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formulation in a one-dimensional infinitesimal framework 
and we show that the concepts are immediately applicable 
to soft materials.

1  Introduction

The basic ingredient to model the behavior of soft materi-
als like rubber [1–3] or biological tissues [4–6] is hyper-
elasticity. Hyperelastic behavior constitutes the basic non-
dissipative elastic behavior at large strains [2] and as so, it 
is equivalent to the elastic behavior at small strains. How-
ever, whereas path independence is fulfilled at small strains 
by the symmetry of the elasticity tensor, at large strains 
some integrability requirements need to be fulfilled. Nowa-
days the simplest and standard way to do so is to assume 
an analytical strain energy density function from which 
the stresses are obtained as a function of the strains. Some 
material parameters permit the different assumed stored 
energies to fit available experimental data, and because 
of the variable success of these energies when address-
ing different materials, there are hundreds of strain energy 
proposals in the literature. For isotropic materials the Neo-
Hookean model [7] is the simplest one, and the Ogden 
model [8] one of the most successful ones. For anisotropic 
materials there are mainly two approaches. The first one 
is purely phenomenological. The models of Fung [9] and 
Itskov and Ehret [11, 10] for biological tissues and Itskov 
and Aksel [12] for rubber-like materials, are some exam-
ples. The other approach is structure-based, inherited from 
the mechanics of composite materials [15]. The models of 
Lanir [13], Humphrey and Yin [14], Holzapfel et al. [15], 
and Gasser et al. [16] are examples of this kind. In all these 
models, it is frequent to use optimization algorithms to 
obtain the material parameters [17–19]. Non-uniqueness of 

Abstract  The conservative elastic behavior of soft mate-
rials is characterized by a stored energy function which 
shape is usually specified a priori, except for some mate-
rial parameters. There are hundreds of proposed stored 
energies in the literature for different materials. The stored 
energy function may change under loading due to damage 
effects, but it may be considered constant during unload-
ing–reloading. The two dominant approaches in the liter-
ature to model this damage effect are based either on the 
Continuum Damage Mechanics framework or on the Pseu-
doelasticity framework. In both cases, additional assumed 
evolution functions, with their associated material parame-
ters, are proposed. These proposals are semi-inverse, semi-
analytical, model-driven and data-adjusted ones. We pro-
pose an alternative which may be considered a non-inverse, 
numerical, model-free, data-driven, approach. We call this 
approach WYPiWYG constitutive modeling. We do not 
assume global functions nor material parameters, but just 
solve numerically the differential equations of a set of tests 
that completely define the behavior of the solid under the 
given assumptions. In this work we extend the approach to 
model isotropic and anisotropic damage in soft materials. 
We obtain numerically the damage evolution from experi-
mental tests. The theory can be used for both hard and soft 
materials, and the infinitesimal formulation is naturally 
recovered for infinitesimal strains. In fact, we motivate the 
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these parameters is a well known and frequently reported 
problem. These models may also lack numerical material-
symmetries congruency [20]. Furthermore, in the case of 
structure-based models, it is necessary to properly account 
for fibers working in tension and (not) working in compres-
sion [21], they may present unrealistic transverse strains 
[22, 23] and are frequently fitted with incomplete material 
data resulting in arbitrary behavior in other loading situa-
tions [24]. Many of these models are not compatible with 
the full infinitesimal theory for their respective symmetry 
groups [25, 26].

Rubber-like materials and biological tissues exhibit a 
softening phenomenon known as Mullins effect [27, 28]. In 
the case of carbon-filled rubber materials it is attributed to 
bond rupture between polymeric chains [29, 30], slipping 
[31], disentanglement [32], filler rupture [33] and between 
them and the filler [34, 35]. A review for rubber-like sol-
ids is given by Diani et al. [35]. For the case of biological 
tissues, it is attributed to the permanent orientation of col-
lagen fibres and breakage of collagen fibrils [38, 39] and of 
proteoglycans [36, 37, 40]. Whereas in hard materials there 
are many possible approaches to model damage in general 
(see review in [41]), in soft materials fewer approaches 
have been followed.

The most used formulation for soft materials is the 
Continuum Damage Mechanics (CDM) approach. In this 
approach, a hypothetical undamaged energy is penalized by 
a damage coefficient (1 − D), where D ∈ (0, 1] is the dam-
age variable of Rabotnov. For isotropic materials the formu-
lation of Simo [42] is one of the best known references, see 
also [43, 44]. This framework has been extended to aniso-
tropic materials employing different strain energy functions 
and different damage evolution equations. For example in 
Calvo et  al. [45], different damage parameters Dm and Df  
for matrix and fibers are considered and associated expo-
nential-type expressions are employed in terms of Simo 
energy strains. The same group has extended the model to 
capture permanent set [46], viscous effects [47] and addi-
tional continuous damage [48]. A comparison of damage 
functions in soft tissue can be found in Peña [47] and in 
Balzani and Schmidt [50]. A comparison of continuous 
and discontinuous damage functions can be found in [48], 
where they conclude that continuous damage may be used 
only to model hysteresis and stabilization in the first cycles 
of the loading path because of the rapid damage saturation. 
Damage has also been used to characterize the irreversible 
stress drop in rectus sheath [51]. Localization of damage 
(and hence mesh dependency) may happen in these cases 
[49] as it is well known [52], but the quasi-incompressible 
nature of soft tissues helps to regularize the problem [53]. 
In this last work, a mixture theory is employed to account 
for non-affine deformations and they capture the monotonic 
loading experiments of Martins et al. [51]. This framework 

has also been used by Sáez et al. [54] to develop a micro-
sphere-based approach to damage in soft fibred tissue. The 
microsphere approach had been previously used by Miehe 
et al. [55–57] for elastomers and by Caner and Carol [58] 
and Alastrué et al. [59] for biological tissues. The contin-
uum damage formulation has also been extended to include 
smooth muscle cells in arteries [60]. Active damage has 
also been included in the different damage formulation in 
[10], which includes damage from evolution functions of 
the structural tensors in order to guarantee polyconvexity. 
Polyconvex energy functions with damage have also been 
used in [61]. Similar conceptual formulations by direct 
modification of the energy function and more oriented to 
failure are found in the works of Volokh [62, 63]. Other 
formulations including a damage evolution function in 
terms of the fourth Spencer invariant may be found in [64]. 
The continuum damage framework has also been employed 
at different scales. In [89] a microstructural damage for fib-
ers which links damage with fiber recruiting distribution is 
formulated and the result compared with CDM and Pseu-
doelasticity. In Schmidt et al. [65] statistical distributions of 
quantities at the collagen fibril level, including the proteo-
glycans orientation are introduced in order to enhance the 
microstructural understanding of the behavior of the tissue. 
With the same purpose Blanco et  al. [66] have developed 
a model at the mesoscale in which inelastic phenomena in 
the fibre is assumed to be caused only by degradation pro-
cesses in the fibrils by means of two failure modes. In a 
more general setting, truss-like microstructures with dam-
age following the same framework have been formulated 
via relaxed incremental variational formulations as to avoid 
loss of convexity and their related problems [67]. This 
relaxed formulation was subsequently applied to model 
damage-induced hysteresis in arterial walls [68].

Another type of formulation which seems to be success-
ful is the Pseudoelasticity framework of Ogden and Rox-
burgh [69]. In this framework, a pseudo-elastic potential is 
formulated which includes the “dissipation” due to damage 
and specially to cyclic loading (a feature not modelled in 
the discontinuous CDM framework). This approach has 
been followed by Dorfmann and Ogden [70] to accurately 
model the cyclic hysteretic behavior of a rubber com-
pound 60phr of Carbon black after preconditioning and 
then extended to model the permanent set present in these 
materials [71] and thereafter to model changes in material 
symmetry in [72]. This same model was also applied to 
model the muscle of tobacco hornworm caterpillar Man-
duca sexta, including the active muscle effect [73] and also 
in [48] to simulate anisotropic damage in fibrous biological 
tissues. The thermodynamics of Pseudoelasticity is studied 
in [74], where they argue that the usual pseudoelastic mate-
rials do not dissipate the energy (for example into heat) 
but store it. Hence a modification is therein proposed. On 
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the other hand, a practical comparison between pseudo-
elastic and continuum damage models for modelling Mul-
lins effect can be found in Gracia et al. [75]. Here we note 
that both CDM and Pseudoelasticity are built on the idea 
of the existence of a hypothetical undamaged energy. From 
a practical point of view, since the material parameters of 
these models are typically obtained through optimization 
algorithms like the Levenberg–Marquardt algorithm [76] or 
by sensitivity analysis, its physical meaning has no actual 
relevance. However, it is apparent that the undamaged 
energy does not exist because any loading from virgin state 
entails itself a damage process, i.e. the primary loading 
curve does not proceed from a hyperelastic behavior. Then, 
that hypothetical undamaged energy which is the concep-
tual basis of both CDM and Pseudoelastic formulations, 
cannot be measured neither directly, nor indirectly through 
stress–strain curves.

Let us summarize the ideas behind the commented 
approaches in few words. Hyperelasticity is modelled 
through assumed analytical stored energy function shapes. 
These shapes are best-fitted to experimental data through 
some additional material parameters. Damage is mod-
elled through different formulations which again assume 
the shape of some undamaged stored energy functions and 
also assume an evolution equation. This evolution equa-
tion is also best-fitted to experimental data through some 
material parameters. Conceptually, this is a semi-inverse 
global approach similar to the global approach followed by 
Rayleigh to compute natural frequencies and deflections in 
plates: a global analytical solution is assumed except for 
some global parameters that are computed as to obtain a 
best fit of the corresponding energy of the structure. This 
global approach has been superseded in practice by the 
local interpolating approach given, for example by finite 
elements.

