, or both. For the details and insight 
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of RDO formulation, the reader is referred to the follow-
ing literatures [2, 29, 30]. Since RDO attempts to resolve 
sensitive design solutions in a random environment, it suf-
fers from computational issues as an obvious consequence. 
Despite the advances in computer configuration and speed, 
the mammoth computational costs of running such com-
plex simulation codes have prohibited their usage.

Therefore, in order to avoid running such high fidelity 
simulations, various approximation schemes have emerged 
[31]. These techniques, also known as surrogate modelling, 
have been observed to resolve the computational expenses 
significantly by approximating the underlying model in a 
sample space [32, 33]. Various such techniques have been 
developed till date, such as least square approximation [34], 
moving least square [35], polynomial chaos expansion [36], 
anchored ANOVA decomposition [37], Kriging [38], radial 

basis function [39], artificial neural network [40], support 
vector machines [41] and multivariate adaptive regression 
splines [42].

Such techniques have been successfully utilized in 
design optimization for engineering applications. A com-
prehensive review of the use of approximation models in 
mechanical and aerospace systems, and multidisplinary 
design optimization can be found in [12, 43, 44]. However, 
in context to optimization, such efficient paradigms have 
found their use primarily in deterministic frontier. To fur-
ther illustrate the gap in research in this particular area, it 
may be justified to reveal that application of approximation 
models in RDO is quite limited in number and content [1]. 
A possible explanation for the lack of investigation in this 
area can be derived from the fact that the performance out-
put is likely to be vulnerable and unstable in presence of 

Fig. 1  Schematic diagram illus-
trating robust design optimiza-
tion (RDO)



247A Critical Review of Surrogate Assisted Robust Design Optimization  

1 3

uncertainties in an optimization framework. Additionally, 
solutions of constrained RDO problems can easily move 
to infeasible regions, if they are located close to constraint 
boundaries [45]. Thus, accuracy of the method to capture 
the original model is the governing factor to yield stable 
results satisfying feasible bounds, as the optima is highly 
sensitive to the convergence of each iteration.

Thus, the primary motivation of this paper lies in inves-
tigating most of the popular surrogate models and study 
their performance in the framework of RDO. Considering 
the lack of relevant literature in surrogate assisted RDO, an 
extensive review and thorough comparative assessment of 
various surrogate models in RDO has been felt as the need 
of the hour by the authors. This work is expected to serve 
as the guiding and selection application of the appropriate 
approximation models for the solution of high-fidelity com-
putationally expensive stochastic optimization problems. 
Six benchmark RDO examples have been solved by utiliz-
ing as many as eleven popular surrogate models. Finally, 
a practical problem has been realistically modelled and 
solved by utilizing the most consistently performing model. 
To be specific, the dimensionality of the problems in terms 
of the number of stochastic variables vary from 2 to 48. 
The robust optimal solutions obtained have been validated 
with that of Monte Carlo simulation (MCS).

The paper has been organized in the following sequence. 
The theoretical development of the surrogate models 
employed for this study has been illustrated in Sect. 2. Sec-
tion  3 explains the framework of surrogate assisted RDO 
technique. Numerical study has been carried out in Sect. 4 
in order to illustrate the efficiency and accuracy of the vari-
ous surrogate assisted RDO frameworks. A practical engi-
neering RDO problem has been efficiently addressed in 
Sect. 5. Finally, conclusion has been drawn by discussing 
potentiality of the surrogate models in RDO framework on 
the basis of the results obtained from the study.

2  Surrogate Modelling

In this section, various surrogate models have been 
explained along with brief description of their mathemati-
cal formulations, which would provide complete insight to 
the readers.

2.1  Anchored ANOVA Decomposition

Various methods approximate multivariate functions in 
such a way that the component functions of the approxi-
mation are ordered starting from a constant and gradually 
approaching to multivariance as one proceeds along first 
order, second order and so on. An example of such method 
is ANOVA decomposition [37, 46–48] which is a general 

set of quantitative model assessment and analysis tool for 
mapping the high dimensional relationships between input 
and output model variables. It is an efficient formulation of 
the system response, if higher order co-operative effects are 
weak, allowing the physical model to be captured by the 
lower order terms. Practically for most well-defined physi-
cal systems, only relatively low order co-operative effects 
of the input variables are expected to have a significant 
effect on the overall response. ANOVA decomposition uti-
lizes this property to fit an accurate hierarchical representa-
tion of the physical system. The fundamental concepts of 
generalized ANOVA decomposition has been discussed 
henceforth.

Let, � =
(
x1, x2,… , xP

)
∈ ℝ

P and consider that 
� = 𝕃

2
(
ℝ

P,PX

)
. The generalized ANOVA decomposition 

expresses �(�) = �
(
x1, x2,… , xP

)
 as the sum of the hierar-

chical correlated function expansion in terms of the vari-
ables [37, 48] as

The expansion (1) exists and is unique under one of the 
hypothesis:

where �0 is constant term representing the zeroth order 
component function or the mean response. The function 
�i
(
xi
)
, referred to as first order component function rep-

resenting the independent effect. Similarly, �i,j
(
xi, xj

)
 is 

termed as second-order component function and represents 
co-operative effect of two-variables acting at a time. The 
higher-order terms indicate higher order co-operative effect 
with �1,…,P(�) denoting the effect of all the variables acting 
together.

Moreover, each term �u in the model function Y = �(�) 
[in Eq.  (1)] can be solved explicitly by integration and is 
given by [49],

The conditional expectation E
(
Y
/
Xu

)
 effectively reduces 

a P dimensional function �
(
x1, x2,… , xP

)
 to a linear sum of 

following smaller α(<P) dimensional functions [50]:

(1)

𝜂(�) = 𝜂0 +

P∑
i=1

𝜂i
(
xi
)
+

∑
1≤i≤j≤P

𝜂i,j
(
xi, xj

)
+…+ 𝜂1,…,P(�)

=
∑

u⊆{1…P}

𝜂u
(
xu
)

(2)
�

𝜂u
(
xu
)
dPXi

= 0 ∀i ∈ u,∀u ⊆ {1…P}

�
𝜂u
(
xu
)
𝜂v
(
xv
)
dPX = 0 ∀u, v ⊆{1…P}, u ≠ v

(3)

𝜂0 = E(�)

𝜂i = E
(
Y
/
Xi

)
− E(Y), i = 1,… ,P

𝜂u = E
(
Y
/
Xu

)
−
∑
v⊂u

𝜂v, |u| ≥ 2
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Over a (P − �) dimensional rectangular grid ∏
u≠i,j,…,i�

x
�u

u , �u = 1, 2,… ,Ku

Remark In this study, second order anchored ANOVA 
decomposition has been utilized for approximating actual 
functions. To generate the approximation of any function, 
initially a reference point �̄� =

(
x̄1, x̄2,… , x̄P

)
, has to be 

defined in the variable space. In practice, the choice of the 
reference point �̄� is essential, especially only if the first few 
terms, i.e., first and second order, in Eq. (1) are considered. 
The reference point �̄� at the middle of the input domain 
appears to be the ideal choice [51].

Based on the above formulation presented, a step-by-step 
procedure for approximation by utilizing anchored ANOVA 
decomposition has been provided in algorithm 1.

2.2  Polynomial Chaos Expansion

The polynomial chaos expansion (PCE) is an efficient tech-
nique for obtaining the responses of stochastic systems. This 
has been introduced by Wiener [52] and hence, known as 
‘Wiener Chaos expansion’. The generalized results have been 
presented by Xiu and Karniadakis [53] for various continu-
ous and discrete system from the so called Askey-scheme and 
further stated the 2 convergence in the corresponding Hil-
bert space.

Assuming � =
(
i1, i2,… , in

)
∈ ℕ

n
0
 be a multi-index with 

|�| = i1 + i2 +⋯ + in, and let N ≥ 0 be an integer. The Nth 
order PCE of g(Z) can be stated as:

(4)

[ ∏
1≤u≠i,j,…,i�≤P

�u
�u

(
xu
)]

× �

(
xi, xj,… , xi� ;

{ ∏
1≤u≠i,j,…,i�≤P

x�u

u

})

where {a�} are unknown coefficients which are to be deter-
mined. Φ�(Z) are n-dimensional orthogonal polynomi-
als with maximum order of N and satisfies the following 
relation

here ��� denotes the multivariate kronecker delta function. 
It is to be noted that if �(z) is Gaussian, the orthogonality 
relation in Eq. (6) yields Hermite polynomial as the optimal 
polynomial. The correspondence of the type of orthogonal 

(5)ĝ(Z) =

N∑
|�|=0

a�Φ�(Z)

(6)

E
(
Φ�(Z)Φ�(Z)

)
=
�

Ω

Φ�(Z)Φ�(Z)�(z) = �ij, 0 ≤ |�|, |�| ≤ N

Table 1  The correspondence of the type of orthogonal polynomial 
with distribution pattern

Nature of distri-
bution

Random variables Type of 
orthogonal 
polynomial

Support

Continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [a, b]

Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1,…}

Binomial Krawtchouk {0, 1,… ,N}

Negative bino-
mial

Meixner {0, 1,…}

Hypergeometric Hahn {0, 1,… ,N}
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polynomial and type of random variable has been presented 
in Table 1 [53].

Since the emergence of generalised PCE [53], discrete 
variants of PCE have been developed. It is worth mention-
ing that each of the variants of PCE are based on Eq. (5). 
However, the uniqueness resides in the algorithm utilized 
to determine the unknown coefficients associated with the 
bases. The Weiner-Askey PCE, proposed by Xiu and Kar-
niadakis [53] is based on the Galerkin projection. In this 
method, Galerkin projection has been utilized to decom-
pose the governing stochastic partial differential equation 
into a system of coupled differential equations. Further-
more, it has been demonstrated that PCE based on Galer-
kin approach yields excellent results and provide exponen-
tial convergence with increase in order of PCE. However, 
the method, being intrusive in nature, requires knowledge 
regarding the governing partial differential equation of 
the system. Consequently, it is not applicable to real-life 
problems with unknown governing differential equation. 
In order to address this issue, special attention has been 
provided to develop non-intrusive PCE. The most popular 
non-intrusive PCE is the one based on least square method 
[54, 55]. In this method, the least square technique is 
implemented to determine the unknown coefficients asso-
ciated with the bases. Least square based PCE is easy to 
implement and applicable for systems with unknown gov-
erning differential equations. Other alternatives that have 
been investigated for determining the unknown coefficients 
associated with the bases are quadrature method [56, 57] 
and collocation approach [58, 59]. However, all the vari-
ants of PCE discussed above are only suitable for small 
scale problems. This is because, the number of unknown 
coefficients associated with PCE increases factorially with 
increase in number of variables. This renders application of 
PCE to large scale problems infeasible.

