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underlined. A new �-GSVR metamodel which uses gradi-
ents is given. Numerical comparisons of the metamodels 
are carried out for approximating analytical test functions. 
The experiments are replicable, as they are performed with 
an opensource available toolbox. The results indicate that 
there is a trade-off between the better computing time of 
least squares methods and the larger versatility of kernel-
based approaches.

Abbreviations
�-GSVR  �-Version of the gradient-enhanced support 

vector regression (surrogate model)
�-SVR  �-Version of the support vector regression 

(surrogate model)
�-SVR  �-Version of the support vector regression 

(surrogate model)
�k-GSVR  �k-Version of the gradient-enhanced support 

vector regression (surrogate model)
BLUP  Best linear unbiased predictor
EGO  Efficient global optimization [33]
GBK  Gradient-based kriging (surrogate model)
GEK  Gradient-enhanced kriging (surrogate model)
GEUK  Gradient-enhanced universal kriging (surro-

gate model)
GKRG  Gradient-enhanced cokriging (surrogate 

model, same as GBK, GEK and GEUK)
GLS  Generalized least square regression (surrogate 

model)
GradLS  Gradient-enhanced least square regression 

(surrogate model)
GRBF  Gradient-enhanced radial basis function (sur-

rogate model)
GRENAT  Gradient-enhanced approximation toolbox 

(Matlab/Octave’s toolbox [12])

Abstract Metamodeling, the science of modeling func-
tions observed at a finite number of points, benefits from 
all auxiliary information it can account for. Function gra-
dients are a common auxiliary information and are useful 
for predicting functions with locally changing behaviors. 
This article is a review of the main metamodels that use 
function gradients in addition to function values. The goal 
of the article is to give the reader both an overview of the 
principles involved in gradient-enhanced metamodels while 
also providing insightful formulations. The following meta-
models have gradient-enhanced versions in the literature 
and are reviewed here: classical, weighted and moving least 
squares, Shepard weighting functions, and the kernel-based 
methods that are radial basis functions, kriging and support 
vector machines. The methods are set in a common frame-
work of linear combinations between a priori chosen func-
tions and coefficients that depend on the observations. The 
characteristics common to all kernel-based approaches are 
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GSVR  Gradient-enhanced support vector regression 
(surrogate model)

IDW  Inverse distance weighting method also called 
Shepard weighting method (surrogate model)

IHS  Improved hypercube sampling (sampling 
technique [103])

InOK  Indirect gradient-enhanced ordinary kriging 
(surrogate model)

InRBF  Indirect gradient-enhanced radial basis func-
tion (surrogate model)

KRG  Kriging (surrogate model)
LOO  Leave-one-out
LS  Least square regression (surrogate model)
MLS  Moving least square regression (surrogate 

model)
MSE  Mean square error (quality criterion)
MultiDOE  Multiple design of experiments (Matlab/

Octave’s toolbox [133])
OK  Ordinary kriging (surrogate model)
OCK  Gradient-enhanced ordinary cokriging (sur-

rogate model)
RBF  Radial basis function (surrogate model)
RSM  Response surface methodology
SBAO  Surrogate-based analysis and optimization 

[18]
SVM  Support vector machine
SVR  Support vector regression (surrogate model)
WLS  Weigthed least square regression (surrogate 

model)
MARS  Multivariate adaptive regression splines (sur-

rogate model)
ANN  Artificial neural network (surrogate model)
LHS  Latin hypercube sampling (sampling 

technique)
OA  Orthogonal array (sampling technique)
UD  Uniform design (sampling technique)
RAAE  Relative average absolute error (quality 

criterion)
RMSE  Root mean square error (quality criterion)
RMAE  Relative maximal absolute error (quality 

criterion)
LOOCV  Leave-one-out cross-validation

1 Introduction

Despite continuous progress in the accuracy of experi-
mental measurements and numerical simulations of the 
physics of a considered system, the need for metamodels 
keeps increasing. Metamodels are statistical or functional 
models of input–ouput data that are obtained either from 
experimental measures or from the numerical simula-
tion of the associated physical phenomena. Metamodels 

are sometimes called surrogates, proxies, regression func-
tions, approximating functions, supervised machine learn-
ers or are referred to with specific names such as the ones 
described later in this article. Although not directly linked 
to the physics, metamodels have proven to be necessary 
for creating simple, computationally efficient associations 
between the input and output of the considered phenomena. 
For example, in materials sciences input may be material 
properties or boundary conditions and outputs are displace-
ments, forces, temperatures, concentrations or other quan-
tities at specific locations; in design, inputs may be the 
parameters describing a shape or a material and outputs 
specific measures of performance such as mass, strength, 
stiffness; in geophysics inputs may be parameterized 
descriptions of the underground (permeabilities, faults, res-
ervoir shapes) and the outputs quantities observed at the 
surface (flow rates, displacements, accelerations, gravity). 
Typically, actual or numerical experiments are costly in 
terms of time or other resources, in which case metamod-
els are a key technology to perform optimization, parameter 
identification and uncertainty propagation.

Infering nonlinear relationships requires large amount 
of data particularly when the number of input param-
eters grows (the “curse of dimensionality” [1]) so that it 
is important to use all available additional information. 
Gradients, i.e., derivatives of the outputs with respect 
to the inputs, are one of the most common and most use-
ful side knowledge to be accounted for when building the 
metamodels: many finite elements codes have implemented 
adjoint methods to calculate gradients [2–4]; automatic 
differentiation is another solution for computing gradients 
[5–7]; there are responses such as volumes for which ana-
lytical gradient calculation is accessible.

Accounting for gradients when building metamod-
els often allows to decrease the necessary number of data 
points to achieve a given metamodel accuracy, or equiva-
lently, it allows to increase the metamodel accuracy at a 
given number of data points. When guessing a function 
with a locally changing behavior (a non stationary process 
in the probability terminology) from a sparse set of obser-
vations, the traditional regression techniques relying only 
on the function values will tend to damp out local fluctua-
tions. This is because useful regression methods comprise 
regularization strategies that make them robust to small 
perturbations in the data. Accounting for gradients is a way 
to recover some of the meaningful local fluctuations. The 
need for gradient information has been acknowledged in 
geophysics for reconstructing a gravity field from stations 
measurements when the underground is subject to local 
changes [8, 9]. Further illustrations of the interest of gradi-
ents will be given in Sect. 10.

The purpose of this article is to review the various 
approaches that have been proposed to create metamodels 
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with zero order and gradient information. A global view is 
first developed. Section 2.1 is a general introduction to met-
amodeling which may be skipped by readers familiar with 
the concept. After a Section presenting the main notations, 
Sect. 2.3 synthetizes into a unique framework the different 
techniques which will be covered in the review. A generic 
idea, which can be applied to any surrogate, for indirectly 
using gradients is summarized in Sect. 3.

The article then details, in turn, each gradient-enhanced 
method: the large family of least squares approaches are the 
focus of Sect. 4; Shepard weighting functions are summa-
rized in Sect. 5. All the methods covered later are based on 
kernels. After summarizing the main concepts behind ker-
nels in Sect. 6, we provide details about gradient-enhanced 
radial basis functions (Sect. 7), kriging (Sect. 8) and sup-
port vector regression (Sect.  9). Note that the formula-
tion of the gradient-enhanced support vector regression (�
-GSVR) proposed in part 9.4 is a new contribution. Multi-
variate cubic Hermite splines [10, 11] are not discussed in 
this review as they seem to date to remain a topic of math-
ematical research.

Finally, the different methods are applied and compared 
on analytical test functions in Sect. 10. The ensuing analy-
sis of results and presentation of related softwares should 
help in choosing specific gradient-enhanced techniques. All 
methods described in this article have been implemented 
and tested with the opensource matlab/octave GRENAT 
Toolbox [12].

2  Build, Validate and Exploit a Surrogate Model

2.1  Surrogates and Their Building in a Nutshell

In many contexts, the observation of the response of a para-
metrized system can be done only for a few parameters 
instances, also designated as points in the design space. A 
solution to getting an approximate response at non-sampled 
parameter instances is to use a metamodel (or surrogate). 
A metamodel is a doubly parameterized function, one set 
of parameters being the same as that of the studied system 
(i.e., the coordinates of the points), the other set of param-
eters allowing further control of the metamodel response 
to give it general representation abilities. For simplic-
ity’s sake, parameters of the second set will be designated 
as internal parameters. The building of the metamodel 
involves tuning its internal parameters in order to match, in 
a sense to be defined, the observations at the points.

The simplest metamodels are polynomials tuned by 
regression, which are part of the response surface method-
ology (RSM [13]) for analyzing the results of experiments. 
For dealing with an increase in nonlinearity of the func-
tion, rising the degree of the polynomial could seem to be 

a solution. However, oscillations appear and the number of 
polynomial coefficients, nt, to be set grows rapidly, as

where np is the number of parameters and d◦ is the degree 
of the polynomial. This is why other techniques for approx-
imating functions such as parametric kernel-based meta-
models have received much attention.

The literature is already rich in contributions present-
ing and detailing surrogates models [14–23]. Hereafter, the 
basic steps in building and using surrogate models are sum-
marized (see also Fig.  1):

– Initial data generation Sampling strategies generate 
points in the design space (using, for instance, Latin 
Hypercube Sampling [24]). The responses of the actual 
function are calculated at each instance of the param-
eters. In many cases, this step is computationally inten-
sive because the actual function involves a call to, typi-
cally, solvers of partial differential equations. Details on 
sampling techniques can be found in [25–27].

– Build the metamodel Because data is sparse, parametric 
surrogate models (which are reviewed in the rest of this 
paper) are used. This step mainly means determining 
the model internal parameters.

– In many situations and in particular for optimization, 
enrichment (or infill) strategies are used for adding 
points to the initial set of sample points. Enrichment 
strategies post-process the current surrogate. An exam-
ple of infill method for optimization is the Expected 
Improvement [28, 29].

– Finally the quality of the surrogate model is measured 
using dedicated criteria (such as R2 or �3, cf. Sect. 10).

At the end the building process and during the infill 
steps the surrogate can provide inexpensive approximate 
responses and gradients of the actual function. For a large 
number of sample points and/or a large number of param-
eters, the building of a surrogate can be (computer) time 
consuming but it is typically less expensive than a nonlin-
ear finite elements analysis.

In the context of optimization, metamodels are often 
used for approximating objective or constraint functions 
and the approximation contributes to localizing the poten-
tial areas of the optimum. For efficiency in optimization, 
metamodels are not made accurate in the whole design 
space but only in potentially good regions. Such family of 
approaches is designated as surrogate-based analysis and 
optimization (SBAO) [18]. It is composed of optimiza-
tion algorithms that rely on a metamodel, a classical opti-
mization algorithm and an infill strategy. SBAO presents 

(1)nt =

(
np + d◦

d◦

)
=

(np + d◦)!

np! d
◦!
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some similarities with Trust-Region methods [30] in the 
use of metamodels. However Trust-Region methods focus 
on proved rapid local convergence whereas SBAO targets 
globally optimal points. In SBAO the infill strategy looks 
for global optima by sequentially optimizing a criterion that 
is calculated directly with the metamodel (saving calls to 
the true functions) and that is a compromise between explo-
ration and search intensification: exploration means adding 
points at badly known areas of the design space, intensifica-
tion (also referred to as exploitation) means adding points 
in regions where one expects good performance. Among 
the many existing criteria [31, 32], Expected Improvement 
and related criteria [28, 29] are the most common and have 
led to the efficient global optimization algorithm (EGO) 
[33]. Thus, the use of surrogates in optimization is itera-
tive: each step of SBAO algorithms includes (i) building 
a surrogate followed by (ii) optimizing an infill criterion 
based on the surrogate and then (iii) calling the actual sim-
ulation at the point output by the infill subproblem.

We now turn to the focus of this review that is gradi-
ent-enhanced metamodels also designated as gradient-
assisted or gradient-based metamodels. The next sections 
present our notations and a global framework for gradient-
enhanced metamodels.

2.2  Main Notations

Let us consider an experiment parameterized by np continu-
ous values grouped in the vector x(i). np if often known as 
the dimension of the (approximation or optimization) prob-
lem. The scalar output, or response, of the experiment is 
the function y(⋅). The notation x(i) designates both sample 
points (i ∈ [[1, ns]]) and any non sampled point (i = 0). The 
vectors of responses (also sometimes called observations) 

and gradients calculated at all sample points are denoted yg 
and are assembled according to Eqs. (2)–(5).

with

where

More generally, a function y and its derivatives is writ-
ten using the following index notations: y,i, y,ij... where i 
and j take values in [[0, np]] such as

Finally, the notation ∙̃ designates the approximation of the 
quantity of interest ∙ provided by the metamodel. Bold 

(2)yg =
[
y⊤
s
y⊤
gs

]⊤
,

(3)ys =
[
y1 y2 … yns

]⊤
,

(4)ygs =
[
y1,1 y1,2 … y1,np y2,1 … yns,np

]⊤
,

(5)
∀(i, k) ∈ [[0, ns]] × [[1, np]],

yi = y
(
x(i)

)
, yi,k =

�y

�xk

(
x(i)

)
.

(6)y,i(x) =

{
y(x) if i = 0,
�y

�xi
(x) if i ∈ [[1, np]];

(7)y,ij(x) =

⎧
⎪⎪⎨⎪⎪⎩

y(x) if i = j = 0
�y

�xi
(x) if i ∈ [[1, np]] and j = 0,

�y

�xj
(x) if j ∈ [[1, np]] and i = 0,

�2y

�xi�xj
(x) if (i, j) ∈ [[1, np]]

2.

Fig. 1  Schematic representa-
tion of the building process of a 
surrogate model (adapted from 
[21])
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fonts mean vectors and matrices. ‖∙‖ denotes the Euclidian 
distance.

2.3  Introduction to Gradient‑Enhanced Metamodels

This review article focuses on metamodels that, in addi-
tion to using and describing the responses, also use and 
model the gradient of the response with respect to the x 
parameters. Henceforth, for each sample point the value of 
the function and the gradients are supposed to have been 
observed. The following approaches will be covered: indi-
rect approaches, least squares techniques (LS), weighted 
least squares (WLS), moving least squares (MLS), the 
Shepard weighting function (IDW), radial basis functions 
(GRBF), cokriging (GKRG) and support vector regression 
(GSVR). In these last acronyms, G stands for gradient-
enhanced. A condensed view of the main references on 
which the next sections are based is given in Table 1.

Before precisely introducing each gradient-based surro-
gate, we give a common description of all the techniques 
(that can also be used for describing non-gradient-based 
models). It is noteworthy that all the surrogates discussed 
in this paper are obtained by linear combination of “coef-
ficients” and “functions” that we will define soon. The 
approximation ỹ of an actual function y can be calculated 
as follows:

� designates the internal parameters of the surrogate 
model. The terms A(), B(), and C() are specific to each kind 
of surrogate model but share common defining properties. 
A() is the trend term whose goal is to represent the main 
(average, large scale) features of the function y(). The B()’s 
are “functions” and the C()’s are “weighting coefficients”. 
The B() functions are chosen a priori in the sense that, 
assuming � is fixed, they do not depend on the observed 
responses, y

(
x(i)

)
 and their derivatives, �y

�xj

(
x(i)

)
. However, 

(8)

∀x(0) ∈ , ỹ
(
x
(0)
)
= A

(
x
(0)
; yg,�

)
+

M∑
j=0

N∑
i=1

Bij

(
x
(0)
;�

)

× Cij

(
x
(0)
; yg,�

)
.

the B() functions can depend on the locations of the sample 
points, x(i), i = 1,… , ns. The B() functions are typically 
user inputs to the methods.

In contrast, the C() coefficients are calculated from the 
observations y

(
x(i)

)
 and �y

�xj

(
x(i)

)
, so that their linear combi-

nation with the B() functions, eventually added to the trend, 
makes an approximation to y(), as stated in Eq.  (8). The 
coefficients are the weights in the linear combination of the 
B() functions. For example, if one expects that the response 
(for np = 1) is proportional to 1/x plus a quadratic term one 
could a priori choose B1(x) = 1∕x and B2(x) = x2 and cre-
ate a simple approximation with constant coefficients 
y
�
x(0)

�
≈

∑nt
i=1

CiBi(x
(0)). The Ci’s are then calculated 

from the observations, which in our context include both 
the response function and its derivatives at the sampled 
points, for example so that the approximation fits the obser-
vations in a least squares sense. When there is no a priori 
on the B() functions, a generic choice is made: basis func-
tions (e.g., polynomials) for LS, arctan for neural networks, 
kernels evaluated at a given x(i) in kernel methods (GRBF, 
GKRG, GSVR here).