In the last years we have been pursuing the different, 
local approach. The idea behind the approach is to avoid 
the use of analytical stored energy functions (with all the 
mentioned problems) but instead to obtain the stored 
energy directly from experimental data using a numeri-
cal procedure and local interpolations. We have named it 
the “What-You-Prescribe-Is-What-You-Get” (WYPiWYG) 
approach [77] because as the name claims, the modeler 
may get from simulations “exactly” (i.e. to the desired pre-
cision) the prescribed data, and the prescribed data is a 
complete set of experimental tests; for example six curves 
(including the compression part when applicable) for 
incompressible orthotropic materials. The models are based 
on a spline (local) interpolation between terms of the deriv-
ative of the stored energy which are obtained numerically 
solving the equilibrium equations of the tests. The first 
model of this kind is that of Sussman and Bathe [78] for 
incompressible isotropic materials which use the Kaersley 

and Zapas formula. We have developed WYPiWYG formu-
lations for transversely isotropic [79], orthotropic [77] and 
isotropic compressible materials [80]. A general procedure 
without inversion formula is given in ref. [81]. For exam-
ple WYPiWYG formulations, which are a natural exten-
sion of the infinitesimal theory, are capable of capturing 
to any desired precision and in any loading situation the 
behavior of any isotropic compressible model following 
the Valanis–Landel decomposition using just the predic-
tions from a uniaxial tension-compression test. Further-
more, the orthotropic incompressible WYPiWYG model 
captures exactly six experimental, independent stress–strain 
curves which define the material behavior in the same way 
that six moduli do it in the infinitesimal framework. In fact, 
WYPiWYG anisotropic formulations are in agreement with 
the corresponding infinitesimal theory at all deformation 
levels [25, 26] and preserve material-symmetries congru-
ency [20]. These procedures have also been used success-
fully in modelling very accurately soft biological tissues 
[22, 81–83] and have been used also in anisotropic viscoe-
lasticity [84, 85] to model independently equilibrated and 
nonequilibrated stored energies. These viscoelastic mod-
els have been also formulated mimicking the infinitesimal 
theory.

The purpose of this work is to extend the approach to 
model Mullins-type damage effects in rubber-like materi-
als and soft biological tissues. The basic ideas are given for 
isotropic materials in [86]. Herein we address a motivation 
with comparison with similar frameworks as those of the 
CDM and Pseudoelasticity approaches, the finite element 
implementation and the extension to anisotropy. In this 
approach we do not make a hypothesis on any undamaged 
stored energy. We do not use explicit evolution equations 
and we do not employ material parameters nor optimiza-
tion algorithms. We just employ directly stress–strain data 
to extract all the needed information with the minimum 
hypotheses. Then, the primary loading and master hyper-
elastic unloading–reloading curves may be captured to 
any desired numerical precision. The formulation may be 
employed also to model biological tissues because damage 
in the isotropic matrix and the anisotropic deviation may 
be modelled independently. WYPiWYG damage mechan-
ics can be considered a model-free data-driven procedure, 
because no explicit analytical expression is assumed, but 
the behavior (i.e. “model”) is learned from data.

The rest of the manuscript is structured as follows. First 
we motivate the concepts and theory using an infinitesimal 
one-dimensional example. Then we introduce the continuum 
theory and develop the numerical integration algorithm. 
Subsequently we explain how to extract the information 
from typical experiments. The last part of the manuscript is 
devoted to numerical examples under homogeneous defor-
mations (stress-point examples) and under nonhomogeneous 
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ones (finite element simulations). Both isotropic and aniso-
tropic examples are given.

2 � One‑Dimensional, Infinitesimal Motivation

It will be seen below that the fully nonlinear 3D formulation 
is obtained from an adequate one-dimensional formulation. 
Since concepts are easily understood in that 1D infinitesimal 
formulation, we address in this section this simple formula-
tion. Thereafter, the extension to the general nonlinear case is 
conceptually simple.

2.1 � Damage Potentials and the Multiplier Function

Consider a rheological model consisting of two springs in 
parallel like the ones shown in Fig. 1a. Assume for simplic-
ity that they have the same stiffness E but different strength. 
As shown in Fig. 1a, when the system is stretched by a strain 
�, we need a given load �. If the stiffness of both springs is 
the same, each spring is loaded by equilibrium with half the 
stress, i.e. �∕2. The energy stored by each spring i (i = 1, 2) 
is

and the energy of the system is

(1)i =
1

2
�i� =

1

2

(
�

2

)
� =

1

4
�� =

1

2
E�2

When one spring reaches the maximum load and breaks 
apart, the energy of that spring is released, as shown in 
Fig.  1b, and the stiffness of the system reduces to E. If 
load control is imposed as shown in Fig.  1b, then after 
an horizontal path in the � − � plot (obviously a transient 
dynamic effect herein not considered is present), the slope 
is E. However, in order to keep the stress � in the system, 
an energy needs to be introduced through an increment of 
strain, of quantity 2�. The energy released is

and the new stored energy is

Therefore, the input energy needed to reach that 
stress–strain level is

(2) =
2∑
i=1

i =
1

2
(2E)�2 = E�2

(3) =
1

2
E�2

(4)(2�) =
1

2
E(2�)2 = 2E�2

(5)W(�) =  +  = 2E�2 +
1

2
E�2 =

5

2
E�2

Fig. 1   Damage viewed as 
local fracture: 1D spring model 
showing energy balance

Energy is
released

Energy is
released

Equilibrium
is re-gained

through more
energy input

(c)(b)(a)
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Here we note that there is a conceptual important dif-
ference between damage and plasticity. This difference 
is depicted in Fig.  2. Whereas in damage the energy is 
released, and hence has elastic nature (it is previously 
stored elastic energy what is being released), the energy in 
plasticity is incrementally dissipated. In this respect, dam-
age is similar to fracture mechanics, being the former local, 
at the microscale, whereas the latter is global, at a larger 
scale. As a consequence, as seen in Fig.  2a, when only 
damage is present, there is only one possible path to reach 
a given stress–strain pair. On the contrary, in plasticity 
there are infinite possible paths to reach the same pair, see 
Fig. 2b. Hence an overall potential that describes the prob-
lem may be postulated. In fracture mechanics that poten-
tial is, for example, the potential energy. That is the idea 
behind Pseudoelasticity [69, 70]. In fact, we can consider 
W as a pseudoelastic energy potential similar to that pro-
posed in [69, 70]. However, the procedure we follow herein 
is different from that given in those references, because, as 
mentioned, instead of proposing analytical functions, we 
address the problem numerically.

The total elastic potential energy (stored and released) 
W may be written as a function of the strain � and an addi-
tional variable which determines the unloading point. Some 
of the first uniaxial damage models used the maximum 
attained strain as the damage variable, see for example 
[90]. However, this is not a variable useful for three-dimen-
sional analysis. Hence, it is more frequent now to use a var-
iable which is obtained from the maximum stored energy, 
see for example [42, 43, 47], among others. Nonetheless 

we note that during a damage process, it should be possi-
ble to model the case when damage evolves and the stored 
energy is decreasing; the case when all new input energy 
is released and that input provokes the release of already 
stored energy; i.e. the unstable case leading to fracture 
propagation. In such cases the stored energy would not 
be an adequate damage parameter because it is not mono-
tonically increasing. However there are other possibilities 
as the energy release rate  or the maximum input (elas-
tic) energy W. In the initial formulation below we choose 
the latter to explain concepts, although when developing 
the computational algorithm we will use the stored elastic 
energy  because in the cases addressed herein, it yields a 
simpler algorithm, and both cases are equivalent in the case 
̇ > 0 when 

.

 > 0.
We postulate the existence of the pseudoelastic energy 

potential W(�,w), where we define

which precludes healing, that may be a relevant aspect in 
soft biological tissues but which we do not model here (it 
would entail a healing equation for w). From this definition, 
the damage criterion and damage evolution condition are 
immediately established:

Consider a simple bi-linear case as shown in Fig. 3. The 
example is essentially valid either if we consider an initial 

(6)w = max
�∈(−∞,t)

W

(7)
{

If f = W − w < 0 then ẇ = 0

If f = W − w = 0 then ẇ = Ẇ ≥ 0

Fig. 2   Difference between 
damage and plasticity: path-
independency in the � − � space

Damage:
unique possible path
to reach

Elastic
curves

Master
damage curve

Energy is
“released”

Plasticity:
infinite possible paths
to reach

Energy is
“dissipated”

Hardening
curve

Elastic
curves

Damage Plasticity

(a) (b)
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undamaged domain characterized by a maximum Young 
modulus E0 or the absence of that domain, where damage 
begins at a stress value of �0. In Fig. 3 we show the stored 
energy , the released energy  and the total elastic energy 
(stored plus released) W =  + . Assume that the maxi-
mum stress–strain admissible in the material is given by 
(�m,�m); alternatively one may consider these values just as 
the reference ones. Without loss of generality, assume also 
that the initial elastic slope is rigid, E0 → ∞. In the right 
plot of Fig. 3 we show some immediate relations using the 
multiplier function within the domain � ∈ [0,∞) (although 
we will assume herein � ≥ 1). The elastic moduli may be 
related through a scalar function such that

If � = 1 we obtain the reference modulus Em—here m 
stands for master. At a given unloading point characterized 
by the unloading strain �u we can write

where m(�u) is the reference energy for the strain �u, 
which is independent of �. During unloading–reloading, � 
remains constant and

and

where �m(�) is the master elastic curve; i.e. that for � = 1 
with a stored energy m(�). Consider now the unloading 
stress �u given by the virgin (primary, pseudoleastic) load-
ing curve

(8)E = �Em

(9)
(�u,�(w)) =

1

2
E�2

u

=
1

2
�(w)Em�

2
u
= �(w)m(�u)

(10)(�u,� = const) =
1

2
�Em�

2

(11)� =
�

��

||||�=const

= �Em� = :��m(�)

so we write �u = dW(�u)∕d�u. Note that the case in which 
E0 ↛ ∞, may be given by

where �0 ≈ �0∕E0 is the maximum strain without dam-
age. The consistency condition at the onset of unloading 
requires

so we can immediately obtain

i.e. the �(�u) function is obtained as the ratio between the 
primary loading curve and the master elastic curve. For the 
bi-linear case at hand

and using Eqs. (12) and (6)

(12)W(�) = �0� +
1

2
ET�

2

(13)W(�) = �0� +
1

2
ET�

2 −
1

2
�0�0

(14)�u =
dW(�u)

d�u
=

�(�,�)