Blatman and Sudret [60, 61] proposed two adaptive 
sparse PCE for solving high-dimensional problems. The 
purpose of the methods is to determine, in an iterative man-
ner, the components/variables that significantly contributes 
to the response of interest. The number of unknown coef-
ficients associated with the bases are reduced by eliminat-
ing the components/variables having no or less effect on 
the output response. While the first approach [60] utilizes 
change in coefficient of determination (R2) to identify the 
significant components, the second approach utilizes least 
angle regression scheme [61] to identify the less important 
components. Moreover, it has been demonstrated that the 
proposed adaptive sparse PCE is capable of treating systems 
having number of variables as large as 500. However, only 
problems governed by elliptical partial differential equations 
have been investigated as part of the above works.

Due to its superior performance, PCE has found wide 
applications is various domains. PCE has been utilized for 

solving the stochastic steady state diffusion problem by 
Xiu and Karniadakis [62] and the stochastic Navier–Stokes 
equation [63]. Further, PCE has been utilized for sensitiv-
ity analysis by Sudret [64]. A reduced PCE has been devel-
oped for stochastic finite element analysis by Pascual and 
Adhikari [65, 66]. In each of the above mentioned appli-
cations, PCE has been found to yield excellent results. 
However, there are few issues regarding PCE that are yet 
to be answered. Firstly, PCE is only applicable to systems 
involving independent random variables. If the system 
under consideration involves correlated variables, ad hoc 
transformations, such as, Nataf transformation, needs to be 
employed to transform the dependent variables into inde-
pendent variables. Secondly, PCE involves determining 
orthogonal polynomials for a system. However, orthogonal 
polynomials are known only for a few random variables as 
shown in Table 1. Hence, if the system under consideration 
involves variable(s), orthogonal polynomial(s) for which is 
not known, implementation of PCE may become tedious.

2.3  Multivariate Adaptive Regression Splines (MARS)

MARS [42] is governed by a set of bases which are selected 
for approximating the output response through a forward 
or backward iterative approach. The functional form of 
MARS is represented as:

with

where �k and Hf

k
(xi) are the coefficient of the expansion and 

the basis functions, respectively. The basis function can be 
represented as

where ik is the order of interaction in the kth basis func-
tion and zi,k = ±1. xj(i,k) in Eq.  (9) is the jth variable with 
1 ≤ j(i, k) ≤ n. ti,k represents the knot location on each of 
the corresponding variables. Hf

k
(xi) in Eq.  (9) represents 

the multivariate spline basis function and is represented as 
the product of univariate spline basis functions zi,k, which 
is either of order one or cubic, depending on the degree of 
continuity of the approximation. The notation “tr” denotes 
the function is a truncated power function.

(7)ĝ(X) =

n∑
k=1

𝛼k H
f

k

(
Xi

)

(8)H
f

k
(X1,X2,X3,… ,Xn) = 1

(9)H
f

k
(Xi) =

ik∏
i=1

[
zi,k

(
Xj(i,k) − ti,k

)]q
tr

(10)

[
zi,k

(
Xj(i,k) − ti,k

)]q
tr
=
[
zi,k

(
Xj(i,k) − ti,k

)]q
for

[
zi,k

(
Xj(i,k) − ti,k

)]
< 0

= 0, otherwise
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Each function is piecewise linear with a knot tr at every 
X(i,k). MARS models the function by allowing the basis 
function to bend at the knots. The maximum number of 
knots considered, the minimum number of observations 
between knots, and the highest order of interaction terms 
are to be determined. Automated variable screening is per-
formed within MARS by using the generalized cross-val-
idation (GCV) model fit criterion, which has been devel-
oped by Craven and Wahba [67]. The location and number 
of spline bases needed is determined by a (a) over-fitting 
a spline function through each knot and (b) removing the 
knots that have least contribution to the overall fit of the 
model as determined by the modified GCV criterion. The 
following equation shows the lack-of-fit (LOF) criterion 
used by MARS:

where

MARS has been utilized by Sudjianto et al. [68] to emu-
late a conceptually intensive complex automotive shock 
tower model in fatigue life durability analysis. A compara-
tive assessment of MARS as compared to linear, second-
order and higher-order regression models has been carried 
out by Wang et al. [69]. MARS has been utilized by Fried-
man [42] to approximate behaviour of performance vari-
ables in a simple alternating current series circuit. The pri-
mary advantage of MARS is its computational efficiency. 
Moreover, MARS model is capable of handling large data 
and almost no data preparation is required for building it. 
However, accuracy of MARS model is lower as compared 
to other surrogate techniques. Additionally, MARS is inca-
pable of predicting the confidence bound of prediction and 
additional sample points are required for its validation. 
This, in turn, reduces the computational efficiency of the 
MARS model.

2.4  Radial Basis Function

Radial basis function (RBF) is another surrogate model 
which is quite popular among researchers. RBF is often 
used to perform the interpolation of scattered multivariate 
data [70–72]. The metamodel appears in a linear combina-
tion of Euclidean distances, which may be expressed as

(11)Lfc
�
ĝk
�
= Gcv(k) =

(1∕n)
∑n

k=1

�
g
�
Xi

�
− ĝk

�
Xi

��2
�
1 − {c̃(k)∕n}

�2

(12)c̃(k) = c(k) + d.k

(13)ĝ(X) =

n∑
k=1

wk𝜑k

(
X, xk

)

where n is the number of sampling points, wk is the weight 
determined by the least-squares method and �k(X, xk)is the 
k-th basis function determined at the sampling point xk. 
Various symmetric radial functions are used as basis func-
tion. The radial functions for RBF model are illustrated as,

It is to be noted that unlike PCE and response surface 
method (RSM), RBF is not a regression technique. Rather, 
RBF may be broadly considered as an interpolation tech-
nique. As a result, RBF, unlike regression techniques, 
yields exact result at the sample points.

Till date, RBF has found wide application in the domain 
of structural reliability and uncertainty quantification. A 
dynamic surrogate model based on stochastic RBF has 
been developed by Volpi et  al. [73] for uncertainty quan-
tification. The method has been equipped with auto-tuning 
scheme based on curvature, adaptive sampling scheme, 
parallel infill and multi-response criterion. It has also been 
illustrated that the surrogate based on stochastic RBF out-
performs popular surrogate such as Kriging. A hybridized 
RBF has been proposed by Dai et  al. [74] for structural 
reliability analysis. To be specific, the hybridized RBF has 
been formulated by replacing the learning network of RBF 
with support vector algorithm. As a consequence, it has 
been possible to exploit the advantages of support vector 
algorithm, such as good generalization and global optimi-
zation. Comparative assessment illustrated that the method 
proposed outperform both RBF and support vector algo-
rithm. Other works on RBF include, but are not limited to, 
development of performance measure approach based relia-
bility analysis technique using RBF [75] and integration of 
RBF into the FORM algorithm [76]. However, RBF yields 
satisfactory results only for problems that are linear and/or, 
weakly non-linear.

(14)Rf (X) = exp

(
−
(X − c)T (X − c)

r2

)
(For Gaussian)

(15)

Rf (X) =

√
1 +

(X − c)T (X − c)

r2
(For multi-quadratic)

(16)

Rf (X) =
1√

1 +
(X−c)T (X−c)

r2

(For inverse multi-quadratic)

(17)Rf (X) =
1

1 +
(X−c)T (X−c)

r2

(For Cauchy)
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2.5  Artificial Neural Network

Artificial neural networks (ANNs) are a family of sur-
rogate model inspired by biological functioning of brain 
and nervous system. ANNs are generally presented as a 
system of interconnected ‘neuron’. The neurons in ANN, 
often termed as nodes, consists of some primitive func-
tions. All the connections have numeric weight that are 
tuned based on input data. A typical structure of ANN has 
been illustrated in Fig. 2. The network is represented as a 
function Φ obtained by combining the primitive functions 
f1, f2, f3 and f4. �1,�2,… , �5 are termed as weights and 
determined by employing some learning algorithm. Based 
on the above points, it should be clear that three elements 
govern the formation of an ANN, namely the primitive 
function associated with the node, topology of the network 
(single layer or multilayer) and the learning algorithm used 
to determine the weights associated with the connections. 
Based on these criteria, multiple variants of ANN have 
evolved over the years.

Multilayer feed-forward neural network (MFFNN) [77] 
is the most popular and widely used ANN. Here, the neu-
rons are arranged in three layers, namely input layer, hid-
den layer and output layer. It is worthwhile to mention that 
the number of hidden layers in feed-forward neural network 
may be more than one. Therefore, it is necessary to perform 
convergence study to determine the optimum number of 
layers. Moreover, the number of neurons/nodes in each hid-
den layer should also be determined by using some appro-
priate convergence criterion. Each neuron/node consists 
of a transfer function that expresses the internal activation 
level of the neuron. A transfer function may either of linear 
or nonlinear. An account of popular transfer functions has 
been provided in Table 2.

Another popular ANN scheme is the well-known back-
propagation algorithm based ANN [78]. In this scheme, 
the errors in prediction are propagated backward to the 
inputs. Based on the errors received, the weights associated 
with the connections are further updated. The process is 
repeated until errors at the output layer is less than a speci-
fied threshold.

Fig. 2  Typical structure of 
ANN

Table 2  Popular transfer functions in ANN

Name Input (x)/output (y) relation Name Input (x)/output (y) relation

Hard limit y = 0, x < 0

y = 1, x ≥ 0

Symmetric saturating linear y = −1, x < −1

y = n, − 1 ≤ x ≤ 1

y = 1, x > 1

Symmetrical hard limit y = −1, x < 0

y = 1, x ≥ 0

Log-sigmoid y = 1∕(1 + exp (−x))

Linear y = x Hyperbolic tangent sigmoid y =
exp (x)−exp (−x)

exp (x)+exp (−x)

Saturating linear y = 0, x < 0

y = n, 0 ≤ x ≤ 1

y = 1, x > 1

Positive linear y = 0, x < 0

y = n, x ≥ 0
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Due to its high accuracy level, ANN has found wide appli-
cation in uncertainty quantification and reliability analysis. 
ANN based response surface method has been presented by 
Shu and Gong [79] for reliability analyses of c-phi slopes. 
The soil properties have been assumed to be having spa-
tial randomness and hence modelled as random field. It has 
been observed that the proposed approach yield accurate 
estimation of failure probability. A multi-wavelet neural net-
work based response surface method has been proposed by 
Dai et  al. [80] for structural reliability analysis. It has been 
illustrated that the proposed algorithm outperforms the well-
known multilayer perceptron based response surface method. 
Other works which utilized neural network in the field of 
uncertainty quantification and reliability analysis include [40, 
81, 82].

