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1 Introduction

This paper is focused on experimental (solid) mechan-
ics, which is related to the process of testing materials (or 
structures) by applying, say, a time sequence of mechani-
cal loads through one or several actuators. The goal of 
the test is to extract an intrinsic mechanical characteriza-
tion, such as one constitutive law (or several ones for mul-
tiphase materials). It may also be reduced to a simple sub-
set of constitutive parameters such as modulus or strength 
including their statistical variability, or deal with slow 
time changes such as encountered, say, in cyclic fatigue. 
Up until recently, say 20 years ago, mechanical tests made 
use of local measurements (eg., provided by displacement 
transducer, strain gage, extensometer). This situation has 
drastically changed and today a huge and ever increasing 
number of data is routinely collected during an experiment. 
This is mainly due to the use of various imaging systems 
that give access to Mpixel-images and Gvoxel-volumes. 
For instance, nowadays experiments on flat samples use, 
typically, 1000 16-bit images of 1 to 100-Mpixel definition 
for the measurement of 2D displacement fields (ie., 2–200 
Gbyte data sets). For more complex shapes, more than one 
imaging device is considered. For N > 1 cameras, stereo-
correlation  [1] or multiview formulations  [2] are utilized 
to measure 3D surface displacements (ie., 2N–200N Gbyte 
data). With the emergence of 3D imaging systems (eg., 
X-ray tomography [3, 4] and laminography [5, 6], magnetic 
resonance imaging [7], optical coherence tomography [8]) 
an additional increase of data is observed. In tomography or 
laminography each reconstructed volume is obtained from 
a set of 6000 × 12-Mpixel radiographs (ie., 144 Gbytes per 
considered step for 16-bit digitizations).

Most of the full-field measurement techniques used 
in experimental mechanics are based on those various 
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imaging devices  [9]. They are not only available in very 
specialized facilities (eg., tomography on synchrotron 
beamlines) or institutions (eg., ultra high-speed cameras 
at defense labs) but also in academia and industry. This 
democratization of imaging tools has led to easier access 
to such “big data” at “reasonable” cost. To illustrate this 
trend, Fig.  1 shows the cumulated number of image data 
(ie., pixels and voxels) used in peer-reviewed publications 
of the lab of the authors. The dashed line corresponds to 
an exponential interpolation of the image data and the solid 
line to Moore’s law. This plot shows that in a matter of 15 
years, the cumulated yearly image data sets have grown 
from 5 × 107 to 1012, ie., faster than standard Moore’s law 
(ie., the amount of data is doubled over a period of 18 
months) that would have predicted (ie., 5 × 1010). In the 
reported results, there are three regimes for which stand-
ard Moore’s law applies. However, there are two jumps that 
correspond to the first use of tomographic data in 2007, and 
generalized analyses with tomographic acquisitions start-
ing in 2010. These results show that with the development 
of 3D imaging the amount of available data will drastically 
increase. Once all these images have been acquired there 
is also a growing effort required to analyze the data sets to 
extract the sought information. More than often the dura-
tion of the experiment per se is very short in comparison 
with its design and its post-analysis.

The benefit of having access to such big data sets makes 
experimental mechanics a data provider that can reach the 
same level as that available in computational mechanics. 
This is very important for simulation-based engineering 
sciences, which call for validation procedures  [10]. Meet-
ing this challenge requires experiments and simulations to 
be compared as thoroughly as possible to probe the numeri-
cal models. It calls for full-field comparisons instead of 
point-wise differences. This observation opens the way for 

full (in)validations of numerical models of materials and 
structures  [9].

These approaches are based on computed spatiotem-
poral fields that will eventually be compared with their 
experimental counterparts once the experiment has been 
prepared and performed or even during the experiment 
itself [11]. This remark shows that online control of experi-
ments still requires developments on the measurement and 
computational side to achieve real-time hybrid interactions. 
However, the feasibility of tests controlled via displace-
ment fields has been shown in the recent past  [11–14]. It 
enters the framework of dynamic data-driven application 
systems  [15] whose emergence is one critical aspects of 
simulation-based engineering sciences [10].

The aim of the present paper is to discuss the opportuni-
ties and challenges induced by the fact that big data sets 
are now available in experimental mechanics, and how 
they may change the dialog between experiments and 
computations. Section 2 introduces the principle to meas-
ure displacement fields via Digital Image Correlation, 
which has become one of the most popular measurement 
technique in solid mechanics  [16, 17]. The next step is to 
extract material parameters from the measured fields. This 
mechanics-based data mining procedure consists of reduc-
ing the available data into meaningful parameters to be 
used in computations. The process of data reduction may 
be coupled with model reduction techniques (Sect. 4). Such 
approaches are illustrated on a typical example in Sect. 5. 
Last, some advanced procedures are discussed in Sect. 6 to 
pave the way for the future of experimental mechanics in 
relation with the acquisition of big data sets.

The emergence of simulation-based engineering sci-
ences calls, among many challenges  [10], for uncertainty 
quantifications to achieve reliable predictions and probe 
(ie., validate or invalidate) material and numerical models. 
One of the sources of uncertainties is related to data acqui-
sition (eg., standard imaging devices such as cameras are 
prone to acquisition noise). Even though the modeling of 
such uncertainties is possible and more importantly desir-
able, it will not be discussed herein at the acquisition step. 
Conversely, its propagation when dealing with data reduc-
tion and/or data mining will be illustrated throughout the 
paper. It will be shown that outputs of data processing steps 
are not only the quantities of interest but also their corre-
sponding covariance matrix. The latter requires consistent 
metric to be introduced.

2  Full‑Field Measurements in Experimental Solid 
Mechanics

The most salient characteristics of imaging systems are (i) 
a massive assembly of (ii) rather poor sensors (pixelwise 

Fig. 1  Cumulated number of image data used in publications of 
LMT from 2001 to 2016. The dashed line corresponds to Moore’s 
law and the solid line to exponential interpolation
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detectors). “Poor” refers to the fact that each elementary 
detector (ie., pixel) delivers an elementary measurement of 
light intensity, ie., gray levels encoded over few bits, typi-
cally 8–16, which suffers from noise that (more than the 
gray level depth itself) limits the reliable part of the infor-
mation. “Massive” has already been discussed in the previ-
ous section. The idea here is that the huge number of pix-
els will allow for high spatial resolutions. What is said for 
optical camera also holds for electron microscopy, although 
the scanning character of acquisition introduces specific 
signatures. Noise in particular displays correlations that 
are inherited from the scanning procedure  [18]. Similarly, 
atomic force microscopy (AFM) is also a scanning meas-
urement device, with even stronger noise as resulting from 
the mechanical probe itself and its piezo-controller [19].

The specific challenge of utilizing images, in particular 
for experimental mechanics but not only, is to address the 
above two characteristics, the massive amount of data and 
their noise. The very reason why such a challenge can be 
overcome is that images will be used to measure quantities 
(eg., kinematic fields or material parameters) that require 
less or much less data. The mathematical treatment is thus 
to be dictated by the noise properties, using a suited prob-
abilistic treatment (eg., maximizing the likelihood) and 
redundancy is to be exploited to either validate or invali-
date the desired model, and in the latter case, provide clues 
to resolve discrepancies.

2.1  DIC Principles

Digital image correlation (DIC) aims at measuring the 
motion that allows for the registration of two or more 
images. Images are here represented by gray levels f at each 
pixel or voxel at position x and time t, f (x, t). In order to 
allow for sub-pixel/voxel measurement interpolation with 
cubic splines (or higher order) are assumed to hold. The 
most common assumption expresses that the gray level is 
a signature of the observed volume or surface element that 
is simply (passively) transported with the medium without 
any further modification. Hence it is expected that in the 
absence of noise the so-called residual

should be identically 0. The condition � = 0 is the conse-
quence of gray level (or brightness) conservation. It is to 
be emphasized that more elaborate descriptions of how 
images are modeled to evolve with time may be proposed, 
in particular, when images where the gray level has a dif-
ferent meaning. If it stands for a physical elevation as for 
topographic images encountered with AFM, then � may 
represent the out of plane displacement, say uz(x)  [20, 
21]. If f is a digital level of an infrared camera, its value is 

(1)�(x, t) = f (x + u(x, t), t) − f (x, t0)

expected to be equal to the product of the emissivity by the 
local sample temperature, and hence after a measurement 
of the emissivity field, � can be expressed as a temperature 
field [22].

It will be considered in the following that a mere 
brightness conservation holds. However, in addition 
to the assumption of the underlying physical model 
for image formation, as earlier mentioned, images are 
prone to noise, and hence at least �(x, t) is equal to 
the difference in the noise �(x, t) affecting f (x, t) and 
f (x, t0), or �(x, t) = �(x + u(x, t), t) − �(x, t0). For a 
Gaussian white noise characterized by a variance �2, 
⟨�(x, t)�(x�, t�)⟩ = �2�(x − x�)�(t − t�), where ⟨⋅⟩ designates 
the mathematical expectation of ⋅ for different realizations 
of the noise, and � the Dirac distribution. The noise differ-
ence can be gathered into an effective noise affecting only 
images at times later than t0 and whose variance is doubled 
2�2.