More generally, surrogates can be created by looking, at 
each x(0), for the “best” (in a certain sense) linear combi-
nation of the B()’s, in which case the coefficients depend 
on x(0). The simplest template of such a surrogate would be 
y
(
x(0)

)
≈ 
∑ns

i=1
similarity

�
x(i), x(0)

�
y
�
x(i)

�
 where Bi

(
x(0)

)
 is 

a measure of similarity between x(0) and x(i) (not detailed 
here) and the coefficients Ci() are y

(
x(i)

)
. IDW and the ker-

nel methods (GRBF, GKRG and GSVR) are refined exam-
ples of such surrogates.

Although mathematically equivalent to a single sum-
mation, the double summation in Eq.  (8) emphasizes the 
specific structure of gradient-enhanced surrogates: in all 
kernel-based surrogates, the index i describes the sample 
point considered (therefore N = ns) while j represents the 
variable with respect to which the derivatives are taken, 
j = 0 standing for the response without differentiation, (and 
M = np).

Table  2 summarizes the expressions of the trend, the 
functions and the coefficients such as they will appear later 
in the text. Note that all metamodels but LS have internal 
parameters, �, that, as with non-gradient-enhanced meta-
models, are computed from the known points (x(i), y(x(i))), 
and �y

�xj

(
x(i)

)
 here, i = 1, ns, in a manner which is specific to 

each surrogate. For the sake of clarity, the difference 
between the functions B() and the coefficients C() is made 
assuming that � is fixed, otherwise there is no clear general 
mathematical difference between them.

The methods that will be presented are organized in two 
groups, the kernel-based methods from Sect. 6 onward, and 
the rest (before). They can be distinguished in the same 
way as the two above examples. Kernel-based methods are 

Table 1  Summary of the main references on gradient-based meta-
models

Grad.-based metamodels References

GKRG [34–63]
GRBF [46, 54, 56–59, 64–67]
GSVR [54, 68–73]
IDW [43, 46, 74]
LS [75]
MLS [76, 77]
WLS [75, 78–80]
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built from the specification of a kernel, i.e., a function with 
two inputs that quantifies the similarity between what hap-
pens at these two inputs. The other approximations, which 
in this review are mainly variants of least squares, are made 
from a priori chosen single input functions that are linearly 
combined. Despite fundamental differences in the way they 
are constructed, many equivalences can be found between 
the methods: generalized least squares also have a kernel 
which is given at the end of Sect. 4.2; vice versa, the ker-
nels of the GSVR are implicitely products of functions and 
the GSVR approximation is a linear combination of them 
like that of least squares; the approximate responses of 
GRBF and GKRG have the same form [Eqs. (72) and (89) 
without trend are equivalent]. These connections are fur-
ther detailed in the paper. As a last common feature of the 
methods presented, it is striking that all the approaches but 
GSVR approximate the response by a linear combination 
of the observations yg, provided the internal parameters � 
are fixed.

The calculation of the approximate gradients will be 
achieved by deriving Eq.  (8), i.e., calculating ỹ,k(�), which 
is possible if A, Bij and Cij are differentiable functions. One 
could think of other ways to build ỹ,i(�), like learning them 
directly from the gradient data ygs independently from the 
response ys, but such techniques are instances of the usual 
metamodel building (just applied to the gradients) and are out 
of the scope of this review.

In practice, it is common to only have access to some of 
the components of the gradient of the response. ỹ,k(�) would 
be known while ỹ,l(�), k ≠ l, would not. All the techniques 
reviewed in this article apply only to the components where 
the derivatives are known. However, to keep notations sim-
ple, the derivations will always be carried out for all of the 
variables, as if all components of the gradient were acces-
sible. Further remarks about missing data and higher order 
derivatives are given in Sect. 10.5.

3  Indirect Gradient‑Based Metamodels

For taking into account the derivative information of the 
response in the making of a metamodel, the most basic idea is 
to use a first order Taylor’s series at sample point x(j) to gener-
ate additional data points. For each sample point, for each of 
the np parameters, a neighboring point is created,

where ek is an orthonormal basis vector of the design space. 
Under the assumption that Δxk remains small (|Δxk| ≪ 1), 
the Taylor’s serie provides the extrapolated value of the 
function y at the neighboring point:

(9)∀(i, k) ∈ [[1, ns]] × [[1, np]], x
(i) + Δxkek,

(10)y
(
x(i) + Δxkek

)
≈ y

(
x(i)

)
+

�y

�xk

(
x(i)

)
Δxk.

Table 2  Global framework for gradient-enhanced surrogates: definition of trends, a priori functions and coefficients as in Eq. (8)

LS least squares, WLS weighted least squares, MLS moving least squares, IDW Shepard weighting function, GRBF gradient-enhanced radial 
basis function, GKRG cokriging, GSVR gradient-enhanced support vector machine

Metamodel A Bij Cij M N � tuning Comments Sec-
tions

LS 0 fi
(
x(0)

)
�i 0 nt No � fi’s freely chosen, �’s from Eq. (19) 4.1

WLS 0 fi
(
x(0)

)
�i(�) 0 nt From external knowledge fi’s freely chosen, the �’s follow 

Eq. (26)
4.2

MLS 0 fi
(
x(0)

)
�i
(
x(0);�

)
0 nt Cross-validation or manually chosen fi’s freely chosen, the �’s minimize the 

error Eq. (35)
4.3

IDW 0 Wj

(
x(0);�

)
Qj

(
x(0)

)
0 ns Neighborhood radius set from sam-

ple points positions Interpolating, cf. Eq. (41) for Wj and 
Eq. (44) for Qj

5

GRBF 0 �i,j

(
x(0);�

)
wij(�) np ns Cross-validation Interpolating, �i,j are kernels and their 

derivatives, wij solution of Eq. (62)
7

GKRG f⊤
0
�̂

(
r0

⊤
c
K−1

c

)
I(i,j)

(
yg − Fc�̂

)
I(i,j)

np ns Max. likelihood Interpolating with a trend, universal 
kriging in Table 6. I(i, j) is the 
proper index in the vector product. 
r0

⊤
c
K−1

c
 depends on the kernel and 

point positions, not on responses

8

GSVR �(�) �i,j

(
x(0);�

)
�ij(�) np ns Bound on cross-validation error cf. Eq. (100), �ij solutions to Prob-

lem 2, �i,j indirectly specified 
through kernel choice

9



67An Overview of Gradient-Enhanced Metamodels with Applications  

1 3

Finally the non-gradient based metamodel can be built with 
ns × (np + 1) sample points and associated responses.

This approach has been used with kriging approxima-
tion [43, 48, 81] and has been called “Indirect Cokriging”. 
The main drawback of this method is that it requires a good 
choice of the Δxk parameters: if the value is too small, the 
kriging correlation matrix can be ill-conditioned and too 
large a value leads to a degraded extrapolation by Taylor’s 
expansion. In both cases, the metamodel provides an incor-
rect approximation. In previous works, Liu [81] used maxi-
mum likelihood estimation for estimating the value of each 
parameter Δxk and in [48], the Δxk are chosen equal to 10−4.

The indirect gradient-based approach does not scale well 
with dimension as the number of sample points is multi-
plied by np + 1 when compared to a direct approach. More-
over, because the np new sample points are very close to 
the initial sample point, numerical issues (such as the bad 
conditioning of covariance matrices in KRG) occur that 
complicate the determination of the internal parameters. 
Regularization or filtering techniques should be brought 
in. Therefore, indirect gradient-based approaches should 
only be used in low dimension and for problems where 
dedicated techniques for determining Δxk and the inter-
nal parameters exist. In other cases, it is better not to use 
gradients or to opt for a direct gradient-based approach. 
Examples of indirect gradient-based Kriging and RBF are 
proposed in Figs. 6 and 9. In these figures, the derivatives 
of RBF and KRG are determined analytically by deriving 
their predictors. In such low dimension, the indirect gradi-
ent-based approaches, InRBF and InOK, seem to perform 
as well as the direct gradient-based approaches, GRBF 
and OCK, in terms of approximating the true response 
derivative, dy/dx(x). However, as will be seen in Sect.  10 
(Figs. 23 and 25), such indirect strategies are not competi-
tive in higher dimensions.

4  Least Squares Approaches

4.1  Non Weighted Least Squares (LS and GradLS)

Least squares regression is the most common technique for 
approximating functions. Mainly applied in the context of 
response surface methodology (RSM [13]), the classical 
regression [82] can be extended for taking into account gradi-
ent information [75]. In this text, the acronym LS designates 
least squares regression without the use of gradients and Gra-
dLS is the gradient-enhanced version of it. Notice that this 
acronym differs from GLS that will designate generalized 
least squares.

The linear model used for gradient-based formulations 
remains the same as for non-gradient-based versions:

but this time the vector yg contains ns × (np + 1) terms 
(responses and gradients), the matrix F contains evalua-
tions of the nt a priori chosen functions fj and their deriva-
tives at each sample points x(i), the vector � contains nt pol-
ynomial regression coefficients �j, and the vector � is made 
of the ns × (np + 1) errors of the model.

For gradient-based least squares models, at each point {
x(i), y

(
x(i)

)
,
dy

dx
(x(i))

}
, np + 1 errors can be written:

The matrices and vectors of Eq.  (11) are now further 
defined:

where

The sizes of the previous matrices Fs and Fgs are ns × nt and 
npns × nt, respectively.

The metamodel is built by determining the vector �̂ 
which minimizes the following mean squares error:

Minimizing MSE over � yields the function approximation,

(11)yg = F� + �,

(12)
∀(i, k) ∈ [[1, ns]] × [[1, np]], ∀x(i) ∈ ,

𝜀i = y
(
x
(i)
)
− ỹ

(
x
(i)
)
,

(13)𝜀ik =
𝜕y

𝜕xk

(
x(i)

)
−

𝜕ỹ

𝜕xk

(
x(i)

)
.

(14)F =
[
F⊤
s
F⊤
gs

]⊤
,

(15)
� =

[
𝛽1 𝛽2 … 𝛽nt

]⊤
� =

[
𝜀1 … 𝜀ns 𝜀11 𝜀12 … 𝜀1np 𝜀21 … 𝜀nsnp

]⊤

(16)Fs =

⎡⎢⎢⎢⎣

f1
�
x(1)

�
… fnt

�
x(1)

�
⋮ ⋱ ⋮

f1

�
x(ns)

�
… fnt

�
x(ns)

�
⎤⎥⎥⎥⎦
,

(17)Fgs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�f1

�x1

�
x(1)

�
…

�fnt

�x1

�
x(1)

�
⋮ ⋱ ⋮

�f1

�xnp

�
x(1)

�
…

�fnt

�xnp

�
x(1)

�
�f1

�x1

�
x(2)

�
…

�fnt

�x1

�
x(2)

�
⋮ ⋱ ⋮

�f1

�xnp

�
x(ns)

�
…

�fnt

�xnp

�
x(ns)

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)MSE(�) =

ns∑
i=1

[
�2
i
+

np∑
k=1

�2
ik

]
=
‖‖‖F� − yg

‖‖‖
2

2
.
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where

This metamodel leads to the familiar expression of regres-
sion approximation. Notice however that here, the gradients 
affect the coefficients �̂.

The derivation of the GradLS model by minimization of 
the quadratic norm MSE can be interpreted as making the 
orthogonal projection of the vector of observed responses 
and gradients yg onto the space spanned by the columns of 
F. The result of the orthogonal projection is F�̂. The pro-
jection is itself defined by the inner product it relies on. In 
least squares without derivatives, the inner product is the 
usual dot product between vectors in an Euclidean space. 
Accounting for derivatives extends this inner product to an 
inner product in a Sobolev space [83]:

where the g, s and gs subscripts have the same meaning 
as above with F. While both inner products account for 
the euclidean distance between the response and the meta-
model, the Sobolev inner product further accounts for the 
difference in response and metamodel regularities through 
their gradients. In other words, the usual geometrical inter-
pretations of least squares generalize to the least squares 
with derivatives formulation of Eq.  (18) by moving from 
the Euclidean inner product to a product with additional 
derivative terms.

The derivatives of the GradLS approximation are 
directly obtained by deriving Eq. (19),

As required for building the gradient-enhanced least 
squares model, the functions fj must be differentiable at 
least once.

Although the empirical mean square error Eq. (18) can 
be reduced by increasing the degree of the polynomial 
basis, ỹ() will increasingly oscillate between the ns data 
points, which degrades the prediction quality. This oscil-
latory phenomenon, known as Runge’s phenomenon [84], 
is illustrated in Figs.   2a and   3d in 1 and 2 dimensions, 
respectively. Runge’s oscillations are mitigated when the 
actual function is polynomial, the number of sample points 
ns increases, when gradients are accounted for like here, or 

(19)∀x(0) ∈ , ỹ
(
x(0)

)
= f

(
x(0)

)
�̂,

(20)f
(
x(0)

)
=
[
f1
(
x(0)

)
… fnt

(
x(0)

)]
,

(21)�̂ =
(
F⊤F

)−1
F⊤yg.

(22)

∀ (ug, vg), ⟨ug, vg⟩ = ⟨us, vs⟩ + ⟨ugs, vgs⟩ =
ns�
i=1

uivi +

ns�
i=1

np�
k=1

ui,kvi,k ,

(23)∀k ∈ [[1, np]], ∀x
(0) ∈ ,

𝜕ỹ

𝜕xk

(
x(0)

)
=

𝜕f

𝜕xk

(
x(0)

)
�̂ ,

when a regularization strategy is added to the MSE minimi-
zation. For example, when approximating a 4th degree pol-
ynomial function using sufficiently many sample points in 
a dimension low enough so that Eq. (19) can be computed, 
a 4th degree least squares approach is exact. Regarding the 
effect of gradients, observe in Figs.   2b and 3g how gra-
dient-enhanced least squares have a more stable response 
than LS which only uses function values.

4.2  Generalized Least Squares (GLS)

Initially introduced for addressing the uncertainties and 
correlations in measured responses, generalized least 
squares (GLS) follow the same logic as the previous LS 
and GradLS models except that weights are introduced in 
the error, MSE. The generalized least squares error which 
incorporates gradient information now reads [75, 78–80],

where Ws and Wgs are positive definite weight matri-
ces. The minimization of the error leads to the regression 
coefficients,

where F and yg are the same as in the GradLS approach 
(see above) and Wg = diag

[
Ws Wgs

]
. The weighted least 

squares (WLS) [82] approach is a special case of the gener-
alized least squares (GLS) where Wg is a diagonal matrix. 
Note that Eq.  (26) encompasses traditional GLS without 
gradients by setting Wgs = 0.

In traditional GLS (models without gradients), the defi-
nition of the weight matrix Ws depends on the context of 
the study:

– If no a priori information on the covariance structure is 
available, the weights can come from a chosen weight-
ing function R(): Ws =

[
R(x(i) − x(j))

]
1≤i,j≤ns

. R() must 

be such that Ws is positive definite, a condition shared 
with kernels and further discussed in Sect. 6.

– If a covariance structure is known: Ws = C−1 where 
C =

[
cov

[
Y
(
x(i)

)
, Y

(
x(j)

)]]
1≤i,j≤ns

. In the case of uncor-

related errors, C is reduced to the diagonal matrix 
diag[ �1 �2 … �ns ] where �i = Var[�i], and GLS 
degenerates into WLS.

(24)
E(�) =

(
ys − ỹs

)⊤
Ws

(
ys − ỹs

)
+
(
ygs − ỹgs

)⊤
Wgs

(
ygs − ỹgs

)

(25)E(�) =
(
yg − ỹg

)⊤
Wg

(
yg − ỹg

)
,

(26)�̂ =
(
F⊤WgF

)−1
F⊤Wgyg,
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The geometrical interpretation of gradient-enhanced GLS 
is similar to that of GradLS made in the previous Section, 
the only difference being that the projection of the vector 
of observations onto the space spanned by the regression 
functions is no longer orthogonal but oblique, following the 
null space of the projection matrix F�̂, �̂ given by Eq. (26).

In [78], normalization methods are proposed for calcu-
lating the weight matrices of gradient-enhanced GLS:

• A standard normalization of responses and gradients 
where 

(27)Ws = diag

[
�1

y2
1

…
�ns

y2
ns

]
,

(28)

Wgs = diag
[
w1 … w1 w2 … … wns

]
with wi =

�i�i

�i
.

 The coefficients �i and �i are meant to balance the 
influence of the derivatives and responses at each sam-
ple point, respectively. �i are normalization coefficients 
calculated as 

 In this case, Ws contains ns non-null terms and the 
diagonal of Wgs contains ns blocks of np terms, 

�i�i

�i
.

• A normalization using logarithmic derivatives where 
Ws is like that of the standard normalization above and 

(29)�i =

np∑
k=1

�y
(
x(i)

)
�xk

.

(30)

Wgs = diag
[
w1 … w1 w2 … … wns

]
with wi =

�i�i�
2
i

y2
i

.