2.6  Support Vector Regression

Support vector regression (SVR) is a variant of the Sup-
port Vector Machine (SVM) utilized for regression analysis. 
SVR uses a subset of data samples, support vectors, in order 
to construct an approximation model that has a maximum 
deviation of � from the function value corresponding to each 
training data. For a linear mapping, the SVR model may be 
represented as

where ĝ(X) is the approximate value of the objective func-
tion at x, W represents a vector of weights, b is the bias 
term, and ⟨⋅⟩ denotes the inner product. Equation (18) may 
be further expressed as a convex optimization problem as

where gi
(
Xi

)
 represent the responses at the sample points. 

It should be noted that there might not be a function that 
satisfies the condition in Eq. (19). Hence, introducing slack 
variables �i, �∗i , Eq. (19) can be rewritten as:

where n is the number of sample points. The regularization 
parameter, C, determines the trade-off between the model 
complexity and the degree for which deviation larger than 

(18)ĝ(X) = ⟨W ⋅ X⟩ + b

(19)
argmin 0.5��W��2

s.t.

�
gi
�
Xi

�
− ⟨W.Xi⟩ − b ≤ �

⟨W.Xi⟩ + b − g
�
Xi

�
≤ �

(20)

argmin 0.5��W��2 + C

n�
i=1

�
�i + �∗

i

�

s.t.

⎧
⎪⎨⎪⎩

gi
�
Xi

�
− ⟨W.Xi⟩ − b ≤ � + �i

⟨W.Xi⟩ + b − gi ≤ � + �∗
i

�, �∗
i
≥ 0

� is allowed in Eq. (20). The formulation discussed corre-
sponds to dealing with a �-insensitive loss function, as pro-
posed by [83]

Next introducing a Lagrange multiplier as:

It is to be noted that the dual variables in Eq. (22) should 
satisfy the positivity constraints, i.e., �i, �∗

i
, �i, �

∗
i
≥ 0. Fur-

thermore, it can be shown that Eq. (22) has a saddle point 
with respect to the primary and dual variables at the opti-
mal solution [84]. Hence,

where �(∗)

i
 includes both �i and �∗

i
. Similarly, �(∗)

i
 also 

includes both �i and �∗
i
. Substituting Eqs.  (23)–(25) into 

Eq. (22) yields

It should be noted that variables �i and �∗
i
 are not present 

in Eq. (26). Additionally using Eq. (24),

(21)G(x) =

{
0 |g(X) − ĝ(X) | ≤ 𝜀

|g(X) − ĝ(X)| − 𝜀 otherwise

}

(22)

L: = 0.5��W��2 + C

n�
i=1

�
�i + �∗

i

�

−

n�
i=1

�i
�
� + �i − g

�
Xi

�
+ ⟨W.Xi⟩ + b

�

−

n�
i=1

�∗
i

�
� + �∗

i
+ g

�
Xi

�
− ⟨W.Xi⟩ − b

�

−

n�
i=1

�
�i�

∗
i
+ �∗

i
�∗
i

�

(23)
�L

�b
=

n∑
i=1

(
�i − �∗

i

)
= 0

(24)
�L

�w
= w −

n∑
i=1

(
�i − �∗

i

)
Xi = 0

(25)
�L

��
(∗)

i

= C − �
(∗)

i
− �

(∗)

i
= 0

(26)

Maximise

⎧⎪⎨⎪⎩

−0.5
n∑

i,j=1

�
�i − �∗

i

��
�j − �∗

j

��
Xi,Xj

�

−�
n∑
i=1

�
�i + �∗

i

�
+

n∑
i=1

g
�
Xi

��
�i − �∗

i

�

s.t.

⎧
⎪⎨⎪⎩

n∑
i=1

�
�i − �∗

i

�
= 0

�i, �
∗
i
∈ [0,C]
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In order to compute b, the so-called 
Karush–Kuhn–Tucker (KKT) condition has been utilized. 
According to the KKT condition,

and

From Eq.  (29), important remarks can be presented. 
First, 

(
C − �

(∗)

i

)
= 0 only if the samples lie outside the  

�-insensitive zone. Secondly, �i�∗
i
= 0, i.e., either �i or �∗

i
 

should always be zero. Finally, for �(∗)

i
∈ (0,C), �(∗)

i
= 0. 

Hence, the second factor in Eq. (28) vanishes. Therefore,

Similar to the procedure described above, a non-linear 
regression can be achieved by replacing the ⟨⋅⟩ in Eq. (18) 
with a kernel function, K, [83] as

All other operations will be applicable as discussed 
previously.

SVR, of late, has found wide application in uncertainty 
quantification and reliability analysis. Least square based 
SVR has been utilized [85] for reliability analysis. It has 
been illustrated that the structural risk associated with SVR 
is inherently minimized and therefore, suitable as a surrogate 
model for reliability analysis. Bootstrap technique has been 
integrated into the framework of SVR by Lins et al. [86] for 
obtaining confidence and prediction interval using SVR. The 
bootstrap based SVR has been utilized for a large scale prob-
lem involving component degradation of offshore oil indus-
try. A novel dynamic-weighted probabilistic SVR has been 
proposed by Liu et al. [87]. The approach developed has been 
utilized for a real case study on reactor coolant pump gov-
erned by 20 failure scenarios. Other significant work on SVR 
include [88, 89].

Tuning the parameters for obtaining optimum performance 
is an important aspect associated with SVR. A hybrid method 
(APSO-SVR) based on the particle swarm optimization and 
analytical selection for tuning of parameters in SVR has been 

(27)w =

n∑
i=1

(
�i − �∗

i

)
Xi

(28)
�i
�
� + �i − g

�
Xi

�
+ ⟨W.Xi⟩ + b

�
= 0

�∗
i

�
� + �∗

i
+ g

�
Xi

�
− ⟨W.Xi⟩ − b

�
= 0

(29)

(
C − �i

)
�i = 0(

C − �∗
i

)
�∗
i
= 0

(30)
b = g

�
Xi

�
− ⟨W.Xi⟩ − �

b = g
�
Xi

�
− ⟨W.Xi⟩ + �

(31)ĝ(X) =

n∑
i=1

(
𝛼i − 𝛼∗

i

)
K
(
Xi, X

)
+ b

developed by Zhao et al. [90]. It has been demonstrated that 
APSO-SVR outperforms the conventional SVR is terms of 
convergence. Other significant contribution to parameter tun-
ing of SVR include work by Zhao et al. [91] and Coen et al. 
[92].

2.7  Kriging

Kriging is a surrogate model which is based on Gaussian 
process modelling. The basic idea of Kriging is to incorpo-
rate interpolation, governed by prior covariances, in order to 
obtain responses at unknown points [93, 94]. In this method, 
the functional response characteristics is illustrated as:

where ĝ(X) is the response function of interest, X is an N 
dimensional vector (N design variables), y0(X) is the known 
approximation (usually polynomial) function and Z(x) rep-
resents is the realization of a stochastic process with mean 
zero, variance, and non-zero covariance. In the model, the 
local deviation at an unknown point (X) is expressed using 
stochastic processes. The sample points are interpolated 
with the help of Gaussian as the correlation function to 
estimate the trend of the stochastic processes [95, 96].

Consider, � =
{
X1,X2,… ,XN

}T
∈ ℜN be the vector 

of basic random variables and g(�) be the system response 
output. In universal Kriging, y0(X) is represented by using a 
multivariate polynomial as:

where bi(X) represents the ith basis function and ai denotes 
the coefficient associated with the  ith basis function. 
The primary idea behind such a representation is that the 
regression function captures the variance in the data (the 
overall trend) and the Gaussian process interpolates the 
residuals. Suppose X =

{
X1,X2,… ,Xn

}
 represents a set 

of n samples. Also, assume g =
{
g1, g2,… , gn

}
 to be the 

responses at training points. Therefore, the regression part 
can be written as a n × p model matrix F,

whereas, the stochastic process is defined using a n × n cor-
relation matrix Ψ

(32)ĝ(X) = y0(X) + Z(X)

(33)y0(x) =

p∑
i=1

aibi(X)

(34)F =

⎛⎜⎜⎝

b1
�
X1

�
⋯ bp

�
X1

�
⋮ ⋱ ⋮

b1(X
n) ⋯ bp(X

n)

⎞⎟⎟⎠

(35)Ψ =

⎛⎜⎜⎝

�
�
X1, X1

�
⋯�

�
X1, Xn

�
⋮⋱⋮

�X
�
xn, X1

�
⋯�(Xn, Xn)

⎞⎟⎟⎠
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where �(⋅, ⋅) is a correlation function, parameterised by 
a set of hyperparameters �. The hyperparameters are fur-
ther identified by maximum likelihood estimation (MLE). 
A detailed account of MLE in the context of Kriging can 
be found in [38]. The prediction mean and variance can be 
obtained as:

 and

where M =
(
b1
(
Xp

)
… bp

(
Xp

) )
 is the modal matrix of 

the predicting point Xp,

is a p × 1 vector consisting of the unknown coefficients 
determined by generalised least squares regression and

is an 1 × n vector denoting the correlation between the pre-
diction point and the sample points. The process variance 
�2 is given by

It is worthwhile to mention that the universal Krig-
ing, as formulated above, is an interpolation technique. 
This can be easily validated by substituting the  ith sam-
ple point in Eq. (36) and considering that r

(
Xi
)
 is the  ith 

column of Ψ:

One issue associated with the universal Kriging is selec-
tion of the optimal polynomial order. Conventionally, the 
order of the polynomial is selected empirically. However, 
such non-adapted framework may render the modelling 
inefficient. Recent works [97–104] have addressed these 
issues.

An essential feature associated with Kriging is selection 
of appropriate covariance function [105–107]. Mostly, the 
covariance functions used with Kriging surrogate are sta-
tionary and can be expressed in the following form:

The correlation function defined in Eq.  (42) has two 
desirable properties. Firstly, the correlation function for 
multivariate functions can be represented as product of 
one dimensional correlations. Secondly, the correlation 

(36)�(X) = M� + r(X)Ψ−1(g − F�)

(37)

s2(X) = �2

(
1 − r(X)Ψ−1r(X)T +

(
1 − FTΨ−1r(X)T

)
FTΨ−1F

)

(38)� =
(
FTΨF

)−1
FTΨ−1g

(39)r(x) =
(
�
(
Xp,X

1
)
⋯ �

(
Xp,X

p
) )

(40)�2 =
1

n
(g − F�)TΨ−1(g − F�)

(41)�
(
Xi
)
= M� + gi −M� = gi

(42)�
(
x, x�

)
=
∏
j

�j

(
�, xi − xi

�
)

is stationary and depends only in the distance between 
two points. Few standard stationary covariance functions, 
which have been investigated are namely, (a) exponential 
correlation function, (b) generalised exponential correla-
tion function (c) Gaussian correlation function (d) linear 
correlation function (e) spherical correlation function (f) 
cubic correlation function and (g) spline correlation func-
tion. The mathematical forms of the above correlation 
functions are provided below:

 i. Exponential correlation function:

 ii. Generalised exponential correlation function:

 iii. Gaussian correlation function:

 iv. Linear correlation function: 

 v. Spherical correlation function:

 vi. Cubic correlation function:

 vii. Spline correlation function:

where �j = �j
|||dj

|||.
For all the correlation functions described above, 

dj = xi − xi
�.