��

|||| � = �u
� = const

= ��m(�u)

(15)�(�u) =
E(�u)

Em

=
�u(�u)

�m(�u)
≡

dW∕d�u

dm∕d�u
=

(�u)

m(�u)

(16)�(�u) =
�0 + ET�u

Em�u

(17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�(w) =
ET

Em

�
�2
0
+ 2ETw

�
�2
0
+ 2ETw − �0

for ET ≠ 0

�(w) =
�2
0

Emw
for ET = 0

Fig. 3   The bilinear model. Left 
released elastic energy , elastic 
stored energy , reference 
elastic energy m and total elas-
tic potential W. Right reference 
elastic modulus Em, current 
elastic modulus E = �Em and 
tangent modulus during primary 
loading ET

Total elastic
potential:
Stored + released

Stored energy

Reference energy

Master
potential
curveReleased

energy

Unloading point:
maximum historic
elastic potential

Master
elastic
curve
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Alternatively, assuming that (�, �) is a monotonically 
increasing function of �, there is a one-to-one relation 
between m(�u) and W(�u), and also between (�u) and 
W(�u), so we can express � in other alternative forms. 
Defining wD: = (�u) and using

after a little algebra we obtain

with the obvious limit � ⟶ ∞ when  = 0. Of course 
these equations may be inverted to give for example

and for the case ET ≠ 0 (the other one is trivial)

We note that even though in the general nonlinear case 
these functions �(w), �(wD), w(�), wD(�) may not be 
explicitly computed in closed form, they can be generated 
using piecewise cubic splines from the same curves. The 
inverse operations in this context is also simply; one just 
need to sample the original function and build the spline 
with the axes interchanged. We remark that Eq. (15) is 
essentially uniaxial, and valid in 1D, but Eq. (19) is valid in 
the general 3D case.

2.2 � One‑Dimensional Infinitesimal Framework 
in Terms of the Pseudoelastic Potential W

This framework may be conceptually closer to the Ogden and 
Roxburgh Pseudoelastic theory. Once the previous functions 
have been computed, the continuum damage theory is simple. 
The stress power is

where the stresses are the total derivative of the total 
(pseudo-)elastic potential W which characterizes the (pseu-
doelastic) primary loading i.e. � = dW∕d�. The rate is

(18)�u =

√
2(�u)

E
=

√
2(�u)

�Em

(19)�(wD) =
1

8EmwD

(
�0 +

√
�2
0
+ 8ETwD

)2

(20)wD(�) =
��2

0
Em

2�2E2
m
+ 2E2

T
− 4�ETEm

(21)w(�) =
2��2

0
Em − �2

0
ET

2�E2
m
+ 2E2

T
− 4�ETEm

(22) = 𝜎𝜀̇ = Ẇ =
dW

d𝜀
𝜀̇

The first term tr� is the predictor term (which can also be 
named the undamaged stress), whereas the last one is the 
corrector one (damage stress reduction) see Fig. 1a, b. The 
stress is decomposed as

The predictor term is the partial derivative when the energy 
release is frozen, i.e. all the input energy is accepted as 
elastic and will be either stored in  or released

We call the second term

the lost energy rate, i.e.  is the energy which never enters 
the system because of damage evolution; it is not equal to 
the released energy , because the former has never been 
stored. We can write

as the energy loss factor. During unloading–reloading dam-
age evolution vanishes, so ẇ = 0 and the lost energy rate 
L vanishes. Hence noting that we can invert the function 
w(�) to obtain �(w) or �

(
wD

)
, we get

when ẇ = 0. Because during damage evolution, by defini-
tion of w

and hence dW∕d� = dw∕d�, we obtain from Eq. (23)

(23)

Ẇ(𝜀,w(𝜀)) =
𝜕W(𝜀,w)

𝜕𝜀

||||ẇ=0𝜀̇ +
𝜕W(𝜀,w)

𝜕w

||||𝜀̇=0ẇ

=
𝜕W(𝜀,w)

𝜕𝜀

||||ẇ=0𝜀̇
�����������������
predictor (“trial”)

+
𝜕W(𝜀,w)

𝜕w

||||𝜀̇=0
dw

d𝜀
𝜀̇

�����������������������
corrector

(24)Ẇ(𝜀,w(𝜀)) = trẆ +ct Ẇ

(25)Ẇ(𝜀,w(𝜀)) = tr𝜎𝜀̇ + ct𝜎𝜀̇ = 𝜎𝜀̇

(26)� = tr� + ct� = tr� − L

(27)tr𝜎 =
𝜕W(𝜀,w)

𝜕𝜀

||||ẇ=0

(28)L =
d

d𝜀
= −

𝜕W(𝜀,w)

𝜕w

||||𝜀̇=0
dw

d𝜀
= − ct𝜎 > 0

(29)L = 𝜆
dw

d𝜀
where 𝜆 = −

𝜕W(𝜀,w)

𝜕w

||||𝜀̇=0 ≥ 0

(30)
dW

d𝜀
=

𝜕W(𝜀,w(𝜓))

𝜕𝜀

||||ẇ=0

(31)=
𝜕(𝜀,𝜓(wD))

𝜕𝜀

||||𝜓̇=0

=
𝜕

𝜕𝜀
= 𝜎

(32)f : = W − w = 0 and ḟ = Ẇ − ẇ = 0
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The continuum tangent modulus during damage evolution 
is obtained as

Since during damage evolution W = w —note that the form 
of this tangent is more similar shape to that of the CDM 
theory

During unloading–reloading, the tangent modulus is the 
elastic one, i.e. the one for 𝜓̇ = 0 which is E = �Em. Then 
we can write in this case

In incremental form, from step t to t + Δt we can assume 
an elastic predictor increment—we use t� because � is 
assumed frozen during the substep

Since during damage evolution 𝜎̇ = ET 𝜀̇, then

by comparison with Eq. (35) we have that the corrector rate 
is

To obtain the incremental form we note that during this 
substep � is frozen, so t+Δt�m ≡ tr�m = Em

t+Δt� remains 
constant during the corrector substep, where only w (or 
equivalently �) changes. Thus

with Δ� : = t+Δt� − t�. Then, the final stress adding both 
substeps (i.e. the effects of both partial derivatives)

(33)
� = �

dm

d�
≡

dW(�,w)

d�

=
1

1 + �

�(�,w)

��
=

1

1 + �
tr�

(34)ET =
d2W(�,w)

��2
=

d

d�

(
�
dm

d�

)

(35)ET =
d2W(�,w)

��2
= �

d2m

d�2
+

d�

d�
�m

(36)ET =
d2W(�,w)

��2
= �

d2m

d�2
+

d�

dw

dw

d�
�m

(37)ET = �Em +
d�

dw
��m�m

(38)tr𝜎̇ =
𝜕2W(𝜀,w)

𝜕𝜀2

|||||𝜓̇=0

𝜀̇ = 𝜓Em𝜀̇ = E𝜀̇

(39)Δtr� = tEΔ� = t�EmΔ�

(40)t+Δt� = t� + ETΔ�

(41)ct𝜎̇ =

[
d𝜓

d𝜀
𝜎m

]
𝜀̇

(42)Δct� = Δ� t+Δt�m = −ΔL

This is obviously a nonlinear equation in the general 
case because t+Δt� must fulfill the consistency condition 
t+Δtf = 0. It is instructive to derive this equation at the con-
verged t + Δt to obtain the algorithmic tangent modulus

which is to be compared to the continuum one obtained 
in Eq. (35). In Fig. 4 we show the integration process dur-
ing a step. We finally note that the case of initial non-rigid 
behavior is simply accounted for by a maximum finite 
value of �max (instead of the limit value of �max → ∞ for 
the rigid case).

2.3 � One‑Dimensional Infinitesimal Framework 
in Terms of the Elastic Stored Energy 

If during damage evolution the stored energy  increases 
monotonically, then  may be used as a suitable dam-
age variable. In this case we consider the dependency 
(�,wD(�(�)) where the damage variable is

The rate of this energy is

(43)
t+Δt� = t� + Δtr� + Δct� = t� + Δtr� − ΔL

= t� + t�EmΔ� + Δ� t+Δt�m

(44)

d t+Δt�

d t+Δt�
= t�Em + Δ�Em + t+Δt�m

dt+Δt�

dt+Δt�

= t�Em +
dt+Δt�

dt+Δt�
t+Δt�m

(45)wD = max
�∈(−∞,t]

(�)

(46)̇(𝜀,wD) =
d

d𝜀
𝜀̇ =

𝜕

𝜕𝜀

||||ẇD=0

𝜀̇ +
𝜕

𝜕wD

||||𝜀̇=0
dwD

d𝜀
𝜀̇

Total potential

Algorithmic
trial stress

Stored
energy

Released energy

Energy
“lost” Final stress

Fig. 4   Stress-like quantities involved during a step
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The damage evolution condition Eq. (7) may be alterna-
tively written as

where  is the released elastic energy, see Eq. (5). We can 
of course invert wD(�) and write �(wD), and then write the 
elastic stored energy as (�,�(wD(�))). Then, using Eq. 
(9)

Then, using Eqs. (5) and (9) during loading in the primary 
curve

Since during loading in the primary curve � = ��m, we 
have upon substitution in the previous equation that the last 
two terms must vanish

We define—recall Eq. (9)

as the energy release ratio. Then

We herein name the stress

as the damage backstress. For the bilinear case used as an 
example, from Eq. (16) we obtain for the case of damage 
evolution, after a little algebra

The energy release rate is

These quantities are depicted in Fig. 4 in the context of the 
bilinear model. Note that by comparison of Eqs. (46) and 
(52), using Eq. (51) we obtain