For such white and Gaussian noise, the probability 
of observing � = � at a pixel x and time t, is written as 
p(x, t) ∝ exp(−�2∕4�2) when not specifying an unimpor-
tant multiplicative constant. Hence, for the entire picture, 
the absence of correlation implies that this probability read

hence the registration consists in finding the displacement 
field u(x, t) such that it maximizes the likelihood of �, or 
equivalently such that it minimizes the argument of the 
exponential, or the L2-norm of �. The following cost func-
tion is thus introduced

where a normalization with respect to the number of pixels 
Nx in the region of interest and the number Nt of considered 
images (in addition to the reference one), makes this quan-
tity intensive, and its comparison with 1 is to be interpreted 
as whether or not the residual reduces to noise (� ≈ 1) or 
not (𝜒 ≫ 1).

This minimization problem is strongly nonlinear because 
of the fact that the unknown appears in the argument of a 
function f (⋅, t) that characterizes the studied sample and 
whose regularity is out of control. However, if an initial dis-
placement field is known and sufficiently close to the sought 
solution, then a Newton procedure provides a convenient 
route to the solution. Let us note that this minimization prob-
lem is global in time and space. Choosing global interpola-
tion functions, as will be done later, will therefore provide a 

(2)

P ∝
∏

x,t

exp(−�(x, t)2∕4�2)

∝ exp

(
−

1

4�2

∑

x,t

�(x, t)2

)

(3)�2[u(x, t)] =
1

2�2NxNt

∑

x,t

�(x, t)2
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regularization of the problem both in space and time. If, for 
example, time is considered, a large series of images can be 
used to determine a given regular interpolation in time. This 
allows for a much better resolution in space. In the same man-
ner a large spatial grid could allow for a very fine resolution 
in time.

A modified Newton iteration consists in correcting the 
displacement field by �u, such that

where the matrix [H] and second member vector {j} read

One should note that when u = u∗ is the sought solution, 
H(x) corresponds to the Hessian of �2 with respect to u. 
This explains the efficiency of using [H], which will there-
fore be referred to as the Hessian in the sequel. Once {�u} 
is computed, {u} is updated to {u + �u}, and the residual � 
is refreshed. In the above writing, the second member is a 
column-vector of size DNxNt where D is the space dimen-
sionality, Nx the number of pixels in the ROI, and Nt the 
number of instants of time. The Hessian is a square matrix 
of size DNxNt × DNxNt.

As written, such problem is ill-posed and cannot be 
solved because it attempts at finding a vector (ie., u(x, t)) per 
scalar quantity (ie., f (x, t)) at every point in space and time. 
To make the problem well-posed many strategies can be 
adopted. A natural one is to restrict the displacement field to 
a kinematic subspace. The choice of this set is critical, and 
will be discussed repeatedly in the following. Let us assume 
that the displacement fields are specialized to a subspace 
generated by a set of NaNt vector fields Pi(x, t) such that

The above Newton scheme can be used in order to deter-
mine the unknown amplitudes gathered in a column-vector 
{a} of size NaNt, with an iterative correction {�a},

Minimizing the cost function  (3), a Galerkin procedure is 
used where the Hessian [Ha] and second member {ja} read

where [P] is a rectangular matrix of size DNxNt × NaNt

. It is quite natural at this stage to preserve the tensorial 
nature of the representation in orientation, space and time 

(4)[H]{�u} = {j}

(5)
H(x, t) =

1

2𝜎2
�f (x, t0)⊗ �f (x, t0)

j(x, t) =
1

2𝜎2
�f (x, t0) 𝜏(x, t)

(6)u(x, t) =
∑

i

aiPi(x, t)

(7)[Ha]{�a} = {ja}

(8)
[Ha] =[P]

⊤[H][P]

{ja} =[P]⊤{j}

directions. That is, all components i1 of the displacement 
field are treated in a similar way using an identical scalar 
shape function in space and scalar shape function in time. 
The latter can also be decomposed as the product of spa-
tial shape functions �i2

(x) and a temporal one �i3
(t), so that 

now the index i refers to the triplet (i1, i2, i3), and

where ei1 denotes a unit vector pointing along direction i1.
This formulation of the problem is similar to the way it 

is tackled from the numerical modeling standpoint. In the 
latter case, it is standard to use a finite-element mesh for 
�i2

(x) so that i2 refers to the nodal degrees of freedom. If 
the image contrast is sufficiently fine-scaled with respect 
to the element size, then the resulting Hessian [Ha] may be 
strictly positive and hence the problem may be solvable. 
This condition also implies that the mesh cannot be arbi-
trarily fine, as along with fineness comes first ill-condition-
ing, and second ill-posedness (ie., rank-deficient Hessian) 
as for the pixel-wise case.

After convergence, the residual field �(x, t) provides a 
good indication of the quality of the obtained solution. As 
earlier mentioned, it is ideally expected to consist of white 
noise, with an expected dimensionless variance of 1. When 
such a condition is not met, it is often easy to be in a posi-
tion to interpret the cause. This may call for an enriched 
model (such as the inclusion of brightness or contrast cor-
rections, when the residual has a non zero mean, or looks 
like the reference image [23]). It may also reveal the pres-
ence of discontinuity (eg., a crack) that has to be included 
in the description of the displacement field [24], or simply 
an unreliable part of the observed surface that has to be 
masked or ignored.

An important aspect of the analysis is that, from the 
noise � affecting the images, the uncertainty of the meas-
ured displacement amplitudes {a} can be computed analyti-
cally within the present framework [25] as

with {ja} = [P]⊤{�f 𝜂}. By construction, the tangent prob-
lem is linear and hence the displacement measurement is 
unbiased. Its covariance matrix [Ca] reads

Therefore the above procedure delivers not only the esti-
mated displacement field but also its associated uncer-
tainty. This is an essential aspect of the DIC methodology, 
since displacements are almost never the ultimate quantity 
of interest, but rather intermediate data that are to be fur-
ther processed to estimate the sought mechanical proper-
ties. Without the attached uncertainty, there is no way to 
weigh the measured information as it should.

(9)Pi(x, t) = ei1�i2
(x)�i3

(t)

(10){�a} = [Ha]
−1{ja}

(11)[Ca] = ⟨{�a}{�a}⊤⟩ = [Ha]
−1
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Before closing this section, let us introduce a formal 
representation of the DIC process that will be used all 
along the paper in different contexts. A procedure, such 
as DIC, is schematically pictured in Fig.  2. It is fed with 
entries X that are images for DIC, together with a norm 
that is issued from the noise affecting images. As above 
argued, the simple case of a Gaussian white noise corre-
sponds to a uniform L2-norm to be used when registering 
images. The procedure itself can be seen as a black box, 
where algorithmic aspects are here irrelevant. However, it 
contains a model, here a relationship between images (eg., 
brightness conservation) that is parameterized by quan-
tities generically denoted as Y in Fig.   2, which are the 
nodal displacements {a} in the case of DIC. The model 
is formulated in a variational way because noise forbids a 
strict obedience to the model, and there lies the legitimacy 
of introducing a “measure” of the violation of the model 
assumptions that is fitted to the suspected cause of this 
violation noise. The procedure provides an estimate of the 
model (output) parameters, Y = Y∗, but also uncertainties 
attached to them, which may be encoded in an output met-
ric. The procedure conveys the input noise affecting X into 
one affecting Y, and this is essential for a proper usage of 
the output data. Alternatively, one may say that the out-
put of the procedure is an “equivalent” variation problem, 
�2(Y) ≈ �2

osc
(Y) = ‖Y − Y∗‖2, where for DIC the output 

metric is ‖{a − a∗}‖2 = {a − a∗}⊤[Ha]{a − a∗}. Addition-
ally, the procedure provides also residuals that allow the 
(in)validity of the model to be assessed.

Let us stress that the model itself may be highly nonlinear, 
and such is the case for DIC as the unknowns are arguments 
of an “image texture”, that is a highly irregular function apart 
from the needed ability to interpolate gray levels at sub-pixel 
accuracy. Yet, at convergence, the problem has been substi-
tuted by its osculatory quadratic minimization approximation, 

�2
osc

, constructed from the Hessian of the original problem, 
which is nothing but the inverse of the covariance of the 
processed noise affecting the output. Because of the intrin-
sic nonlinearities of the problem, one can trust the osculating 
problem only in a close neighborhood to the solution. Yet, if 
this condition is met, the osculating problem delivers a very 
robust but equivalent formulation, where robustness comes 
from the quadratic nature of the output.

Last, the number of data input in the procedure, NX, is typ-
ically much larger than the number of output data, NY ≪ NX , 
schematically shown as a shorter output level than the base 
input in Fig.  2. This difference is the redundancy that allows 
for extracting fewer meaningful data from many noisy data.

3  Constitutive Parameter Identification

3.1  FEMU

Identification may have a broad meaning. In the present case, 
it is proposed to embrace constitutive laws (CL), or elements 
of the constitutive law such as criteria (for the onset of yield, 
damage, cracking) but also shape (S), boundary conditions 
(BC), or any subset of parameters extracted from these three 
categories. All of these are formally represented by a column-
vector {p} = {p1, ..., pNp

}⊤. The idea is to introduce as many 
parameters as possibly unknown—or at least subject to cor-
rections—quantities. Calibrating a Young’s modulus suggests 
that the latter is not known precisely, and this is natural in the 
context of experimental mechanics. Including shape parame-
ters as unknowns may be relevant when for instance account-
ing for an unknown crack extension or an offset from a nomi-
nal CAD model. Last, especially when an instability is 
present, boundary conditions may differ from what was ini-
tially designed.