2.8  Locally Weighted Polynomials

An approach for the pointwise estimation of the unknown 
function from known samples based upon Taylor’s series 
expansion has been proposed by Cleveland [108]. This idea 
was further extended into a statistical framework for model 

(43)�j

(
�; dj

)
= exp

(
−�j

|||dj
|||
)

(44)𝜓j

(
𝜃; dj

)
= exp

(
−𝜃j

|||dj
|||
𝜃n+1

)
, 0 < 𝜃n+1 ≤ 2

(45)�j

(
�; dj
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= exp

(
−�jdj

2
)

(46)�j

(
�; dj

)
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|||dj
|||
}

(47)
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(
�; dj

)
= 1 − 1.5 �j + 0.5 �2

j
, �j = min
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1, �j

|||dj
|||
}

(48)
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(
�; dj
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= 1 − 3 �2

j
+ 2 �3

j
, �j = min

{
1, �j

|||dj
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}

(49)𝜓j

�
𝜃;dj
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=

⎧
⎪⎨⎪⎩

1 − 5𝜉2
j
+ 30𝜉3

j
, 0 ≤ 𝜉j ≤ 0.2

1.25

�
1 − 𝜉3

j

�
, 0.2 ≤ 𝜉j ≤ 1

0, 𝜉j > 1
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approximation. Later, these methods have been generalized 
into kernel regression approach [109, 110].

Locally weighted polynomial (LWP) regression is one 
such form of instance-based algorithm for learning continu-
ous non-linear mappings [111]. Basically, it is a non-para-
metric regression approach that combine multiple models in 
a k-nearest-neighbor based metamodel [112]. A low-order 
weighted least square model is fitted at each training point. 
Let the input–output mapping be represented as,

where �j ∼ N(0, 1) and �2
(
xj
)
 is the variance of Yj at xj. 

For cases where homoscedastic variance is assumed, 
�2(x) = �2. M(x) can be obtained by solving the followinsg 
for �

where Kb(⋅) controls the weights and b controls the size of 
neighbourhood around x0. Equation (51) can be rewritten as

where W is a diagonal matrix of weights, Wii = Kb

(
xj − x0

)
. 

Coefficient vector α can be obtained by the following 
expression

Thus, there are three principal parameters whose selec-
tion may have an effect on the approximation, which are 
bandwidth (b), the order of polynomial (p), and the ker-
nel or weight function (Kb) [113]. A natural way to select 
the bandwidth and calibrate the tradeoff is to minimize the 
mean squared error [114]. In this context, a variable band-
width selector for kernel regression which can be extended 
for local linear regression has been proposed in [115]. An 
adaptive method has been proposed by Fan and Gijbels 
[116] for selecting the appropriate order of polynomials 
based on local factors, allowing p to range through various 
points within the support. In context to choose Kb, it has 
been established in [113], that the constant for the Epane-
chnikov kernel is the smallest and hence optimal in terms 
of integrated mean squared error. However, the difference 
between the kernels is negligible, so the selection may 
depend upon the user’s preference at large.

Expressions for the asymptotic bias and variance of an 
estimate have been presented in [117]. The local linear 
model using the Epanechnikov kernel has been proven to 
optimize the linear minimax risk [118], which is a crite-
rion to benchmark the efficiency of an estimator in terms of 

(50)Yj = M
(
xj
)
+ �

(
xj
)
�j

(51)
n∑
j=1

(
Yj −

p∑
i=1

�i
(
xj − x0

)i
)2

Kb

(
xj − x0

)

(52)argmin
�

(� − ��)T�(� − ��)

(53)� =
(
�T��

)−1
�T��

sample size required for obtaining a certain level of accu-
racy in results. Later, these results were extended to LWP 
in [119]. LWP is observed to perform well near the bound-
ary of support of the data, unlike most of non-parametric 
models in which rate of convergence is slow [110]. How-
ever, the basis of slow convergence has been explained as 
lower number of training points were utilized for estima-
tors near the boundary. It has been illustrated in [120], that 
no linear estimator can prove to be superior on the bound-
ary in a minimax sense in terms of mean squared error in 
comparison to LWP. Further details can be found in [109]. 
Few references in which computational efficiency of LWP 
has been improved upon are [121–123]. Some recent exten-
sions of LWP include [124–126].

After an extensive literature review of popular surrogate 
models, the following section has been attributed to dem-
onstrate the utilization of any of the above models in RDO 
framework.

3  Surrogate Assisted RDO Framework

This section discusses that how the surrogate models will 
be employed to address the issue of computational expense 
of robust optimization. The objective and/or constraint 
functions in RDO involve mean and standard deviation of 
stochastic responses, which is the main reason for making 
the computational platform cumbersome. This is due to 
large number of simulations required to approximate the 
statistical quantities of responses during each optimiza-
tion iteration. It is worth mentioning that, generally there 
are two ways to introduce efficiency in an RDO approach, 
which are,

• To avoid expensive original function/FE evaluation 
within an optimization iteration,

• To reduce the number of optimization iterations by pre-
serving the elite solutions.

The scope of the present study is limited so as to address 
the first point discussed above, in order to present a com-
parative assessment of efficient surrogate assisted RDO 
tools. Therefore, instead of simulating original objective 
and constraint functions, the functions are approximated by 
surrogate models, which have been utilized within the opti-
mization routine. This efficient surrogate based framework 
of RDO assists the computation to be limited to nominal 
costs, especially in case of large scale finite-element based 
models. A flow diagram of the entire steps involved in the 
surrogate assisted RDO approach has been depicted in 
Fig. 3 for better understanding.

During the evaluation of objective and constraint func-
tions in Fig. 3, it is to be noted that in order to compute the 
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response statistics, simulations are carried out based upon 
the model generated by the surrogate. This renders sig-
nificant level of computational efficiency in comparison to 
MCS performed on the actual FE model. Moreover, since 
simulations have to be carried out in each of the optimi-
zation iteration, computational savings can be achieved in 
each of such iterations, until convergence of the optima.

Thus, the computational efficiency of surrogates as com-
pared to simulation based RDO framework can be realized 
as an obvious matter of fact, however, approximation accu-
racy of the former is a crucial factor yet to be investigated. 
Therefore, various surrogate models as described in Sect. 2 
have been employed in solving few typical non-linear ana-
lytical examples in the following section.

4  Numerical Examples

In order to illustrate the efficiency and accuracy of the 
various surrogate models in RDO platform, six benchmark 
examples have been considered in this section. In example 
1, a test function has been investigated. A two bar plane 
truss has been studied in example 2. Conceptual design of a 
bulk carrier is of great concern in shipping industry, which 
is considered in example 3. Design of a welded beam has 
been taken up as the fourth example. A speed reducer prob-
lem has been investigated in example 5. Side impact crash-
worthiness of a car has been considered in example 6. Each 
of the optimization problems deal with single objective and 
multiple constraint functions. The sequence of examples 
has been placed in accordance to the increasing number 
of stochastic variables and hence, increasing complexity. 
Results obtained have been compared with that of Monte 
Carlo simulations (MCS) based RDO solutions.

In this paper, the computational platform has been 
 MATLAB® version 8.1 R2013a.  MATLAB® toolbox fmin-
con has been utilized as the optimization search engine. 
Grid sampling has been utilized for generating training 

Fig. 3  Flowchart of surrogate assisted RDO framework utilized in 
this study

Table 3  List of the surrogate 
models utilized and their 
abbreviations

S. no. Surrogate model Abbreviation used

1 Anchored ANOVA decomposition ANOVA-D
2 Universal Kriging UK
3 Kriging with first order polynomial bases FK
4 Radial basis functions RBF
5 Quadrature based polynomial chaos expansion PCE-Q
6 Ordinary least squares based polynomial chaos expansion PCE-OLS
7 Least angle regression based polynomial chaos expansion PCE-LAR
8 Locally weighted polynomials LWP
9 Artificial neural network ANN
10 Multivariate adaptive regression splines MARS
11 Support vector machine SVM
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points for constructing anchored ANOVA model. While the 
other surrogate models have been trained by utilizing latin-
hypercube sampling [127]. For the comparison of computa-
tional effort, the number of original actual function evalu-
ations is chosen as the primary index tool. This is due to 
the fact that the number of function evaluations indirectly 
indicates the CPU time usage.

The surrogates employed in order to solve the examples 
have been illustrated in Table 3. The abbreviations of the 
surrogate models mentioned in Table 3, have been utilized 
throughout the remaining paper.

4.1  Example 1: Test Function [21]

The first example considered is RDO of a test function 
[21]. The description of the problem has been stated as:

The objective is to minimize the standard deviation of f 
with a probabilistic constraint on g. �∗

f
 and k have been 

adopted to be 15 and 3, respectively. The design variables 
x1 and x2 follow normal distribution with standard devia-
tion 0.4.

The number of sample points utilized for comparison of 
various methods have been presented in Table  4. The cor-
responding robust optimal solutions obtained have been 
reported in Table  5. The number of iterations and function 
calls required for yielding the optimal solutions have been 
presented in Fig. 4.

4.2  Example 2: Two Bar Planar Truss [21]

RDO of a planar two bar truss [21] has been considered as 
the second example. The problem consists of two design vari-
ables, which are the cross sectional area x1 and the horizontal 

(54)

Minimize F =
�f

�∗
f

Subjected to G = �g − k�g ≥ 0

where f
(
x1, x2

)
=
(
x1 − 4

)3
+
(
x1 − 3

)4
+
(
x2 − 5

)2
+ 10

g
(
x1, x2

)
= x1 + x2 − 6.45

1 ≤ �x1
≤ 10, 1 ≤ �x2

≤ 10

span of each trussx2. The density of bar material �, the magni-
tude of the applied load Q, and the material’s tensile strength 
S are the other parameters of the problem. The objective is 
to minimize the volume of structure subject to constraints on 
axial strength of each of the members. The description of the 
deterministic optimization can be stated as:

The values of the other parameters �, Q and S are 
104 kg/m3, 800 kN and 1050 MPa, respectively. The RDO 
formulation has been presented in Eq. (56).