(47)f : = W − w ≡ ( + ) − (wD + ) =  − wD ≤ 0

(48)
𝜕

𝜕𝜀

||||ẇD=0

= 𝜓
dm

d𝜀
= 𝜎

(49)dW

d�
= �

dm

d�
+

d�

d�
m +

d

d�

(50)
d

d�
= −

d�

d�
m: = Y

(51)𝛾 = −
𝜕

𝜕wD

||||𝜀̇=0
= −

𝜕

𝜕𝜓

||||𝜀̇=0
d𝜓

dwD

= −m

d𝜓

dwD

(52)
̇ = Ẇ − ̇ =

dW

d𝜀
𝜀̇ −

d

d𝜀
𝜀̇

= 𝜎𝜀̇ − Y 𝜀̇ = 𝛽𝜀̇ =
d

d𝜀
𝜀̇

(53)�: =
d

d�
=

d(�m)

d�
= ��m +

d�

d�
m = � − Y

(54)𝛽 =
1

2
𝜎0 + ET𝜀u ⟹ 𝛽̇ = ET 𝜀̇u

(55)Y = � − � = −
d�

d�
m = �

dwD

d�
=

1

2
�0

(56)Y = 𝛾𝛽 = −
𝜕

𝜕𝜓

||||𝜀̇=0
d𝜓

dwD

𝛽

Then, since during damage evolution f = 0 and ḟ = 0, 
from Eqs. (46) and (47) we obtain

The derivative of the stress is the tangent modulus, which 
during damage results in

i.e. using Eq. (58)

Note that by comparison of this equation with Eq. (37) we 
obtain the relationship between �(w) and �(wD)

where w�
D
= dwD∕d�. Using the -formulation, the trial 

stress concept may also be employed, see Eq. (38)

Hence 𝜎̇ = tr𝜎̇ + ct𝜎̇ results in

(57)Y = �� = −m

d�

dwD

� =

−�m

d�

dwD

1 −m

d�

dwD

�m

(58)
� ≡

d

d�
≡

dwD

d�
=

�

1 −m

d�

dwD

�m

(59)ET =
d�

d�
=

d2W

d�2
=

d

d�

(
�
dm

d�

)

(60)ET = �
d2m

d�2
+

d�

dwD

dwD

d�

dm

d�

(61)ET = �
d2m

d�2
+

�
d�

dwD

1 −m

d�

dwD

dm

d�

dm

d�

(62)ET = �Em +

�
d�

dwD

1 −m

d�

dwD

�m�m

(63)
d�

dw
=

1

w�
D
−m

(64)tr𝜎̇ =
𝜕𝜎

𝜕𝜀

||||𝜓̇=0

𝜀̇ = 𝜓
d2W(𝜀,w)

𝜕𝜀2
𝜀̇ = 𝜓Em𝜀̇

(65)
ET 𝜀̇

���

𝜎̇

= 𝜓Em𝜀̇
���

tr𝜎̇

+
𝜓

w�
D
−m

𝜎m𝜎m𝜀̇

�������������������
ct𝜎̇
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However, in this framework it is better to work in a differ-
ent way because in the previous equation the energy m 
appears explicitly. From Eq. (47), using f = f (�,�), since 
ḟ = 0 during damage evolution

where tr ḟ = 𝜓m and ct ḟ = m𝜓̇ − w�
D
𝜓̇. Then, an incre-

mental step brings the incremental equations

where note that we have used t� because in this substep 
damage is frozen, and

with Δ� : = (t+Δt� − t�). Then, Δf = 0 implies

which is a nonlinear equation to be solved for t+Δt�, for 
example using a Newton–Raphson method. Once this value 
is obtained, it is immediate to obtain the stress

The tangent modulus is

The derivative of t+Δt� can be obtained from the derivative 
of the consistency condition

so df∕d� = 0 results in

Therefore

which is the same as that obtained in Eq. (62) after invert-
ing the relation �(wD) to wD(�).

The development of a three-dimensional infinitesimal 
theory following these lines is straightforward and it may 
be considered a particular case of the large strain case if 
WYPiWYG hyperelasticity is employed. Hence, we address 
directly the large strain formulation based on WYPiWYG 
hyperelasticity.

(66)ḟ = ḟ ||𝜓̇=0
+ ḟ ||𝜀̇=0 = tr ḟ + ct ḟ = 0

(67)Δtrf = t�[m(
t+Δt�) −m(

t�)]

(68)Δctf = [m(
t+Δt�) − t+Δtw�

D
]Δ�

(69)
Δf ≡ t+Δt �m(

t+Δt�) − t�m(
t�) − Δ� t+Δtw�

D
= 0

(70)t+Δt� = t+Δt�
dm(

t+Δt�)

dt+Δt�

(71)dt+Δt�

dt+Δt�
= t+Δt�

d2m(
t+Δt�)

dt+Δt�2
+

dm(
t+Δt�)

dt+Δt�

dt+Δt �

dt+Δt�

(72)f = t+Δt�m(
t+Δt�) − wD(

t+Δt�) = 0

(73)
dt+Δt �

dt+Δt�
=

t+Δt�
t+Δtw�

D
− t+Δtm

t+Δt�m

(74)

dt+Δt�

dt+Δt�
= t+Δt�

d2m(
t+Δt�)

dt+Δt�2

+
t+Δt�

t+Δtw�
D
− t+Δtm

t+Δt�m
t+Δt�m

3 � WYPiWYG Hyperelasticity

Consider the polar decomposition of the deformation gradi-
ent X and the logarithmic strains

where U is the stretch tensor and R is the rotation one. 
WYPiWYG isotropic hyperelasticity for incompressible 
materials is based on the well-accepted Valanis–Landel 
decomposition of the form

where Ei are the principal logarithmic strains. Note that in 
the incompressible case, the volumetric strains vanish and 
Ed
i
= Ei, where Ed

i
 are the isochoric logarithmic principal 

strains. The special properties of logarithmic strains [91, 
92], which are parallel to those of the infinitesimal ones 
[87] are the reason why WYPiWYG procedures are based 
on those strains.

Consider for simplicity of the exposition the equilibrium 
equations of a tensile test in direction 1 for an incompress-
ible material

where �, �, and T are, respectively, the Cauchy stresses, the 
Kirchhoff stresses and the generalized Kirchhoff stresses. 
These tensors are coincident in the isotropic incompress-
ible case. Since by incompressibility E1 + E2 + E3 = 0, we 
can factor-out the pressure-like lagrangian and obtain

where ��(E) is the derivative of � respect to E. Kearsley 
and Zapas [93] gave an explicit solution of this functional 
equation, which is called the inversion formula because it 
inverts the functional dependencies, i.e. from �(��(E)) to 
��(�(E))

We can take as a reference ��(0) = 0. The series coverges 
to machine precision in a finite number of terms, typically 
20 − 50. Then, given some experimental data 

{
Ẽi, 𝜎̃i

}
, 

i = 1, ...,N, where N is the number of experimental points 
(say 100), the solution 𝜔�(Ẽi) may be exactly obtained (to 
machine precision). Obviously if we want to do finite ele-
ment analysis, a function ��(E) is required. Then a proper 
interpolation may be performed between that experimental 
data in order to obtain a smooth function. In fact, in order 

(75)X = RU and E = lnU

(76)(E) = �(E1) + �(E2) + �(E3)

(77)

⎧⎪⎨⎪⎩

�1 = �1 = T1 = ��(E1) − p

0 = ��(E2) − p

0 = ��(E3) − p

(78)�1(E1) = ��(E1) − ��
(
−

1

2
E1

)

(79)��(E1) = ��(0) +
∞∑
k=0

�1

�
−
1

2

�k

E1
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to apply Eq. (79) an interpolation between experimental 
data is also needed because �1 is evaluated at points differ-
ent from the actual experimental points. We note that once 
��(E) has been obtained, it is of course valid in any loading 
situation and it can be applied to finite element analysis in 
a straightforward manner. The stresses and tangent moduli 
are obtained as in any other hyperelastic material upon 
knowledge of ��(E) ≡ ��(Ed).

The WYPiWYG isotropic, incompressible model of 
Sussman and Bathe [78] made use of the Valanis–Landel 
decomposition and of the Kearsley and Zapas formula. In 
order to generalize the approach to compressible materials, 
transversely isotropic materials and orthotropic materials, 
we developed a generalization of the inversion formula in 
ref. [79]. Motivated in the infinitesimal setting we proposed 
the following Valanis–Landel-type decomposition for 
transversely isotropic materials [79]

and the following one for orthotropic materials [87]

where ai are the principal material directions, 
Eij = ai ⋅ E ⋅ aj are the components of the stress tensor in 
that preferred system of representation (i.e. they are invari-
ants), a3 is the preferred direction in the transversely iso-
tropic case and

is the shear invariant for the transversely isotropic case. 
We note that we are only neglecting the coupling invariant 
E12E13E23 whose influence, in any case, would be difficult 
to characterize experimentally. In practice, if material sym-
metries are to be guaranteed [20], or (quasi-) compressibil-
ity accounted for [80], the following decomposition is to be 
enforced for the orthotropic case:

where  is is the isotropic contribution and ̃or is the devi-
ation from isotropy.

WYPiWYG hyperelasticity has some remarkable prop-
erties when compared to usual hyperelastic models. (1) 
Once the stored energy decomposition is assumed, the 
actual shape of the stored energy function is not speci-
fied but numerically computed from experimental data; 
(2) there are no material parameters and, hence, no opti-
mization algorithms to obtain them; (3) they are compat-
ible with the small strain theory at all deformation levels; 
(4) they capture, to machine precision if desired, as many 
complete experimental curves as material parameters 
used in the linear theory (i.e. their evolution) and (5) their 

(80) = �11(E11) + �22(E22) + �33(E33) + 2�13(E
#
13
)

(81)
 = �11(E11) + �22(E22) + �33(E33)

+ 2�13(E13) + 2�23(E23) + 2�12(E12)

(82)E#
13

=

√
E2
13
+ E2

23

(83)or(E) =  is(E) + ̃or(E)

numerical efficiency in finite element simulations is similar 
to that of traditional phenomenological models.