One of the most versatile identification technique corre-
sponds to finite element model updating (FEMU)  [9]. The 
underlying philosophy is to start from an initial approxima-
tion to the solution {p0}, and to iteratively correct it based on 
the comparison between computed and measured displace-
ments. The cost function is thus defined to be

At this stage, many norms can be used  [9]. A Bayesian 
framework indicates that the best suited norm [26, 27] for 
Gaussian noise corrupting the displacement field is that 
given by the inverse covariance matrix of {u}. With the 
chosen FE discretization, the inverse covariance is simply 
given by the reduced Hessian [Ha], and hence, for any i, the 
equation to solve is

(12)�2
FEMU-a

({p}) = ‖{acomp({p})} − {ameas}‖2

(13)
∑

k,l

Ski (Ha)kl

(
a
comp

l
+
∑

j

Slj�pj − ameas
l

)
= 0

Fig. 2  Schematic representation of a procedure “distilling” input 
data X together with a metric describing in a statistical sense the 
noise that may affect X, to provide measured Y data, together with 
the processed noise characteristics to be used for a suited metric on 
the output
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where

are the sensitivity fields [26, 28] with respect to the param-
eter pj expressed within the nodal description. The above 
linear system (13) is rewritten as

with

Because the problem has been linearized up to conver-
gence, the Gaussian character of image noise is transported 
to the displacement level where it remains Gaussian. How-
ever, even if the image noise were white, the DIC procedure 
transforms the noise on the image pixel into noise affecting 
the nodal displacement with nontrivial correlations. This is 
the very reason why the Hessian should come into play in 
the definition of the norm.

The tangent problem is again linear. Consequently the 
parameter calibration is unbiased. Its covariance matrix 
[Cp] then becomes

and is the result from propagating the uncertainties from 
the pixel level up to the parameter level.

It is to be emphasized that even if the used finite ele-
ment mesh is extremely fine, leading potentially to a sin-
gular Hessian, it can be used in the above norm. The ker-
nel of the Hessian may lead to ill-posedness, but when the 
displacement field is sought in a subspace, which is gener-
ated by the sensitivity fields, the restriction of the Hessian 
to this subspace is likely to be strictly positive, and better 
conditioned as the subspace dimensionality decreases.

It is noteworthy that FEMU can be cast into the scheme 
of procedures shown in Fig.  2. Here the input (resp. out-
put) is {a} (resp. {p}). The similar format of the input and 
output was chosen so that one can easily “plug” the two 
procedures, and perform them sequentially to achieve iden-
tification from images. It is also possible to merge the two 
steps into a single integrated scheme [29–33].

3.2  Integrated DIC

The fact that the Hessian of the DIC problem comes into 
play in the expression of the FEMU-a kernel shows that the 
above norm used in �2

FEMU
 is such that

(14)Sij ≡
�a

comp

i

�pj
({p})

(15)[Hp]{�p} = {jp}

(16)
[Hp] = [S]⊤[Ha][S]

{jp} = [S]⊤[Ha]{ja}

(17)[Cp] = ⟨{�p}{�p}⊤⟩ = [Hp]
−1

(18)‖�u(x, t)‖2 ∝ �2[umeas(x, t) + �u(x, t)]

when �u is sufficiently small (ie., less than the image 
correlation length). More precisely the combination 
DIC+FEMU is osculatory to the above cost function. This 
can easily be shown from the corresponding Hessian

Hence, this specific FEMU variant (ie., FEMU-a using [Ha] 
as a norm) is mathematically equivalent to solving for the 
DIC problem, with the help of the identification framework 
as a very well-suited regularization, rather than a conveni-
ent heuristics as usually brought by a Tikhonov regulariza-
tion [34]. It implies that DIC and FEMU can be performed 
in a single step, called I-DIC (for Integrated-DIC). Within 
this framework, the mesh almost disappears as it is just an 
intermediate tool that allows for the interpolation of the 
displacement field at any pixel position, or equivalently, 
I-DIC, corresponds to choosing as a mesh the pixel repre-
sentation, that is a pixel-wise FEMU.

Using the schematic convention of procedure as building 
bricks (Fig.  2), the assembly of DIC and FEMU into I-DIC 
is shown in Fig.   3. In the present case, since FEMU is 
based on the measured displacement fields associated with 
the chosen kinematic subspace (see Eq. 6), it is designated 
as FEMU-a hereafter (ie., to refer to the measured ampli-
tudes {a} used as input data and the corresponding covari-
ance matrix [Ha]

−1).
It is noteworthy that for integrated-DIC, the pixel-wise 

and the (nodal) FEMU-a identification are mathematically 
equivalent, provided the auxiliary steps consisting in pro-
jecting the displacement fields onto the predefined basis 
do not introduce any significant model error (explicitly, 
the sensitivity fields [S] should be well described by the 
finite element mesh), or that the latter is kept under con-
trol. The similarity of the different formulations is estab-
lished when no model error occurs (eg., the mesh should 
not be too coarse, the identified model should not pull the 
DIC solution outside the domain where the Taylor expan-
sion based on pixel-size displacement breaks down). Oth-
erwise the parabolic expansion of the three comparison 
metrics are identical at the DIC solution  [31], so that the 

(19)[Hp] = [S]⊤[Ha][S] = [S]⊤[P]⊤[H][P][S]

Fig. 3  DIC and FEMU-a can be assembled as two sequential opera-
tions (left) or merged into a single one (right)
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variational problems are osculatory. However, the quadratic 
cost functions strengthen the robustness of the algorithm. 
Moreover, the nodal version may be computed for differ-
ent mesh sizes. Coarser meshes lead to fewer unknowns, 
and hence less demanding computations, with potentially 
a better conditioning. Thus as long as the approximation 
error due to the mesh remains well below the uncertainty of 
DIC, a coarse mesh is beneficial [33]. Conversely, when the 
sample geometry becomes more complex and/or the picture 
contrast is poor, fine meshes can be used with integrated 
approaches. However, the very same meshes would not 
allow a standard DIC code to converge [29, 35].

3.3  Illustration with an Elastoplastic Test Case

To illustrate IDIC, a test case is discussed in which the elas-
toplastic material parameters of J2-flow rule with freeform 
isotropic hardening are calibrated from a tensile experiment 
on an aluminum alloy (AA2219) sample. The latter is a 
dog-bone geometry with a hole to increase the sensitivity to 
the sought material parameters (Fig.  4a). It is loaded cycli-
cally, where the maximum displacement for the first cycles 
is incrementally increased (Fig.   4b). A 4-Mpixel camera 
is used (with 16-bit digitization). The physical size of each 
pixel is 11.14 μm. A telecentric lens ×0.25 is selected to 
minimize the effects of out-of-plane motions.

To drive IDIC calculations, Dirichlet boundary condi-
tions are measured via global DIC with a triangular mesh 
(Fig.   5). In the present case, DIC and IDIC analyses are 
performed with the same surface mesh. This requirement 
is not mandatory  [29, 35] and discretization convergence 
of the IDIC results is not discussed herein. It was shown 
on other cases  [33] that rather coarse meshes allowed for 
very good estimates of the material parameters provided 
that the geometry of the sample is well captured [29, 35]. 
It is worth noting that even though 2D pictures are consid-
ered and the sample thickness is small (ie., equal to 2 mm), 
IDIC analyses are performed with 3D finite element sim-
ulations. The latter ones are performed within the large 

transformation framework. In elastoplasticity in particular, 
3D simulations are needed even for sub-millimeter thin 
samples  [35]. Consequently, the measured displacements 
are extruded along the thickness of the sample where they 
are prescribed (Fig.  5).

Figure 6 shows the results of DIC analyses of the whole 
test. It should be noted that displacement fields are defined 
over space and time (or increment), and they are vector 
fields with in-plane components for the displacements ux, uy 
and the resultant force F is defined over time only. Figure 6 
only shows two cross-sections for each displacement com-
ponent, one in space for increment 637 (of 639) and one 
in increment at x = 1400  pixels (see vertical dashed lines 
in Fig.  6). This type of representation will be used in the 
remainder of the paper. Fig.  6(a) shows the displacement 
fields at the last increment. The corresponding in-plane 
logarithmic strain fields are shown in Fig.  6(b). At the end 
of the test, four strained bands are observed. They all ema-
nate from the central hole and have developed over the last 
200 increments. It is also concluded that the probed longi-
tudinal strain range is of the order of 10%.