The weighing factors w1 and w2 have been adopted to be 
0.5. �∗

f
, �∗

f
and k have been set as 10, 2 and 3, respectively. 

The description of the random variables has been presented 
in Table  6. The coefficient of variation of the two design 
variables is 0.02.

The number of sample points utilized for comparison 
of various methods have been presented in Table  7. The 

(55)

Minimize f
�
x1, x2

�
= �x1

�
1 + x2

2

Subjected to

g1
�
x1, x2

�
= 1 −

5Q√
65S

�
1 + x2

2

�
8

x1
+

1

x1x2

�
≥ 0

g1
�
x1, x2

�
= 1 −

5Q√
65S

�
1 + x2

2

�
8

x1
+

1

x1x2

�
≥ 0

0.2 ≤ x1 ≤ 20, 0.1 ≤ x2 ≤ 1.6

(56)

Minimize F = w1

�f

�∗
f

+ w2

�f

�∗
f

Subjected to G1 = �g1
− k�g1 ≥ 0

G2 = �g2
− k�g2 ≥ 0

0.2 ≤ �x1
≤ 20, 0.1 ≤ �x2

≤ 1.6

Table 4  Number of sample points utilized for example 1 (Sect. 4.1)

a Except quadrature based PCE (PCE-Q)

Function MCS Anchored ANOVA 
decomposition

Other 
surrogate 
 modelsa

f 105 25 32
g 105 25 32

Table 5  Robust optimal solutions for example 1 (Sect. 4.1)

Approach Design variables Objective function

x1 x2

MCS 3.3622 4.9941 0.0748
ANOVA-D 3.3629 4.9991 0.0748
UK 3.3384 4.9161 0.0834
FK 3.3541 4.9213 0.0832
RBF 3.3616 4.9533 0.0762
PCE-Q 3.3571 5.0008 0.0755
PCE-OLS 3.3572 5.001 0.0755
PCE-LAR 3.357 5.0009 0.0755
LWP 3.3535 4.9477 0.0764
ANN 3.448 5.0793 0.1113
MARS 3.2562 4.9152 0.0779
SVM 4.5073 5.3833 0.2643



258 T. Chatterjee et al.

1 3

corresponding robust optimal solutions obtained have been 
reported in Table 8. The number of iterations and function 
calls required for yielding the optimal solutions have been 
presented in Fig. 5.

4.3  Example 3: Bulk Carrier Design [16]

The third example considered is that of an RDO of a bulk 
carrier [16]. The basic cost function of the optimization 
problem has been considered to be the unit transporta-
tion cost. The six design variables have been described in 
Table 9. The formulation involves some design constraints 
and have been constructed based on geometry, stability and 
model validity.

Fig. 4  Comparative assessment of the surrogate models for example 
1 in terms of (a) number of iterations (b) number of function calls, 
required in yielding the optimal solutions. The number of function 

calls refer to the number of function evaluations in the optimization 
loop. The results obtained by MCS are also provided

Table 6  Description of the random variables

a Parameters for beta distribution have been set as � = � = 5

Random vari-
able

Distribution Mean Standard deviation

x1 Normal �x1
0.02�x1

x2 Normal �x2
0.02�x2

� Betaa 10,000 2000
Q Gumbel 800 200
S Lognormal 1050 250

Table 7  Number of sample points utilized for solving the example 2 
(Sect. 4.2)

a Except quadrature based PCE (PCE-Q)

Function MCS Anchored ANOVA 
decomposition

Other 
surrogate 
 modelsa

f 105 25 64
g 105 49 128

Table 8  Robust optimal solutions for example 2 (Sect. 4.2)

Approach Design variables Objective 
function 
(×104)x1 x2

MCS 11.6798 0.3771 1.2516
ANOVA-D 11.7409 0.3771 1.2582
UK 12.9081 0.3774 1.3834
FK 11.9496 0.3781 1.2813
RBF 11.7907 0.3783 1.2662
PCE-Q 11.6765 0.3771 1.2513
PCE-OLS 11.6964 0.377 1.2535
PCE-LAR 11.6946 0.3768 1.2533
LWP 12.3217 0.3764 1.3201
ANN 15.6275 0.6233 1.8465
MARS 10.0795 0.3246 1.0639
SVM 8.4505 0.1048 8.4673
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The mathematical model of the cost function has been 
discussed briefly.

(57)
Annual cost = capital costs + running costs + voyage costs

(58)Capital costs = 0.2 (ship costs)

(59)Ship cost = 1.3(2000W0.85
S

+ 3500W0 + 2400P0.8)

(60)Steel weight = WS = 0.034L1.7B0.7D0.4C0.5

(61)Outfit weight = W0 = L0.8B0.6D0.3C0.1

(62)Machinery weight =Wm = 0.17P0.9

(63)Displacement = 1.025LBTC

(64)Power = P = displacement2∕3V3
/(

a + bFn

)

With the help of Eq.  (66), Vk has units of m/s and 
g = 9.8065 m/s2 in Eq. (65).

(65)Froude number = Fn = Vk

/
(gL)

0.5

(66)Vk = 0.5144 V

(67)a = 4977.06C2 − 8105.61C + 4456.51

(68)b = −10847.2C2 + 12817C − 6960.32

(69)Running costs = 40,000DWT0.3

(70)
Deadweight = DWT = displacement − light ship weight

(71)Light ship weight = WS +W0 +Wm

(72)Voyage costs = (fuel cost + port cost)RTPA

(73)
Fuel cost = 1.05 daily consumption × sea days × fuel price

(74)Daily consumption = 0.19P24∕1000 + 0.2

(75)Sea days = round trip miles/24V

(76)Port cost = 6.3DWT0.8

(77)
Round trips per year = RTPA = 350∕(sea days + port days)

Fig. 5  Comparative assessment of the surrogate models for example 
2 in terms of (a) number of iterations (b) number of function calls, 
required in yielding the optimal solutions. The number of function 

calls refer to the number of function evaluations in the optimization 
loop. The results obtained by MCS are also provided

Table 9  Description of design variables

S. no. Variable Symbol Unit Lower bound Upper bound

1 Length L m 100 600
2 Beam B m 10 100
3 Depth D m 5 30
4 Draft T m 5 30
5 Block coef-

ficient
C 0.63 0.75

6 Cruise speed V knots 14 18
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(78)
Port days = 2

[
(cargo deadweight∕handling rate) + 0.5

]

(79)
Cargo deadweight = DWT − fuel carried −miscellaneous DWT

(80)Fuel carried = daily consumption (sea days + 5)

(81)Miscellaneous DWT = 2DWT0.5

(82)Annual cargo capacity = DWT × round trips per year

(83)
Unit transportation cost = annual cost/annual cargo capacity

The unit transportation cost has been adopted to be the 
objective function of the optimized conceptual design of a 
bulk carrier and can be evaluated using Eq.  (83). Since the 
design problem incorporates several environmental factors 
and involves detailed modelling, large number of parameters 
have been involved. Therefore, to maintain disambiguity, all 
parameters required for evaluating Eq.  (83) have been well 
defined in Eqs.  (57)–(82). The constraints pertaining to the 
optimization problem have been defined in Eqs. (84)–(91).

where KB,BMT and KG have been defined in 
Eqs. (92)–(94), respectively.

(84)L∕B ≥ 6

(85)L∕D ≤ 15

(86)L∕T ≤ 19

(87)T ≤ 0.45DWT0.31

(88)T ≤ 0.7D + 0.7

(89)25, 000 ≤ DWT ≤ 5, 00, 000

(90)Fn ≤ 0.32

(91)GMT = KB + BMT − KG ≤ 0.07B

(92)Vertical center of buoyancy = KB = 0.53T

(93)
Metacentric radius = BMT = (0.085C − 0.002)B2

/
TC

Table 10  Description of 
uncertain variables

S. no. Parameter Unit Distribution type Lower bound Upper bound

1 Port handling rate Ton/day Uniform 1000 11,000
2 Round trip nm Uniform 1000 5000
3 Fuel price GBP/ton Uniform 50 150

Table 11  Description of objective functions for example 3 defined in 
Sect. 4.3

S. no. Objective function

1 Standard deviation
2 Mean + standard deviation

Table 12  Number of sample points utilized for solving the example 
3 (Sect. 4.3)

a Except quadrature based PCE (PCE-Q)

Function MCS Anchored ANOVA 
decomposition

Other surrogate 
 modelsa

Objective function 105 127 128

Table 13  Robust optimal 
solutions corresponding to case 
1 of Table 11 for example 3

Approach Design variables Objective function

L B D T C V

MCS 151.1748 25.1958 14.9491 10.389 0.75 14 2.3704
ANOVA-D 151.1748 25.1958 14.9491 10.389 0.75 14 2.3705
UK 151.9329 25.3222 16.1029 10.389 0.7473 14 2.4395
FK 164.7326 27.4554 16.4 10.389 0.6487 14 1.9441
RBF 165.7109 27.6185 16.5099 10.3890 0.6424 14 2.0618
PCE-Q 180.0045 28.5101 17.0979 11.1554 0.6649 14 3.5237
PCE-OLS 180.0045 28.5101 17.0979 11.1554 0.6649 14 3.5822
PCE-LAR 180.0045 28.5101 17.0979 11.1554 0.6649 14 3.5909
LWP 162.6665 27.1111 16.1701 10.389 0.6624 14 2.1427
ANN 179.9694 26.7837 19.2892 10.389 0.63 14 2.7193
MARS 179.8739 26.7022 18.2304 10.3705 0.63 14 2.452
SVM 183.1758 28.9947 17.4435 11.0532 0.6807 15.3888 0.9631
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The description of random variables have been provided in 
Table 10. Two case studies have been performed for different 
configurations of objective function as presented in Table 11. 
The number of sample points utilized for comparison of vari-
ous methods have been presented in Table  12. The robust 
optimal solutions corresponding to the case studies under-
taken have been reported in Tables 13 and 14. The number of 
iterations and function calls required for yielding the optimal 
solutions have been presented in Fig. 6.

4.4  Example 4: Welded Beam Design [128]

The fourth example considered is that of a welded beam 
design [128]. The objective is to minimize the cost of the 
beam subject to constraints on shear stress, bending stress, 
buckling load, and end deflection. There are four continuous 
design variables, namely, beam thickness x1, beam width x2, 
weld length x3, and weld thickness x4.