The reader is referred to refs. [79, 80, 87] for further infor-
mation on WYPiWYG hyperelasticity, and to [84, 85] for 
WYPiWYG anisotropic viscoelasticity based on non-equi-
librium thermodynamics. A fully coupled, general proposal 
for the stored energy is possible using the general procedure 
without inversion formula [81], but the determination of such 
a general stored energy implies elaborate experimental test-
ing, so it may not be practical since coupling terms may be 
relevant only at very large strains. From now on, we assume 
that the WYPiWYG stored energy function captures exactly 
a master unloading–reloading  curve. Obviously the proce-
dure could be used to also capture W; we will do so in the 
examples section to compare results.

4 � WYPiWYG Isotropic Damage Mechanics

4.1 � Continuum Theory

Considering that the stored energy increases until fracture, 
wD is a suitable variable for tracking damage evolution. In 
the geometrically nonlinear case, we assume that the stored 
energy is given by

where  (Ev) is the penalty volumetric energy and 
Ev = ln (det (X)) is the volumetric logarithmic strain. In 
the isotropic case it can be shown that the hypothesis of the 
Valanis–Landel decomposition implies also

i.e.

where �(wD) is the scalar function of the selected damage 
variable wD

and �m(E
d
i
) are the Valanis–Landel terms of the mas-

ter hyperelastic curve as function of the isochoric prin-
cipal logarithmic strains Ed

i
. However we note that if Eq. 

(85) is assumed as usually done in isotropy, the present 

(84)Ψ(E,�) =  (Ev) +
(
E
d,�

(
wD

))

(85)
(
E
d,�(wD)

)
= �(wD)m

(
E
d
)

(86)


(
E
d,�(wD)

)
= �(Ed

1
,�(wD))

+ �(Ed
2
,�(wD)) + �(Ed

3
,�(wD))

(87)


(
E
d,�(wD)

)
= �(wD)�m(E

d
1
)

+ �(wD)�m(E
d
2
) + �(wD)�m(E

d
3
)

(88)wD = max
�∈(−∞,t]

(�)
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formulation is valid even if the Valanis–Landel decomposi-
tion is not fulfilled. As a direct consequence of definition 
Eq. (88)

During loading in the primary curve, damage is evolving 
and

Then, for the nontrivial case in which Ė
d
≠ 0, ḟ = 0 results 

in

Using Eqs. (85) and (91) is

Since the generalized Kirchhoff stresses are work-conjugate 
to the material logarithmic strains in the most general ani-
sotropic case, during primary loading the following gener-
alized Kirchhoff stress tensor [94] may be defined—cf. Eq. 
(49)

where (⋅)|d stands for derivative having been taken respect 
to the deviatoric strains. However, we also have

Hence—cf. Eq. (50)

where—cf. Eq. (53)

with the reference stress

Then—cf. Eqs. (53) and (55)

Alternatively, we can also define

(89)f =  − wD ≤ 0

(90)f = 0 and ḟ = 0 ⟺ ẇD = ̇

(91)
�(Ed,�)

�Ed
+

�(Ed,�)

��

d�

dwD

dwD

dEd
−

dwD

dEd
= 0

(92)�
dm

dEd
+m

d�

dwD

dwD

dEd
−

dwD

dEd
= 0

(93)
T
|d = dW(Ed,�)

dEd
=

d

dEd
+

d

dEd

= �
dm

dEd
+

d

dEd
+m

d�

dwD

dwD

dEd

(94)T
|d = �

dm

dEd
=

�

�Ed

(95)Y =
d

dEd
= −m

d�

dwD

dwD

dEd
= :�B

(96)B =
dwD

dEd
= �

dm

dEd
+m

d�

dwD

dwD

dEd
=

�w�
D

w�
D
−m

T
|d
m

(97)T
|d
m
: =

dm

dEd

(98)T
|d = B + Y

so we have—cf. Eq. (28)

Hence, no relevant change respect to the one-dimensional 
bi-linear case is present. The energies involved in the non-
linear case are shown in Fig. 5.

4.2 � Algorithmic Formulation

The numerical algorithm based on the –formulation is also 
very similar to that of the one-dimensional infinitesimal prob-
lem. As shown in Fig. 5, the objective is to find the value of 
� for which

In incremental form, the trial value is given for Δ� = 0 and 
the new value of t+ΔtE

If trf > 0, then damage evolution takes places, i.e. the val-
ues of t� and twD need to be updated performing the proper 
correction

Then, the nonlinear scalar equation is

(99)tr
T
|d : = �W

�Ed
=

dW

dEd
−

dW

dw

dw

dEd
= T

|d + L

(100)

T
|d = tr

T
|d + ct

T
|d = tr

T
|d − L with L = −

dW

dw

dw

dEd

(101)f : = �m − wD = 0

(102)trf = t�m

(
t+Δt

E
d
)
− twD

(103)ctf = (t+Δt� − t�)m

(
t+Δt

E
d
)
− ( t+ΔtwD − twD)

(104)t+Δtf = t+Δt�m

(
t+Δt

E
d
)
− t+ΔtwD = 0

stress

strain

Algorithmic
trial stress

Stress at t

Final
stress

Master
damage

curve

Master
hyperelastic
curve

Fig. 5   Energies involved in a step in the nonlinear case
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which can be immediately solved using, for example, a 
Newton–Raphson procedure, i.e.

where

Since m

(
t+ΔtE

d
)
 is the known WYPiWYG master stored 

energy and wD(
t+Δt�) has been previously obtained from 

the master primary loading and unloading–reloading 
curves, this derivative is readily computed. The starting 
values are obviously t+Δt� = t� and t+Δtf (0) = trf .

Once t+Δt� has been computed, the value for the stresses 
is

where  �(t+ΔtEv) is the derivative of the penalty function 
for the volumetric constraint. The tensor ℙd = dEd∕dE is 
the usual deviatoric projector tensor for logarithmic and 
infinitesimal strains, so for example Td = T

|d:ℙd are the 
deviatoric stresses.

The constitutive tangent may be obtained by direct 
differentation

where

The tensor dt+Δt�∕ dt+ΔtEd vanishes in the case of unload-
ing–reloading. In the case of damage evolution, this tensor 
may be computed from the consistency condition ḟ = 0 
using Eq. (104)

so

(105)t+Δt� (j+1) = t+Δt� (j) −

[
dt+Δtf (j)

dt+Δt� (j)

]−1
t+Δtf (j)

(106)
�t+Δtf (j)

�t+Δt� (j)
= m

(
t+Δt

E
d
)
− w�

D
(t+Δt�)

(107)t+Δt
T =  �(t+ΔtEv )I+ t+Δt� t+Δt

T
|d
m
:ℙd

(108)
ℂ

|d
T
=

d t+ΔtT
|d

d t+ΔtE
d
=

d( t+Δt𝜓 t+ΔtT
|d
m
)

d t+ΔtE
d

= t+Δt𝜓 t+Δt
ℂ

|d
m
+ t+Δt

T
|d
m
⊗

d t+Δt𝜓

d t+ΔtE
d

(109)t+Δt
ℂ

|d
m
=

d2 t+Δtm

dt+ΔtEd dt+ΔtEd

(110)

d t+Δtf

d t+ΔtE
d
= t+Δtm

d t+Δt�

d t+ΔtE
d
+ t+Δt� t+Δt

T
|d
m

− w�
D
( t+Δt�)

dt+Δt�

d t+ΔtE
d
= 0

(111)
dt+Δt�

d t+ΔtE
d
=

t+Δt�

w�
D
( t+Δt�) − t+Δtm

t+Δt
T
|d
m

and

with

which is an expression which resembles that of classi-
cal CDM models. The full tangent is—we omit time-step 
indices

This tangent may be readily converted to any other stress 
and strain measures through proper mapping tensors as 
described, for example, in ref. [94]. Further details are 
omitted herein. We note that alternatively, if � is expressed 
in terms of the maximum master value reached (e.g. �(wm) 
with wm = max�∈(−∞,t] m), no local iterations are needed 
in the strain-driven case.

As we show in the examples below, WYPiWYG iso-
tropic damage mechanics is capable of capturing to high 
accuracy both the primary loading curve and one unload-
ing–reloading curve. The other ones, due to the assump-
tions of isotropy and Valanis–Landel decomposition must 
be proportional.

5 � Anisotropic WYPiWYG Damage Mechanics

5.1 � Continuum Theory

Isotropic damage is a convenient modelling assumption 
which is hardly found in actual materials. Isotropic damage 
assumes the same damage in all directions. For example, 
if after some damage, the same specimen is also uniaxi-
ally loaded in other directions up to the same level, no fur-
ther damage will be predicted. Hence, only damage under 
uniaxial loading or damage in some materials as ductile 
metals, may be properly modeled with isotropic damage. 
In polymeric materials, damage can be considered iso-
tropic only in the first stages. However, isotropic damage 
is frequently used as a simplifying convenient assumption 
because determining fully anisotropic damage evolution 
from experiments is a very complicated task. However, as 
already explained in the “Introduction” section, anisotropic 
damage is important for damage-induced anisotropy and 
for characterizing the anisotropic Mullins effect in soft bio-
logical tissues, which are mostly anisotropic.

(112)ℂ
|d
T
= t+Δt𝜓 t+Δt

ℂ
|d
m
+ t+Δt𝜃 t+Δt

T
|d
m
⊗ t+Δt

T
|d
m

(113)t+Δt𝜃 =

⎧
⎪⎨⎪⎩

t+Δt𝜓

w�
D
( t+Δt𝜓) −t+Δt m

if trf > 0

0 if trf ≤ 0

(114)ℂT =  ��(Ev)I⊗ I + ℙ
d:ℂ

|d
T
:ℙd
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The extension of damage models to include anisotropic 
damage goes necessarily through the consideration of more 
than one anisotropic damage variable. The number and type 
of damage variables to be employed has been a topic of active 
research in the 1970s and 1980s. For example in the work of 
Hayhurst and Leckie [95], the loading direction is included 
to characterize damage and in [96] a second order tensor 
to modify effective areas is proposed. Many other propos-
als may be found in [41]. However, in this work we follow 
the concepts given in [97] and [98] (among others) in which 
the strain energy itself (or equivalently in the linear case, the 
constitutive tensor) is used to model damage. We will herein 
address in detail the orthotropic case, since the transversely 
isotropic case is similar.