In the following, the gray level residuals �(x, t) 
are normalized with respect to the dynamic range 
Δf0 of the picture in the reference configuration (ie., 
Δf0 = maxROI f (x, t0) −minROI f (x, t0)). Figure  6(a) 
indicates that the registration quality is generally very 
good since the residuals remain very close to the levels 

Fig. 4  a Tensile test on 
dog-bone sample with a hole. 
b Load and stroke of the 
analyzed test as measured at the 
upper grip of the tensile tester

Fig. 5  Mesh used for IDIC analyses, which are based on measured 
and extruded Dirichlet boundary conditions (blue arrows)
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associated with acquisition noise (ie., of the order of 1.6% 
of Δf0). However, there are areas where they are a bit higher 
throughout the whole load history. This is in part due to 
dust on the objective lens. At the end of the test, higher 
residuals are observed in the strained regions. They are due 
to paint cracking and the fact that the FE mesh is not able 
to fully capture the localized character of these bands. The 
overall root mean square residual is equal to 1.9% of the 
dynamic range, which is deemed very satisfactory

Ten material parameters (ie., {p} = {E, �, �y,Δ�1 …

Δ𝜎
7
}⊤) are unknown. The first two are Young’s modulus 

E and Poisson’s ratio �. The third parameter corresponds 
to the yield stress �y. Then seven additional stress incre-
ments Δ�i are considered. The corresponding strain lev-
els are chosen in increasing amplitude to properly capture 
the initial yielding (ie., at [0.1, 0.2, 0.5, 1.1, 2.8, 6.0, 9.5] 
% equivalent plastic strain). Since stress related param-
eters are sought, load measurements are accounted for 
in identification steps. In the present case, the resultant 
forces {Fcomp} induced by Dirichlet boundary conditions 
are compared with measured load data {Fmeas}. The cor-
responding global equilibrium residual reads

To be consistent with the present framework, for Gaussian 
noise corrupting the load measurements is that given by the 
inverse covariance matrix of {Fmeas}. In the present case, 
the load measurements are uncorrelated and their variance 
is denoted by �2

F
. With the used load cell, �F = 4 N. Conse-

quently, the global equilibrium is rewritten as

(20)�2
F
({p}) = ‖{Fcomp({p})} − {Fmeas}‖2

There is an additional (static) Hessian [HF]

that is formed by gathering all the load sensitivities

in a rectangular sensitivity matrix [SF].
For IDIC the total residual is formed as the weighted 

sum of the dimensionless gray level and load residuals [36]

For the other identification methods, similar weighings are 
used.

Figure  7 shows the ten corresponding sensitivity 
fields. They are computed using finite differences with a 
perturbation factor � of 1%. Within Fig.   7 the sensitiv-
ity fields are shown as multiplied with their respective 
parameter value in order to bring them all to the same 
units and ease comparison. This makes them effectively 
relative sensitivity fields. They can be read as, the cor-
rection to the simulated displacement fields for a change 
in parameter of amplitude 1. Additionally, the correction 

(21)

𝜒2
F
({p}) =

1

Nt𝜎
2
F

(
{Fcomp} − {Fmeas}

)⊤(
{Fcomp} − {Fmeas}

)

(22)[HF] =
1

𝜎2
F

[SF]
⊤[SF]

(23)SFij
≡

�F
comp

i

�pj
({p})

(24)�2
tot

=
Nx

1 + Nx

�2 +
1

1 + Nx

�2
F

Fig. 6  Global DIC results for 
the analyzed test. a Displace-
ment fields expressed in pixels 
and normalized gray level 
residual with respect to the 
dynamic range of the picture 
in the reference configuration. 
b Corresponding in-plane strain 
fields
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Fig. 7  Sensitivity fields for all ten material parameters for the final set of material parameters. The plotted fields are [Si]pi, this multiplication of 
pi is done to bring them all to the same units
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to the simulated reaction force is also shown. Note that 
the force and displacement contributions are connected 
and cannot change individually. These figures can be 
used to evaluate any identification problems. In practice, 
two concepts are important. The first is that the sensitiv-
ity fields have amplitudes that are within the measurable 
range. For this experiment the displacement uncertainty 
as about 0.0144  px, and all sensitivity fields express 
stronger displacement amplitudes. However, this would 
be for a parameter change of one, which is typically larger 
than the desired identification uncertainty. Consequently, 
the contributions from the force are important and sig-
nificantly enhance the sensitivity. The second important 
concept is that they are unique. If any linear combina-
tion of sensitivity fields can express another field, than 
this will result in conditioning issues of the identification 
Hessian. The chosen set of parameters each have their 
support relatively local in time. That is to say, the param-
eters are activated sequentially. Therefore, no uniqueness 
problems are expected.

When these sensitivity fields are utilized for calibration 
purposes, the identification residual is successfully mini-
mized and the optimal parameters are reported in Table 1. 
The calibrated elastic and plastic properties are consistent 
with literature and industrial data on this type of alloy.

Figure  8 shows different residuals for the initial step 
of the IDIC procedure and at convergence. Three differ-
ent types of residuals are reported for IDIC analyses. The 
global residual that is minimized is a weighted sum of gray 
level and equilibrium residuals based on a Bayesian foun-
dation [36]. Since DIC analyses are also performed, a resid-
ual on DIC and IDIC displacements is also constructed.

First, displacement residuals, which are the displace-
ment differences between DIC and IDIC analyses, are 
reported. Since measured (via DIC) displacements are pre-
scribed on the top and bottom boundaries of IDIC analyses, 
their difference vanishes. Further, until increment 300, the 
displacement differences remain very small (and close to 
the measurement uncertainty whose standard deviation is 
0.0144 pixel for the chosen discretization. In this part of the 

Table 1  Identified parameters 
for the four different 
identification cases and the 
initial guess

E � �y Δ�
1

Δ�
2

Δ�
3

Δ�
4

Δ�
5

Δ�
6

Δ�
7

(GPa) (–) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

{p
0
} 43.2 0.168 225 9.2 16.9 13.7 7.8 16.0 15.1 6.5

IDIC 75.3 0.319 376 14.2 28.8 23.6 10.3 28.6 24.9 9.9
FEMU-a 75.3 0.319 376 14.1 30.0 22.2 10.6 28.5 25.3 12.3
FEMU-b 76.0 0.310 373 16.1 31.9 19.4 11.4 29.1 25.3 14.0
FEMU-b (secant) 76.0 0.310 373 16.0 31.9 19.4 11.4 29.1 25.4 14.0

Fig. 8  IDIC residuals for the 
analyzed test. Displacement 
residuals expressed in pixels, 
normalized gray level residuals 
and load residuals for the first 
(a) and converged (b) solution
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experiment, the sample is essentially loaded in the elastic 
regime and then small scale yielding occurs. In the second 
part of the experiment, larger residuals are observed. This 
is an indication of model error. Table 2 shows that the root 
mean square displacement difference Ru is about ten times 
higher than the measurement uncertainty. First, the mesh 
may not be fine enough. Second, the material model, even 
though based on a freeform hardening model, is not able 
to fully capture all the kinematic details of the experiment. 
Third, measured boundary conditions have been extruded 
(Fig.  5), which is not necessarily totally consistent with the 
experiment  [35]. Last, the displacement residuals do not 
decrease very much when the first iteration results are com-
pared with those at convergence. This is due to the fact that 
measured boundary conditions are considered herein.

Gray level residuals are also reported. This quantity is 
one way of characterizing the overall quality of the IDIC 
registration. It also gradually degrades as the increment 
number increases and a larger zone of the sample yields. 
When comparing the residuals at the beginning and the 
end of the minimization process, their level only slightly 
decreases, in line with the fact that the displacement fields 
did not vary much. Interestingly, they are also very close to 
DIC residuals (Fig.  6(a)). Table 2 shows that the root mean 
square gray level residual Rf  normalized by the dynamic 
range Δf0. If it were only related to acquisition noise, its 
level is equal to 1.62%.

Finally the load residuals show that there is a clear 
decrease (by a factor of 100 for the root mean square dif-
ference, see Table  2) when the initial guess is compared 
with the final result. In the present case, this quantity is the 
most sensitive. This is due to the fact that the initial guess 
of the parameter set was about 50% off from the converged 
solution, which results in stress levels that are significantly 
lower (Fig.  9). The final RMS residual is still higher (by 
a factor of 10) in comparison with load uncertainty. This 
again indicates that model errors remain at the end of the 
analysis.

Even though the analysis of the residuals indicates that 
no perfect match was achieved, the levels of the reported 
residuals remain low (ie., only ten times the acquisition 

noise) so that for the analyzed strain range, it is believed 
that the calibrated freeform model (Fig.   9) is a rather 
good approximation of the actual behavior of the studied 
aluminum alloy.

Last, the original kinematic sensitivity fields, when 
expressed at the pixel level, contain approximately 
11.9 × 109 values (see Table 3) when 639 increments are 
considered. When written at the nodes, the number of 
values is reduced to 11.7 × 106, and only ten constitutive 
parameters are to be determined in the end.

4  Data and Model Reduction

In computational mechanics, model reduction techniques 
are used to solve problems, which are out of reach of 

Table 2  Global residuals for the four different identification cases 
and the initial guess

Ru (px) RF (N) Rf  (%)

DIC – – 1.90
{p

0
} 0.399 3203 2.50

IDIC 0.344 35 2.15
FEMU-a 0.340 33 2.15
FEMU-b 0.338 40 2.16
FEMU-b (secant) 0.338 41 2.16

Fig. 9  Stress-strain curve of the studied material when different cali-
bration techniques are used, and for the initial set of material param-
eters {p

0
}

Table 3  The size of objects required within the different proposed 
algorithms

Number of values % of zeros

Images 640 –
Image pixels 4.2M –
ROI pixels Nx 1.8M –
Increments Nt 639 –
Nodes 630 –
Nodal DOF Na 1.9k –
Modes Nb 100 –
Parameters Np 10 –
[P][S] 11.7G 0
[P] 3.5G 99.8
[S] 12.1M 49.8
[U] 639k 9.1
[V] 189k 0
[Ha] 3.6M 99.5
[Hb] 10.0k 0
[Hp] 100 0
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direct numerical simulations even using parallel comput-
ing. Such problems are encountered for example in case 
of parametric models, the cost of which would increases 
exponentially with the number of parameters in the for-
mulation otherwise. Those methods, unlike meta-mode-
ling techniques, do not intend to simplify the model but 
to provide a framework for approximating the solution 
of the mechanical problem associated with a rather com-
plex physical model. In this context model-order reduc-
tions usually involve two phases, namely, the building 
of the parameterized reduced-order model, usually car-
ried out off-line, and an on-line phase, which consists 
in particularizing the solution. Among those techniques 
that have been quite extensively used over the last decade 
one can list the proper orthogonal decomposition (POD) 
method [37] (and the closely related Principal Component 
Analysis (PCA), singular-value decomposition (SVD) 
or Karhunen–Loeve (KL) techniques), the reduced-basis 
(RB) method [38] and the proper generalized decomposi-
tion (PGD) method [39, 40]. Some approaches (eg., POD, 
RB) rely on a learning phase, for which the solution of 
the problem is partially computed for given instants or 
values of parameters (snapshots) in order to extract the 
reduced-order basis that can be used online to find the 
approximation of another similar problem.