The problem description can be stated as follows:

where

(94)Vertical center of gravity = KG = 1 + 0.52D

(95)
Minimize f (�) = 1.10471x2

1
x2 + 0.04811x3x4

(
14 + x2

)

(96)

s.t.

g1(�) = t − tmax ≤ 0

g2(�) = s − smax ≤ 0

g3(�) = x1 − x4 ≤ 0

g4(�) = d − dmax ≤ 0

g5(�) = P − Pc ≤ 0

(97)M = P
(
L + x2∕2

)

(98)R =

√
0.25

(
x2
2
+
(
x1 + x3

)2)

For the RDO formulation of the problem, each of the 
design variables have been assumed to be normally dis-
tributed with standard deviation to be 5%. Case study 
has been performed considering objective function to be: 
mean(f (�)) + SD(f (�)), where SD is standard deviation.

The number of sample points utilized for comparison of 
various methods have been presented in Table 15. The cor-
responding robust optimal solutions obtained have been 
reported in Table 16. The number of iterations and function 
calls required for yielding the optimal solutions have been 
presented in Fig. 7.

4.5  Example 5: Speed Reducer [129]

The fifth example considered is that of speed reducer, which 
is a standard optimization problem. The details of theoretical 

(99)J =
√
2x1x2

�
x2
2

�
12 + 0.25

�
x1 + x3

�2�

(100)Pc = 64746.022
(
1 − 0.0282346x3

)
x3x

3
4

(101)t1 = P
��√

2x1x2

�

(102)t2 = MR∕J

(103)t =

√
t2
1
+ t1t2x2∕R + t2

2

(104)S = 6PL
/(

x4x
2
3

)

(105)d = 2.1952
/(

x4x
3
3

)

(106)

P = 6000, L = 14,E = 30 × 106, G = 12 × 106,

tmax = 13, 600, smax = 30, 000, xmax = 10, dmax = 0.25

0.125 ≤ x1 ≤ 10, 0.1 ≤ xi ≤ 10, for i = 2, 3, 4.

Table 14  Robust optimal 
solutions corresponding to case 
2 of Table 11 for example 3

Approach Design variables Objective function

L B D T C V

MCS 153.5981 25.5997 15.1984 10.389 0.7298 14 10.9932
ANOVA-D 153.2929 25.5471 15.1657 10.389 0.7323 14 11.1545
UK 154.2596 25.7099 15.2672 10.389 0.7244 14 10.9477
FK 161.9953 23.6782 14.0228 10.389 0.7495 14 10.2549
RBF 154.0877 25.68128 15.24929 10.389 0.725811 14 10.5391
PCE-Q 180.0045 28.51008 17.0979 11.1554 0.66491 14 12.0307
PCE-OLS 180.0045 28.51008 17.0979 11.1554 0.66491 14 12.1421
PCE-LAR 180.0045 28.51008 17.0979 11.1554 0.66491 14 12.1441
LWP 154.5059 25.75098 15.29291 10.389 0.722457 14 10.526
ANN 166.8899 23.6186 13.9817 10.389 0.7334 14 10.9417
MARS 153.9085 25.65141 15.23064 10.389 0.727256 14 10.7451
SVM 184.08 28.35978 17.20125 11.1232 0.695016 15.0315 10.2736
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formulation can be found elsewhere [129]. The problem con-
sists of seven design variables and eleven constraint func-
tions. The mathematical description of the problem has been 
presented below.

(107)
Minimize f (�) = 0.7854x1x

2
2
A − 1.508x1B + 7.477C + 0.7854D

(108)

where, A = 3.3333x2
3
+ 14.9334x3 − 43.0934

B = x2
6
+ x2

7

C = x3
6
+ x3

7

D = x4x
2
6
+ x5x

2
7

Fig. 6  Comparative assessment of the surrogate models for example 
3 in terms of (a) number of iterations (b) number of function calls, 
required in yielding the optimal solutions, corresponding to case 1 
of Table  11, (c) number of iterations (d) number of function calls, 

required in yielding the optimal solutions, corresponding to case 2 of 
Table 11. The number of function calls refer to the number of func-
tion evaluations in the optimization loop. The results obtained by 
MCS are also provided
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(109)

s.t., g1(�) =
(
27 − x1x

2
2
x3
)/

27 ≤ 0

g2(�) =
(
397.5 − x1x

2
2
x2
3

)/
397.5 ≤ 0

g3(�) =
(
1.93 −

(
x2x

4
6
x3
)/

x3
4

)/
1.93 ≤ 0

g4(�) =
(
1.93 −

(
x2x

4
7
x3
)/

x3
5

)/
1.93 ≤ 0

g5(�) =
((
A1∕B1

)
− 1100

)/
1100 ≤ 0

g6(�) =
((
A2∕B2

)
− 850

)/
850 ≤ 0

g7(�) =
(
x2x3 − 40

)/
40 ≤ 0

g8(�) =
(
5 −

(
x1∕x2

))/
5 ≤ 0

g9(�) =
((
x1∕x2

)
− 12

)/
12 ≤ 0

g10(�) =
(
1.9 + 1.5x6 − x4

)/
1.9 ≤ 0

g11(�) =
(
1.9 + 1.1x7 − x5

)/
1.9 ≤ 0

(110)

where, A1 =
[(
745x4

/(
x2x3

))2
+
(
16.91 × 106

)]0.5

B1 = 0.1x3
6

A2 =
[(
745x5

/(
x2x3

))2
+
(
157.5 × 106

)]0.5

B2 = 0.1x3
7

The variable bounds have been presented in Eq. (111).

For the RDO formulation of the problem, each of the 
design variables have been assumed to be normally dis-
tributed with standard deviation to be 5%. Case studies 
have been performed considering various objective func-
tions as shown in Table 17.

The number of sample points utilized for comparison 
of various methods have been presented in Table 18. The 
corresponding robust optimal solutions obtained have 
been reported in Tables 19 and 20. The number of itera-
tions and function calls required for yielding the optimal 
solutions have been presented in Fig. 8.

4.6  Example 6: Side Impact Crashworthiness of Car 
[130]

The sixth example considered is that of an RDO of side 
impact crashworthiness of car [130]. This example has 
been reformulated as a robust optimization problem. The 
problem consists of eleven stochastic variables and nine 
variables out of them are design variables. The description 
of the stochastic and design variables have been provided in 
Tables 21 and 22.

The optimization problem formulation can be stated as:

The functional forms of the objective and constraint 
functions have been provided in Eqs. (114)–(124).

(111)

2.6 ≤ x1 ≤ 3.6

0.7 ≤ x2 ≤ 0.8

17 ≤ x3 ≤ 28

7.3 ≤ x4, x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9

5 ≤ x7 ≤ 5.5

(112)Minimize f (�) = Weight

(113)

s.t., g1(�) = Abdomen load ≤ 1 kN

g2(�) = V × Cu ≤ 0.32 m∕s

g3(�) = V × Cm ≤ 0.32 m∕s

g4(�) = V × Cl ≤ 0.8 m∕s

g5(�) = upper rib deflection ≤ 32 mm

g6(�) = middle rib deflection ≤ 32 mm

g7(�) = lower rib deflection ≤ 32 mm

g8(�) = pubic force ≤ 4 kN

g9(�) = vel. of V-pillar at midpoint ≤ 9.9 mm∕ms

g8(�) = front door vel. at B - Pillar ≤ 15.7 mm∕ms

(114)
f (�) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4

+ 1.78x5 + 0.00001x6 + 2.73x7

Table 15  Number of sample points utilized for solving the example 
4 (Sect. 4.4)

a Except quadrature based PCE (PCE-Q)

Function MCS Anchored ANOVA 
decomposition

Other 
surrogate 
 modelsa

f 104 113 128
g1 104 61 128
g2 104 25 128
g3 104 25 128
g4 104 25 128
g5ss 104 25 128

Table 16  Robust optimal solutions for example 4 (Sect. 4.4)

Approach Design variables Objective function

x1 x2 x3 x4

MCS 0.2312 6.7505 8.7636 0.2299 2.9059
ANOVA-D 0.2312 6.7479 8.7617 0.2299 2.905
UK 0.5852 1.3633 0.4902 6.143 2.9887
FK 0.125 0.8514 2.413 2.4641 4.395
RBF 0.3103 0.1 0.1 10 1.0259
PCE-Q 0.2296 0.1410 8.7935 0.2307 1.6875
PCE-OLS 0.2309 6.7715 8.7635 0.231 2.9114
PCE-LAR 0.2309 6.7614 8.7634 0.231 2.9095
LWP 0.6002 0.3459 0.4499 0.5999 0.3651
ANN 0.1502 0.3122 0.1609 1.3808 0.2094
MARS 3.5638 0.8112 0.3011 3.5635 12.9351
SVM 0.1999 6.0000 7.9999 0.1500 1.8194
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(115)
g1(�) = 1.16 − 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9

+ 0.01343x6x10

(116)

g2(�) = 0.261 − 0.0159x1x2 − 0.188x1x8 − 0.019x2x7

+ 0.0144x3x5 + 0.0008757x5x10 + 0.08045x6x9

+ 0.00139x8x11 + 0.00001575x10x11

(117)

g3(�) = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9

+ 0.03099x2x6 − 0.018x2x7 + 0.0208x3x8

+ 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10

− 0.0005354x6x10 + 0.00121x8x11 + 0.00184x9x10

− 0.018x2
2

(118)

g4(�) = 0.74 − 0.61x2 − 0.163x3x8 + 0.001232x3x10

− 0.166x7x9 + 0.227x2
2

(119)
g5(�) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10

+ 6.63x6x9 − 7.77x7x8 + 0.32x9x10

(120)
g6(�) = 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11x2x8

− 0.0215x5x10 − 9.98x7x8 + 22x8x9

(121)g7(�) = 46.36 − 9.9x2 − 12.9x1x8 + 0.1107x3x10

Fig. 7  Comparative assessment of the surrogate models for example 
4 in terms of (a) number of iterations (b) number of function calls, 
required in yielding the optimal solutions. The number of function 

calls refer to the number of function evaluations in the optimization 
loop. The results obtained by MCS are also provided

Table 17  Description of objective functions for example 5 (Sect. 4.5)

S. no. Objective function

1 Standard deviation
2 Mean + Standard deviation

Table 18  Number of sample points utilized for solving the example 
5 (Sect. 4.5)

a Except quadrature based PCE (PCE-Q)

Function MCS Anchored ANOVA 
decomposition

Other 
surrogate 
 modelsa

f 104 99 128
g1 104 19 128
g2 104 19 128
g3 104 33 128
g4 104 33 128
g5 104 33 128
g6 104 33 128
g7 104 9 128
g8 104 9 128
g9 104 9 128
g10 104 9 128
g11 104 9 128
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Case studies have been performed considering various 
objective functions as shown in Table 23. The number of 
sample points utilized for comparison of various meth-
ods have been presented in Table  24. The corresponding 
robust optimal solutions obtained have been reported in 
Tables  25 and 26. The number of iterations and function 
calls required for yielding the optimal solutions have been 
presented in Fig. 9.