Because the most practical case of WYPiWYG ortho-
tropic incompressible hyperelasticity is based on a decom-
position of the form Eq. (81), six damage variables may be 
employed to modify each one of the terms in Eq. (81). Of 
course if material symmetries congruency is to be obtained, 
Eq. (83) is to be employed and an additional damage variable 
accounting for the isotropic part is considered. In such case, 
that variable considers the isotropic contribution of damage, 
whereas the other ones account for the anisotropic deviation.

In the formulation herein presented there is an inherent 
restriction. We assume that the material symmetry planes are 
preserved during all the deformation process, so an ortho-
tropic material remains being orthotropic and keeping the 
same symmetry planes (the preferred directions in the refer-
ence configuration are the same). This is of course a simplify-
ing hypothesis because damage in general is known to usually 
develop fully anisotropic behavior with no symmetry planes 
in the general case. However, this hypothesis will allow us to 
develop a tractable formulation and a procedure to determine 
the behaviour of transversely isotropic and orthotropic dam-
aged materials, or when such anisotropies are developed due 
to damage. We will consider that the stored energy function 
may be written as

For the isochoric component we consider a decomposition 
similar to that of Valanis and Landel

where wD is the array of damage variables, the factor of two 
accounts for similar terms �ij ≡ �ji, and

(115)Ψ
(
E, wD

)
=  (Ev) +

(
E
d, wD

)

(116)

or
(
E
d,wD

)
= �11

(
Ed
11
,w11D

)
+ �22

(
Ed
22
,w22D

)
+ �33

(
Ed
33
,w33D

)
+ 2�12

(
Ed
12
,w12D

)
+ 2�13

(
Ed
13
,w13D

)
+ 2�23

(
Ed
23
,w23D

)

(117)Ed
ij
= ai ⋅ E

d
⋅ aj

are the components of the isochoric logarithmic strains in 
the principal material directions of orthotropy ai. In order 
to preserve the material-symmetries congruency [20], we 
add an isotropic contribution

where wD is the isotropic damage variable and wD is a 
matrix of anisotropic ones. The meaning of the damage 
variables is taken as

Therefore, inherent to these definitions are those of the 
damage criteria

Since there are few further differences in the continuum 
structure to the isotropic case, we address directly the algo-
rithm formulation.

5.2 � Algorithmic Formulation

We have seen in previous sections that the isotropic compo-
nent may be written as

which results into

where �(Ed,wD) is a reference hyperelastic function for a 
given damage level and � is the scaling function which is 
� = 1 for the reference damaged state characterized by �m

. In this formulation, we proceed in a similar way with the 
orthotropic functions given in Eq. (116). Then, the follow-
ing setting is a modelling assumption

which obviously brakes the proportionality of the global 
stored energy for the general case of orthotropy. In Eq. 
(123) the functions �mij(E

d
ij
) are the hyperelastic functions 

of the Valanis–Landel-type decomposition for a reference 
damage, whereas the functions �ij(wijD) are the correspond-
ing scaling functions.

(118)
(
E
d,wD

)
=  is

(
E
d,wD

)
+or

(
E
d,wD

)

(119)

⎧
⎪⎨⎪⎩

wD(t) = max
�∈(−∞,t]

 is(Ed(�),wD(�))

wijD(t) = max
�∈(−∞,t]

[�ij(E
d
ij
(�),wijD(�))]

with i ≤ j = 1, 2, 3

(120)

⎧⎪⎨⎪⎩

f =  is(Ed,wD) − wD ≤ 0

fij = �ij(E
d
ij
,wijD) − wijD ≤ 0

with i ≤ j = 1, 2, 3

(121) is(Ed,wD) = �(wD)
is
m
(Ed)

(122)�(Ed,wD) = �(wD)∱m(E
d)

(123)�ij(E
d
ij
,wijD) = �ij(wijD)�mij(E

d
ij
)
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As in the isotropic case, the main objective of the local 
algorithm is to determine the scaling factors �ij, because once 
determined, the stresses are computed as in non-damaged 
hyperelasticity, simply by derivation of the strain energy as

The first addend is the isotropic contribution, i.e.

where Ni are the principal directions of the right stretch 
tensor and Ed

i
 are the principal logarithmic strains. The 

other addends in Eq. (124) are the anisotropic deviations, 
where (no sum in repeated indices)

and Ed
ij
 are the strain components corresponding to the 

strain energy components �mij. Taking into account sym-
metries, these strains are computed as

so the strucural tensors are

Assume that we know the function �ij(wijD), or conversely 
wijD(�ij). The strains at t + Δt, namely t+ΔtE, and the values 
of the multiplier functions t�ij allow for the computation of 
the trial consistency functions

We note that once t+ΔtE is given, these functions are inde-
pendent to each other; the coupling is indirectly given by 
the strain tensor. For example a change in �11 does not 
change the other functions. Hence, the computation of the 
different t+Δt�ij may be performed in a loop. The �ij func-
tions are uncoupled and each one only depends on the cor-
responding strain component in the principal material axis. 

(124)T
|d = �(wD)

d is
m
(Ed)

dEd
+
∑
i,j

�ij(wijD)
d�mij(E

d
ij
)

dEd

(125)T
is|d = �(wD)

� is
m
(Ed)

dEd

(126)T
is|d =

∑
i,j

𝜓(wD)
d𝜔m(E

d
i
)

dEd
i

Ni ⊗ Ni

(127)T
|d
mij

=
d�mij(E

d
ij
)

dEd
=

d�mij(E
d
ij
)

dEd
ij

dEd
ij

dEd

(128)Ed
ij
=

1

2
(ai ⋅ E

d
⋅ aj + aj ⋅ E

d
⋅ ai)

(129)Lij: =
dEd

ij

dEd
=

1

2
(ai ⊗ aj + aj ⊗ ai)

(130)
{

trf : = t� is
m
( t+ΔtE

d) − twD
trfij: =

t�ij�mij(
t+ΔtEd

ij
) − twijD

We can obtain directly �ij if we build the spline function as 
�ij(wmij(E

d
ij
)) = �ij(E

d
ij
)—note that this is a similar case as 

the one-dimensional one, see Eq. (16). For the isotropic 
part, the procedure is the same as that described in 
Section 4.2.

Once all proportionality parameters �ij have been com-
puted, the stress tensor is

where

The constitutive tangent may be obtained from Eq. (124)—
all quantities are evaluated at the converged solution at 
t + Δt, so we omit the time-step index

with

and (no sum on repeated indices)

The tensor d�ij(wijD)∕dE
d can be obtained from the corre-

sponding consistency condition if trfij ≥ 0, i.e.—no sum on 
i, j

so

where

(131)t+Δt
T =  �(Ev)I + t+Δt

T
|d :ℙd

(132)
t+Δt

T
|d = t+Δt� t+Δt

T
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m
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∑
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t+Δt�ij
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T
|d
mij
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dEd
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dEddEd

(135)ℂ
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d2𝜔mij(E
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dEddEd
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d2𝜔mij(E
d
ij
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dEd
ij
dEd

ij

Lij ⊗ Lij

(136)
dfij

dEd
= �T

|d
mij

+ �mij(E
d
ij
)
d�ij

dEd
−

d�ijD

d�ij

d�ij

dEd
= 0

(137)
d�ij

dEd
= �ijT

|d
mij

(138)𝜃ij: =

⎧⎪⎨⎪⎩

𝜓ij

d𝜔ijD∕d𝜓ij − 𝜔mij(E
d
ij
)
if trf > 0

0 if trf = 0
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Therefore

and

This tensor can be mapped to the desired stress–strain con-
jugate pair using the deformation gradient. Remarkably, 
these expressions take a layout similar to that found in 
CDM models.

5.3 � Extraction of the Information From Experiments

As we have already mentioned, six experimental data curves 
are required to obtain the different terms that are present in 
the isochoric strain energy function corresponding to the 
master damage curves and the master hyperelastic curves 
respectively. For the master damage curves three uniaxial 
loading tests up to the maximum strain level to be attained in 
the simulations, performed in the three preferred directions of 
the material on three identical material samples are needed 
to calculate the axial terms �ii, cf. [87]. As also explained 
therein the shear terms of the type �ijcan be determined, for 
example, from three specific pure shear tests. On the other 
hand in order to obtain the axial terms of the energy func-
tion corresponding to the master hyperelastic curves, a simple 
sample is loaded up to the maximum strain expected in the 
simulations, for which the damage is maximum (�i = 1), and 
once achieved, the specimen is unloaded. This is done in each 
of the three preferred directions successively. That is, the 
specimen will be subjected to a load and subsequent unload 
in the three preferred material directions in turn. The experi-
mental data corresponding to the unloading in the third direc-
tion are the ones needed to obtain the axial terms correspond-
ing to the master hyperelastic curves, again see ref. [87]. Note 
that by incompressibility, damage evolution in one direction 
is coupled with that in the transverse directions, unless we 
can assume that compression strains do not lead to damage in 
the corresponding direction (in the examples below we con-
sider the more elaborated coupled case). Thereby this proce-
dure is repeated three times permuting the preferred direction 
of the last test. Proceeding in a similar way, the shear terms 
are obtained as for the master damage curves, from three spe-
cific pure shear tests.

In the above-described procedure, the main information 
needed from experiments are the curves wijD

(
�ij

)
, �mij

(
Ed
ij

)
 

and  is
(
E
d
)
. Unless there is some physical insight in the 

(139)
ℂ

|d
T
= 𝜓ℂ

is|d
m

+ 𝜃Tis|d
m

⊗ T
is|d
m

+
∑
i,j

(
𝜓ij(wijD)ℂ

|d
mij

+ 𝜃ijT
|d
mij

⊗ T
|d
mij

)

(140)ℂT =  ��(Ev)I⊗ I + ℙ
d:ℂ

|d
T
:ℙd

material being tested, it is difficult if not impossible to distin-
guish from uniaxial tests which part corresponds to the iso-
tropic part and which one is the orthotropic contribution. If 
the nature of the material being tested is known, it could be 
the case that the isotropic contribution may be devised or 
determined (for example performing tests on the isolated 
matrix component or assuming that the behavior in one direc-
tion is mainly due to that component).

