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1 Introduction

The Ritz method has been used for several decades in the 
solution of static, buckling and free vibration problems 
of beams, plates, and shells. It was formulated in 1909 
by Ritz [142] and applied to the transverse vibration of a 
square plate with free edges by this same researcher [141]. 
Although over the years the name of Rayleigh has also 
been attached to this method, according to Leissa [100], 
the Rayleigh method is formally different from the method 
proposed by Ritz. Regarding this issue, it is also interesting 
to cite here the words of Timoshenko [153], who consid-
ered the Ritz method an improvement upon the Rayleigh 
method: “Rayleigh used the method only for an approxi-
mate calculation of frequency of the gravest mode of vibra-
tion of complicated systems, and was doubtful regard-
ing its application to the investigation of higher modes of 
vibration.” It should be pointed out, nevertheless, that this 
issue is not consensual and, for instance, Ilanko [81] disa-
gree with the conclusion of Leissa about the name of the 
method. The option of the authors of the present paper is 
to name it Ritz method mainly because of Rayleigh’s own 
words [109]: “I wish to call attention to a remarkable mem-
oir by W. Ritz in which, somewhat on the above lines, is 
developed with great skill what may be regarded as a prac-
tically complete solution of the problem of Chladni’s fig-
ures on square plates.” We may also bear in mind, as stated 
by Gaul [68], that Rayleigh’s exposition does not resembles 
the modern version.

Besides the efficiency and technical interest that this 
method exhibits in describing and predicting the behavior 
of important structural members, such as beams, plates, and 
shells, the Ritz method can be used to motivate students for 
the study of partial differential equation eigenvalue prob-
lems [63]. The teaching of this method to students show 
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several benefits [145]. According to Gander and Wan-
ner [64], it is also possible to trace back the development 
of the finite element method to the work of Trefftz, which 
used local basis functions in the Ritz method. A relation 
between the finite differences for problems with deriva-
tives not higher than the first order and the Ritz method is 
also described by Courant [49]. Courant suggested the use 
of polyhedral functions such that in the end the minimum 
conditions become difference equations. According to Wil-
liamson [157] one can see here the essentials of the finite 
element method. A more comprehensive description of the 
links, as well as the differences and similarities, between 
the Ritz method and the finite element method can be found 
in reference [68].

Over the years, several admissible functions that satisfy 
the essential boundary conditions, or as Ritz wrote: “our 
method [is] applicable, as long as the essential bound-
ary conditions are not violated” [100], have been used. 
Some of these functions are based on trigonometric and 
hyperbolic functions, and others are based on polynomial 
functions. However, these different admissible functions 
present different convergencies to the solution, different 
computational burdens as well as different numerical sta-
bilities. The present work consists in a comparison of the 
performance of six sets of admissible functions, which are 
commonly found in the literature, in terms of these three 
numerical features. The purpose of this analysis is to find 
the best type of admissible functions to compute a large 
number of natural frequencies and mode shapes with suf-
ficient and adequate accuracy. With this objective in mind, 
the free vibration problem of an isotropic fully clamped 
rectangular plate is solved. The selection of this type of 
plate and boundary condition is justified by the fact that a 
rectangular plate, which is usually riveted to a rigid frame 
along its edges, is one of the most popular structural mem-
bers [116]. Furthermore, due to the mathematical simplic-
ity of this boundary condition, the fully clamped plate is 
frequently used as a test for analytical methods [99]. The 
fully clamped plate also shows signs of earlier numerical 
instability for lower degree polynomials than other bound-
ary conditions, namely simply supported on all edges 
[147], thus presenting a challenge to a commonly used set 
of admissible functions in the Ritz method. The six sets of 
admissible functions, studied in the present paper, are: (1) 
Characteristic Functions [160], (2) Modified Characteristic 
Functions [67], (3) Orthogonal Polynomials [22], (4) Non-
orthogonal polynomials [86], (5) Product of Trigonometric 
Functions [32], and (6) Static Beam Functions [166].