(122)

g8(�) = 4.72 − 0.5x4 − 0.19x2x3 − 0.0122x4x10

+ 0.009325x6x10 + 0.000191x2
11

(123)

g9(�) = 10.58 − 0.674x1x2 − 1.95x2x8 + 0.02054x3x10

− 0.0198x4x10 + 0.028x6x10

(124)

g10(�) = 16.45 − 0.489x3x7 − 0.843x5x6 + 0.0432x9x10

− 0.0556x9x11 − 0.000786x2
11

4.7  Results and Discussion

The results obtained for each of the six problems by utiliz-
ing the surrogate models have been discussed in this sec-
tion. This discussion has been presented in order to provide 
guidance to the users about the appropriateness of a par-
ticular surrogate model to be utilized in a specific problem. 
For each of the case studies performed, the best performing 
surrogate model (in terms of closeness to MCS based solu-
tions) has been marked in bold.

Firstly, in case of example 1, ANOVA-D performs excel-
lently, almost exactly matching the MC based optimal 
solutions. Apart from ANN and SVM, all other models 
exhibit acceptable performance in terms of approxima-
tion accuracy. ANOVA-D and the PCE based models have 
been observed to converge in less number of iterations and 
function calls, in comparison to the other surrogate mod-
els. In example 2, ANOVA-D, FK, RBF and the PCE based 
approaches yield strikingly similar results as compared to 

Table 19  Robust optimal 
solutions corresponding to case 
1 of Table 17 for example 5 
(Sect. 4.5)

Quadrature based PCE (PCE-Q) did not converge

Approach Design variables Objective function

x1 x2 x3 x4 x5 x6 x7

MCS 3.4863 0.7 17 7.3 7.7158 3.3515 5.2867 230.027
ANOVA-D 3.4859 0.7 17 7.3 7.7158 3.3515 5.2867 230.0031
UK 3.0026 0.7503 22.9953 7.7987 7.7951 3.3983 5.2507 370.3597
FK 3.4899 0.7002 17.3942 8.2563 7.8465 3.3575 5.3175 237.7963
RBF 3.0099 0.7 23.2772 7.7445 7.8474 3.4012 5.3505 352.9711
PCE-OLS 3.4818 0.7 17 7.3 7.7165 3.3522 5.2877 228.5885
PCE-LAR 3.4818 0.7 17 7.3 7.7165 3.3522 5.2877 228.5851
LWP 3.0630 0.7 22.23509 7.5397 7.9276 3.5978 5.4790 332.1858
ANN 3.0231 0.7491 21.8341 7.8765 7.8096 3.3523 5.4985 338.3447
MARS 3.1384 0.7444 21.4819 7.6380 7.9358 3.3257 5.4794 338.2782
SVM 3 0.75 23 7.8 7.8 3.4 5.25 0.4839

Table 20  Robust optimal 
solutions corresponding to case 
2 of Table 17 for example 5 
(Sect. 4.5)

Quadrature based PCE (PCE-Q) did not converge

Approach Design variables Objective function

x1 x2 x3 x4 x5 x6 x7

MCS 3.4863 0.7 17 7.3 7.7158 3.3515 5.2867 3232.5
ANOVA-D 3.4859 0.7 17 7.3 7.7158 3.3515 5.2867 3232.4
UK 2.4807 0.7982 19.9598 7.719 8.2962 3.4142 5.374 4090.3
FK 2.6243 0.7 18.8062 7.9017 7.5009 3.836 5.0891 3156.1
RBF 2.8906 0.7 25.0018 7.7546 7.6379 3.5215 5.2159 4543.7
PCE-OLS 3.4818 0.7 17 7.3 7.7165 3.3522 5.2877 3225.7
PCE-LAR 3.4818 0.7 17 7.3 7.7165 3.3522 5.2877 3225.7
LWP 3.553 0.7625 18.9213 7.4558 7.9566 3.5702 5.4763 4253.3
ANN 3.5576 0.7034 23.1254 7.9142 7.6379 3.3776 5.2197 4685.1
MARS 2.9308 0.7467 23.5264 7.7401 8.2991 3.3556 5.3752 4673.2
SVM 3 0.75 23 7.8 7.8 3.3999 5.2499 4185.5
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MCS based RDO. Also, the above models yield results 
in relatively less number of iterations as compared to the 
other models, which probably experience delayed conver-
gence due to some false optima at intermediate iterations. 
In example 3, excellent similar results have been obtained 
by ANOVA-D and UK as compared to MC based solutions, 

both in terms of accuracy and rate of convergence. Models 
such as, RBF, LWP, ANN and MARS yield slightly inaccu-
rate results, however, in relatively less number of iterations 
as compared to the above ones. In example 4, ANOVA-D, 
PCE-OLS and PCE-LAR achieve almost exact results as 
that of MCS, in relatively less number of iterations and 

Fig. 8  Comparative assessment of the surrogate models for example 
5 in terms of (a) number of iterations (b) number of function calls, 
required in yielding the optimal solutions, corresponding to case 1 
of Table  17, (c) number of iterations (d) number of function calls, 

required in yielding the optimal solutions, corresponding to case 2 of 
Table 17. The number of function calls refer to the number of func-
tion evaluations in the optimization loop. The results obtained by 
MCS are also provided
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function calls as compared to other surrogate models. 
Excellent results in terms of similarity to MCS have been 
obtained by ANOVA-D, PCE-OLS and PCE-LAR in exam-
ple 5. The above models outperform the other surrogates 
not only in response approximation but also in terms of rate 
of convergence. FK has also achieved decent and satisfac-
tory results, however, it requires significantly higher num-
ber of iterations to converge. It is also worth mentioning 
that PCE-Q did not achieve convergence due to the lack of 
ability to accurately approximate the response functions in 
presence of multiple constraints. Exactly same results have 
been achieved by ANOVA-D as compared to MC based 
solutions in example 6. However, other models such as, 

UK, PCE-LAR, LWP, ANN and MARS have performed 
very well both in terms of approximation accuracy and rate 
of convergence. It is also worth mentioning that PCE-Q 
and PCE-OLS did not achieve convergence due to the lack 
of ability to accurately approximate the response functions 
in multiple constrained environment.

The results of each of the examples as discussed above 
illustrate that performance of a surrogate model is very 
sensitive in an RDO framework, and may easily lead to 
an incorrect optima. In all of the above examples carried 
out, only one surrogate model i.e., ANOVA-D, has been 
consistent in accurately capturing the non-linearity and 
multi-modal landscapes in presence of constraints. It is 
also worth mentioning that PCE-LAR, being an adaptive 
sparse model, has achieved good results in most of the 
problems. Rest of the models have been observed to per-
form well in few problems and found unsuitable for other 
complex non-linear problems. Thus, on the basis of the 
above results, it is recommended to employ ANOVA-D 
as a surrogate model for highly complex problems whose 
response landscapes are difficult to capture and addition-
ally comprising of multiple non-linear constraints. Since 
ANOVA-D has been observed to perform in a superior 
manner not only in terms of accuracy but also in con-
vergence rate, therefore, it has been employed to solve 
a large-scale practical engineering problem in the next 
section.

5  Practical Problem: RDO of a Hydroelectric 
Dam Model

Electricity generation using a hydroelectric dam is pri-
marily governed by the hourly water supplied through the 

Table 21  General description of the stochastic and design variables

S. no. Variable Notation

1 Thickness of B-Pillar inner x1

2 Thickness of B-Pillar reinforcement x2

3 Thickness of floor side inner x3

4 Thickness of cross members x4

5 Thickness of door beam x5

6 Thickness of door beltline reinforcement x6

7 Thickness of roof rail x7

8 Material of B-Pillar inner x8

9 Material of floor side inner x9

10 Barrier height x10

11 Barrier hitting position x11

Table 22  Statistical description of stochastic variables

Variable Distribution Standard 
deviation

Lower limit Upper limit

x1 Normal 0.03 0.5 1.5
x2 Normal 0.03 0.5 1.35
x3 Normal 0.03 0.5 1.5
x4 Normal 0.03 0.5 1.5
x5 Normal 0.03 0.5 2.625
x6 Normal 0.03 0.5 1.2
x7 Normal 0.03 0.5 1.2
x8 Normal 0.006 0.192 0.345
x9 Normal 0.006 0.192 0.345
x10 Normal 10 x10and x11 are not considered as 

design variablesx11 Normal 10

Table 23  Description of objective functions for example 6 (Sect. 4.6)

S. no. Objective function

1 Standard deviation
2 Mean + Standard deviation

Table 24  Number of sample points utilized for solving the example 
6 (Sect. 4.6)

a Except quadrature based PCE (PCE-Q)

Function MCS Anchored ANOVA 
decomposition

Other 
surrogate 
 modelsa

f 104 73 75
g1 104 73 205
g2 104 201 205
g3 104 201 205
g4 104 73 205
g5 104 163 205
g6 104 129 205
g7 104 51 205
g8 104 73 205
g9 104 99 205
g10 104 99 205
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turbine and the water level in the reservoir. It is quite obvi-
ous that due to environmental variations, large amount 
of uncertainties are associated with a hydroelectric dam. 
Moreover, cost of energy is also influenced by various fac-
tors. Hence, it is of utter importance to consider the pres-
ence of uncertainties while optimizing (maximizing) the 
overall revenue of a hydroelectric dam.

The hydroelectric dam considered in this study as pre-
sented in Fig. 10, is such that the water in the reservoir may 
either leave through the spillway or turbine. It is obvious 
that the water leaving through the turbine will be utilized in 
producing electricity. The primary objective of designing 
a hydroelectric dam is to maximize the revenue generated 
by selling the electricity. Conventional optimization of the 
above mentioned hydroelectric dam can be found in [131].

Various uncertainties are associated with any hydro-
electric dam. For instance, the flow through spillway and 
turbine are generally controlled by some machine oper-
ated gates. However, it is not possible to exactly control 
the flow with such machineries and this results in some 

uncertainties. On the other hand, the in-flow to the reser-
voir is uncontrolled and hence large sources of uncertain-
ties is associated with this. Moreover, market price of elec-
tricity depends on various factors and is highly uncertain. It 
is to be noted that flow through spillway, flow through tur-
bine, in-flow and market price are generally monitored on 
an hourly basis. In the present study, the simulation is run 
for 12 h and hence, the system under consideration involves 
48 random variables. A detailed account of the involved 
uncertain variables have been provided in Table 27.