In contrast, PGD techniques do not rely on such learning 
stage as they directly build separated-variable approxima-
tions of the solution fields using a greedy algorithm, with-
out any prior information on this solution. Such techniques 
allow for a strong reduction of the dimension of the space 
in which the solution is sought. However, in case of non-
linear problems, evaluations over the initial high dimen-
sional space are needed and hence the net benefit of such 
techniques may be limited. Therefore, and depending on 
the type of techniques, a second reduction procedure aim-
ing at reducing the evaluation step over a lower dimen-
sional space were developed as the Empirical Integration 
Method for the RB approach [41–43], the hyper-reduction 
method [44, 45] or data compression method for PGD [46].

Another way of classifying these model reduction tech-
niques is to consider the metric with which the reduced 
basis is chosen. For POD and its variants, the Euclid-
ian L2-norm is implicitly chosen (and the orthogonality 
in its acronym indeed refers to the plain scalar product). 
Although not classically presented this way, it is straight-
forward to formally extend POD to more general quadratic 
norms than L2, with an arbitrary metric tensor. The mul-
tiplication of all fields from the library by the square root 
of the metric tensor leads to new fields that can be reduced 
using classical POD, and reverting back to the original 
space solves the problem. This observation may be useful 
because of the emphasis that should be given in utilizing a 
suited norm tailored to the noise (or uncertainty).

For PGD [39] and RB [38], the used metric is based on 
a variational formulation of the problem to solve. When 
model reduction aims at solving a specific problem, it 
appears as satisfactory to evaluate residual errors using the 
very same formulation as that used for handling the prob-
lem directly. In the context of solid mechanics, PGD may 
use a constitutive law error [47] having the dimension of an 
energy, hence endowed with a concrete physical meaning.

4.1  The Multi‑Query Latin Method

The computation of the Hessian of the FEMU-a problem 
could be performed efficiently in a simple manner exploit-
ing a nice property of the time-space PGD approach using 
the Latin algorithm [48]. Let us first recall the basic ingre-
dients of this algorithm, presented here in the context of 
nonlinear constitutive models  [47, 49] before considering 
its use for computing sensitivity fields.

The reference problem is quasi-static and isothermal for 
a structure defined over the time-space domain  × Ω, with 
 = [t0, T] the interval of study, assuming small perturba-
tions. The structure is subjected to prescribed body forces 
f d on Ω, to tractions Fd over a part �FΩ of the boundary, 
and to prescribed displacements ud over the complemen-
tary part �uΩ. The state of the structure is defined by the set 
of fields � = (�, �i, {�}, {�}), in which

– � designates the Cauchy stress tensor;
– �i the inelastic part of the strain tensor � correspond-

ing to displacement field u, with the classical additive 
decomposition into an elastic part �e = 

−1�  and an 
inelastic part �i = � − �e;

– {�} N� internal variables;
– {�} the set of N� variables conjugate to {�};
– a normal formulation is adopted, which means that by 

a change of variable, if needed, the state equations are 
linear, ie., {�} = [L]{�}.

All these quantities are defined over  × Ω and assumed to 
be sufficiently regular. The nonlinearity appears for growth 
laws  (25) formally defined by the monotone operator � 
such that

Let � designate the space of fields �̂ satisfying the growth 
laws (25). It is noteworthy that these nonlinear equations are 
local and can be processed in parallel. Let us also introduce 
the space �

�
 of admissible fields � = (�, �i, {�}, [L]{�}) 

such that the stress tensor � and the displacement field u are 
respectively statically and kinematically admissible. This 
definition involves only linear operators with long-range 
couplings.

(25)(�̇�i, {�̇�}) = �(𝝈, {𝜷})
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The solution to the previous nonlinear problem is then 
defined by the field �

��
 that belongs both to �

�
 and �, as 

sketched in Fig.  10. The Latin algorithm consists in solv-
ing the problem iteratively, projecting alternatively on these 
two spaces, as shown with the search directions �+ and �−. 
Usually �− is defined as the tangent to � taken at the iterate 
�̂
n+

1

2

 belonging to �, while �+ solves Eq. (25).

One aspect of the Latin framework is that a reduced-
order basis 

{
ul(x, t)

}m�

l=1
 is constructed. The approximation 

of the displacement field u(x, t) over the space-time domain 
 × Ω is iteratively computed as

More details about the Latin algorithm can be found in 
Ref. [49].

In the context of this paper, the solution to the linearized 
FEMU-a problem (see Eq.  (13)), for small variations of 
the parameters, is a domain where PGD-like algorithms 
are expected to reveal very efficient. The Latin method, 
and more specifically the so-called multi-query-PGD algo-
rithm [48], allows for the initialization over the entire space 
and time domain of the fields to be computed, for each new 
set of parameters, as shown schematically in Fig.  11.

The first step updates the time functions 
{
�l(t)

}m�

l=1
 lead-

ing to low computational costs. When the sought param-
eters belong to a small region in the parameter space, this 
step is often sufficient. If not, very few additional spatial 
modes �l(x) (in general, one or two) have to be added to 
precisely compute the solution for the new set of param-
eters. With this technique, the Hessian with respect to the 
parameters could be computed by looking for the solution 
for a small variation of each parameter, leading to a cheap 
computation of the sensitivity fields. In Ref.  [50], more 
involved routes are followed allowing for the derivative of 
the time and space functions with respect to the parame-
ters. Two techniques were tested, namely, a direct closed-
form differentiation [51], and the adjoint state method [52]. 

(26)u(x, t) ≈

m�∑

l=1

�l(t)�l(x)

These methods are efficient but require quite heavy code 
developments (ie., they are very intrusive).

4.2  PGD Parameterized Problem

In the FEMU context, the problem to be solved corre-
sponds to the minimization of the cost function  (21) over 
the parametric space used to describe the candidate consti-
tutive law. As such a “brute force” parametric PGD [40, 53] 
could be used by seeking the displacement field over the 
whole parametric space. The solution u, which depends on 
a set of parameters of dimension Np {p} ∈  , is sought as a 
separated variables approximation of u (where separation is 
proposed for the constitutive parameters only)

with

where m is the number of “modes” used in the approxima-
tion, �j

k
 scalar functions, and �k(x, t) the spatio-temporal 

modes of the displacement field. It is worth noting that this 
form does not separate space and time dimensions.

The PGD method provides a representation with sepa-
rated variables requiring the use of greedy algorithm [39] 
updating at each iteration the scalar functions separately. 
What remains to be carried out is to look for the set of 
parameters that minimizes the FEMU-a error. One advan-
tage of the method is that it allows for the determination 
of the best candidate in case of multiple local minima and 
does not require any gradient calculation. It is to be noted 
though that this method has mainly been applied to linear 

(27)u(x, t;{p}) ≈

m∑

k=1

�k({p})�k(x, t)

(28)�k({p}) =

Np∏

j=1

�
j

k
(pj)

Fig. 10  Graphical sketch of the Latin algorithm (after [49])

Fig. 11  Graphical sketch of the multi-query-PGD algorithm 
(after [48])
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problems (for parameters such as Young’s moduli, Pois-
son’s ratios, diffusion coefficients) where affine decompo-
sitions of the operator allows for quite efficient and robust 
algorithms.

Fewer works have considered the solution of time-
dependent and nonlinear parameterized problems. The 
Latin method  [47], which iteratively seeks solutions over 
the whole space-time domain, has been mostly used. It 
allows for the possibility of adding constitutive parameters 
as extra coordinates [54]. Although very appealing, the effi-
ciency of this approach for nonlinear operators is still an 
open issue.

5  Data Processing and Reduction Applied 
to Mechanical Identification

5.1  Data Reduction for Displacement Fields in DIC 
and DVC

The above section is a strong motivation for using model 
reduction or data reduction techniques in the introduced 
context of DIC and further for identification.

Volumetric registrations are usually concerned with very 
large data sets. Consequently, the number of measured kin-
ematic degrees of freedom are generally numerous. It has 
been proposed to account for displacement fields in a sepa-
rated form for different space dimensions. Such a specific 
form for displacement fields can be introduced in the for-
malism of DIC/DVC, retaining only the dominant mode 
repeatedly until the residual level has been exhausted [55]. 
This way of handling the problem is precisely in the spirit 
of PGD, where (i) the different modes are introduced in a 
greedy approach (and not for reducing a set of prior fields), 
and (ii) the separated form is inserted directly in the vari-
ational formulation of here DIC/DVC. However, because 
most of the computation cost is related to the correction by 
the measured displacement field of the deformed volume 
the CPU time gain is not spectacular in comparison with 
standard implementations.