Now assume that we have determined the part that corre-
sponds to isotropic behavior. To do so, we simply determine 
the unloading–reloading curve for isotropy and the corre-
sponding master damage curve. Following the procedure 
detailed in [86] we obtain the functions  is(E) (see [78, 87]) 
and wD(�). With these data, we can determine the isochoric 
isotropic contribution in the principal orthotropy directions, 
and perform the additive decomposition Eq. (118):

which in terms of stresses results, up to a common pressure 
lagrange multiplier, in

Since for the six needed experiments Td(E) is known and 
T
is(E) can be determined, then six curves corresponding to 

T
or(E) may be obtained. A general interpretation of all these 

quantities is given in Fig. 6. Furthermore, since

the functions �mij are then determined directly from the 
(damaged) hyperelastic curve Td

m
(E) − T

is
m
(E) assuming 

that both prescribed Td
m
(E) and Tis

m
(E) curves correspond 

to the same level of damage (master hyperelastic curve). 
Then, the values of the multipliers �ij are obtained from the 
already known multiplier � and the master damage curve 
for each direction

where un-bold symbols imply that we are using the uniax-
ial values.

6 � Examples

6.1 � One‑Dimensional, Infinitesimal Bilinear Example

As a demonstrative example to explain the concepts in the 
simplest possible context, we consider a bilinear material 
at small strains. Assume that the hypothetical material is 

(141) + =  + is +or
⇒ or =  − is

(142)T
or(E) =

�

�E
−

� is

�E
= T

d(E) − T
is(E)

(143)T
or(E) =

∑
i,j

�ij

(
wijD

)
T
d
mij
(E)

(144)�ij =
Td − �Tis

m

Td
mij
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defined by a master damage curve and a master hyperelastic 
curve as can be observed in Fig. 7.

Performing a tensile test in the longitudinal direction 
and loading and unloading at different load levels, it can be 
observed that the stress–strain data predicted by the algo-
rithm matches exactly the prescribed data, see Fig. 8a, b. For 
example, assume we first stretch the material to a maximum 
strain �u = 2, during loading according to Eq. (15) we obtain,

Then, the following results may be immediately computed 
from the above expressions and verified geometrically in 
Fig. 8a

If we subsequently unload the material to a strain of value 
� = 1, taking into account that during unloading–reload-
ing � and  remain constant (𝜓̇ = 0, 

⋅

 = 0), we obtain that 
ΔW = Δ, and 

All these quantities can be verified in Fig. 8b.

(145)�(�u) =
�0 + ET�u

Em�u
=

45 + 5 × 2

20 × 2
= 1.375

(146)

⎧⎪⎨⎪⎩

� = ��m = �Em�u = 55MPa

(�u,�) = wD(�u) = �m(�u) = 55MPa

W(�u,�) = w(�u) = 98.9MPa

 = W − = 43.9MPa

(147)

⎧⎪⎪⎨⎪⎪⎩

� = ��m = �Em� = 27.5MPa

(�,�) = �m(�) =
1

2
�Em�

2 = 13.75MPa

W(�,�) = W(�u,�) − ((�u,�) −(�),�)

= 57.65MPa

 = W − = 43.9MPa(no change)
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Fig. 8   Uniaxial test for a 
bilinear behaviour material. Top 
released and stored energies 
involved in the loading case. 
Bottom the same for the unload-
ing case
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Fig. 9   Computed damage variable function against the proportional-
ity parameter for the bilinear example
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In Fig. 9 the damage variable versus the proportionality 
parameter wD(�) has been plotted, recall Eq. (20).

6.2 � Isotropic Material

The aim of this example is to show the capabilities of the 
spline-based damage model for isotropic hyperelastic mate-
rials. The material data needed is an experimental virgin 
loading curve and a unloading–reloading curve which must 
be given up to the maximum value of strain that will be 
attained during the simulations. To show the applicabil-
ity to soft biological tissues, we evaluate our model using 
tensile test data on intraluminal venous thrombus extracted 
from ref. [89]. Due to the absence of reported experimental 
data for the compression behavior, which is needed to prop-
erly define the material, we have assumed an antisymmet-
ric stress distribution 𝜎̃i(−Ẽi) = −𝜎̃i(Ẽi). The experimental 
data used are shown in Fig. 10.

As a first simulation we have considered a ten-
sile test with the prescribed uniaxial strain history E11 
shown in Fig.  11, where due to incompressibility we 
have E2 = E3 = −

1

2
E1. An initially undeformed block of 

100 × 100 × 100 is deformed longitudinally up to a dimen-
sion of 150. As it can be seen in Fig.  12, the predicted 
stress–strain data exactly mimic the prescribed data. Plain 
Newton algorithms (without line searches) have been 
employed both locally and globally. The number of local 
iterations employed in the computation of the energy multi-
plier parameter �, i.e. the number of iterations to fulfill the 
consistency condition of Eq. (90) up to a relative tolerance 
of 10−10, are shown in Fig. 13a. It can be noticed that local 
iterations are necessary only during damage evolution. The 
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number of these global equilibrium iterations invested per 
step are always three, as can be observed in the Fig. 13b. 
It is noted that there is no correlation between Fig. 13a, b, 
because the degree of non-linearity in both curves, master 
damage and master hyperelastic curves, is similar as can be 
observed in Fig.  10, so the number of global iterations is 
independent of whether damage is evolving or not.

As a second simulation in order to assess the applicabil-
ity of the model to more complex situations and to show the 
efficiency of the constitutive tangent, a bidimensional plate 
with a concentric circular hole made of the same incompress-
ible isotropic hyperelastic material is stretched under a plane 
strain condition in x-direction up to a total length of l = 38.6 
mm. The initial dimensions are, length l0 = 32 mm, height 
h0 = 16 mm and inner radius r0 = 4 mm. The geometry 
and finite element discretization of the undeformed plate are 
depicted in Fig. 14. This example has been used in a number 
of publications using different constitutive models [77, 80, 
84, 85].

The deviatoric reponses of the master hyperelastic and 
master damaged curves of our procedure are described by 
isotropic spline-based WYPiWYG strain energy functions—
cf. Ref. [77]. The volumetric penalty stored energy that we 
have used in the examples is the typical

where J is the Jacobian determinant of the deformation, k 
is the bulk modulus (penalty parameter), which we took 
as k = 10 MPa. In order to avoid mesh-locking, fully inte-
grated (3 × 3 Gauss integration) 9 / 3 u/p mixed finite ele-
ments are used, see [88]. For the incremental (global) anal-
ysis, a Newton-Raphson scheme, without line searches, is 
employed. The history of the imposed displacements via 
penalty method are shown in Fig. 15.

In Fig.  16, the deformed configuration of the plate 
and the distribution of the computed von Mises stress are 
depicted. In Fig.  17 we show the simulations performed 

(148) (J) =
1

2
k(J − 1)2

using the master damage curve as if it were from a hyper-
elastic material without damage. Then, the differences 
between Figs. 16 and 17 are due to damage evolution.

0 10 20 30 40 50 60
0

2

4

6

8

Time−step [s]

Le
ng

th
 in

cr
em

en
t [

m
m

]

  1

  2

  3   4

Fig. 15   Prescribed uniaxial strain for the uniaxial test performed 
on the isotropic rectangular plate. The dots represent the time-steps 
shown in the deformed meshes

Fig. 16   Uniaxial tension of a rectangular plate with a concentric cir-
cular hole under a plain strain condition using the isotropic damage 
model: deformed configuration (maximum length = 38.6 mm) and 
distributions of von Mises stress at instants t = 10 s, t = 20 s, t = 30 s 
and t = 50 s. Note that for comparison, the color scale is the same for 
all plates. The maximum stress for t = 20 s is close to the maximum 
of 180kPa given in Fig. 12
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In Fig. 18, the distribution of the isotropic damage vari-
able � is represented. It can be observed that the locations 
with the highest concentration of stresses are the most dam-
aged ones, i.e. the value of the damage variable tends to the 
reference value (�D = 1). It can also be noticed that even if 
the material is unloaded, once the material is damaged, this 

phenomenon is irreversible, so the material does not heal 
and the parameter � remains constant upon unloading and 
reloading.

As it can be observed in Table 1, typically four of global 
equilibrium iterations are invested to reach a relative une-
quilibrated forces tolerance of 10−8, and there is no rel-
evant penalty in the global iterations because of damage 
evolution, i.e. the number of global iterations employed 

Fig. 17   Uniaxial tension of a rectangular plate with a concentric cir-
cular hole under a plain strain condition using the isotropic hyperelas-
tic model: deformed configuration (maximum length = 38.6 mm) and 
distributions of von Mises stress at instants, t = 10 s, t = 20 s, t = 30 
s and t = 50 s

Fig. 18   Distributions of the isotropic damage variable � at instants 
t = 10 s, t = 20 s, t = 30 s and t = 50 s
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are mainly a consequence of the nonlinear hyperelastic 
behavior.

6.3 � Orthotropic Material

We show now some illustrative examples using modi-
fied uniaxial data to represent anisotropy. To our knowl-
edge there is no work in the literature containing all the 

experimental data needed to fully define the orthotropic 
non-linear damage behavior, so assumed test data have 
been employed in this example, shown in Fig.  19. For 
compression, we have also assumed an antisymmetric 
stress distribution 𝜎̃i(−Ẽi) = −𝜎̃i(Ẽi). It should be noted 
that if the mentioned complete set of experimental data 
were available, our procedure would be able to reproduce 
“exactly” the behavior of all the curves simultaneously, 
quite regardless of the shape thereof, and that in the 
absence of a complete set, some of them can be assumed 
without affecting the goodness of the predictions for the 
other ones.