Young [160] wrote what is one of the first papers with 
applications of the Ritz method in English language. The 
author used as admissible functions the characteristic func-
tions of the normal modes of a uniform beam. Besides a 
clamped plate with six terms in the series, which defines 

the mode shapes, a cantilever plate and a plate with two 
adjacent edges clamped and the other two edges free were 
also analyzed. Due to the numerical problems presented by 
the characteristic functions of a beam, Gartner and Olgac 
[67] proposed a modified set of these functions so that 
the magnitude of the terms is in the range [−1, 1]. This is 
accomplished by replacing the hyperbolic terms by nega-
tive exponential terms. A set of orthogonal polynomials 
was proposed as admissible functions in the Ritz method 
by Bhat [22]. Simply supported and clamped plates were 
studied, as well as plates with two adjacent edges sim-
ply supported and the other two free and plates with two 
adjacent edges clamped and the other two free. It was 
found that this kind of functions presents superior results 
for lower modes. A different set of polynomials was pro-
posed by Kim et al. [86]. This set is generated by multiply-
ing the previous polynomial by the corresponding co-ordi-
nate, being the first polynomial one that obey the essential 
boundary conditions. This set is non-orthogonal, and thus 
present some computational disadvantages. On the other 
hand, the procedure to generate it is simpler than for the 
orthogonal set. Frequency parameters of different isotropic 
plates are reported for different cases, i.e. various boundary 
conditions, springs at points and concentrated masses. Sim-
ply supported and clamped plates under shear load and a 
clamped orthotropic plate under hydrostatic in-plane loads 
are also studied. Also, the transition from fully simply sup-
ported to fully clamped plate, from fully free to fully simply 
supported plate, and from fully free to fully clamped plate 
is studied. Another set of functions, based on trigonometric 
functions, was used by Chai [32]. Six different types of sup-
port conditions were considered, among them the clamped 
case. For these conditions, the mode shape is approximated 
by the product of sine functions in each direction. The anal-
ysis showed that for lower modes the natural frequencies 
are consistently higher than those obtained with other sets. 
For higher modes, the natural frequencies are lower than 
previous results. The last set of functions studied in the pre-
sent paper is based on static beam functions, and was pro-
posed by Zhou [166], who studied the first nine eigenvalues 
of isotropic rectangular plates with various aspect ratios 
and boundary conditions.

2  Review on Admissible Functions

As discussed above, the results of an analysis with the Ritz 
method are largely dependent on the type of admissible 
functions we use. Therefore, it is of paramount importance 
to select a set of functions which allows, not only physically 
sound results, but also presents a good numerical behav-
ior. In the next sections, we review the works reporting 
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the results of the Ritz method with the six different sets of 
admissible functions mentioned above.

2.1  Characteristic Functions

Characteristic functions or eigenfunctions, which define the 
normal modes of vibration of a beam, were used by Young 
for the free vibration analysis of a clamped plate, a canti-
lever plate, and a plate with two adjacent edges clamped 
and the other two edges free [160]. A more complete set 
of data related with this work can be found in the techni-
cal report by Young and Felgar published in 1949 [161], 
which presents values of the characteristic functions and its 
first three derivatives of clamped-clamped, clamped-free 
and clamped-supported beams. The functions are tabulated 
for the first five modes to five decimal places and incre-
ments of the argument of 0.02L, where L is the length of 
the beam. Since the Ritz method requires the computation 
of integrals involving the admissible functions and their 
derivatives, over the years several results of such compu-
tations have been presented [29, 60, 102, 103, 118, 146]. 
This type of functions were also used by Warburton [155] 
to obtain approximate frequency expressions using the 
Rayleigh method. Leissa [99] presented a comprehensive 
work on free vibration of rectangular plates, considering, 
for each edge, the three possible combinations of bound-
ary conditions: clamped, simply supported and free. These 
boundary conditions originate 21 different cases. Initially, 
the six cases having two opposite sides simply supported 
are analytically studied and their frequencies are obtained. 
The effect of the Poisson’s ratio for the case of a plate with 
two adjacent edges simply supported and the other two 
edges free is also studied. The other 15 cases are studied 
using the Ritz method to obtain the frequencies and the 
results are compared with those obtained with Warburton’s 
approximate formulas [155]. Bassily and Dickinson [16] 
used the Ritz method with characteristic functions to obtain 
frequency parameters and buckling loads of fully clamped 
plates under a combination of uniform shear and direct in-
plane loads, plates clamped in two parallel edges and sim-
ply supported on the other two edges under uniform shear 
in-plane loads, and plates clamped in two parallel edges 
and free on the other two edges under in-plane stress fields 
involving linearly varying direct stress and parabolically 
varying shear stress. The convergence of the solution with 
the number of terms in the series is also reported in a tabu-
lar form in this work. The frequency parameters and buck-
ling loads, as well as nodal and contour lines at buckling, 
are also extensively presented in graphical format. Due 
to an error made in evaluating one of the integrals,  some 
of the numerical and graphical results reported in refer-
ence [16] for plates with free edges were corrected by the 
authors in a subsequent publication [17].