Fig. 2  Response-only and 
gradient-enhanced least squares 
(LS and GradLS) with polyno-
mials of degrees (d◦) 1, 2, 4, 6 
and 8. The actual function is 
y(x) = 1∕(1 + 25x2), it is com-
puted at ns = 9 sample points

Sampling y(x) d◦ = 1 d◦ = 2
d◦ = 4 d◦ = 6 d◦ = 8
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 The �k coefficients, which are further described in 
[78], are based on the logarithmic derivatives intro-
duced in [85]. �i and �i have the same expressions as in 
the standard normalization.

To close the presentation on gradient-enhanced generalized 
least squares, following [86], we show how the approach 
can be looked at as a kernel-based method. This comment 
uses explanations given in Sect. 8 so that readers not famil-
iar with kernels as covariances of Gaussian processes may 
wish to read that Section first. The kernel is the covariance 

between two responses at different locations when the 
responses are considered as random processes,

This relation is the expression of the kernel associated to 
the gradient-enhanced GLS. It is obtained assuming that 
the responses are centered (i.e., �[Y(x)] = 0) and the weight 
matrix is the inverse covariance of the responses and their 

(31)

cov
[
Ŷ(x), Ŷ(x�)

]
= cov

[
f(x)�̂, f

(
x�
)
�̂
]
= �

[
f(x)�̂�̂

⊤
f
(
x�
)⊤]

= f(x)
(
F⊤WgF

)−1
f
(
x�
)⊤
.
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Fig. 3  Rosenbrock’s function, response-only and gradient-enhanced least squares approximations (LS and GradLS) from polynomials of degree 
9 built using ns = 25 sample points
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derivatives, W−1
g

= �

[
�g�

T
g

]
. It can then be checked that 

by using this kernel in the general prediction equation of 
kriging [with a null trend, see Table 6, or equivalently the 
GRBF prediction formula Eq. (72)],

one gets back the GLS prediction formula, 
ỹ
(
x(0)

)
= f

(
x(0)

)
�̂ with �̂ given by Eq. (26).

4.3  Moving Least Squares (MLS)

Classical response surface methods like LS, GradLS or 
GLS approximate functions by combining once and for 
all a priori functions, fi() , i = 1,… , nt, that are globally 
defined throughout the design space. When it is not pos-
sible to decide beforehand which functions to combine, as 
it is the case when the function is expected to have local 
variations, it can be useful to proceed with local approxi-
mations. For example, it was proposed in [87] to apply the 
classical RSM in neighborhoods of the points of interest. 
moving least squares (MLS) [88] is a generalization of 
GLS that builds a different metamodel at each x(0):

The difference with previous approximations lies in the non 
constant regression coefficients �̂

(
x(0)

)
 [compare Eqs. (19) 

and (33)]. Like other least squares techniques, the gradient-
based MLS (also designated as Hermite version of MLS) 
[76, 77] is built by minimizing an error function, which 
here is

The weights wij

(
x(0)

)
 and wijlk

(
x(0)

)
 depend of the location 

of x(0). These coefficients have the following properties:

(32)
ỹ
(
x(0)

)
=
[
cov

[
Y
(
x(0)

)
, Y

(
x(1)

)]
,… , cov

[
Y
(
x(0)

)
, Y

(
x(ns)

)]]
C−1yg ,

(33)∀x(0) ∈ , ỹ
(
v(0)

)
= f

(
x(0)

)
�̂
(
x(0)

)
.

(34)

E
(
�; x(0)

)
= 𝛼

ns∑
i,j=1

wij

(
x(0)

)
𝜀i𝜀j + (1 − 𝛼)

ns∑
i,j=1

np∑
k,l=1

wijkl

(
x(0)

)
𝜀ik𝜀jl

=
(
ys − ỹs

)⊤
WMs

(
x(0)

)(
ys − ỹs

)

+
(
ygs − ỹgs

)⊤
WMgs

(
x(0)

)(
ygs − ỹgs

)

(35)E
(
�; x(0)

)
=
(
yg − ỹg

)⊤
WM

(
x(0)

)(
yg − ỹg

)
.

(36)
∀x(0) ∈ , ∀(i, j, k, l) ∈ [[1, ns]]

2 × [[1, np]]
2,

wij

�
x(0)

�
=

�
h(‖x(i) − x(0)‖) if i = j,

0 if i ≠ j,

(37)wijkl

�
x(0)

�
=

�
hkl(‖x(i) − x(0)‖) if i = j and k = l,

0 if i ≠ j or k ≠ l,

where h() and hkl() are weight functions. Although 
different weight functions could be chosen for the 
responses and gradients, the simplest solution is to take 
∀(k, l) ∈ [[1, np]]

2, hkl(r) = h(r) (see [76]). � is a coefficient 
for managing the influence of the derivatives. � = 1 leads to 
a MLS approximation without gradients.

The matrix ��

(
�(0)

)
 is diagonal, 

��

(
�(0)

)
= diag

[
�Ms

(
�(0)

)
�Mgs

(
�(0)

)]
, where WMs

(
x(0)

)
 

and WMgs

(
x(0)

)
 are ns × ns and nsnp × nsnp matrices, 

respectively:

The weight functions are non-negative piecewise functions 
chosen among the non-exhaustive list provided in Table 3.

Finally, the MLS surrogate value at a non-sampled point 
x(0) is given by Eq.  (33) where the coefficients �̂

(
x(0)

)
 are 

obtained by minimizing the weighted mean squares error of 
Eq. (35). Because the computation of these coefficients has to 
be done at each requested new point, MLS are computation-
ally more expensive than other least squares techniques.

5  Shepard Weighting Function (IDW)

Also designated as inverse distance weighting method (IDW), 
the Shepard weighting method was introduced in [91]. The 
gradient-enhanced version of [46] is based on the modified 
Shepard Weighting method of [74]. The IDW approximation 
to the function is written as local linear combinations of local 
approximations to the true function around point x(i), Qi(). 
Initially chosen as a quadratic function in [74], Qi() are taken 
here as the first order Taylor approximation at the sampled 
point x(i) for the gradient-enhanced version of IDW [43, 46].

The IDW metamodel is formulated as,

The relative weights,

are made of the inverse distance functions,

(38)

∀ ∈ [[1, ns]],

WMs

(
x(0)

)
= � diag

[
w11

(
x(0)

)
w22

(
x(0)

)
… wnsns

(
x(0)

)]
,

(39)
WMgs

(
x(0)

)
= � diag

[
w1111

(
x(0)

)
w1122

(
x(0)

)
… w11npnp

(
x(0)

)]
.

(40)∀x(0) ∈ , ỹ
(
x(0)

)
=

ns∑
j=1

Wj

(
x(0)

)
Qj

(
x(0)

)
.

(41)
Wj(�

(0)) =
Wj

(
�(0)

)
ns∑
k=1

Wk

(
�
(0)
) ,
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where ∀d ∈ ℝ, (d)+ = max(0, d), and Rw is a radius of 
influence around x(j). The weight functions Wj are such 
that Qj(x) has an influence on the approximation only in a 
(hyper)sphere of center x(j) and radius Rw. Rw is set so that 
the hypershere includes Nw sample points. A discussion on 
Rw and Nw can be found in [74].

The weight functions of Eqs.  (41) and (42) have the fol-
lowing properties:

The function Qj(x) is a first order Taylor approximation of 
y at x(j),

The IDW approximation interpolates responses and gradi-
ents of the actual function at the sample points. To prove it, 
the IDW prediction and its derivatives are now calculated 
at the sample points:

(42)Wj(x) =

[(
Rw − ‖‖x − x(j)‖‖

)
+

Rw
‖‖x − x(j)‖‖

]2

,

(43)
∀(i, j) ∈ [[0, ns]] × [[1, ns]], ∀x

(i) ∈ ,

Wj

(
x(i)

)
= �ij =

{
0 if j ≠ i ,

1 if j = i.

(44)∀� ∈ ,Qj(�) = y
(
�
(j)
)
+

np∑
k=1

�y
(
�(j)

)
�xk

(
xk − x

(j)

k

)
.

because,

The IDW metamodel bears similarities to the kernel meth-
ods of Sects. 6, 7, 8, 9: Wj(x) is a double input function that 
grows with proximity between x and x(j); In IDW, Wj(x) is 
multiplied with response estimates (the Qj()’s) in a way that 
is reminiscent of kriging, cf. GKRG in Table 2. Note also 

(45)

∀i ∈ [[1, ns]], ∀x
(i) ∈ ,

ỹ
(
x(i)

)
=

ns∑
j=1

Wj

(
x(i)

)
Qj

(
x(i)

)
= Qi

(
x(i)

)

= y
(
x(i)

)
;

(46)

∀(i, l) ∈ [[1, ns]] × [[1, np]], ∀x
(i) ∈ ,

𝜕ỹ
(
x(i)

)
𝜕xl

=

ns∑
j=1

[
𝜕Wj

(
x(i)

)
𝜕xl

Qj

(
x(i)

)
+Wj

(
x(i)

)𝜕Qj

(
x(i)

)
𝜕xl

]

=
𝜕Qi

(
x(i)

)
𝜕xl

=
𝜕y
(
x(i)

)
𝜕xl

,

(47)

∀(i, j, l) ∈ [[1, ns]]
2 × [[1, np]],∀x

(i) ∈ ,

�Wj

(
x(i)

)
�xl

= 0.

Table 3  Examples of weighting 
functions, h(), for MLS 
approximation

Name h(r) Parameters

Linear
max

(
0, 1 −

|r|
�

)
� > 0

Zhou’s function [89] (
1 − (r∕�)2

)�
� > 0, �

Häussler-Combe’s function [90] ⎧⎪⎨⎪⎩

exp
�
−(�r�∕�D)2� − exp

�
−1∕�2

�

1 − exp
�
−1∕�2

� if �r�∕� < D

0 if �r�∕� ≥ D

� > 0, D > 0

Cubic polynomial 1 − 3(r∕�)2 + 2(|r|∕�)3 � > 0

Fourth polynomial 1 − 6(r∕�)2 + 8(|r|∕�)3 − 3(r∕�)4 � > 0

Fifth polynomial 1 − 10(|r|∕�)3 + 15(r∕�)4 − 6(|r|∕�)5 � > 0

Seventh polynomial 1 − 35(r∕�)4 + 84(|r|∕�)5 − 70(|r|∕�)6 + 20(|r|∕�)7 � > 0

Squared exponential (Gaussian)
exp

(
−

r2

2�2

)
� > 0

Generalized exponential
exp

(
−

(|r|
�

)p)
� > 0, 0 ≤ p ≤ 2

Cubic spline ⎧⎪⎪⎨⎪⎪⎩

1 − 6
�
r

�

�2

+

��r�
�

�3

if �r� < �

2

2

�
1 −

�r�
�

�
if

�

2
≤ �r� < �

0 if �r� ≥ �

� > 0
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that, when compared to the other metamodels reviewed in 
this paper, IDW is the only approach that neither requires 
the inversion of large (ns(np + 1) by ns(np + 1)) systems of 
linear equations nor the resolution of optimization prob-
lems as GSVR will. For this reason, IDW is computation-
ally inexpensive. We now turn to the already mentioned 
kernel methods.

6  Kernel Functions for Gradient‑Enhanced 
Kernel‑Based Metamodels

Most kernel-based metamodels have been developped 
in the field of machine learning. While support vector 
machines are arguably the most well-known, other approxi-
mation techniques belong to kernel-based techniques. In 
this article, we will focus on radial basis functions (see 
Sect.  7), Kriging (see Sect.  8) and support vector regres-
sion (see Sect.  9). These three surrogate models, like all 
kernel-based metamodels, require choosing a kernel func-
tion or kernel, � , which measures a similarity, �

(
x(i), x(j)

)
, 

between any two points x(i) and x(j), and is therefore a dou-
ble input function. Kernel functions are examples of the 
functions B() of the general metamodel framework, Eq. (8).

As will be done in Sect. 8 about kriging, one can look 
at the responses at each point x as a random process, 
Y(x). With this point of view, since a kernel is a similar-
ity measure, it is natural to define a kernel as the cor-
relation between the responses at different locations, 
�
(
x(i), x(j)

)
= corr

[
Y
(
x(i)

)
, Y

(
x(j)

)]
.

Kernels must satisfy Mercer’s conditions [92] which 
means that they must be continuous, symmetric and posi-
tive definite, a necessary condition for correlation func-
tions. This is most easily done by taking the kernel function 
in a list of known Mercer’s kernels [86, 92, 93].

In the case of gradient-enhanced approximations, a great 
simplification comes from the fact that the kernels involv-
ing gradients are deduced from the kernel involving only 
the responses: the correlation functions between a response 
and a gradient is the derivative of the kernel and the corre-
lation between two gradients is the second derivative of the 
correlation, cf. Eq. (92).

An additional condition on the kernel functions has then 
to be satisfied: the kernels used in gradient-enhanced meta-
models must be twice differentiable.

Multidimensional kernel functions � are usually built 
from unidimensional kernels h by taking the product,

where � is the vector of the kernel internal parameters. 
In the above formula, we have introduced the stationarity 
assumption that the similarity between two points depends 
only on the vector separating them and not on where they 
are located, h(x(i)

k
, x

(j)

k
) = h(x

(i)

k
− x

(j)

k
) = h(r). The sign of 

r is kept to simplify the calculations of the kernel deriva-
tives. For gradient-enhanced metamodels, common twice 

(48)

∀(x(i), x(j),�) ∈ (ℝnp)3,

�
(
x(i), x(j);�

)
=

np∏
k=1

h(x
(i)

k
− x

(j)

k
;�k),

Table 4  Examples of kernel 
functions, r = x

(i)

k
− x

(j)

k

Name h(r) Parameters

Squared exponential
exp

(
−

r2

2�2

)
� > 0

Cubic spline 1 ⎧⎪⎪⎨⎪⎪⎩

1 − 15
�
r

�

�2

+ 30

��r�
�

�3

if �r� < 0.2�

2

�
1 −

�r�
�

�
if 0.2� ≤ �r� < �

0 if �r� ≥ �

� > 0

Cubic spline 2 ⎧⎪⎪⎨⎪⎪⎩

1 − 6
�
r

�

�2

+ 6

��r�
�

�3

si �r� < �

2

2

�
1 −

�r�
�

�
si

�

2
≤ �r� < �

0 si �r� ≥ �

� > 0

Matérn
21−�

� (�)

�√
2��r�
�

��

K�

�√
2��r�
�

�
(�, �) ∈

(
ℝ

+
)2

Matérn 3/2 �
1 +

√
3�r�
�

�
exp

�
−

√
3�r�
�

�
� > 0

Matérn 5/2 �
1 +

√
5�r�
�

+
5r2

3�2

�
exp

�
−

√
5�r�
�

�
� > 0
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differentiable kernel functions are summarized in Table 4 
(see for example [62, 63, 94, 95]).

Introduced by Stein [96] in the context of approximation, 
the Matérn class [97] of kernels have parameters that make 
them highly adjustable. Matérn kernels use a modified Bessel 
function of the second kind K� normalized by a Gamma func-
tion � (�). Thanks to the parameter �, the smoothness of the 
kernel function can be accurately controlled. Matérn func-
tions and their derivatives for 3 values of � and � = 0.8 are 
plotted in Fig.  4. In practice, two specific values of � leads 
to the most often used Matérn 3/2 and Matérn 5/2 (� = 3∕2 
or 5/2) functions. Figures  5b, c show these functions and 
their derivatives for 3 values of the parameter �. They can be 
compared with the squared exponential kernel presented on 
Fig.  5a. The Matérn function is ⌈�⌉ times differentiable [96] 
(where ⌈∙⌉ denotes the ceiling function). A stronger result is 
that the second derivative is continuous in 0 and its asymp-
totic value is [98]

because the k-th derivative of the metamodel exists if the 
k + 1-th derivative of the kernel at 0 exists and is finite 
([86] for Gaussian Processes), the Matérn function with 
𝜈 > 1 can be used for building gradient-based (k = 1) meta-
models. This assessment confirms the validity of the choice 
� ≥ 3∕2 proposed in [62, 94, 95, 99]. The squared expo-
nential kernel has a very simple expression and is often 
encountered in practice. It should be noted that it yields 
extremely smooth metamodels: it is infinitely differentiable 
at r = 0 and so are the associated surrogates. Such smooth-
ness is often not representative of the true function and, 
worse, it causes ill-conditioning of matrices in radial basis 
functions and kriging (cf. Sects. 7 and 8). This is the reason 
why Matérn kernels should generally be preferred.

The implementation of multidimensionnal kernel func-
tions and their first and second derivatives can lead to a 

(49)
d2h(r)

dr2
∼
r→0

−
�

�2

� (� − 1)

� (�)
,

complicated and time consuming code. In order to improve 
both aspects [99] has proposed the following formulation:

The derivatives can then be computed as shown below 
where only the derivatives of the unidimensional correla-
tion function are needed,

7  Gradient‑Enhanced Radial Basis Function 
(GRBF)

Gradient-enhanced radial basis function (GRBF) has also 
been designated as Hermite–Birkhoff or Hermite interpola-
tion [64]. This method was introduced in the more global 
context of artificial neural networks [65, 66] and it was used 
for dealing with optimization problems involving expensive 

(50)Lm =

m∏
k=1

h(x
(i)

k
− x

(j)

k
;�k);

(51)Um =

np∏
k>m

h(x
(i)

k
− x

(j)

k
;�k);

(52)Mm,n =

np∏
m<k<n

h(x
(i)

k
− x

(j)

k
;�k) with m < n.