The electricity produced in a hydroelectric dam depends 
on two primary parameters, namely amount of water owing 
through the turbine and the reservoir storage level. The stor-
age of reservoir again depends on the three factors: (a) in-
flow, (b) flow through turbine and (c) flow through spillway. 
As the flow through turbine increases, the water in the reser-
voir decreases. Therefore, it is necessary to compute the opti-
mum flow through the turbine and spillway that maximizes 
the electricity production. Moreover, certain constraints needs 
to be considered while solving the optimization problem. 

Table 25  Robust optimal 
solutions corresponding to case 
1 of Table 23 for example 6 
(Sect. 4.6)

PCE-Q and PCE-OLS did not converge

Approach Design variables Objective function

x1 x2 x3 x4 x5 x6 x7 x8 x9

MCS 1.006 1.008 1.036 1.081 1 1 1.005 0.337 0.316 0.3591
ANOVA-D 1.006 1.008 1.036 1.081 1 1 1.005 0.337 0.316 0.3591
UK 1.006 1.008 1.036 1.081 1 0.999 1.005 0.338 0.317 0.3568
FK 1 1 1 1 1 1 1 0.3 0.3 0.3568
RBF 1.007 1.007 1.035 1.079 1 0.999 1.005 0.338 0.317 0.5232
PCE-LAR 1.006 1.008 1.036 1.083 1 1 1.005 0.337 0.317 0.3578
LWP 1.006 1.008 1.035 1.081 1 0.999 1.005 0.338 0.317 0.3568
ANN 1.006 1.008 1.037 1.082 1 1.001 1.005 0.337 0.317 0.3561
MARS 1.006 1.008 1.035 1.081 1 0.999 1.005 0.338 0.316 0.3568
SVM 1 1 0.999 0.999 0.999 0.999 0.999 0.299 0.3 0.1007

Table 26  Robust optimal 
solutions corresponding to case 
2 of Table 23 for example 6 
(Sect. 4.6)

PCE-Q and PCE-OLS did not converge

Approach Design variables Objective function

x1 x2 x3 x4 x5 x6 x7 x8 x9

MCS 1.306 0.863 0.5 1.314 0.543 1.2 0.5 0.345 0.345 25.5875
ANOVA-D 1.306 0.863 0.5 1.314 0.543 1.2 0.5 0.345 0.345 25.5875
UK 1.306 0.863 0.5 1.313 0.541 1.2 0.5 0.345 0.345 25.5821
FK 0.5 0.506 0.518 1.024 0.943 1.199 0.970 0.345 0.278 20.2156
RBF 1.059 0.974 0.5 1.293 1 0.999 1.2 0.345 0.345 21.9368
PCE-LAR 1.306 0.863 0.5 1.316 0.544 1.2 0.5 0.345 0.345 25.5924
LWP 1.306 0.863 0.5 1.313 0.541 1.2 0.5 0.345 0.345 25.5821
ANN 1.306 0.863 0.5 1.313 0.541 1.2 0.5 0.345 0.345 25.5801
MARS 1.306 0.863 0.5 1.313 0.541 1.2 0.5 0.345 0.345 25.5837
SVM 1.003 0.998 1 1 1 1 0.999 0.298 0.3 29.170
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First, both reservoir level and downstream flow rates should 
be within some specified limit. Secondly, maximum flow 
through the turbine should not exceed the turbine capacity. 
Finally, the mean reservoir level at the end of the simulation 

should be same as that at the beginning. This ensures that the 
reservoir is not emptied at the end of the optimization cycle. 
The RDO problem has been stated as:

Fig. 9  Comparative assessment of the surrogate models for example 
6 in terms of (a) number of iterations (b) number of function calls, 
required in yielding the optimal solutions, corresponding to case 1 
of Table  23, (c) number of iterations (d) number of function calls, 

required in yielding the optimal solutions, corresponding to case 2 of 
Table 23. The number of function calls refer to the number of func-
tion evaluations in the optimization loop. The results obtained by 
MCS are also provided
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where �(⋅) and �(⋅) denote mean and standard deviation, 
respectively. R denotes the revenue generated and S denotes 
the storage of the reservoir. ft and fs in Eq. (125) represent 
the flow through turbine and spillway, respectively. � is the 
weightage factor. The objective is to determine ft and fs that 
minimizes the objective function as defined in Eq. (125).

The RDO results have been obtained for � = 0.5, 
i.e., equal weightage has been assigned to the mean and 

(125)

argmin −
[
��R + (1 − �)�R

]
s.t. �ft(i)

− 3�ft(i) ≥ 0,∀i

�ft(i)
+ 3�ft(i) ≥ 25000,∀i

�ft(i)
− 3�ft(i) + �fs(i)

− 3�fs(i) ≥ 500,∀i

|||�ft(i)
+ 3�ft(i) + �fs(i)

+ 3�fs(i) − �ft(i−1)
+ 3�ft(i−1) − �fs(i−1)

+ 3�fs(i−1)
||| ≤ 500,∀i

�S(i) − 3�S(i) ≥ 50000,∀i

�S(i) + 3�S(i) ≥ 100000,∀i

�S(end) = 90000

standard deviation of the revenue generated. The number of 
sample points required for training the anchored ANOVA 
decomposition (ANOVA-D) model is 4609. The results 
obtained by ANOVA-D have been validated with that of 
MCS  (104 samples) for each optimization iteration. The 
robust optimal solutions obtained by utilizing ANOVA-D 
as presented in Table 28 and Fig. 11 has achieved excellent 
similarity with benchmark MCS solutions. This illustrates 
high approximation accuracy of ANOVA-D. Additionally, 
ANOVA-D has utilized significantly less number of sample 
points as compared to MCS, which illustrates its computa-
tional efficiency. Overall, the performance of ANOVA-D is 

acknowledgeable in such high-dimensional problem as this 
present one.

After carrying out an extensive numerical study by uti-
lizing few surrogate models in RDO framework (Sect.  4) 
and also, addressing a practical engineering problem in an 
efficient manner (Sect. 5), the study has been summarized 
briefly in the next section.

Fig. 10  Schematic diagram of 
hydroelectric dam

Table 27  Description of the random variables for hydroelectric dam 
model (Sect. 5)

a Indicates standard deviation

S. no. Variable Distribution Mean COV/SD

1–12 Hourly in-flow Normal 1070 CFS 0.05
13–24 Hourly electricity price Normal 45 CFS 0.3
25–36 Hourly flow through 

turbine
Lognormal – 100a CFS

37–48 Hourly flow through 
spillway

Lognormal – 0.02
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6  Summary and Recommendations

An extensive survey has been carried out in this study 
illustrating the performance of surrogate models in RDO 
framework. As previously illustrated, the approximation 
accuracy of a surrogate model is a crucial factor in sto-
chastic optimization as a slight deviation from the results 
of any intermediate iterations may easily deviate to yield 
a false or local optima. Therefore, the motivation of the 
study has been to access the performance of available 
surrogate models in terms of their approximation poten-
tial while solving typical non-linear RDO problems. This 
study would also serve as a guiding handbook for the 
selection of a suitable surrogate model for addressing a 
problem of a particular level of complexity. In this con-
text, few salient points have been highlighted on the basis 
of the results achieved by various surrogate models:

• First and foremost, ANOVA-D has outperformed the 
other models investigated for solving typical non-lin-

ear RDO examples. It has proven its consistency and 
robustness in accurately approximating the response 
functions in all examples, unlike the other models. It 
is highly recommended for use in future applications 
of stochastic optimization.

• Secondly, performance of least angle regression 
based PCE is noteworthy both in terms of yielding 
accurate solutions and rate of convergence, except in 
the third example. After ANOVA-D, PCE-LAR has 
achieved the second ranking among the models uti-
lized and thus, recommended to be utilized and fur-
ther improved.

• Thirdly, ordinary least square and quadrature based PCE 
do not achieve convergence in examples 5 and 6. Thus, 
they are not recommended to be utilized for relatively 
high-dimensional non-linear problems with multiple 
constraints. However, they may be considered to be suit-
able for low-dimensional problems.

• Fourthly, performance of models such as, Kriging, 
RBF, LWP, ANN and MARS have been observed 
to vary in different problems and thus, found to be 
inconsistent. It is highly recommended to validate the 
results obtained by using these above models with 
benchmark solutions, if available.

• Lastly, SVM has yielded unacceptable results due to 
its lack of capability to accurately capture the non-lin-
earity in functional space and thus, gets deviated from 
the true optima in presence of constraints.

 Thus, after identifying high reliability of ANOVA-D in 
complex landscapes, it has been employed to solve a prac-
tical large-scale hydroelectric dam model. As expected, 

Table 28  Robust optimal solutions for the hydroelectric dam prob-
lem (Sect. 5)

Design variables MCS  (104 samples) ANOVA-D 
(4609 sam-
ples)

ft(1) 800.0016 800
ft(2) 800.0019 800
ft(3) 800.002 800
ft(4) 800.0028 800
ft(5) 800.003 800
ft(6) 800.0058 800
ft(7) 840.7067 840.6930
ft(8) 1.0407 × 103 1.0407 × 103

ft(9) 1.2407 × 103 1.2407 × 103

ft(10) 1.4407 × 103 1.4407 × 103

ft(11) 1.6407 × 103 1.6407 × 103

ft(12) 1.8407 × 103 1.8407 × 103

fs(1) 9.7467 × 10−8 4.1097 × 10−11

fs(2) 5.4615 × 10−8 3.7066 × 10−11

fs(3) 3.1662 × 10−7 1.7349 × 10−10

fs(4) 1.9007 × 10−9 1.2200 × 10−12

fs(5) 9.2755 × 10−8 1.2338 × 10−10

fs(6) 6.4504 × 10−9 6.1031 × 10−12

fs(7) 1.0177 × 10−11 6.9300 × 10−15

fs(8) 6.1147 × 10−9 2.4160 × 10−12

fs(9) 4.4513 × 10−9 2.2503 × 10−12

fs(10) 6.6375 × 10−8 2.8331 × 10−11

fs(11) 1.2683 × 10−7 7.6531 × 10−12

fs(12) 1.4256 × 10−7 1.9602 × 10−11

Objective function (� = 0.5) 224.2756 224.0604

Fig. 11  Comparison of the flow through turbine and spillway (i.e., 
design variables) as obtained by utilizing ANOVA-D and MCS
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ANOVA-D has yielded similar results as compared to 
MCS based RDO solutions, by utilizing limited number 
of training points, considering the scale of the problem. 
Thus, the study illustrates the resilience of anchored 
ANOVA decomposition is note-worthy and encouraging 
for applications in further complex engineering systems.
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