The plates analyzed in the works cited above were uni-
form and isotropic. The beginning of the application and 
study of composite materials in the 1950s and 1960s led 
to the use of the Ritz method for the analysis of bending, 
buckling, and free vibration of anisotropic plates. A paper 
by Hearmon [70] reports the use of characteristic functions 
for the vibration analysis of rectangular orthotropic plates 
with clamped and supported edges. Ashton and Waddoups 
[12] presented numerical solutions obtained with the Ritz 
method using the characteristic functions, as well as a com-
parison with experimental results. This work was extended 
to non-uniform plate properties and loadings [8]. Reference 
[8] also presents a comparison of experimental buckling 
results for a tapered beam with the results obtained with 
the Ritz method for a linearly tapered beam. A compari-
son of experimental mode shapes, obtained by photograph-
ing node lines described by aluminum granules, of fully 
clamped square boron-epoxy composite plates and those 
obtained with the Ritz method is presented by Ashton and 
Anderson [11]. An excellent agreement between the com-
puted and experimental nodal lines is observed. Analytical 
mode shapes of free rectangular anisotropic plates, obtained 
with the Ritz method with free-free characteristic functions, 
are reported in reference [9]. This reference also presents a 
study on the effects of fiber orientation, relation between 
Young’s modulus and stacking sequence. According to 
Ashton, the application of the Ritz method for bending, 
buckling, and dynamics of anisotropic plates, described in 
[8, 12], originates acceptable solutions, but they may not be 
acceptable if the derivatives of the deflection are required 
[10]. The natural frequencies of unsymmetrically laminated 
anisotropic plates with fully clamped edges were obtained 
by Bert and Mayberry [19], using the Ritz method and the 
characteristic functions tabulated in reference [161]. By 
relying on the work of Warburton [155], Dickinson [53] 
analyzed orthotropic plates and extended the formulation to 
include the effect of uniform and direct in-plane forces. The 
approach allows the computation of natural frequencies 
and/or buckling loads of plates with any combination of 
free, simply supported or clamped edges. The Ritz method 
with one term defined by the clamped or simply supported 
edges characteristic functions was used by Kollar and Veres 
[88] to obtain the buckling loads of rectangular orthotropic 
plates subjected to biaxial normal forces.

A combination of characteristic functions has also been 
used in the study of vibration of rectangular plates with 
elastically restrained edges by Warburton and Edney [156]. 
The variation of the fundamental frequency with in-plane 
forces and the computation of critical loads with these 
restrained conditions are also reported. The authors of ref-
erence [156] concluded that by using characteristic func-
tions, instead of polynomials, one obtains better accuracy. 
Plunkett [135] compared experimental and computational 
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results of flat (uniform) and variable thickness (non-uni-
form) cantilever plates. It was concluded that this last type 
of plates need a great number of terms in the series of the 
Ritz method in order to correctly represent the complex 
behavior of the higher order mode shapes. Aref et  al. [6] 
computed the static deflection of a fiber-reinforced plas-
tic skew bridge superstructure with the Ritz method and 
characteristic functions. The formulation of a transformed 
plate, with two opposite edges simply supported and the 
other two edges free was presented. The results show a 
good agreement with finite element results. Ciancio et  al. 
[48] presented a study on cantilevered rectangular aniso-
tropic plates with a concentrated mass rigidly attached to 
the center. The authors of reference [48] applied the Ritz 
method with characteristic functions as admissible func-
tions and reported the natural frequencies and mode shapes 
for different mass magnitudes. The dynamic analysis of a 
cantilever plate with attached spring-mass system on an 
arbitrary point was presented by Chiba and Sugimoto [47]. 
The displacement of the plate was defined by clamped-free 
and free-free characteristic functions, whereas the dis-
placement of the attached mass was defined by a constant. 
Extensive results were reported for both uncoupled and 
coupled vibrations of plate and spring-mass system. The 
free vibration analysis of thin rectangular plates with holes 
or orthotropic patches and an elastically attached mass was 
carried out by Bambill et  al. [15]. Simply supported and 
clamped isotropic and orthotropic plates were studied using 
characteristic functions. Very recently, Afshari and Inman 
[1] studied the vibration of a piezoelectrically driven beam 
with a single growing crack. The mode shapes and natu-
ral frequencies of cracked simply supported and clamped 
beams were approximated by the Ritz method with charac-
teristic functions. The effect of the crack, which is consid-
ered as a massless rotational spring, was modeled by a loss 
of energy. These approximate results are compared with 
the ones from the reference model of the cracked beam. 
Numerical results are also reported for various design 
parameters of crack position and depth and location of the 
piezoceramic patch. The analysis of thick plates was car-
ried out by Lim et al. [108] using this type of functions and 
a simplification of Reddy’s displacement functions [137]. 
The results are compared with 3D results and the ones 
obtained with Mindlin’s theory for simply supported, fully 
clamped plates, and plates with adjacent edges simply sup-
ported and clamped. Kim [87] analyzed the vibration of 
fully clamped functionally graded rectangular plates made 
up of metal and ceramic. In this work, the material proper-
ties are temperature dependent and vary through the thick-
ness according to a power law distribution in terms of the 
volume fractions of the constituents. The Ritz method is 
applied with characteristic functions of clamped beams and 
a third order shear deformation theory is used to account 