(53)
��

�x
(i)
m

(
x(i), x(j);�

)
= LmUm

dh

dx
(i)
m

(
x(i)
m
− x(j)

m
;�m

)
;

(54)

�2�

�x
(i)
m �x

(j)
n

�
x(i), x(j);�

�
=

⎧⎪⎨⎪⎩

LmMm,nUn
dh

dx
(i)
m

�
x(i)
m
− x

(j)
m ;�m

�
dh

dx
(j)
n

�
x(i)
n
− x

(j)
n ;�n

�
if m ≠ n,
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�2h

�x
(i)
m �x

(j)
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�
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(j)
m ;�m

�
if m = n.

Fig. 4  Matérn function for 
� = 0.8 and 3 values of �
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solvers in the context of computational fluid dynamics [46, 
67] and assembly design [56–59].

7.1  Building Process

The principle of GRBF is similar to that of classical RBF 
approach [100–102] with an extended basis of functions. 
The added functions are chosen as the derivatives of the 
radial basis functions � . Thus, the GRBF approximation 
reads,

(55)

∀x(0) ∈ ,

ỹ
(
x(0)

)
=

ns∑
i=1

wi𝛹
(
x(0), x(i)

)
+

np∑
j=1

ns∑
i=1

wij

𝜕𝛹

𝜕x
(0)

j

(
x(0), x(i)

)

=

np∑
j=0

ns∑
i=1

wij𝛹0i,j,

Fig. 5  Examples of several 
kernel functions recommended 
for gradient-based metamodels

−2 −1 0 1 2

0

0.5

1

r

h

−2 −1 0 1 2
−2

−1

0

1

2

r

dh
dr

−2 −1 0 1 2

−5

0

r

d2h
dr2

(a) Squared exponential kernel

−2 −1 0 1 2

0

0.5

1

r

h

−2 −1 0 1 2
−2

−1

0

1

2

r

dh
dr

−2 −1 0 1 2
−20

−10

0

r

d2h
dr2

(b) Matérn 3/2 kernel

−2 −1 0 1 2

0

0.5

1

r

h

−2 −1 0 1 2
−2

−1

0

1

2

r

dh
dr

−2 −1 0 1 2
−10

−5

0

5

r

d2h
dr2

(c) Matérn 5/2 kernel

� = 0.4 � = 0.6 � = 0.9



76 L. Laurent et al.

1 3

where

Only one half of the first derivatives needs to be calculated 
because they are odd functions:

The second derivatives of the radial basis functions will be 
denoted

The GRBF building process consists in the determination 
of the wij’s coefficients by ensuring that the GRBF approxi-
mation interpolates the responses and gradients of the 
actual function at the sample points:

(56)
∀x(0) ∈ , ∀(i, j, k) ∈ [[0, ns]]

2 × [[1, np]],

wij =

{
wi0 = wi if j = 0,

wij otherwise;

(57)�ij,k =

{
�ij,0 = �ij = �

(
x(i), x(j)

)
if k = 0,

�ij,k =
��ij

�x
(i)

k

=
��

�x
(i)

k

(
x(i), x(j)

)
otherwise.

(58)
∀(i, j, k) ∈ [[0, ns]]

2 × [[1, np]],

��

�x
(i)

k

(
x(i), x(j)

)
= −

��

�x
(j)

k

(
x(i), x(j)

)
.

(59)
∀(i, j, k, l) ∈[[0, ns]]

2 × [[0, np]]
2, ∀(x(i), x(j)) ∈ ,

�ij,kl =
�2�

�xk�xl

(
x(i), x(j)

)
.

(60)
∀(k, l) ∈ [[1, ns]]×[[1, np]],∀x

(k) ∈ ,

ỹ
(
x(k)

)
= ỹk = yk = y

(
x(k)

)
,

(61)
𝜕ỹ

𝜕xl

(
x(k)

)
= ỹk,l = yk,l =

𝜕y

𝜕xl

(
x(k)

)
.

Equations (60) and (61) lead to the following matrix 
formulation:

The vectors wg and yg contain the RBF coefficients and the 
responses and gradients of the actual function, respectively. 
The matrix �g is built from the classical RBF matrix � and 
the first and second derivatives of the radial basis functions 
matrices, denoted �d and �dd, respectively:

The sizes of the �, �d and �dd matrices are ns × ns, 
nsnp × ns and nsnp × nsnp, respectively. So, matrix �g con-
tains ns(1 + np) × ns(1 + np) terms. The other terms in 
Eq. (62) are

The determination of the wij’s finally consists in the 
inversion of the �g matrix. This square symmetrical matrix 
is larger than the � of the classical RBF approach.

In order to reduce the computation time, LU or Cholesky 
factorisation of the �g matrix can be used.

Finally, the derivatives of the GRBF can be easily calcu-
lated by deriving Eq. (55).

(62)�gwg = yg.

(63)�g =

[
� −�d

�
⊤
d

�dd

]
;

(64)� =

⎡
⎢⎢⎢⎢⎣

�11 �12 … �1ns

�21 �22 … �2ns

⋮ ⋱ ⋮

�ns1
�ns2

… �nsns

⎤
⎥⎥⎥⎥⎦
;

(65)�d =

⎡
⎢⎢⎢⎢⎣

�11,1 �11,2 … �11,np
�12,1 … �1ns,np

�21,1 �21,2 … �21,np
�22,1 … �2ns,np

⋮ ⋱ ⋮ ⋱

�ns1,1
�ns1,2

… �ns1,np
�ns2,1

… �nsns,np

⎤
⎥⎥⎥⎥⎦
;

(66)

�dd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11,11 �11,12 … �11,1np
�12,11 … �1ns,1np

�11,21 �11,22 … �11,2np
�12,21 … �1ns,2np

⋮ ⋱ ⋮ ⋱

�11,np1
�11,np2

… �11,npnp
�12,np1

… �1ns,npnp

�21,11 �21,12 … �21,1np
�22,11 … �2ns,1np

⋮ ⋱ ⋮ ⋱

�ns1,np1
�ns1,np2

… �ns1,npnp
�ns2,np1

… �nsns,npnp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(67)wg =
[
w1 … wns

w11 w12 … w1np
w21 … wnsnp

]⊤
;

(68)yg =
[
y1 … yns y11 y12 … y1np y21 … ynsnp

]⊤
.
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dỹ dx

(x
)

dyi
dx

dy
dx (x)

RBF InGRBF
GRBF

(b) Derivatives
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unidimensional analytical function y(x) = exp(−x∕10) cos(x) + x∕10. 
ns = 6 sample points, squared exponential function
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Figures  6, 7 and 8 provide illustrations on analyti-
cal functions. In the figures, the points have been gener-
ated by an Improved Hypercube Sampling technique, IHS 
[103]. An indirect version of the gradient-enhanced RBF 
is proposed in 1D. This approach works in unidimensional 
problems but it becomes unstable as the number of sample  
points and the number of parameters of the problem  
increase.

7.2  RBF Kernels and Conditioning

Many radial basis functions have been proposed in the 
literature (see for example  [104]) and they can be com-
pleted by the kernels presented in Sect.  6. In the case of 
gradient-based RBF, the kernels must be at least twice 

differentiable to comply with the expressions of Eqs.  (60) 
and (61). Thus, Matérn or squared exponential kernels can 
be used in GRBF. The matrix made of 0, 1 and 2nd order 
derivatives �g is guaranteed to be positive definitite as will 
be explained in Sect. 8.3 about the Cc matrix which has the 
same form. However, the conditioning of the matrix may be 
bad. As already discussed in Sect. 6, the squared exponen-
tial kernel is likely to yield an ill-conditioned �g matrix, 
an issue that can be addressed through any of the following 
techniques: use more distant sampled points or equivalently 
decrease the value of the internal parameters �; replace the 
squared exponential kernel with a Matérn kernel. Another 
solution can be to add a very small value (with an order fo 
magnitude of the machine accuracy) to the diagonal of the 
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Fig. 7  RBF and GRBF approximations of the two-dimensional Branin’s function, ∀(x1, x2) ∈ [−5, 10] × [0, 15], y
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�g matrix. In this case the GRBF approximation will not 
interpolate the responses and gradients at the sample point.

7.3  Estimation of Parameters

The internal parameters of the RBF metamodel can be deter-
mined by minimizing the leave-one-out error (LOO) with 
respect to � = (�i)1≤i≤np (and � in the case of the Matérn ker-

nel). Based on the principle of Cross-validation [105, 106], 
the classical LOO error is detailed hereafter where ỹ−i(x(i)) is 
the RBF approximation at point x(i) without taking into 
account the response and the gradient of the actual function 
at that sample point x(i):

Bompard et  al. [107] propose an extended LOO criterion 
by adding the derivatives information:

(69)LOO(�) =
1

ns

ns∑
i=1

(
ỹ−i(x

(i)) − y
(
x(i)

))2
.

(70)

LOO(�) =
1

ns(np + 1)

ns∑
i=1

[(
ỹ−i(x

(i)) − y
(
x(i)

))2

+

np∑
k=1

(
𝜕ỹ−i,k

𝜕xk
(x(i)) −

𝜕y

𝜕xk
(x(i))

)2
]
,
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∀(x1, x2) ∈ [−2, 2] × [−1, 1], y

(
x1, x2

)
=
(
4 − 2.1x2

1
+

x4
1

3

)
x2
1
+ x1x2 +

(
−4 + 4x2

2

)
x2
2
, IHS sampling with ns = 20, Matérn 3/2 kernel function



79An Overview of Gradient-Enhanced Metamodels with Applications  

1 3

where 𝜕ỹ−i,k
𝜕xk

 is the approximation of the derivative provided 
by the metamodel built without taking into account the true 
k-th component of the gradient at point x(i). The approxima-
tions ỹ−i and 𝜕ỹ−i,k

𝜕xk
 are therefore obtained through Eq. (60) 

and partial use of (61) when a gradient is omitted from the 
LOO error. In order to avoid the building of numerous met-
amodels associated to each value of the internal parame-
ters, an efficient way for computing the LOO was proposed 
in [108] and extended to GRBF in [107]. It implies estimat-
ing the LOO criterion by inverting the kernel matrix once 
and for all and calculating a vector product instead of com-
pletely building the metamodel each time a data is removed. 
Finally, due to the multimodality of the LOO, a global opti-
mizer has to be used such as a stochastic optimizer (e.g., an 
evolution strategy or a particle swarm algorithm).

7.4  Variance of a Stochastic Process Obtained 
with GRBF

As an extension to an idea given in [29], Bompard [54] pro-
poses to look at the deterministic response y as an instance 
of a stationary Gaussian stochastic process Y  whose corre-
lation is given by the GRBF kernel and whose constant var-
iance is �2

Y
= Var[Y(x)]. This allows to describe the mean 

and variance of the GRBF prediction. Let �
(
x(0)

)
 be the 

vector containing the evaluations and first derivatives of the 
RBF kernels �0i,j [from Eq. (55)] at the new point x(0). By 
solving Eq.  (62) for the weights, the GRBF estimation is 
expressed as a linear combination of the true responses and 
their derivatives,

A mean and variance expressions are then calculated in a 
manner similar to kriging:

The expression for the mean makes use of the further 
specification of the observations at the sample points, 
�
[
Yg

]
= yg, i.e., one considers the conditional process Y  

knowing the observations at the sample points.
This variance could be used in infill criteria such as the 

expected improvement [33]. Unfortunately, as was said ear-
lier, this variance calculation will often fail due to loss of 

(71)�Y(x(0)) = �
(
x(0)

)⊤
�

−1
g
Yg.

(72)

∀x(0) ∈ ,

ỹ
(
x(0)

)
= �

[
�Y(x(0))

]
= �

(
x(0)

)⊤
�

−1
g
�
[
Yg

]
= y⊤

g
�

−1
g
�
(
x(0)

)
,

(73)
s2
GRBF

= �

[
�Y(x(0)) − Y(x(0))

]2

= 𝜎2
Y

(
1 −�

(
x(0)

)⊤
�

−1
g
�
(
x(0)

))
.

positiveness of the GRBF matrix �g unless specific meas-
ures are undertaken.

8  Gradient‑Enhanced Cokriging (GKRG)

Kriging, an alternative name for conditional Gaussian Pro-
cesses, is today one of the main techniques for approximat-
ing functions and optimizing expensive to calculate func-
tions. Cokriging is an extension of kriging for dealing with 
several correlated functions. Initially introduced for geosta-
tistics [34, 35], many works focus on the assumptions, prin-
ciples and formulations of cokriging [36–38, 42]. Gradient-
based cokriging was introduced by Morris et al. [39] as a 
way to account for gradient information in kriging, and has 
since then been applied to many fields. Table 5 summarizes 
the references and the kind of applications that concern 
gradient-enhanced cokriging. Because the concepts under-
lying gradient-enhanced cokriging have received various 
names, the last column of the Table lists the original key-
words employed by the cited authors. It is seen that gradi-
ent-enhanced cokriging has been largely used in the context 
of fluid problems. The efforts made to calculate gradients 
in fluid simulations explain this observation.

8.1  Formulation of Gradient‑Enhanced Cokriging

Gradient-enhanced cokriging is very similar to the classical 
kriging approach. Random processes associated with the 
deterministic objective function and its gradients are first 
defined through the primary response, Y , and the np auxil-
iary responses, Wi[35]:

In the particular case of gradient-enhanced cokriging, the 
auxiliary responses Wi correspond to the components of the 
gradient:

As in regular kriging, �i and Zi represent, for each response, 
the deterministic trends and the fluctuations around the 
trends:

(74)
∀i ∈ [[1, np]],∀x

(0) ∈ ,

Y
(
x(0)

)
= �0

(
x(0)

)
+ Z0

(
x(0)

)
,

(75)Wi
(
x(0)

)
= �i

(
x(0)

)
+ Zi

(
x(0)

)
.

(76)∀i ∈ [[1, np]], ∀x
(0) ∈ , Wi

(
x(0)

)
=

�Y

�xi
(x(0)).

(77)
∀x(0) ∈ ,

�
[
Y
(
x(0)

)]
= �

[
�0

(
x(0)

)
+ Z0

(
x(0)

)]
= �0

(
x(0)

)
,
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All Zi’s are centered stationary Gaussian Processes. As 
in usual kriging, the covariance of Z0 is a function of a 

(78)

�2
Y
= Var

[
Y
(
x(0)

)]
= Var

[
�0

(
x(0)

)
+ Z0

(
x(0)

)]
= Var

[
Z0
(
x(0)

)]
= �2

Z0
;

(79)
∀i ∈ [[1, np]],∀x

(0) ∈ ,

�
[
Zi(x

(0))
]
= 0, �

[
Wi

(
x(0)

)]
= �i(x

(0)),

(80)
�2
Wi = Var

[
Wi

(
x
(0)
)]

= Var
[
�i

(
x
(0)
)
+ Zi

(
x
(0)
)]

= Var
[
Zi
(
x
(0)
)]

= �2
Zi
.

generalized distance among the sample points. Some other 
cross-covariance relations have to be introduced for the 
auxiliary variables. These covariances and cross-covari-
ances are defined in Sects. 8.3 and 8.5.

The trend models �i can be chosen independently of 
one another [111] and this choice leads to different kinds 
of (co)kriging (simple when �i is a known constant, ordi-
nary when �i is an unknown constant and universal in the 
general case that it is both unknown and a function of x). In 
this paper, the universal cokriging model where the trend 
is built using polynomial regression will be detailed, see 
Eq.  (81). In order to limit the amount of required inputs, 

Table 5  Summary of works using gradient-enhanced cokriging

References Contents Original keywords

  [39] Initial developments for taking into account gradients, applica-
tion to water flow through a borehole

Bayesian prediction using derivatives, Gaussian process

  [40] Approximation of functions using gradients Kriging to model gradients
  [41] Theoretical developments and application to analytical functions First order kriging
  [43, 44] Gradient-based metamodel for minimizing the drag of an aerofoil 

(CFD)
Direct and indirect cokriging

  [45] Gradient-based cokriging for optimization, infill strategy and 
application to structural optimization

Kriging model including derivative information

  [46] Comparison with other gradient-enhanced metamodels and 
application to fluids

Kriging, Gaussian process including derivative

  [21] Developments for using gradient and hessian information (code 
available)

Gradient-/Hessian-enhanced kriging

  [47] Application to aerodynamic optimization Cokriging, gradient-enhanced kriging
  [48] Comparison of kriging with and without gradient, infill strategy 

and application to aerodynamic optimization
Cokriging

  [49] Uncertainty quantification and application to analytical and CFD 
examples

Gradient-enhanced kriging (GEK)

  [50] Application to aircraft aerodynamic shape optimization Gradient-based kriging (GBK)
  [51] Uncertainty quantification, approximation quality of analytical 

functions and application to design of nuclear plants
Gradient-enhanced universal kriging (GEUK)

  [52] Application to structural and aerodynamic optimization with 
multi-fidelity approach

Cokriging

  [53] Taking into account gradient and hessian information, applica-
tion to analytical functions and aerodynamic optimization 
problems

Gradient/Hessian-enhanced firect/indirect kriging (GEK)

  [55] Approximation quality of analytical functions, uncertainty quan-
tification of a transonic aerofoil

Cokriging, gradient and Hessian enhanced kriging

  [54, 107] Comparison of gradient-based metamodels, application to ana-
lytical functions and CFD problems for shape optimization

Direct/indirect co-kriging

  [60] Multi-fidelity approach to aerofoil design Direct gradient-enhanced kriging (GEK)
  [61] Comparison between direct and indirect gradient-based kriging 

using an analytical function and airfoil model. Study of the 
internal parameters estimation by likelihood maximization.