It is worth noting that such strategies have also been 
proposed for 2D DIC registrations  [56]. In this case, con-
vergence is faster and equivalent uncertainty levels are 
observed as in standard Q4-DIC. However, when the dis-
placement field contains discontinuities that are not aligned 
with the axes chosen for the separation, the procedure is 
detrimental.

The way DIC (and DVC) registrations were presented 
herein is via spatiotemporal formulations  (3). These 
approaches are particularly well-suited when dealing with 
parameter calibration  [31–33] and more generally when 
comparing measurements with simulations. They can also 
be followed for measurement purposes [33, 57], exploiting 

space-time separation. However, it is worth noting that vir-
tually all DIC (and DVC) codes only solve “incrementally” 
the minimization of �2 (ie., for each time step t indepen-
dently). The additional cost of adding the time axis can be 
made minimal when using space/time decompositions [57], 
or by driving the FE code with all the measured boundary 
conditions for each image acquisition [31–33].

In the following, model reduction or reduced basis will 
be mostly driven by the identification goal, rather than from 
the DIC algorithm.

5.2  Data Pyramid

Figure 3 summarizes the different steps that are performed 
to process the acquired pictures in order to calibrate mate-
rial parameters. As above shown, FEMU-a is based on sen-
sitivity fields computed over the mesh with the nodal dis-
placements {a}. When including DIC within identification 
as in I-DIC, these sensitivity fields require evaluations at 
the pixel level for each acquisition time, thereby inducing 
matrices of considerable size to store.

Alternatively, a sequential treatment consists of first 
measuring displacement fields (eg., via DIC or DVC). In 
the present case, it is assumed that finite-element based 
registration procedures are chosen. Such techniques give 
access to nodal displacements for the chosen spatial discre-
tization over all the considered acquisition time steps. At 
this stage, the pictures are no longer needed since the dis-
placement fields have been measured. To extract the sought 
material parameters, the measured fields and additional 
data (eg., load measurements) are to be compared with, say, 
finite element simulations.

Conversely, the Hessian matrix is usually of modest size 
(ie., with only Np × Np components, where Np is the num-
ber of unknown material parameters). This contrast in size 
between the sensitivity fields and the Hessian is the con-
sequence of the integrated DIC procedure where the maxi-
mum data set is applied to directly obtain the minimum 
number of unknowns. I-DIC has the advantage of allow-
ing for an arbitrarily fine mesh, as dictated for instance by 
quality criteria used in the FE simulation, at the expense of 
large data sets  [29, 33]. In contrast, whenever a relatively 
coarse mesh is sufficient to faithfully describe the displace-
ment field, it is more efficient to split the transformation 
into two parts, namely, first from the pixel space to the FE 
nodal space, then from the nodal space to the parameter 
space, and as earlier mentioned the two routes are mathe-
matically equivalent provided no spurious minima has been 
retained in the first DIC step.

These sensitivity fields can be further reduced by com-
puting the modes associated with a reduction procedure 
(eg., POD  [58]). Then the material parameters associated 
with a chosen constitutive model are calibrated. Last, if 
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additional failure criteria are sought, the simulations need 
to be further processed to analyze, say, various equivalent 
stresses or strains or any other internal variable that is not 
directly accessible in experiments [35].

The model reduction strategy (eg., POD [59]) introduces 
a new subspace, which is intermediate between the FE 
nodal space and the material parameter space as shown in 
Fig.  12. In total, four discrete spaces have been introduced 
herein, namely, i) the pixel space or data acquisition space, 
ii) the FE mesh or computational space, iii) the dominant 
eigen modes of POD space, and iv) the material parameter 
space. With this additional subspace, FEMU is no longer 
performed at the level of pixels (ie., IDIC) or measured 
displacement fields (ie., FEMU-a) but at the level of the 
modes described by the amplitudes collectively gathered in 
vector {b}. Such approach will be referred to as FEMU-b.

Assuming that the constitutive model is chosen and the 
experiment is performed, the first and last spaces are chosen. 

In any projection between two spaces, information is poten-
tially lost. However, the proposed intermediate spaces are 
chosen to optimize the efficiency while maximizing the 
quality of the retained information. The identification meth-
ods being iterative, it is always possible to use more singular 
modes or a finer mesh when getting closer to convergence. 
The goal of model reduction then is to expedite the itera-
tive process and gain in terms of storage of information [59]. 
This type of decomposition may also be used when perform-
ing 4D mechanical correlation  [33] for which the raw data 
sets are even bigger. Once the constitutive parameters have 
been obtained, all detailed fields are computed, and residu-
als are generated to check the consistency of the entire chain 
(Fig.  13).

5.3  Application of POD to an Identification Study

The sensitivity fields express the kinematics required to iden-
tify the parameters {p}. Therefore, they are ideal candidates 
to construct the proposed intermediate space {b}. In the fol-
lowing, SVD is applied to the sensitivity matrix [S], serving 
the dual purpose of reducing the order of this significantly 
sized matrix (Table  3) and simultaneously constructing a 
basis with which to describe the residual displacement more 
efficiently. The SVD is applied to a rearranged version of the 
sensitivity matrix [S∗] that has its rows and columns arranged 
such that the rows contain all values for each time increment 
and each parameter. Conversely, the columns are arranged to 
contain all nodal degrees of freedom. As a result, [S∗] is of 
size NtNp × Na. Additionally, the square root of the DIC Hes-
sian [Ha] is applied to properly weigh the contribution of each 
node in the singular value decomposition

in which the sensitivity fields are decomposed into a series 
of (nodal) spatial fields [Vj]. The singular values Σj and the 

(29)
[S∗][

√
Ha] =

Nb�

j=1

[Uj(t, {p})][Vj({a})][
√
Ha]

[Uj] = Σj[Qj]Fig. 12  Data pyramid in image-based identification. As compared to 
Fig.  3, an intermediate level, “modes”, has been included. FEMU is 
now performed by using the degrees of freedom associated with the 
modes instead of the degrees of freedom associated with the FE dis-
cretization. It is therefore referred to as FEMU-b

Fig. 13  Model reduction in 
image-based identification. 
Moving to the right leads to 
smaller size problems. Only 
the intrinsic complexities of 
the mechanical model are kept, 
while the data volume has been 
shrunk to a minimum. Once the 
constitutive parameters have 
been obtained, all detailed fields 
are computed, and residuals 
generated to check the consist-
ency of the entire chain
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left singular vectors Qj are combined into temporal func-
tions [Uj], which depend on the sought parameters {p}. 
Each combination of [Vj] and [Uj] expresses a principal 
mode of the sensitivity fields, ordered by significance by 
their singular values. The approximation quality depends 
on the number of modes Nb applied in this factorization. 
The goal is to reduce the weight of [S] and thus only a lim-
ited number of modes (ie., Nb = 100) will be kept.

The displacement field correction is written within the 
reduced basis as

and, as before, the Hessian expressed in modes reads

so that the Hessian for FEMU-b becomes

This SVD is now applied to the test case of Sect. 3.3. It 
is recalled that the original sensitivity fields, at the pixel 
level, contain 11.7 × 109 values (Table  3). When split 
into FE shape function matrix [P] and nodal sensitivity 
field [S] this size is reduced to 3.5G and 12.1M values, of 
which the former is only 0.2% full and can thus be stored 
efficiently in sparse form. When 100 singular modes are 
considered in the SVD decomposition the required data 
footprint of [S] is reduced to 639 and 189k for [U] and [V], 
respectively. Fig.   14 shows the singular values and the 
L2 error made when truncating. Notably, a truncation to 
100 modes results in an approximation error of less than 
1%.

(30){�a} =

Nb∑

j=1

bj{Vj}

(31)
[Hb] = [V]⊤[Ha][V]

{jb} = [V]⊤{ja]}

(32)
[Hp] = [U]⊤[Hb][U]

{jp} = [U]⊤{jb]}

Figure  3 illustrated two ways of extracting material 
parameters, and Fig.   12 exemplified model reduction in 
the previous framework. In the following, three approaches 
will be compared for the test case of Sect. 3.3. First, IDIC 
(Fig.   3(right)), which is the most direct way linking sets 
of pictures with material parameters. Second, weighted 
FEMU-a (Fig.   3(left)), which requires a first DIC analy-
sis and then processes the measured fields to extract the 
material parameters. Last, weighted FEMU-b that uses the 
reduced basis instead of the measurement basis (Fig.  12). 
For this last approach, two routes are followed based on 
the observations of sensitivity fields (see Fig.   7). One 
approach will update the Hessians needed in FEMU-b for 
each iteration, and the other one, as in DIC, will not update 
the Hessian.

As in Sect. 3.3, three different residuals will be reported 
(ie., on displacements, pictures and resultant forces, see 
Table  2). For IDIC, the weighted sum of registration and 
load residuals is minimized. They reach very low values at 
the end of the 11 iterations. Figure 15 shows the changes of 
three different residuals normalized between 0 and 1 cor-
responding to the smallest and largest occurring residual 
as reported in Table 2 per residual type (ie., displacement, 
force and image). Since all identification cases start with 
the same initial guess {p0}, their initial residuals are all 
equal. All identification cases reduce their residuals with 
approximately equal rates. For IDIC, the image residual is 
one of the optimization target and Rf  is the lowest of the 
four identification routes. For the other cases the residual 
displacements in nodal form or reduced form are the opti-
mization target. Ergo, for the FEMU-a and FEMU-b cases, 
the displacement residuals Ru are slightly better when 
compared to IDIC. It is to be noted that these displace-
ment residuals are comparison with the DIC measurement 

Fig. 14  Spectrum of singular values and L2 truncation error as a 
function of the number of modes Rb

Fig. 15  Changes of the global residuals as functions of iteration 
number and type of identification method, all values are normalized 
between the smallest and largest values reported in Table 2
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of displacement fields, which is not necessarily a golden 
standard. Last the load residuals very similar for IDIC and 
FEMU-a. They degrade a bit when FEMU-b is considered.