for rotary inertia and transverse shear strains. The numeri-
cal results reported show that the vibration characteristics 
are significantly influenced by the materials composition, 
the plate geometry and the temperature rise.

A method for the study of the boundary conditions 
effects on the free vibration characteristics of multi-layered 
cylindrical shells, based on Love’s theory, was proposed 
by Lam and Loy [95]. The Ritz method is used with the 
characteristic functions as axial modal functions. Accord-
ing to the authors of reference [95], the proposed method 
is less computational demanding since it is a non-iterative 
method, unlike other methods. A multi-layered cylindrical 
shell made of three homogeneous isotropic layers, being 
the outer and inner layers of the same material and the 
middle layer of a different material, is studied. Extensive 
results are presented in reference [95], namely fundamental 
frequencies and mode shapes of the nine boundary condi-
tions in the three directions. An extension of this approach 
for the frequency analysis of multi-layered cylindrical 
shells under lateral pressure and with asymmetric bound-
ary conditions was presented by Isvandzibaei et  al. [83]. 
In order to study the vibration of cylindrical shells with a 
ring support arbitrarily placed along the shell, the charac-
teristic functions are also chosen as axial functions by Loy 
and Lam [114], along with Sanders’ shell theory. Studies 
on the frequency parameter, the ring support position and 
the boundary conditions are reported. It was found out that 
the ring support significantly influences the frequencies 
and this influence depends on the position of the ring sup-
port and the boundary conditions. The vibration analysis of 
functionally graded cylindrical shells with an exponential 
volume fraction law was carried out by Arshad et  al. [7]. 
The thin shell theory of Love is employed and the charac-
teristic functions are used to describe the axial displace-
ments. Several boundary conditions, such as free-free, 
free-simply supported, simply supported-simply supported, 
clamped-clamped, clamped-free, clamped-simply sup-
ported, and different values of the power law exponent are 
studied. It was found out that, for all boundary conditions, 
the natural frequencies of the functionally graded cylindri-
cal shell are in an interval defined by the natural frequen-
cies of shells made of the pure constituent materials. The 
use of characteristic functions for the vibration analysis of 
a fluid coupled with a structure, namely cylindrical shells, 
has also been reported. Such is the case of a work by Kwak 
et al. [90], who studied the effect of both internal and exter-
nal fluids coupled with a partially submerged clamped-
free cylindrical shell. The authors derived the virtual mass 
matrix that is added to the matrix equations of motion for a 
cylindrical shell in vacuo based on the Sanders’ shell the-
ory. An extension of the work presented in reference [90] 
was developed by Bae et al. [14]. The authors analyzed the 
case of a submerged shell incorporating an external wall, 
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an interior shaft and a bottom. The experimental verifica-
tion of the theoretical results presented in references [90] 
and [14] was also carried out. Among other conclusions, 
it was found out that the natural frequencies decrease sub-
stantially even for a small water height. This decrease is 
observed both in theoretical as well as experimental results. 
Characteristic functions of clamped free and simply sup-
ported boundary conditions are also used by Askari et  al. 
[13] to define the axial mode shape of an isotropic cylin-
drical shell. The cylindrical shell is a component of a liq-
uid-storage elastic cylindrical container with internal body 
and partially filled with a sloshing fluid. Reference [13] 
presents an analytical method for the analysis of the fluid 
structure interaction which rely on the Rayleigh quotient 
and the Ritz and Galerkin methods. The analytical results 
obtained are compared with data available in the literature 
and finite element results.