Direct/indirect gradient-enhanced kriging

  [56–59, 95, 109] Application to assembly design (nonlinear structural problems), 
comparison with gradient-based RBF, comparison with multi-
fidelity method

Gradient-enhanced/-based cokriging

  [62, 63, 110] Gradient-enhanced kriging with and without multi-fidelity 
models

Gradient-enhanced kriging
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the trend models of the auxiliary responses, �i, i ∈ [[1, np]], 
will be obtained by differentiation of the primary response 
trend, �0 [see [39] and Eq. (82)].

where

The best linear unbiased predictor (BLUP) of the response 
using both primary and auxiliary responses makes the 
cokriging model [35]. This predictor is a linear combina-
tion of deterministic functions called �()’s and the evalu-
ations of primary and auxiliary responses at the sample 
points:

The functions �() are evaluated by minimizing the vari-
ance of the estimation error 𝜀

(
x(0)

)
= Ŷ(x(0)) − Y

(
x(0)

)
 

while accounting for the unbiasedness condition. Finally, 
the expressions of the cokriging prediction and variance 
are obtained. These steps are further explained in the next 
sections.

8.2  No Bias Condition

The condition for the cokriging estimator to be unbiased is

(81)

∀x(0) ∈ ,

𝜇0

(
x(0)

)
=

nt∑
j=1

� jfj
(
x(0)

)
= f⊤

0
�,

(82)

∀i ∈ [[1, np]], �i

(
x(0)

)
=

��0

�xi

(
x(0)

)
=

nt∑
j=1

� j

�fj

�xi
(x(0)) = fiT

0
�,

� =
[
�1 �2 … �nt

]⊤
;

f0 =
[
f1
(
x(0)

)
f2
(
x(0)

)
… fnt

(
x(0)

)]⊤
;

∀i ∈ [[1, np]], fi
0
=
[
𝜕f1

𝜕xi
(x(0))

𝜕f2

𝜕xi
(x(0)) …

𝜕fnt

𝜕xi
(x(0))

]⊤
.

(83)

∀x(0) ∈ , Ŷ(x(0)) =

ns∑
i=1

𝜆0
i

(
x(0)

)
Y
(
x(i)

)
+

ns∑
i=1

np∑
j=1

𝜆
j

i

(
x(0)

)
Wj

(
x(i)

)
.

(84)

∀x(0) ∈ ,

�
�
Ŷ(x(0)) − Y

�
x(0)

��
= 0

�

�
ns∑
i=1

𝜆0
i

�
x(0)

�
Y
�
x(i)

�
+

np∑
i=1

np∑
j=1

𝜆
j

i

�
x(0)

�
Wj

�
x(0)

�
− Y

�
x(0)

��
= 0

ns∑
i=1

𝜆0
i

�
x(0)

�
�
�
Y
�
x(i)

��
+

ns∑
i=1

np∑
j=1

𝜆
j

i

�
x(0)

�
�
�
Wj

�
x(0)

��
− �

�
Y
�
x(0)

��
= 0

ns∑
i=1

𝜆0
i

�
x(0)

�
𝜇0

�
x(i)

�
+

ns∑
i=1

np∑
j=1

𝜆
j

i

�
x(0)

�
𝜇j

�
x(i)

�
− 𝜇0

�
x(0)

�
= 0.

Inserting the expression of the trend [Eqs.  (81) and (82)] 
leads to

with

Equation (85) can be further condensed after a simplifica-
tion with respect to �:

where the vector �c =
[
�⊤
0
�⊤
W

]⊤ includes (np + 1) × ns 
cokriging coefficients and Fc =

[
F⊤ F⊤

W

]⊤ is a 
nt × (ns + 1)ns matrix. It should be remembered that �c and 
f0 depend on the non-sampled point x(0). For simplicity’s 
sake the functions �() have and will been written without 
specifying that they are defined only at the non-sampled 
point x(0).

8.3  Formulation of the Variance

The variance of the cokriging error estimate is

(85)

ns∑
i=1

𝜆0
i

(
x(0)

) nt∑
k=1

�kfk
(
x(i)

)
+

ns∑
i=1

np∑
j=1

𝜆
j

i

(
x(0)

) nt∑
k=1

�k

𝜕fk

𝜕xj
(x(i))

−

nt∑
k=1

�kfk
(
x(0)

)
= 0 , or, �⊤

0
F� + �⊤

W
FW� − f⊤

0
� = 0.

�0 =
�
𝜆0
1
𝜆0
2
… 𝜆0

ns

�⊤
size 1 × ns;

�W =
�
𝜆1
1
𝜆2
1
… 𝜆

np

1
𝜆1
2
… 𝜆

np
ns

�⊤
size 1 × nsnp;

F =

⎡
⎢⎢⎢⎢⎣

f1
�
x(1)

�
f2
�
x(1)

�
… fnt

�
x(1)

�
f1
�
x(2)

�
⋱

⋮

f1

�
x(ns)

�
… … fnt

�
x(ns)

�

⎤
⎥⎥⎥⎥⎦

size nt × ns;

FW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕f1

𝜕x1

�
x(1)

� 𝜕f2

𝜕x1

�
x(1)

�
…

𝜕fnt

𝜕x1

�
x(1)

�
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𝜕f1

𝜕xnp

�
x(1)

� 𝜕f2
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�
…

𝜕fnt
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�
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�
𝜕f1
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�
x(2)

� 𝜕f2

𝜕x1

�
x(2)

�
…

𝜕fnt

𝜕x1

�
x(2)

�
⋮ ⋮

𝜕f1

𝜕xnp

�
x(ns)

�
𝜕f2

𝜕xnp

�
x(ns)

�
…

𝜕fnt

𝜕xnp

�
x(ns)

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

size nt × nsnp.

(86)�cFc = f⊤
0
,
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The following notations are introduced for simplifying the 
covariances:

Now the variance of the cokriging error estimation can be 
written in matrix notation,

where Cc =

[
C CWY

C⊤
WY

CWW

]
 is the cokriging covariance/cross-

covariance matrix. It is composed of the classical kriging 
covariance matrix C, the cross-covariance matrix CWY 
made of covariances between primary and auxiliary 
responses and the cross-covariance matrix CWW between 
the auxiliary responses. Using the notations introduced in 
Eq. (87), these matrices are defined as:

∀x(0) ∈ ,

s2
UCK

(x(0)) = Var
[
Ŷ(x(0)) − Y

(
x(0)

)]

= Var
[
Ŷ(x(0))

]
+ Var

[
Y
(
x(0)

)]
− 2cov

[
Ŷ(x(0)), Y

(
x(0)

)]

= Var

[
ns∑
i=1

𝜆0
i
(x(0))Z0

(
x(i)

)
+

ns∑
i=1

np∑
j=1

𝜆
j

i
(x(0))Zj

(
x(i)

)]

+ Var
[
Z0
(
x(0)

)]

− 2cov

[
ns∑
i=1

𝜆0
i
(x(0))Z0

(
x(i)

)
+

ns∑
i=1

np∑
j=1

𝜆
j

i
(x(0))Zj

(
x(i)

)
, Z0

(
x(0)

)]

= 𝜎2
Z0
+

ns∑
i=1

np∑
j=1

𝜆0
i
𝜆0
j
cov

[
Z0
(
x(i)

)
, Z0

(
x(j)

)]

+

ns∑
i=1

ns∑
k=1

np∑
j=1

np∑
l=1

𝜆
j

i
𝜆l
j
cov

[
Zj
(
x(i)

)
, Zl

(
x(k)

)]

+ 2

ns∑
i=1

ns∑
k=1

np∑
j=1

𝜆0
i
𝜆
j

k
cov

[
Z0
(
x(i)

)
, Zj

(
x(k)

)]

− 2

ns∑
i=1

np∑
j=1

𝜆
j

i
cov

[
Zj
(
x(i)

)
, Z0

(
x(0)

)]

− 2

ns∑
i=1

𝜆0
i
cov

[
Z0
(
x(i)

)
, Z0

(
x(0)

)]
.

(87)

∀(i, j, k, l) ∈ [[0, ns]]
2 × [[1, np]]

2,

cov
[
Z0
(
x(i)

)
, Z0

(
x(j)

)]
= cov

[
Y
(
x(i)

)
, Y

(
x(j)

)]
= cij,

cov
[
Z0
(
x(i)

)
, Zk

(
x(j)

)]
= cov

[
Y
(
x(i)

)
,Wk

(
x(j)

)]
= cij,k,

cov
[
Zk
(
x(i)

)
, Zl

(
x(j)

)]
= cov

[
Wk

(
x(i)

)
,Wl

(
x(j)

)]
= cij,kl.

(88)∀x(0) ∈ , s2
UCK

(x(0)) = 𝜎2
Z0
+ �⊤

c
Cc�c − 2�⊤

c
c0c,

The global cokriging covariance matrix Cc obtained is 
symmetric and contains ns(np + 1) rows and columns. c0c is 
the vector of covariances and cross-covariances between 
the sampled and any non-sampled points and it is expressed 
as c0c =

[
c10 … cns0 c10,1 c10,2 … c20,1 … cns0,np

]⊤
 (size 

1 × nsnp). The matrix Cc is positive definite. The proof is 

(C)ij = cij;

CWY =

⎡⎢⎢⎢⎢⎢⎣

c11,1 c11,2 ⋯ c11,np c12,1 ⋯ c1ns,np
c21,1 c21,2 ⋯ c21,np c22,1 ⋯ c2ns,np
c31,1 c31,2 ⋯

⋮ ⋱ ⋮

cns1,1 ⋯ cnsns,np

⎤⎥⎥⎥⎥⎥⎦

size ns × nsnp;

CWW =

⎡⎢⎢⎢⎢⎣

C11
WW

C12
WW

⋯ C
1ns
WW

C21
WW

C22
WW

⋯ ⋮

⋮ ⋱ ⋮

C
ns1

WW
C

ns2

WW
⋯ C

nsns
WW

⎤⎥⎥⎥⎥⎦
size nsnp × nsnp,

with ∀(k, l) ∈ [[1, ns]]
2, Ckl

WW
=

⎡
⎢⎢⎢⎢⎣

ckl,11 ckl,12 ⋯ ckl,1np
ckl,21 ckl,22 ⋯ ⋮

⋮ ⋱ ⋮

ckl,np1 ckl,np2 ⋯ ckl,npnp

⎤
⎥⎥⎥⎥⎦
.
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the following: ∀v ∈ ℝ
ns(np+1), v⊤Ccv = Var

[
v⊤

(
Y

W

)]
≥ 0 

since a variance is always positive. The matrix �g of GRBF 
[see Eq.  (63)] is also positive definite because it has the 
same structure and is made of the same kernels. Above, 
positive definitness is not strict so that bad conditionning 
and even non invertibility may happen (e.g., when two sam-
ple points are identical).

8.4  Constrained Optimization Problem for Cokriging 
Building

Using the notations introduced in Eqs.  (86) and (88), a 
cokriging model is built by solving the following con-
strained optimization problem.

Problem 1 (Universal cokriging) Find �c ∈ ℝ
ns(np+1) that 

minimizes

Universal kriging and universal cokriging lead to the 
same constrained optimization problem. In the case of 
cokriging however, additional cross-covariances are taken 
into account. This constrained optimization problem is 
solved by the lagrangian technique which yields the follow-
ing expressions for cokriging prediction and variance:

with yg =
[
y1 … yns

𝜕y1

𝜕x1

𝜕y1

𝜕x2
…

𝜕yns

𝜕xnp

]⊤
, and

�⊤
c
Cc�c − 2�⊤

c
c0c + 𝜎2

Z0
,

subject to F⊤
c
�c = f0

(89)

∀x(0) ∈ ,

ỹUCK
(
x(0)

)
=
[
c0c + Fc

(
F⊤
c
C−1

c
Fc

)−1(
f0 − F⊤

c
C−1

c
c0c

)]⊤
C−1

c
yg,

(90)

∀x(0) ∈ , s2
UCK

(
x(0)

)
= 𝜎2

Z0
− c0

⊤
c
C−1

c
c0c + u⊤

0

(
F⊤
c
C−1

c
Fc

)−1
u0,

with u0 = u
(
x(0)

)
= F⊤

c
C−1

c
c0c − f0.

Like usual kriging, cokriging interpolates the responses 
at the data points by having the prediction equal to the 
response and the variance null there. The proof of this 
property is based on c0c being equal to the ith column of Cc 
at x(0) = x(i).

Simple and ordinary cokriging can be easily deduced 
from the previous equations by considering �0(x) = m 
where m is a known real or �0(x) = � where � is an unknow 
real. In both cases and according to Eq.  (82), 
∀i ∈ [[1, np]], �i(x) = 0. So, Fc =

[
1⊤
ns

0⊤
ns×np

]⊤
 where 1ns 

and 0ns×np are matrices containing ns 1’s and nsnp 0’s, 

respectively.

8.5  Covariance Structure

The most critical choice when creating a cokriging model 
is that of the covariance functions. In applications such as 
geostatistics (see for instance [35]), this choice can be gov-
erned by expert information. In the more general context of 
computer experiments, there is a wide range of covariance 
functions to choose from. However, noting that covariance 
functions are kernel functions such as introduced in Sect. 6, 
multidimensional kernels can be formed by multiplying 
unidimensional kernels. Continuing this strategy for gradi-
ent-enhanced cokriging, Morris et al. [39] have proposed a 
general form for the cross-covariance relations:

where

(91)
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anp
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(
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)
,

Table 6  Cokriging predictions 
and variances (SCK simple 
cokriging, OCK ordinary 
cokriging, UCK universal 
cokriging) with F10 = [1⊤

ns
0⊤
ns×np

]

Type Formulation with

ỹ∙
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and h(r;�) is a unidimensional correlation function depend-
ing on the real r and the correlation length � and h(k) is its 
k-th derivative.

Readers can note that kernels are even func-
tions but their first derivative are odd, cf. for exam-
ple Fig.   5. Therefore, referring to the covariance 
notation of Eq.  (87), the following relation is found: 
∀(i, j, k) ∈ [[1, ns]]

2 × [[1, np]], cij,k = −cji,k. More generally, 
in the case of gradient-enhanced cokriging, the covariances 
satisfy,

where rk = x
(i)

k
− x

(j)

k
, and 

�
�
x(i), x(j);�

�
=
∏np

k=1
h(x

(i)

k
− x

(j)

k
;�k) =

∏np

k=1
h(rk;�k) is 

the multidimensional correlation function.

(92)
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(
x(j)

)]
= cij,k = −�2

Y

��

�rk

(
x(i), x(j);�

)
,

cov

[
�Y

�xk

(
x(i)

)
, Y

(
x(j)

)]
= cji,k = �2

Y

��

�rk

(
x(i), x(j);�

)
,

cov

[
�Y

�xk

(
x(i)

)
,
�Y

�xl

(
x(j)

)]
= cij,kl = −�2

Y

�2�

�rk�rl

(
x(i), x(j);�

)
,
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Fig. 10  Ordinary kriging and gradient-enhanced cokriging approximations of the two-dimensional Branin’s function (see Fig.  7a, IHS sam-
pling with ns = 30) using Matérn 3/2 kernels

Fig. 9  Ordinary KRG, Indirect 
ordinary KRG (InOK) and ordi-
nary GKRG (OCK) approxi-
mations of an unidimensional 
analytical function (y(x) = exp

(−x∕10) cos(x) + x∕10, sam-
pling with ns = 6) using squared 
exponential function
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In the literature, mainly squared exponential functions 
have been used for building kriging and cokriging approxi-
mations. Recently, many works [62, 86, 95, 96] have 
focused on Matérn [97] covariances, in particular Matérn 
3

2
 and 5

2
 [62, 95]. Similarly to RBF and GRBF approxima-

tions, Matérn kernels improve the condition number of the 
covariance matrix, therefore improving the stability of the 
method.