Figure 15 also shows a fourth case, “FEMU-b (secant)” 
that differs only from the FEMU-b case by not updating 
the sensitivity fields when the update in the parameters is 
small (ie., {�p} < 10%). Additionally, there is no need to 
update [V] when the sensitivity fields are fixed. This has the 
apparent effect that the secant method requires less itera-
tions. However, it is emphasized that the obtained solutions 
are not strictly equal, which clouds any comparisons of the 
number of required iterations.

Figure 16 shows the changes of the material parameters 
for all the studied identification methods. In the present 
case, the reference corresponds to the converged set of 
IDIC (Table 1). Because a trust region algorithm was used 
(ie., the parameters were not allowed to vary by more than 
10% of their current estimate per iteration) the changes 
have two regimes. The first one associated with the trust 
region up to the fourth iteration, and a second one up to 
converge to a solution for which each parameter variation 
is less than 0.05% of the current estimate. Even though 
the initial guess was not close to the converged solution 
(Fig.  9), only 11 iterations are needed and similar amounts 
for the other methods.

Some of the material parameters related to isotropic 
hardening (ie., Δ�3 and Δ�7) are different for the four 
identification results (Table  1). However, their effect of 
the calibrated stress-strain remains very small (Fig.   9). 
In particular, FEMU-b leads to more significant differ-
ences, yet they do not degrade too much the stress/strain 
response of the material. The obtained solutions can be 
used to re-initialize the DIC measurement. This is currently 
not implemented for FEMU-a and FEMU-b cases. Conse-
quently, the presence of any measurement artifacts in the 

DIC measurements remains throughout the identification. 
This improvement is trivial but was excluded to reduce 
the complexity of the discussion. Further, the fact that the 
Hessian is updated or not does not significantly change the 
parameter levels at convergence. Consequently, the secant 
method may be preferred as only one FE calculation is be 
needed for each iteration instead of Np + 1 when the Hes-
sians needs to be updated.

Last, it is worth noting that the orthogonal modes can 
also be used as tools to identify where a high spatial or 
temporal discretization quality is required. Therefore, these 
modes can be applied to guide auto-meshing routines or 
time-stepping routines to create FE models that only have a 
refined mesh where needed for identification purposes.

6  Change of Paradigm?

This last part aims to discuss some new opportunities that 
can be envisioned with the current state of the art in experi-
mental and computational mechanics.

6.1  High‑Throughput Experimental Mechanics

One of the recent trends in biology and chemistry is high-
throughput screening  [60, 61] (a.k.a. combinatorial chem-
istry, or combinatorial biology  [62, 63]), meaning that 
many different products can be tested simultaneously using 
eg., lab-on-chips, micro-fluidics devices, robot automated 
tests. It can be argued that experimental mechanics also, 
although driven by different opportunities, enters into the 
era of high-throughput identification.

The new lever for experimental mechanics is not only 
the availability of new micro-technology, but rather the fact 
that full-field measurements are now accessible. It means 
that a single “non-simple” test can be analyzed. What is 
meant by non-simple may be either a complicated geom-
etry of the sample, or a complex loading history (eg., multi-
axial loading where the different actuators may allow for 
non radial loading paths), or both. Geometry and loading 
allow to probe in space and time a multiplicity of stress/
strain paths, and hence they may offer a wealth of infor-
mation from which complex constitutive laws can be cali-
brated. It is to be appreciated how such an observation 
is precisely opposite to the traditional way of designing 
mechanical tests [64]. Classically, the strategy is rather one 
test/one measured parameter (or very few), and a wealth 
of creativity was spent to isolate each parameter with the 
least coupling to others, to approach a “pure” measurement 
as much as possible. Additionally, the exploitation of tests 
was often done as if they were perfect and followed pre-
cisely the theoretical design. This called for extreme care, 
but an obvious limitation is the presence of instabilities 

Fig. 16  Changes of the material parameters as functions of iteration 
number and type of identification method
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that do break down symmetries giving an unbreakable ceil-
ing to the ambition of even the best experimentalists. Full-
field measurements offer the opportunity to by-pass those 
obstacles and limitations. Imperfect tests may be tolerable 
if the imperfections are measured and accounted for in the 
modeling [65].

Allowing for complex geometries and loadings naturally 
opens a wide avenue to transport the methodology to indus-
trial parts, to assemblies of different parts and to service 
conditions (provided that image acquisition remains acces-
sible). Again, this is a major evolution of experimental 
mechanics, being thereby endowed with much more credit 
in decision making.

However, in order for these opportunities to flourish, 
it is important that they may rely on a sophisticated mod-
eling including relevant nonlinearities, most generally in 
3D. 3D may mean in the entire volume as can be offered by 
tomography, although this remains today an exception. 3D 
also means surface measurement from stereo-vision where 
multiple cameras bring their 2D projections that can be 
combined to generate the observed surface in 3D, usually 
after a calibration step [1]. The same procedure following 
a speckle pattern or other markings on the surface provides 
a measurement of 3D surface motions (in which case, the 
procedure that exploits DIC is called stereocorrelation or 
3D-DIC).

Moreover, tight connections are to be established 
between the geometry of the model and the actual shape. 
To this aim, specific strategies based on CAD models have 
been proposed for stereocorrelation  [66, 67]. This allows 
all projected views (for each camera) to be related to a 
unique 3D model that becomes the reference, in contrast to 
classical 3D-DIC procedures  [2]. Going beyond shape or 
displacement measurements, so as to include a mechanical 
modeling necessitates a full 4D (3D plus time) computa-
tion. Along the lines that were above detailed in Section 2 
for 2D-DIC (or DVC), the entire procedure can be extended 
to stereocorrelation.

This constitutes a major revolution for experimen-
tal mechanics, which ironically is very demanding on the 
computational side. Now that the methodology is well 
established with solid foundations and some case stud-
ies have been published to illustrate the different aspects, 
the last barrier to a more systematic deployment of such 
approaches is the computational cost, and the associated 
management of the involved “big data.” Model Reduction 
is expected to be very instrumental in addressing this last 
challenge.

6.2  “Wide Scope” Experimental Mechanics

Images may be more or less prone to misinterpreta-
tion. Optical distortions, change in illumination, spurious 

reflections may require additional corrections between the 
raw picture acquisition and the image to be used as input 
to DIC [1, 23] or DVC [68]. The above listed examples are 
rather straightforward to deal with. Some other cases may 
be more demanding. In the above discussed stereo-vision, a 
projection model (in addition to distortion corrections) has 
to be applied to transform the 3D object into the captured 
view by any camera, and as mentioned in the introduction, 
tomographic images are computed from radiographs.

The alternative option that is preferred here, and for 
which the expression “wide scope” is proposed, is to 
include the processing of the raw experimental data into the 
modeling chain. This may be seen as an additional ground 
floor on which rests the entire pyramid shown in Fig.   3. 
For stereo-vision, it consists in adding the projection opera-
tor as well as distortion corrections for each camera  [69], 
while in the calibration stage, the speckle pattern on the 
sample surface has been transported onto the 3D reference 
object from the observed 2D views in each camera capture 
(the CAD model gives a good starting information on the 
sample shape, but generally does not know about the sur-
face speckle  [2]). For X-CT, similarly, the generation of 
radiographs from the 3D object (also called projection) is a 
direct problem that can be included [70, 71].

However, it may be observed that adding more floors to 
the pyramid requires the addition of even more data, a trend 
that may appear to be opposite to what was advocated ear-
lier. This is only partly true. In the first run, it is advanta-
geous to remove entire levels in the pyramid, provided the 
result is accompanied by its metric. Yet many of these prob-
lems are nonlinear and maybe imperfect convergence has 
been achieved. Thus it is very important after the top of the 
pyramid has been reached to redistribute the local solution 
using the transformation matrices constructed first for data 
reduction. This down-flow gives access to residuals, either 
at a coarse, medium or fine scale. These data now incor-
porate information coming from the entire pyramid, and 
thus are expected to be much more reliable (unless a sig-
nificant model error has been made). For instance displace-
ment fields incorporate a constitutive law, but also balance 
equation, and boundary conditions. Thus these fields have 
the potential to correct data that were initially poorly con-
verged. Similarly artifacts and instrumental ill-calibration 
from the lower levels of the pyramid may be accessed. Ide-
ally, convergence should be declared only when all levels 
of the pyramid have fulfilled their own satisfaction crite-
ria. The above strategy of model reduction is thus not to be 
considered as being done once for all and never questioned. 
On the contrary, it is designed to make convergence easier 
and faster because aggregated data are used with no preju-
dice to the underlying physics. However, the essential merit 
of the pyramid is to have a “holistic” view of an experiment 
allowing for information flow upward and downward.
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6.3  “Data Pruning” in Experimental Mechanics

As big data are distilled into key data, a lot is lost from 
level to level of the pyramid (Figs.  3 and 12). However, 
“loss” is to be considered with circumspection. Part 
comes from redundancy and is needed to reduce the noise 
level so that an accurate estimation of quantities of inter-
est can be extracted from the noisy data. Redundancy is 
also extremely useful to detect model errors, as the resid-
ual fields (ie., the unexplained part of the data [72]) may 
be sometimes easily interpreted. For instance, unantici-
pated cracks can often be revealed in DIC residuals (see 
eg., [73]). In such cases, it gives a handle on how to cor-
rect or enrich the model. Residuals thus appear to be very 
rich and informative.