As a first demonstrative example, we have performed three 
uniaxial tests in the three principal material directions a1, a2
and a3, respectively, loading and unloading several times up 
to the maximum value of strain for which the experimen-
tal master damage curve is defined for each of the preferred 
directions of the material. In this case we have used a new 
specimen for each test. As it can be observed in Fig. 20, the 
predicted stress–strain data exactly simulate the prescribed 
experimental data for primary loading but not for unloading 
ones as we explain below. Then we have performed again 
three tests in the principal material directions but this time 
the tests have been performed on the same specimen, suc-
cessively (just one new specimen is needed). As expected, 
the results in this case, shown in Fig. 21, are different from 
the previous case and do not reproduce the primary loading 
experimental data in the last two tests since after loading in 
one direction and unloading, the material is irreversibly dam-
aged. Recall that axial components are coupled by the incom-
pressibility condition and the isotropic contribution, when 

Table 1   Convergence rates of the equilibrium iterations for the 
example of the plate with a hole. Isotropic model

Relative global convergence rates. Isotropic plate

Step (Iter) Force Energy

 10(1) 1.00E+00 1.00E+00

 10(2) 5.92E−04 1.30E−06

 10(3) 1.82E−06 9.65E−13

 10(4) 4.68E−10 3.51E−18

 20(1) 1.00E+00 1.00E+00

 20(2) 5.89E−04 1.30E−06

 20(3) 1.00E−06 5.91E−13

 20(4) 7.98E−10 5.57E−18

 30(1) 1.00E+00 1.00E+00

 30(2) 5.58E−04 1.27E−06

 30(3) 1.13E−06 6.79E−13

 30(4) 9.30E−12 6.44E−24

 50(1) 1.00E+00 1.00E+00

 50(2) 5.84E−04 1.30E−06

 50(3) 1.20E−06 4.12E−13

 50(4) 1.44E−11 2.34E−23

Fig. 19   Experimental data and 
initial uniform spline interpola-
tion. a Original stress–strain 
data and spline fit for the master 
damage curves corresponding 
to the uniaxial and shear tests. b 
Data for the master hyperelastic 
curves
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considered. However, as expected, we can see that in the third 
test (performed in the preferred direction a3), during unload-
ing the model captures accurately the experimental data cor-
responding to the master hyperelastic curve in that direction, 
as the variable of damage has reached the maximum in all 
three preferred directions. The master hyperelastic curve is 
only captured when the material has been damaged to the 
maximum in the three preferred directions. Therefore, pre-
viously, in the tests carried out on different specimens, the 
master hyperelastic curves were not reproduced as it would 
be expected. Of course, other possible definitions for the 
master hyperelastic curve are possible, and hence that curve 
will captured when the deformation procedure corresponds 
to such definition. Note that inherent to the definition of the 
master hyperelastic curve is the procedure needed to reach 
such deformation/damage state.

As a second anisotropic simulation we have prescribed a 
pure shear state, again loading and unloading several times 

to observe the Mullins effect. Some specific biaxial tests (e.g. 
plane strip tensile tests) carried out over orthotropic materi-
als lead to pure shear state for logarithmic strains in specific 
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Fig. 20   Predictions for the three uniaxial tests performed in the three 
preferred directions {a1, a2, a3} respectively, on different samples
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Fig. 21   Predictions for the three uniaxial tests performed in the three 
preferred directions {a1, a2, a3} respectively, on the same sample

(a) (b)

Fig. 22   Pure shear test in the plane ij = 12. a Representation of the 
reference configuration in principal strain basis {Ni,Nj,Nk} with 
(i ≠ j ≠ k) and ai and aj define the orientation of the material pre-
ferred directions. b Kinematics of deformation in the biaxial test and 
its associated principal stretches
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reference systems, see ref. [87]. According to this, we have 
imposed the following deformation gradient in the basis of 
principal stretches N = {N1, N2, N3}—see Fig.  22a and 
take i, j, k = 1, 2, 3

As an example, the material is loaded in tension in direc-
tion N1 and in compression in direction N2 to attain the pre-
scribed stretches. We consider a plane stress state, i.e. the 
direction N3 can be considered as free of tractions. Accord-
ingly, the Hencky strain tensor components are E1 = ln(�), 
E2 = ln(1∕�) = −E1, E3 = 0. Note that the imposed defor-
mations are isochoric. The orientation of the reference 
configuration and the orientation of the material preferred 
directions (clockwise 45° with respect to N1) are shown in 
Fig. 22 a. The deformation imposed is depicted in Fig. 22b. 
The projection of the corresponding Hencky strain ten-
sor E into the basis of the material preferred directions 
A = {a1, a2, a3} furnishes the pure shear state

Therefore, the tensor T is simply

(149)t
0
X =

⎡
⎢⎢⎣

� 0 0

0 1∕� 0

0 0 1

⎤
⎥⎥⎦
N

(150)E =

⎡⎢⎢⎣

0 E1 0

E1 0 0

0 0 0

⎤⎥⎥⎦
A

(151)T =

⎡⎢⎢⎣

0 ��
12
(E) 0

��
12
(E) 0 0

0 0 0

⎤⎥⎥⎦
A

resulting a state of pure shear also in stresses, which 
implies that for this particular test, principal directions of 
stresses and strains are coincident and thus E and T com-
mute as well as T is completely coincident with �, see [87]. 
Then, the Cauchy stress tensor expressed in the basis of 
principal stretches is

The results are shown in Fig. 23. Once again it can be seen 
as the model accurately reproduces the experimental data 
for the shear stress T12.

In order to illustrate the finite element simulation capa-
bilities of the presented orthotropic damage model, several 
numerical examples are performed over the bidimensional 
plate with a concentric circular hole made of a nearly 
incompressible orthotropic hyperelastic material in which 
the preferred material axes are not aligned with the test 
axes. As in the isotropic example, the plate is loaded about 
the x-axis in this case up to a maximum length of 40 mm. 
The volumetric contribution   to  that we have used in 
the examples is given in Eq. (148), in this particular case 
a value of k= 30 MPa has been selected to numerically 
enforce incompressibility. We have used the same mesh 
and element types as in the isotropic example. For the 
incremental (global) analysis, a Newton–Raphson scheme, 
without line searches, is also employed.

In order to appreciate the effects of anisotropy, we 
have oriented the principal material direction α = 30° 
counterclockwise away from the horizontal direction. 
The deformed shapes and von Mises stresses for differ-
ent relevant steps are shown in Fig. 24. The results of an 
equivalent hyperelastic model, not shown, are identical 
to those given in Fig. 24 for t = 10 s and t = 20 s, whereas 
the results for t = 30 s and t = 50 s are identical to those 
of t = 10 s (in accordance to the hyperelastic nature). In 
the case of the orthotropic damage model, it is seen that 
the unloading and the reloading coincide for the same 
deformation, below the maximum value reached before 
unloading.

The distributions of the damage variables �11 and �12 for 
the different selected times are shown in Figs. 25 and 26, 
where it can be seen that the most damaged locations are 
those that sustain more stress and that once a value of dam-
age is reached, the material does not heal even if the speci-
men is completely unloaded. Furthermore, the damage pat-
terns for the different � variables are in accordance which 
what would be qualitatively expected for each deformation 
mode.

(152)� = T =

⎡⎢⎢⎣

��
12
(E) 0 0

0 −��
12
(E) 0
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Fig. 23   Pure shear test prediction
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Table  2 shows that quadratic force and energy rates of 
convergence are obtained in typical steps of primary load-
ing (steps 10 and 20), unloading (step 30) and reloading 

(step 50). Execution times for the damage model are in the 
same order of the hyperelastic model because, although not 
needed, even if local iterations are used for the isotropic 
component, they represent a small amount of the total com-
putation time.

Fig. 24   Uniaxial tension of a rectangular plate with a concentric cir-
cular hole under a plain strain condition using the orthotropic hyper-
elastic damage model: deformed configurations (maximum length = 
40 mm) and distributions of von Mises stress (kPa) at instants t = 10 
s, t = 20 s, t = 30 s and t = 50 s

Fig. 25   Distributions of the damage variable �11 associated with the 
preferred direction a1 for t = 10 s, t = 20 s, t = 30 s and t = 50 s
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7 � Conclusions

In this work we have developed a WYPiWYG formula-
tion for damage mechanics in isotropic and anisotropic 

materials. We have motivated the formulation in detail 
using a one-dimensional infinitesimal example in which 
the ideas are easily exposed. It is seen that two poten-
tials may be employed, resulting respectively in frame-
works similar to those of Continuum Damage Mechanics 
and Pseudoelasticity. However, following the ideas of the 
WYPiWYG approach, no analytical functions are imposed 
in the hyperelastic and damage evolution constitutive equa-
tions. Instead, the information is extracted from a complete 
set of experimental tests, solving numerically the corre-
sponding differential equations. The procedure is purely 
phenomenological and, hence, valid for polymers and bio-
logical tissues. The formulation may be split into an iso-
tropic contribution (for example from an isotropic matrix) 
and an orthotropic one (for example from reinforcements). 
The modelling procedure is capable of capturing simulta-
neously the behavior observed in six independent experi-
ments showing Mullins effect.

We have developed the corresponding algorithmic for-
mulation, which computational time is of the same order 
than that of hyperelastic models. Finite element examples 
for both isotropic and anisotropic behavior show that the 
global equilibrium iterations are very efficient, because the 
convergence rates are equivalent to those obtained using a 
hyperelastic model without damage.
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Fig. 26   Distributions of the damage variable �12 associated with the 
shearing component in the preferred directions a1 − a2 for t = 10 s, 
t = 20 s, t = 30 s and t = 50 s

Table 2   Relative convergence rates during equilibrium iterations in 
the example of the plate with a hole. Anisotropic damage

Relative global convergence rates. Anisotropic plate

Step (Iter) Force Energy

 10(1) 1.00E+00 1.00E+00

 10(2) 8.83E−04 2.51E−06

 10(3) 4.14E−07 1.83E−13

 20(1) 1.00E+00 1.00E+00

 20(2) 8.56E−04 2.23E−06

 20(3) 4.51E−07 2.92E−14

 30(1) 1.00E+00 1.00E+00

 30(2) 8.19E−04 2.43E−06

 30(3) 3.98E−07 1.68E−14

 50(1) 1.00E+00 1.00E+00

 50(2) 8.70E−04 2.48E−06

 50(3) 4.92E−07 2.86E−14
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