With the product covariances introduced [see Eq. (92)], 
the process variance can be factored out of the different 
covariances in Eq. (89):

(93)Cc = �2
Y
Kc;

8.6  Summary of Cokriging Formulations and First 
Illustrations

Table  6 summarizes the different cokriging formula-
tions which look similar to kriging formulations with an 
extended definition of the correlation matrix and vector. If 
we only consider the metamodel predictions and not its var-
iance or internal parameter learning, the functional forms 
of simple cokriging without trend and gradient-enhanced 
radial basis functions are identical [compare Eq. (71) with 
SCK where m = 0 in Table 6].

(94)c0c = �2
Y
r0c.
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Fig. 11  Ordinary kriging and gradient-enhanced cokriging approximations of the two-dimensional Six-hump Camel Back function (see Fig.  8a, 
IHS sampling with ns = 20) using Matérn 3/2 kernels

Fig. 12  Confidence intervals of 
kriging (a) and cokriging (b), 
ns = 6, y(x) given in Fig.  9
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The Figs.  9, 10 and 11 illustrate how kriging, indirect 
kriging (the principle of indirect gradient-enhanced meta-
models is presented in Sect.  3) and ordinary cokriging 
approximate one and two-dimensional functions. The indi-
rect version of the gradient-enhanced cokriging is only pro-
posed in 1D, in Fig. 9, where it can be seen that it yields 
very accurate results (the line cannot be visually separated 
from the true function on the plot). The Figs. 9, 10 and 11 
show that, like for RBF approximation, the use of the gradi-
ent information improves the approximation of the analyti-
cal function, in particular for multimodal functions such as 
the Six-hump Camel Back in Fig.  11.

Figure  12 shows confidence intervals calculated with 
the predictions and the variances of ordinary kriging and 
cokriging. Remark that the use of the gradients reduces the 
approximation uncertainty.

When compared to GRBF, GKRG has the same covari-
ance structure: Cc is the same matrix as �g. Without trend 
and when the kernels are the same, the GRBF approxima-
tion of Eq. (72) is the same as that of GKRG (cf. Table 6). 
Differences arise because of the trend and the way the inter-
nal parameters are tuned. As a result, as will be observed 
in Sect.  10, gradient-enhanced cokriging and GRBF have 
very similar performances with a slight advantage for the 
cokriging.

8.7  Derivatives of the Cokriging Approximation

Derivatives of the cokriging approximation to the response, 
𝜕Ŷ

𝜕xi

(
x(0)

)
, i = 1,… , np, can be obtained in two equivalent 

ways.
Firstly, Eq. (83) can be differentiated with respect to xi 

which means taking the derivatives of the functions �(). 
Substituting the expression of the �()’s amounts to differ-
entiating the correlation vectors r0c (and the trend func-
tions f0 for universal cokriging) in the expressions for the 
approximation ỹ() given in Table 6. To do so, the second 
derivatives of the kernel functions, which appear in the 
derivatives of r0c, are needed. The choice of the kernel 
must be adapted to this goal: squared exponential or 
Matérn (with 𝜈 > 1) kernels are appropriate. It is remark-
able that the second derivatives of the kernel functions 
were already required in the making of the cross-covar-
iance matrix CWW , so approximating the derivative does 
not add requirements to the kernels.

Secondly and in an equivalent manner, the cokriging 
equations for predicting the response derivatives, 
𝜕Ŷ

𝜕xi

(
x(0)

)
, can be obtained following the same path as that 

followed for the response: the cokriging estimate to the 
derivative is written as a linear combination of both the 
responses and their derivatives at sample points like in 

Eq. (83); the no bias condition of Eq. (84) is replaced by 
a no bias on the derivatives, �

[
𝜕Ŷ

𝜕xi

(
x(0)

)
−

𝜕Y

𝜕xi

(
x(0)

)]
= 0, 

and results in a relation like Eq. (86) with �f0
�xi

 instead of f0; 

similarly, the variance minimized is that of the error 
between derivatives, Var

[
𝜕Ŷ

𝜕xi

(
x(0)

)
−

𝜕Y

𝜕xi

(
x(0)

)]
, leading to 

an equation identical to Eq. (88) but c0c is replaced by the 
vector �c0c

�xi
. Therefore, the cokriging models summarized 

in Table 6 provide models for the derivatives by just dif-
ferentiating the trend and the correlation vectors. As a 
result in these (differentiated) models, the kriging inter-
polation property also applies to the derivatives. A nota-
ble feature of such gradient-enhanced cokriging is that 
the uncertainty of the estimated response derivative is 
also calculated [99]. This property was not used in previ-
ous works but it should turn out to be useful in the con-
text of uncertainty quantification or reliability-based 
optimization.

8.8  Estimation of the Cokriging Parameters

As in the case of kriging, the estimation of the cokrig-
ing parameters, �i, �Y and � (and � for the general Matérn 
kernel), can be achieved using Leave-One-Out or Maxi-
mum likelihood techniques. Leave-one-out (LOO) was 
already introduced for GRBF in Sect.  7.3 and has also 
been applied to Gradient-Based cokriging (see for exam-
ple  [54]). The Maximum likelihood approach [112] is 
made possible by the probabilistic interpretation of 
cokriging and more common than LOO.

Maximum likelihood estimation operates by maximizing 
the following likelihood function (or minimizing the oppo-
site of its log):

At a given �, L() can be analytically maximized over � and 
�2
Y
 which yields the expression of their estimates:

The correlation lengths �i are obtained by a numerically 
minimizing the following expression which is the relevant 
part of minus the log-likelihood where �̂ and �̂�2

Y
 have been 

input:

(95)

L(�, 𝜎2
Y
,�) =

(
2𝜋𝜎2

Y

)−ns(np+1)∕2|Kc(�)|−1∕2

× exp

[
−

1

2𝜎2
Y

(
yg − F�

)⊤
Kc(�)

−1
(
yg − F�

)]
.

(96)�̂(�) =
(
F⊤Kc(�)

−1F
)−1

F⊤Kc(�)
−1yg;

(97)�̂�2
Y
(�) =

1

ns

(
yg − F�

)⊤
Kc(�)

−1
(
yg − F�

)
.
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Because �() is multimodal, it is essential to perform 
the minimization with a global optimization algorithm 
[113]: for example, a stochastic optimizer such as the Par-
ticle Swarm Optimizer can be employed [114]. In order to 
reduce the number of optimization iterations, the gradi-
ent of the likelihood function is sometimes calculated and 
accounted for in the optimization [62, 115]. During the 
numerical optimization for finding the correlation lengths, 
�, the correlation matrix Kc has to be rebuilt, factorized 
and inverted at each iteration, which goes along with a 
noticeable computational cost. However, in most practical 
situations where metamodels are called in, the objective 
function relies on numerical simulation such as nonlinear 
finite elements and remains much more costly than the met-
amodel. Furthermore, the gain in accuracy of the gradient-
based approximations allows in many cases to contain the 
computational time by reducing the necessary number of 
sample points [94, 95, 116].

9  Gradient‑Enhanced Support Vector Regression 
(GSVR)

Support vector regression (SVR) is a nonlinear regression 
method that appeared within the framework of statistical 
learning theory. It is an extension of the support vector 
machines (SVMs) originally designed for nonlinear classi-
fication [117] and pattern recognition [118].

The literature on SVR is already rich and general intro-
ductions may be found in [119–121]. Initially built for 
learning from function responses at sample points, many 
extensions of SVR to additionally account for derivatives 
have been proposed. In compliance with the rest of the 
text, we shall call them gradient-enhanced SVR or GSVR. 
Initially introduced in [68] with an iteratively re-weighted 
least squares procedure, GSVR has then been revisited, 
again with a least squares approach in [70], with regular-
ized least squares in [71], and by the Twin SVR technique 
in [69, 73]. A general framework for incorporating prior 
knowledge in SVR which has been applied to function 
derivatives was also put forward in [72]. More recently, 
GSVR has been applied to shape optimization in CFD 
problems [54].

9.1  Building Procedure

We now present the method introduced by [68] and 
applied in [54]. The approximation is built from a linear 
combination of the basis functions �i() and their deriva-
tives (all of which are independent of the observations) 

(98)

�̂ = argmin
�∈�

𝜓(�) where 𝜓(�) = �̂�2
Y
(�)|Kc(�)|1∕ns(np+1). added to a constant trend term �. The �’s are the coeffi-

cients of the combination, and will be adjusted using the 
observed responses yg:

where � and �g

(
x(0)

)
 contain the ns × (np + 1) coefficients 

and evaluations of the basis function and its derivatives at 
the sample points, respectively.

At this point, the expression of the approximation 
ỹ
(
x(0)

)
 is the same as that in any least squares approach, 

cf. Eq.  19 for example with � and �̂, and �g

(
x(0)

)
 and 

f
(
x(0)

)
 playing the same roles, respectively. However, 

the coefficients � will be calculated through a different 
approach and the a priori functions �i,j(x) will never be 
used as such but will always occur in products and hence 
they will be indirectly specified through a kernel and its 
derivatives, cf. Sect. 9.2.

Support vector regression seeks to approximate the 
function responses, y

(
x(i)

)
, within a �0 accuracy and, addi-

tionally, GSVR requires the derivatives, �y

�xk

(
x(i)

)
, to be 

approximated within �k accuracy. The SVR approximation 
is made more stable to changes in data by minimizing the 
vector norm ‖�‖2 (cf. [117, 120] for explanations on how 
reducing ‖�‖2 makes the approximation less flexible, there-
fore more stable). These considerations lead the constrained 
convex quadratic optimization Problem 2 where �+, �−, �+ 
and �− are slack variables on the accuracies for avoiding 
problems with no feasible solution:

Problem  2 (GSVR as a minimization problem) Find (
�,�, �+, �−, �+, �−

)1 that minimize

subject to

(99)

∀x(0) ∈ ,

ỹ
(
x(0)

)
= 𝜇 +

ns∑
i=1

𝜗i𝜙
(
x(0), x(i)

)
+

np∑
j=1

ns∑
i=1

𝜗ij
𝜕𝜙

𝜕xj

(
x(0), x(i)

)

= 𝜇 +

np∑
j=0

ns∑
i=1

𝜗ij𝜙0i,j

(100)= 𝜇 + �⊤�g

(
x(0)

)
,

1

2
‖�‖2 + �0

ns

ns�
i=1

�
�+(i) + �−(i)

�
+

np�
k=1

�k

ns

ns�
i=1

�
�
+(i)

k
+ �

−(i)

k

�
,

1 Recall that bold notations designate vectors. For example, 
�+ =

[
𝜉+(1) 𝜉+(2) … 𝜉+(ns)

]⊤
.
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The hyper-parameters of the method, �k, k = 0,… , np, 
are user-defined penalty parameters that control the trade-
off between approximation regularity (low ‖�‖2) and 
approximation accuracy in response and derivatives of the 
response. Geometrically, the constraints on accuracy are 
tubes of half-width �i in the space of responses and deriva-
tives outside of which the GSVR criterion is subject to a 
linear loss at a rate determined by the hyper-parameters �k.

Problem  2 can be rewritten as a saddle-point problem 
involving a Lagrangian and positive Lagrange multipliers 
�±(i), �±(i)

k
, �±(i) and �±(i)

k
 (a.k.a., dual variables):

Problem  3 (GSVR as a saddle-point problem) Find (
�,�, �+, �−, �+, �−

)
 and 

(
�+,�−,�+,�−, �+, �−,�+,�−

)
 

that, respectively, minimize and maximize the Lagrangian

At a solution, the partial derivatives of the Lagrangian 
with respect to the primal variables have to vanish:

∀(i, k) ∈ [[1, ns]] × [[1, np]],

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

y
�
x(i)

�
− �⊤�

�
x(i)

�
− 𝜇 ≤ 𝜀0 + 𝜉+(i),

�⊤�
�
x(i)

�
+ 𝜇 − y

�
x(i)

�
≤ 𝜀0 + 𝜉−(i),

𝜕y

𝜕xk

�
x(i)

�
− �⊤ 𝜕�

𝜕xk

�
x(i)

�
≤ 𝜀k + 𝜏

+(i)

k
,

�⊤ 𝜕�

𝜕xk

�
x(i)

�
−

𝜕y

𝜕xk

�
x(i)

�
≤ 𝜀k + 𝜏

−(i)

k
,

𝜉+(i), 𝜉−(i), 𝜏
+(i)

k
, 𝜏

−(i)

k
≥ 0.

L =
1

2
‖�‖2 + 𝛤0

ns

ns�
i=1

�
𝜉+(i) + 𝜉−(i)

�
+

np�
k=1

𝛤k

ns

ns�
i=1

�
𝜏
+(i)

k
+ 𝜏

−(i)

k

�

−

ns�
i=1

𝛼+(i)
�
𝜀0 + 𝜉+(i) − y

�
x(i)

�
+ �⊤�

�
x(i)

�
+ 𝜇

�

−

ns�
i=1

𝛼−(i)
�
𝜀0 + 𝜉−(i) + y

�
x(i)

�
− �⊤�

�
x(i)

�
− 𝜇

�

−

np�
k=1

ns�
i=1

𝜆
+(i)

k

�
𝜀k + 𝜏

+(i)

k
−

𝜕y

𝜕xk

�
x(i)

�
+ �⊤ 𝜕�

𝜕xk

�
x(i)

��

−

np�
k=1

ns�
i=1

𝜆
−(i)

k

�
𝜀k + 𝜏

−(i)

k
+

𝜕y

𝜕xk

�
x(i)

�
− �⊤ 𝜕�

𝜕xk

�
x(i)

��

−

ns�
i=1

�
𝜂+(i)𝜉+(i) + 𝜂−(i)𝜉−(i)

�

−

np�
k=1

ns�
i=1

�
𝜃
+(i)

k
𝜏
+(i)

k
+ 𝜃

−(i)

k
𝜏
−(i)

k

�
.

(101)

�L

��
= � −

ns∑
i=1

(
�+(i) − �−(i)

)
�
(
x(i)

)

−

np∑
k=1

ns∑
i=1

(
�
+(k)

i
− �

−(k)

i

) ��

�xk

(
x(i)

)
= 0;

(102)
�L

��
= −

ns∑
i=1

(
�+(i) − �−(i)

)
= 0;

�, �± and �± can readily be solved for from Eq. (101) and 
Eqs.  (103)–(106) which leads to the constrained convex 
quadratic optimization Problem 4. Notice that the positive 
sign of the Lagrangian multipliers �±(i), �±(i)

k
, �±(i) and �±(i)

k
 

produces the inequality constraints.

Problem  4 (GSVR as a Convex Constrained Quadratic 
Optimization) Find 

(
�+,�−,�+,�−

)
 that minimize

subject to

The vectors ys and ygs contain the responses and the deriv-
atives of the actual function at the sample points, respectively. 
� is made of the �k values (∀k ∈ [[1, np]]). The matrices �r, 
�rd and �dd consist of the evaluations and derivatives of the 
kernel function (see Sect. 9.2), and � designates the vector of 
�k∕ns.

Responses or derivatives that are inside their �k tube, that 
is, responses and derivatives for which the accuracy con-
straints are satisfied, do not impact the solution of any of 

(103)�L

��+(i)
=

�0

ns
− �+(i) − �+(i) = 0 ∀i ∈ [[1, ns]];

(104)
�L

��−(i)
=

�0

ns
− �−(i) − �−(i) = 0 ∀i ∈ [[1, ns]];

(105)

�L

��
+(i)

k

=
�k

ns
− �

+(i)

k
− �

+(i)

k
= 0 ∀(i, k) ∈ [[1, ns]] × [[1, np]];

(106)

�L

��
−(i)

k

=
�k

ns
− �

−(i)

k
− �

−(i)

k
= 0 ∀(i, k) ∈ [[1, ns]] × [[1, np]].

(107)
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the above problems and could be removed altogether from 
the metamodel building without changing the result. This is 
because the Lagrange multipliers associated to these points 
are both (upper and lower limit) null. On the opposite, 
responses or derivatives at points that have one non-zero 
Lagrange multiplier influence the metamodel and are called 
support vectors. The dual variables �± and �± are determined 
by solving the Constrained Quadratic Optimization Prob-
lem  4. Classical Quadratic Programming algorithms [120] 
such as the Interior Point algorithm can be applied. For deal-
ing with large number of sample points and parameters, dedi-
cated algorithms, such as sequential minimal optimization 
[122], are preferable. In order to reduce the computational 
cost of GSVR, a few works introduce new formulations: 
Lázaro et  al. propose the IRWLS algorithm [68]; Jayadeva 
et al. have devised a regularized least squares approach [71]; 
Khemchandani et al. have come up with the Twin SVR [73].

9.2  Kernel Functions

Problem  4 has the variables x(i) involved only through 
products of �() and their derivatives. In SVR also, a ker-
nel is defined as the inner product 𝛹

(
x, x�

)
= �(x)⊤�

(
x�
)
. 