Yet, the ratio between initial and processed data is so 
large that one may wish to exploit part of this redundancy 
to acquire less data. Frugality may be seen as the ultimate 
way of fighting big data. However, the potential abundance 
of data prompts the question of how to choose the “best” 
data to be kept. At convergence of all degrees of the pyra-
mid, the (correction of the) quantities of interest are given 
by linear extractors e⊤ applied to the initial data f (x, t). For 
instance the correction �pi with respect to a nearby refer-
ence value p0

i
 can be read as

The initial data can be seen as a very long (big data) vector 
gathering all pixel values at all times, and hence the extrac-
tor, which is conjugate to it is a similar size object. One 
iteration is thus a very trivial operation, ie., a scalar product 
of two vectors. However, their size is such that it may take 
time. One natural strategy for pruning is to discard all those 
pixels having a small weight in the corresponding extractor. 
This is however not very operational as the discarded pix-
els are smeared in the entire data set and even keeping 10% 
of the original data would presumably cost about the same 
time and memory as keeping the entire set.

As one climbs up the pyramid, the temporal or spatial 
correlation in the modes or in the sensitivity fields may 
prompt for a more efficient selection of data. When consid-
ering the question of the sensitivity determining the ampli-
tude of a specific mode or sensitivity field, one may ask the 
question of the marginal benefit/cost of adding/removing 
a specific time frame, or a particular region in space (ide-
ally product of indicator functions along each dimension 
for better efficiency). Because the pyramidal structure can 
be read as a tree-like structure, pruning (that is cutting a 
branch), is all the more important as it takes place higher 
in the pyramid. In some sense, the POD approach can be 
read as a pruning process where subdominant modes are 

(33)�pi =
∑

(x,t)

e(x, t)f (x, t)

simply ignored. The efficiency in terms of data handling is 
obvious. Within the pyramid, one may envision a domain 
decomposition mesh where pruning will invite one to dis-
card one or several domains. As one gets down to the bot-
tom level, the question may turn to neglect some frames of 
the picture series. The tremendous amount of data suggests 
that indeed a very large benefit in terms of data handling 
can be obtained. The limit is that uncertainty and accu-
racy will degrade as more and more data are discarded, 
but selection based on sensitivity (how much does that 
particular datum matter?) and on measurement reliability 
(how uncertain is that particular measurement?), that is the 
downward and upward flow in the pyramid certainly pro-
vides the wisest way to select important data.

In the same spirit, images can very classically be stored 
in a pyramidal multi-scale format, either redundant or not, 
using Laplacian pyramids, or any other more sophisticated 
wavelet representation. Considering only the coarsest part 
of images, or in other words, pruning out the high frequen-
cies, generally allows for a robust and fast (because of a 
reduced data volume) process. This is classically done in 
DIC in order to capture large scale displacements [74]. The 
price to pay is that uncertainty is large. Hence, a standard 
procedure consists in progressively restoring finer scales 
details of images to achieve a more accurate determination 
of the displacements. Because the multi-scale organization 
of images is a pyramidal structure different from the one 
discussed earlier for instance in Fig.   13, the two may be 
combined to endow each extractor with such a multi-scale 
representation.

Another attractive route is to exploit the residuals in 
order to focus on the unconverged part of the computa-
tion. Very often, in DIC, it appears that the displacement 
converges fast to the solution in some region of space, 
whereas other regions are slower and stay far from the 
actual solution for many iterations. This is usually due 
to the nonlinearities of the DIC that appear when dis-
placements are far off the solution (and possibly pinned 
to spurious secondary minima of �). However, within a 
global approach it is natural to solve for the entire sys-
tem even when the bad convergence is limited to a small 
domain. What is said for space also holds true for time, 
where some frames may resist the DIC analysis whereas 
others before or after are more easily accessible. Thus, 
based on residuals, one may design a local indicator, 
that allows either to focus only on the part that deserves 
attention for a better convergence, when moving down-
ward in the pyramid, or alternatively, when progressing 
upward, that is when the results are used, to give more or 
less credit to the processed data. The latter aspect plays a 
similar role as the metric accounting for uncertainty, but 
rather than being the ideal uncertainty that is achieved at 
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convergence, it would also contain the uncertainty due to 
ill-convergence as indicated by the local residuals.

6.4  The Issue of the Constitutive Law Representation

Up to now, the constitutive law was assumed to fit within 
a parametric representation. However, quite often, the very 
choice of such a form is inherited from tradition, or empiri-
cal expressions that do not necessarily offer the flexibility or 
the well-behaved laws that one would enjoy. All these pos-
sibilities are associated to a somehow conventional descrip-
tion of constitutive laws. As a result model errors may hin-
der a proper identification. The above discussion suggests 
that one may also question the very framework within which 
the constitutive model is expressed. In this spirit, the above 
identification example was parameterized so that a large 
freedom was left to the shape of the hardening law (Fig.  9).

However, one could be even more ambitious, namely, 
opening for much more versatility in the description of 
the material behavior. Considering the success of big data 
science and machine learning techniques a new route was 
recently proposed in the emerging context of data-driven 
computations [75]. This route aims at avoiding as much as 
possible the use of empirical material models or constitu-
tive equations [76, 77]. The idea is to directly make use of 
data sets consisting of a “large” collection of strain-stress 
pairs. In Ref. [76] the data-driven nonlinear elastic identi-
fication consists in the minimization in the data set space 
of a distance function between admissible strain and stress 
fields, defined as the sum of a somehow arbitrary reference 
strain and complementary energy densities. One nice fea-
ture of the approach is to avoid any curve fitting and to use 
the data as given. In Ref. [77] a machine learning strategy 
based on a nonlinear dimensionality reduction techniques 
is designed to extract a constitutive manifold. An appeal-
ing aspect of the method is the possibility to extract latent 
parameters that somehow may correspond to internal varia-
bles. An implicit constitutive law results from this analysis.

Let us note that the above two papers do not address 
the issue related to data generation (and, in particular, the 
difficulty of measuring local stresses independently from 
strains). However, the tackled problem—even if reformu-
lated to focus on more experimentally accessible quanti-
ties—is challenging and the proposed framework attractive. 
In this context, image-based techniques and especially DIC 
offers great opportunities.

7  Conclusion

The emergence and development of full-field measurement 
techniques has transformed experimental solid mechanics, 

where huge and ever increasing amounts of data are rou-
tinely collected during experiments. The treatment of this 
experimental information has led to specific and elaborate 
numerical developments aiming at integrating measure-
ments and simulations into a unique framework. Integrated 
DIC (or weighted FEMU) techniques, as described herein, 
merging of DIC (or DVC) and numerical tools tradition-
ally used in computational mechanics (eg., Finite Element 
Methods) constitute emblematic examples.

What has also changed in the domain of experimen-
tal mechanics is the fact that the tests are designed more 
carefully because of the high cost of each experiment. The 
design of the test concerns for instance the sample shape 
that may become more complex because heterogeneous 
displacement and strain fields may allow for better cali-
bration of material models  [64]. Such type of study can 
be undertaken thanks to the propagation of uncertainties 
from image acquisition to the sought material parameters 
as illustrated herein.

The paper addressed the question of model/data reduc-
tion in order to ease and make the exploitation of the exper-
imental information far more efficient. Emphasis was put 
on the transfer at the different possible levels of reduction 
(ie., from pixel, to FE displacement fields, to extracted 
modes based on sensitivity analyses, and finally to the 
sought parameters) keeping the basic information com-
ing from the images and its “value” or uncertainty (via 
the Hessian) along all the reduction steps. This reduction 
framework is used to propagate the linearization of the 
problem to be solved across all the scales, thereby signifi-
cantly reducing the data footprint associated with the deter-
mination of the sought parameters.

It is expected that much more could be performed 
regarding time and memory savings while keeping all the 
relevant information including uncertainties. The paper dis-
cussed some possibly more efficient reduction techniques 
related to the use of, for instance, modified POD with the 
metric associated with the covariance matrix for the mode 
selection or PGD. (The latter in particular will be the sub-
ject of future work as a very promising and efficient solu-
tion generator.)

Some other largely open issues were discussed in 
Sect. 6. Section 6.2 was devoted to the question of achiev-
ing higher resolution by the treatment of experimental 
artifacts through “ab-initio” simulations of the acquisition 
process and its regularization by the input of all reliable 
information associated with it. Section  6.3 discussed the 
possibility of alleviating the big data problem by the selec-
tion of a subset of raw data without loosing the informa-
tion regarding the targeted key data and their uncertainties. 
All these venues also invite the computational mechanics 
community, as already advocated  [76, 77], to reconsider 
the issue of the constitutive law representation (Sect. 6.4). 
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The dream would be to identify constitutive equations with 
the least constraints, avoiding all possible empiricism, but 
incorporating known symmetries and well-established ther-
modynamic principles [78, 79].
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