The “kernel trick” consists in not explicitely giving �() but 
directly working with the kernel � (, ). As was already stated 
in Sect. 6, any function with two inputs cannot be a kernel, 
it has to satisfy the Mercer’s conditions (see [120]) in order 
to be continuous, symmetric and positive definite. In the 
case of GSVR, the basis functions intervene in the following 
products:

Therefore, in addition to the Mercer’s conditions, a kernel 
used in GSVR must be twice differentiable. Again, like in 
GRBF and GKRG, squared exponential or Matérn (𝜈 > 1) 
functions can be used as kernels for GSVR (a list of kernels 
has been given in Sect.  6). With the notations introduced 
in Eqs. (108)–(111), the matrices present in Problem 4 can 
now be detailed:

(108)
∀(i, j, k, l) ∈ [[1, ns]]

2 × [[1, np]]
2,

�
(
x(i)

)⊤
�
(
x(j)

)
= 𝛹

(
x(i), x(j)

)
= 𝛹ij,

(109)
𝜕�

𝜕xk

(
x(i)

)⊤
�
(
x(j)

)
=

𝜕𝛹

𝜕x
(i)

k

(
x(i), x(j)

)
= 𝛹ij,k0,

(110)�
(
x(i)

)⊤ 𝜕�

𝜕xk

(
x(j)

)
=

𝜕𝛹

𝜕x
(j)

k

(
x(i), x(j)

)
= 𝛹ij,0k,

(111)
𝜕�

𝜕xk

(
x(i)

)⊤ 𝜕�
𝜕xl

(
x(j)

)
=

𝜕2𝛹

𝜕x
(i)

k
𝜕x

(j)

l

(
x(i), x(j)

)
= 𝛹ij,kl.

The sizes of matrices �r, �rd and �dd are ns × ns, ns × nsnp 
and nsnp × nsnp, respectively. The full matrix of kernel 
functions and their derivatives at the sample points in Prob-
lem 4 is square and contains 2ns(1 + np) rows.

9.3  Evaluating the GSVR Metamodel

Solving the Convex Constrained Quadratic problem for �± 
and �± allows to calculate the �’s from Eq. (101). The GSVR 
response estimate at a new point x(0) is then given by:

where �
(
x(0)

)
 and �d

(
x(0)

)
 are the vectors of kernels func-

tions 
(
x(i), x(0)

)
 and their derivatives, respectively. The 

derivative of the approximation given by the GSVR meta-
model is obtained by differentiating Eq. (115). To be able 
to do this, the kernel function � must be at least twice dif-
ferentiable. The trend term, �, has not been calculated yet. 
Its value stems from the Karush–Kuhn–Tucker conditions 
for the Convex Constrained Problem  4: at a solution, the 
products between the dual variables and the associated con-
straints vanish:

(112)
(
�r

)
ij
= �ij;

(113)

�rd =

⎡
⎢⎢⎢⎢⎣

�11,10 �11,20 … �11,np0
�12,10 … �1ns,0np

�21,10 �21,20 … �21,np0
�22,10 … �2ns,0np

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

�ns1,10
�ns1,20

… �ns1,np0
�ns2,10

… �nsns,0np

⎤
⎥⎥⎥⎥⎦
;

(114)

�dd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11,11 �11,12 … �11,1np
�12,11 … �1ns,1np

�11,21 �11,22 … �11,2np
�12,21 … �1ns,2np

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

�11,np1
�11,np2

… �11,npnp
�12,np1

… �1ns,npnp

�21,11 �21,12 … �21,1np
�22,11 … �2ns,1np

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

�ns1,np1
�ns1,np2

… �ns1,npnp
�ns2,np1

… �nsns,npnp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(115)

∀x(0) ∈ ,

ỹ
�
x(0)

�
= 𝜇 +

ns�
i=1

�
𝛼+(i) − 𝛼−(i)

�
𝛹
�
x(i), x(0)

�

+

np�
k=1

ns�
i=1

�
𝜆
+(i)

k
− 𝜆

−(i)

k

�
𝜕𝛹

𝜕x
(i)

k

�
x(i), x(0)

�

= 𝜇 +

⎡
⎢⎢⎢⎣

�+

−�−

�+

−�−

⎤
⎥⎥⎥⎦

⊤ ⎡
⎢⎢⎢⎣

�
�
x(0)

�
�
�
x(0)

�
�d

�
x(0)

�
�d

�
x(0)

�

⎤
⎥⎥⎥⎦
,
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Equations  (116)–(117) and (120)–(121) are the same as 
those for the classical (non-gradient based) SVR for which 
the following conclusions hold:

– from Eqs. (120) and (121), either 
(
�0∕ns − �±(i)

)
= 0 and 

𝜉±(i) > 0, or �±(i) = 0 and 𝛤0∕ns > 𝛼±(i).

– from Eq. (101) for �, Eqs. (116) and (117), and because 
ỹ
(
x(i)

)
 cannot be below and above y

(
x(i)

)
 at the same time 

so that, in terms of the dual variables �+(i)�−(i) = 0, � can 
be calculated: 

 The above bounds on �±(i) are enforced as constraints 
of the quadratic optimization problem.

9.4  Gradient‑Enhanced �‑SVR

The classical GSVR discussed so far requires choosing �k 
and �k (k ∈ [[0, np]]), and is sometimes called �k-GSVR. �k 
is typically taken as the standard deviation of the noise 
of the response data and its derivatives. Often though, 

(116)
∀(i, k) ∈ [[1, ns]] × [[1, np]],

𝛼+(i)
(
𝜀0 + 𝜉+(i) − y

(
x(i)

)
+ �⊤�

(
x(i)

)
+ 𝜇

)
= 0,

(117)𝛼−(i)
(
𝜀0 + 𝜉−(i) + y

(
x(i)

)
− �⊤�

(
x(i)

)
− 𝜇

)
= 0,

(118)𝜆
+(i)

k

(
𝜀k + 𝜏

+(i)

k
+ �⊤

𝜕�
(
x(i)

)
𝜕xk

−
𝜕y

𝜕xk

(
x(i)

))
= 0,

(119)𝜆
−(i)

k

(
𝜀k + 𝜏

−(i)

k
− �⊤ 𝜕�

𝜕xk

(
x(i)

)
+

𝜕y

𝜕xk

(
x(i)

))
= 0,

(120)�+(i)
(
�0

ns
− �+(i)

)
= 0,

(121)�−(i)
(
�0

ns
− �−(i)

)
= 0,

(122)�
+(i)

k

(
�k

ns
− �

+(i)

k

)
= 0,

(123)�
−(i)

k

(
�k

ns
− �

−(i)

k

)
= 0.

(124)
𝜇 = y

(
x
(i)
)
− �⊤�

(
x
(i)
)
+ 𝜀0 if 𝛼+(i) = 0 and 𝛼−(i) ∈]0,𝛤0∕ns[,

(125)

or

𝜇 = y
(
x
(i)
)
− �⊤�

(
x
(i)
)
− 𝜀0 if 𝛼−(i) = 0 and 𝛼+(i) ∈]0,𝛤0∕ns[.

there is no prior knowledge on an eventual noise on the 
response. Furthermore, if the �k’s are taken small, there 
will be many non-zero Lagrange multipliers (i.e., among 
�+,�−,�+,�−), in other terms there will be many sup-
port vectors, and the SVR model will lose some of its 
“sparsity” in the sense that the ability to drop some of the 
terms when evaluating the metamodel [Eq.  (115)] will 
decrease.

�-GSVR is an alternative support vector regression 
model where the �k’s are no longer given but calculated. 
�-GSVR uses new scalars, �k ∈ [0, 1]np+1, which act as 
upperbounds on the proportion of points that will be 
support vectors. This approach is inherited from �-SVM 
(support vector machines [123, 124]), and has been com-
pared with classical �-SVR in [125]. The larger the �k’s, 
the more the approximation is required to approach the 
data points and made flexible (or “complex” in an infor-
mation theory sense). A �-GSVR model solves the fol-
lowing optimization problem (compare with Problem 2):

Problem  5 (GSVR as optimization problem) Find 
(�,�, �+, �−, �+, �−, �2 ) that minimize

subject to

This problem is solved with a Lagrangian approach in 
a manner similar to that of �k-GSVR [54]. The np + 1 new 
constraints on the positivity of the �k’s induce np + 1 new 
Lagrange multipliers. The resulting quadratic dual optimiza-
tion problem is similar to that given as Problem 4 with the 
additional Lagrange multipliers. The �-GSVR developped 
here has been implemented in the GRENAT Toolbox [12].

Figures  13 shows approximations of an analytical uni-
dimensional function using �-SVR, �-GSVR and their 

1

2
‖�‖2 + �0

ns

�
�0�0 +

ns�
i=1

�
�+(i) + �−(i)

��

+

np�
k=1

�k

ns

�
�k�k +

ns�
i=1

�
�
+(i)

k
+ �

−(i)

k

��
,

∀(i, k) ∈ [[1, ns]] × [[1, np]],

⎧⎪⎪⎪⎨⎪⎪⎪⎩

y
�
x(i)

�
− �⊤�

�
x(i)

�
− 𝜇 ≤ 𝜀0 + 𝜉+(i),

�⊤�
�
x(i)

�
+ 𝜇 − y

�
x(i)

�
≤ 𝜀0 + 𝜉−(i),

𝜕y

𝜕xk

�
x(i)

�
− �⊤ 𝜕�

𝜕xk

�
x(i)

�
≤ 𝜀k + 𝜏

+(i)

k
,

�⊤ 𝜕�

𝜕xk

�
x(i)

�
−

𝜕y

𝜕xk

�
x(i)

�
≤ 𝜀k + 𝜏

−(i)

k
,

𝜉+(i), 𝜉−(i), 𝜏
+(i)

k
, 𝜏

−(i)

k
≥ 0,

𝜀0, 𝜀k ≥ 0.

2 As usual the boldface notation denotes the vector, 
� = [𝜀0,… , 𝜀np ]

⊤, which should not be mistaken with the errors in 
Sect. 4.
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derivatives [obtained by differentiating Eq. (115)]. The filled 
areas correspond to the �-tube of both approximations. Just as 
for the previous GRBF and GKRG metamodels, the gradient-
enhanced �-GSVR exhibits more accurate approximations 
than �-SVR does.

9.5  Tuning GSVR Parameters

The GSVR model involves the same parameters are the ver-
sion without gradients, that is the �i and �i internal param-
eters, plus the parameters of the kernels �. Several works, 
summarized in [126], discuss how to tune these parameters 
for non-gradient SVR, either in the form of empirical choices 
or of methodologies. Both �-SVR and �-GSVR (see Sect. 9.4) 
help in choosing the �i by replacing them by �i, a targeted 
proportion of points that are support vectors.

Algorithms have been proposed for determining the values 
of the aforementioned internal parameters using leave-one-
out bounds [Eq.  (69)] for support vector regression. Intro-
duced in [127], these bounds have been completed with the 
Span concept [128] that currently stands as the most accu-
rate bound. A method for the minimization of this bound is 
described and studied in [129]. The gradient of the leave-one-
out bound for SVR with respect to the internal parameters has 
been calculated in [130] and used for tuning the parameters.

Recently, an extension of the Span bound to gradient-
based SVR has been proposed in [54]: because the evaluation 
of the Span bound is computationally expensive, the authors 
have proposed to estimate the internal parameters of the ker-
nel function as those of a gradient-enhanced RBF.

Fig. 13  Approximations 
of a unidimensional ana-
lytical function (y(x) = exp

(−x∕10) cos(x) + x∕10) by �
-SVR and �-GSVR (ns = 6)
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10  Applications and Discussion

10.1  Procedure for Comparing Performances

Comparisons of response-only and gradient-enhanced meta-
models will be carried out for modeling the 5 and 10 dimen-
sional (np=5 or 10) Rosenbrock and Schwefel functions which 
are respectively defined as,

Rosenbrock’s function has only one basin of attraction but 
it is located in a long curved valley, that is the variables sig-
nificantly interact with each other. Schwelfel’s function is 
highly multimodal and, worse, the function is challenging 
for many surrogates in that the frequency and the amplitude 
of the sin() function that composes it changes through the 
design space, making the function non stationary. Schwe-
fel’s difficulty is nevertheless limited because it is an addi-
tively decomposable and smooth function.

Between ns = 5 and ns = 140 points are generated by 
Improved Hypercube Sampling [103]. Each sampling 
and metamodel building is repeated 50 times. The global 
approximation quality of the metamodel is measured by 

(126)

∀x ∈ [−2, 2]np , y(x) =

np−1∑
i=1

[
100

(
x2
i
− xi+1

)2
+
(
xi − 1

)2]
;

(127)

∀x ∈ [−500, 500]np , y(x) = 418.9829 +

np�
i=1

xi sin
�√�xi�

�
.

computing the mean value and the standard deviation of the 
R2 and �3 criteria for the 50 metamodels at nv = 1000 vali-
dation points which are different from the sample points.

These metamodel quality criteria are now defined.

As usual, the  symbol denotes the average. R2 Pearson’s 
correlation coefficient, measures how well the surrogate 
predictions are correlated to the true responses. The closer 
R2 is to 1, the better. �3 is a normalized leave-one-out crite-
rion [cf. Eq. (69)]:

The closer �3 is to 0, the better the prediction accuracy of 
the surrogate.

The results presented next have been obtained on a com-
puter equipped with an  Intel®  Xeon® E5-2680 v2 proces-
sor (20 cores at 2.8 GHz) and 128 Gb of volatile memory 
(DDR3-1866). The execution times given are CPU times 
which correspond to the time required for running the com-
puter code on a single processor loaded at 100%.

10.2  Comparison of LS and GradLS Models

The response-only and gradient-enhanced least squares 
metamodels, LS and GradLS, are compared in details when 
approximating the 3 and 5 dimensional Rosenbrock’s func-
tions. The least squares fit are carried out with polynomi-
als of degrees d◦ = 1 to 10. Figures   15 and 16 show the 
results in terms of R2 and �3 (mean and standard deviation) 
for the 3 dimensional function and Figs.  17 and 18 show 
the results for the 5 dimensional function. The approxi-
mation quality improves as the mean of R2 increases and 
its standard deviation simultaneously decreases or, as the 
mean of �3 decreases and its standard deviation simulta-
neously decreases. In order to help understanding the out-
come of the experiments, Fig.  14 summarizes both, (i) the 
number of terms in the polynomials, nt, which is a func-
tion of their degree as seen in Eq. (1) and, (ii) the number 
of equations in the least squares approximations [Eq. (11)] 
which is equal to ns and ns(np + 1) for the LS and GradLS 
models, respectively. The number of polynomial terms are 
plotted, for each np separately, with the continuous lines. 
The number of equations are plotted as marks, blue marks 

(128)

R2 =

(
𝜎xy

𝜎x𝜎y

)2

with 𝜎xy =
1

nv

nv∑
i=1

(
y
(
x(i)

)
− y

)(
ỹ
(
x(i)

)
− ỹ

)
,

𝜎x =

√√√√ 1

nv

nv∑
i=1

(
y
(
x(i)

)
− y

)2
, 𝜎y =

√√√√ 1

nv

nv∑
i=1

(
ỹ
(
x(i)

)
− ỹ

)2

.

(129)�3 =
1

nv

nv∑
i=1

ei with ei =

(
ỹ−i

(
x(i)

)
− y

(
x(i)

))2
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i∈[[1,nv]]
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)2
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Fig. 14  Number of terms in the polymonials, nt, as a function of the 
polynomial degree (solid lines), and number of available equations 
(blue and black marks for LS and GradLS, respectively) as a function 
of the number of parameters np. The number of equations depends on 
np only for GradLS: the dotted lines join, for each number of sam-
ple points ns, the number of equations for varying np. (Color figure 
online)
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for the LS, and black marks with a dependency on np for 
GradLS: the dotted lines give the number of equations in 
GradLS as a function of np for each different ns. The Gra-
dLS formulation uses more equations than LS does thanks 
to the gradients. As long as there are more independent 
equations than terms in the polynomial, the solution (21) 
to the Mean Squares Error exists and is unique. In this 
case in our implementation a QR factorization of the F⊤F 
is performed. On the contrary, if the degree of the poly-
nomial is such that there are more polynomial terms than 
equations, the problem is ill-posed and the matrix F⊤F in 
Eq.  (21) is no longer invertible. In our implementation of 
least squares, solution unicity is then recovered by using 

the Moore–Penrose pseudo-inverse3 of F, written F+, i.e., 
by solving �̂ = F+yg. The portions of the solid lines that 
are below the marks associated to each ns indicate the poly-
nomial degrees for which there are sufficiently many equa-
tions to solve the original least squares problem, in other 
terms, the polynomials which are fully defined by the data 
points.

General trends are visible in Figs.  15, 16, 17 and 18 
concerning Rosenbrock’s function and in Figs.  19 and 20 
concerning Schwefel’s function. They are particularly clear 
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Fig. 15  Performance of the LS metamodel in approximating the 3 dimensional Rosenbrock’s function in terms of the number of sample points 
(ns) and the degree of the polynomial (d◦)

3 In the case where there are not enough equations, pseudo-inverse 
recovers solution unicity by choosing, out of the infinite number of 
solutions to F� = yg, the � of minimal euclidean norm.
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on the mean of �3, and they are confirmed by R2. Not sur-
prisingly, the quality of the approximations increases (i.e., 
the mean of �3 diminishes) with the number of sample 
points ns; at a given ns (larger than 5), the approximations 
improve from polynomial degree d◦ = 1 up to 4, and then 
degrade as the degrees of the polynomials go to 10. The 
explanation is that Rosenbrock’s function is a polynomial 
of degree 4. Below d◦ = 4, the true function cannot be 
represented by the approximations. Beyond d◦ = 4 it can, 
but higher order terms of the polynomial need to be can-
celled, which requires sufficiently many sample points to be 
accurately done. An estimate of the limit on the number of 
sample points is ns such that there are as many equations as 
polynomial terms nt. This limit is seen in Fig.  14: for LS in 

dimension np = 3, the lower bound on ns is 35, 84 and 120 
for d◦ = 4, 6, 7; a ridge where �3 suddenly degrades crosses 
the upper right plot of Fig.  15 and this ridge closely fol-
lows these limits on ns. The same estimate (number of 
polynomial terms equal to number of equations) applied 
to GradLS yields ns limits np + 1 smaller than those of LS: 
in Fig.   16, np + 1 = 4, and the �3 degradation ridge fol-
lows (d◦ = 4, ns = 35∕4 ≈ 9), (d◦ = 6, ns = 84∕4 = 21), 
(d◦ = 7, ns = 120∕4 = 30). In dimension 5, the �3 degra-
dation ridges in Figs. 17 and 18 can be interpreted in the 
same way. In all of the figures, the less regular variation of 
the quality indicators with d◦ for ns = 5 is because it is too 
small a sample size.
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Fig. 16  Performance of the GradLS metamodel in approximating the 3 dimensional Rosenbrock’s function in terms of the number of sample 
points (ns) and the degree of the polynomial (d◦). Compare with the response-only LS metamodel in Fig.  15
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Schwefel’s function is not easily approximated with a 
polynomial. This is noticed in Figs. 19 and 20 which gather 
approximation performance indicators for the 3 dimen-
sional version of the function and where the levels of R2 
and �3 are respectively smaller and larger than those of the 
3 dimensional Rosenbrock function. By comparing Figs. 19 
and 20, it is also seen that the gradient-enhanced GradLS 
outperforms LS.

Two conclusions can already be drawn from these tests. 
Firstly, least squares approximations have a high perfor-
mance domain characterized by a number of equation 
larger than the number of polynomial terms. This shows 
that the regularization performed by the pseudo-inverse 
does not produce as good least squares approximations as 

additional data points do. Secondly, because the gradient-
enhanced least squares GradLS require sample sizes np + 1 
smaller than those of classical LS, they have a much larger 
high performance domain.

In addition, even outside of the high performance 
domain, it is observed in Figs.  15, 16, 17, 18, 19 and 20 
that, at a given ns and d◦, GradLS consistently outperforms 
LS when approximating Rosenbrock’s function.

Figure  21 shows the CPU time needed to calculate the 
LS and GradLS metamodels as a function of the number 
of sample points ns for degrees of the polynomial approxi-
mation d◦ ranging from 2 to 10 and in dimensions np=3, 5 
and 10. In 10 dimension, the polynomials are limited to the 
degrees {2, 3, 4, 5, 6} to keep calculation times reasonable. 
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Fig. 17  Performance of the LS metamodel in approximating the 5 dimensional Rosenbrock’s function in terms of the number of sample points 
(ns) and the degree of the polynomial (d◦)
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In both LS and GradLS models, it is observed that the CPU 
time grows with ns, np and d◦ and that the main factors for 
CPU time increase are np and d◦ (a log scale is applied to 
the CPU axis). The effect of np and d◦ is comparable in 
both metamodels so that the CPU times are close to each 
other. The CPU time of the gradient-enhanced GradLS 
grows slightly faster than that of LS with ns and in a man-
ner independent of np and d◦, which is mainly noticeable 
at low CPU times. It therefore turns out that enhancing 
least squares through the gradients is not as costly as one 
could fear. The reason is that, for high degree polynomials 
in high dimensions, the main numerical cost comes from 
the factorization of the nt × nt matrix F⊤F, which has (n3

t
) 

complexity, and nt is a function of np and d◦ but not of ns 
[cf. Eq.  (1)]. The additional computation time of GradLS 
comes from the storage of the (ns(np + 1) × nt) matrix F 
and its product with other matrices.

Note also in Fig.  21 that the geometric evolution of the 
CPU time sometimes exhibits a discontinuity. For exam-
ple, for LS, np = 3 and d◦ = 6, there is a CPU time step at 
ns = 84. These discontinuities correspond to the change in 
least squares algorithms when there are or not sufficient 

equations for determining the nt polynomial terms: when 
the problem is well-posed, a QR factorization of F⊤F is 
performed, when the problem is ill-posed, it is the pseudo-
inverse method that is called. For high degree polynomials 
the CPU evolution curves are continuous because the prob-
lem is always ill-posed and the pseudo-inverse is the only 
active algorithm.

10.3  Comparison of Kernel‑Based Models

We now compare kernel-based metamodels that use or do 
not use gradients. These are variants of the RBF and KRG 
approaches. The SVR metamodels were not tested because 
of the large computational cost induced by tuning their 
internal parameters which does not allow repeated runs. 
The tested approaches are ordinary kriging (OK), radial 
basis functions (RBF), both of which do not utilize gra-
dients, Indirect gradient-based ordinary kriging (InOK), 
Indirect gradient-based RBF (InRBF), gradient-enhanced 
ordinary cokriging (OCK), and gradient-enhanced RBF 
(GRBF). All these examples take Matérn 3/2 as kernel 
function.

Fig. 18  Performance of the 
GradLS metamodel in approxi-
mating the 5 dimensional 
Rosenbrock’s function in terms 
of the number of sample points 
(ns) and the degree of the poly-
nomial (d◦). Compare with the 
response-only LS metamodel in 
Fig.  17
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Figures 22, 23, 24 and 25 show the values of the R2 and 
�3 criteria for the Rosenbrock and Schwefel test functions in 
5 and 10 dimensions. It can be seen in Figs. 22 and 23 that 
all the surrogates tested provide a good approximation to 
the Rosenbrock function in 5 and 10 dimensions, as meas-
ured by R2 tending to 1 and �3 to 0 with ns, which is likely 
because the function is smooth and unimodal. Neverthe-
less, the methods that directly or indirectly utilize gradients 
have a visible advantage, that is, OK and RBF converge 
much slower to good values of �3 and R2 as ns increases.

Schwefel’s function is the approximation target in 
Figs. 24 and 25. For modeling such a multimodal non sta-
tionary function, it is observed that directly accounting for 
gradients is a determining asset: the surrogates relying only 

on the response, OK and RBF, cannot approximate well 
the function, even when the number of sampled points ns 
is large (equal to 140); surrogates directly using gradients, 
OCK and GRBF, manage to represent well Schwefel’s 
function in both 5 and 10 dimensions. The performances 
of OCK and GRBF, are similar for the two test functions. 
The only noticeable difference is with Schwefel’s function 
in 10 dimensions where OCK converges slightly faster than 
GRBF.

On the average of Figs. 22, 23, 24 and 25, the indirect 
gradient-enhanced metamodels, InOK and InRBF, approx-
imate the test functions with an accuracy that is between 
that of response-only and direct gradient-enhanced meta-
models. A closer comparison of Figs.   22 and 24, and 
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Fig. 19  Performance of the LS metamodel in approximating the 3 dimensional Schwefel’s function in terms of the number of sample points (ns) 
and the degree of the polynomial (d◦)
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Figs.  23 and 25, suggests that InRBF performs better than 
InOK for the multimodal Schwefel function and vice versa 
for the smooth Rosenbrock’s function. Once again, the 
main difference between InRBF and InOK is that InRBF 
tunes its internal parameters by cross-validation when 
InOK tunes them by maximum likelihood. Cross-validation 
shows a better ability to deal with multimodality than max-
imum likelihood does.

To sum up, these results illustrate the advantage of direct 
gradient-enhanced metamodels in approximating non sta-
tionary, multimodal functions. They confirm other experi-
ments carried out in the more complete study [57].

Figure   26 shows the CPU time taken for building the 
kernel-based metamodels for varying number of sample 

points and in dimensions 3, 5 and 10. SVR and GSVR are 
omitted in 10 dimensions because they take too much CPU 
time.

The building process includes the tuning of the meta-
models’ internal parameters which is performed here with 
an Particle Swarm Optimizer.

The typical CPU times of the kernel methods in Fig.  26 
are larger than those of the least squares methods reported 
in Fig.   21. Furthermore, kernel methods show a higher 
sensitivity to the number of sample points ns and a larger 
CPU penalty for including gradients in the model than least 
squares do. The main reason for the larger CPU time of 
kernel methods is the tuning of their internal parameters, 
which least squares do not do. The higher sensitivity of 
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Fig. 20  Performance of the GradLS metamodel in approximating the 3 dimensional Schwefel’s function in terms of the number of sample 
points (ns) and the degree of the polynomial (d◦). Compare with the response-only LS metamodel in Fig.  19
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Fig. 21  CPU time required for 
building the LS and GradLS 
metamodels as a function of the 
number of sample points ns for 
dimensions np = 3, 5 and 10 
and polynomial degrees d◦ rang-
ing from 2 to 10
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Fig. 22  Performances of 
kernel-based metamodels in 
approximating the 5 dimen-
sional Rosenbrock’s function, 
obtained from 50 repetitions for 
each number of sample points 
ns. The metamodels are: OK 
ordinary kriging, OCK ordinary 
gradient-enhanced cokriging, 
RBF radial basis functions, 
GRBF gradient-enhanced radial 
basis functions, OK indirect 
gradient-based ordinary kriging, 
InRBF indirect gradient-based 
RBF
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kernel methods to ns and, consequently, to the presence 
of gradients, comes from the inversion of the ns × ns or 
ns(np + 1) × ns(np + 1) (in the gradient-enhanced version) 
matrices �g and �c. Similarly, SVR and GSVR have a num-
ber of constraints that scales with ns and ns (np + 1), respec-
tively. The advantage in terms of CPU time of the gradient-
enhanced least squares methods should be assessed against 
an inferior approximation capacity as exemplified by the 
poor performance of GradLS on the Schwefel’s function.

Among kernel methods, SVR and GSVR are the most 
time consuming techniques while KRG and GKRG (here 

OK/OCK, i.e. ordinary kriging/cokriging) are faster to 
calculate.

10.4  Available Softwares for Gradient‑Enhanced 
Metamodels

Despite the wide use and availability of metamodels that 
exclusively use simulation responses, y(), the more recent 
gradient-enhanced metamodels are only proposed in a few 
codes.

Fig. 23  Performances of 
kernel-based metamodels in 
approximating the 10 dimen-
sional Rosenbrock’s function, 
obtained from 50 repetitions for 
each number of sample points ns
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Fig. 24  Performances of 
kernel-based metamodels in 
approximating the 5 dimen-
sional Schwefel’s function, 
obtained from 50 repetitions for 
each number of sample points ns
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Fig. 25  Performances of 
kernel-based metamodels in 
approximating the 10 dimen-
sional Schwefel’s function, 
obtained from 50 repetitions for 
each number of sample points ns
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Fig. 26  CPU times taken for 
building kernel-based metamod-
els as a function of the number 
of sample points ns in dimen-
sions np = 3, 5 and 10
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GRENAT [12], which stands for gradient enhanced 
approximation toolbox, is the toolbox that was used for 
generating all results and plots proposed in this review and 
in [59, 94, 95, 131, 132]. GRENAT is written in Matlab/
Octave and follows the object oriented Matlab’s syntax. It 
allows building and exploiting response-only, and indirect 
and direct gradient-enhanced kriging, radial basis func-
tions and support vector regression. It can be linked to the 
MultiDOE toolbox [133] which compiles many sampling 
techniques.

The ooDACE Toolbox [134, 135], also developed in 
object-oriented Matlab, has an implementation of cokrig-
ing that could accomodate accounting for gradients.

In addition to mathematical descriptions, Forrester 
et al. [21] also propose code samples for building gradient-
enhanced metamodels.

10.5  Remarks About Missing Data and Higher Order 
Derivatives

In keeping with previous works [21, 136], the RBF, krig-
ing and SVR metamodels and their gradient-enhanced 
versions that have been described in the review can read-
ily be adapted for dealing with missing data: hybrid ver-
sion of these metamodels can be considered by removing 
responses, components of gradient or full gradient at cer-
tain sample points. Components of the vector yg are deleted 
and the corresponding terms in the linear combinations 
making the approximations (in generalized least squares, 
GRBF, GKRG) are removed from the equations. In the case 
of GSVR, the constraints in the model defining optimiza-
tion problem for which there is no longer an observation 
are removed. With IDW, terms of the first order Taylor 
approximations Qj(x) can be dropped, at the cost of loosing 
the corresponding gradient interpolation properties.

Deleting observations can even be a choice for mini-
mizing the computational cost needed to build the meta-
models and evaluate the responses and/or gradients. For 
example, when dealing with a function with known flat 
behavior in a part of the design space and a multimodal 
behavior in another part, accounting for gradient informa-
tion is useful only in the latter. On the basis of relations 
like Eq. (26) for least squares, or Eq. (62) for radial basis 
functions, or Eq. (89) for cokriging, which all involve the 
inversion of a ns(np + 1) by ns(np + 1) covariance matrix, 
the computational complexity of each observation is at 
least cubic: assuming the number of operations required 
to invert a square matrix is slightly less than cubic, it will 
be at least cubic when multiplied by the number of repeti-
tions of the inversion required for tuning internal param-
eters; then, accounting for all the gradients multiplies the 
complexity of the metamodels by at least (np + 1)3. This 
metamodel complexity, although non negligible, will 

typically remain orders of magnitude smaller than the 
complexity of calculating the true response.

The formulations of gradient-enhanced RBF, cokrig-
ing and SVR can be also extended for taking into 
account higher order derivatives of the objectif function. 
Examples of formulations of Hessian-enhanced cokrig-
ing can be found in [21, 53]. In the case of SVR, an 
Hessian formulation may be based on the development 
proposed in [72]: the “prior knowledge”, which is added 
to the classical SVR formulation (Problem 2 in Sect. 9), 
consists in terms of the Hessian which are accounted for 
through new constraints.

11  Conclusions

We have reviewed the main surrogates (or metamodels) 
for approximating functions observed at a finite number 
of points that not only use function values but also their 
gradients. These surrogates are variations around the least 
squares methods, the Shepard weighting function, radial 
basis functions, kriging and support vector machines. Indi-
rect methods, where the knowledge of the gradients pro-
duces new points to learn from, have also been covered. An 
effort was made to detail the logic and the formulations that 
led to these models. To the authors’ knowledge, the �-SVR 
formulation with gradients was given here for the first time. 
Another goal was to compare the metamodels. It was first 
done theoretically, in particular by casting all metamodels 
as linear combinations of functions chosen a priori and 
coefficients that depend on the observations. The compari-
son between metamodels was then substantiated by simple 
examples.

These examples, confirming other studies [9, 57, 132], 
show that exploiting gradient information is a determin-
ing advantage for approximating functions with locally 
changing behaviors. Including gradients in least squares 
methods comes at a negligible additional numerical cost. 
The more versatile kernel-based surrogates pay a numeri-
cal cost for also approximating gradients: all methods but 
Shepard weighting function have a complexity that scales 
at least with the cube of the number of observations, and 
each gradient at a point in a space of dimension np adds np 
observations.

The litterature on gradient-enhanced metamodels is 
recent but already rich. Today, many perspectives should be 
considered.

From a methodological point of view, there is a need 
for more robust, numerically less complex approaches 
that can account for large numbers (say, millions) of data 
points with their gradients, in higher dimensions (say, 
thousands). The current kernel methods can approximate 
a larger family of functions than least squares do, but they 
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would not allow data sets beyond of the order of 1000 
points because of bad conditionning issues and because of 
the rapidly growing number of operations. Beyond 10,000 
points, computer memory would be an additional limita-
tion. Recent works on Gaussian Processes have introduced 
strategies to deal with large number of points [137, 138] 
and high-dimensional problems [139, 140]. However these 
approaches remain currently limited to response-only data.

On the applicative side, surrogates that learn and predict 
gradients should contribute to progress in local and global 
sensitivity analysis, uncertainty propagation, local trust 
region and global surrogate-based optimization methods.
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