Maheri and Adams [115] also used characteristic func-
tions to analyze the vibration damping of anisotropic fiber-
reinforced plastic laminates and they show that the results 
correlate well with experimental data obtained for freely 
held plates. A similar approach to the study of damping 
in laminated beams and plates was presented by Berthelot 
[20], who found that the damping depends on the modes 
and its evaluation is related with the mode shapes consid-
ered. The author used clamped-free and free-free charac-
teristic functions. This work is an extension of a previous 
study by Berthelot and Sefrani [21], in which the damping 
properties of unidirectional plates are described. In order 
to estimate the vibration of a floor, Kato and Honma [85] 
modeled building floors with the Ritz method and char-
acteristic functions. A square isotropic plate simply sup-
ported at the four corner points and restrained against rota-
tion along the four edges with infinite spring constants is 
defined as the base model. Reinforcements with four beams 
along each boundary are also included. Besides the base 
model, other four models are analyzed, which are char-
acterized by adding two parallel beams in the same inter-
val, adding a simply supported point near the center of 
the plate, adding in-plane forces, and adding a tuned mass 
damper at the center of the plate to the case with two paral-
lel beams added in the same interval to the base model. The 
first six natural frequencies and the time history curves for 
the deflection at the center of the plate are reported. A good 
agreement between the results of the proposed models and 
finite element models is observed. The problem posed by 
free edges is also addressed in reference [85]. An appli-
cation of the Ritz method with characteristic functions as 
admissible functions was presented by Deobald and Gibson 
[52], who determined four elastic constants of orthotropic 
plates with clamped and free edges. Two Young’s moduli, 
the in-plane shear modulus, and a Poisson’s ratio were 
determined using four natural frequencies. Lai and Ip [91] 

also applied the Ritz method with characteristic functions 
of a free-free beam to estimate three elastic moduli and 
two Poisson’s ratios of three orthotropic plates. A statisti-
cal Bayesian estimation method was used and seven natural 
frequencies were considered in the computations. A similar 
approach to characterize the transverse modulus and the in-
plane shear modulus of free-free thin orthotropic shells was 
developed by Ip et al. [82].

An increase in the development of numerical models 
for the analysis of structures presenting size effects has 
been observed in recent years. One of the theories which 
account for size effects is the modified couple stress pro-
posed by Yang et al. [158]. In this theory, the size effect is 
accounted for by including a material length scale param-
eter related with the couple stress. The theory described 
in reference [158] was applied for the free vibration and 
buckling analyses of Timoshenko beams by dos Santos 
and Reddy [144]. The authors used the Ritz method with 
characteristic functions to compute the natural frequencies 
and buckling loads of beams with any of the six possible 
boundary conditions. Kong [89] studied the pull-in behav-
ior of cantilever and clamped microbeams with the modi-
fied couple stress, considering the displacement as a one 
term series of characteristic functions. It was found that 
the normalized pull-in voltage of the microbeam exhibits 
remarkably the size effect and that this effect diminishes 
when the thickness is greater than the material length scale 
parameter. The pull-in displacement is, on the other hand, 
constant and thus independent of the material length scale. 
Another elasticity theory which has been applied to the 
analysis of nanostructures is the nonlocal theory proposed 
by Eringen [57, 58]. The buckling and the free vibration of 
single- and multi-walled carbon nanotubes have been stud-
ied with this theory by Ansari and co-workers. Ansari et al. 
[5] applied the Ritz method with characteristic functions 
describing the axial functions, which appears in the com-
ponents of the displacements of the elastic Donnell’s shell 
theory, for the analysis of axial buckling of singe-walled 
carbon nanotubes. These authors [4] extended this numeri-
cal model by including the thermal environment effect and 
showed that the difference between the thermal axial buck-
ling responses is more prominent for higher values of the 
nonlocal elasticity constant. Numerical models based on 
Flügge’s shell theory complemented with Eringen’s nonlo-
cal theory were also developed by Ansari et al. for the free 
vibration analysis of single-walled [2] and multi-walled 
[143] carbon nanotubes and for the analysis of thermal 
buckling of multi-walled carbon nanotubes [3]. Similarly to 
the previous works, the Ritz method is applied with char-
acteristic functions as admissible axial functions. With the 
model presented in reference [3] it is possible to specify the 
boundary conditions in a layerwise manner.
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2.2  Modified Characteristic Functions

Due to the numerical problems presented by the character-
istic functions of a beam, Gartner and Olgac [67] proposed 
a modified set of these functions so that the magnitude of 
the terms is in the range [−1, 1]. This is accomplished by 
replacing the hyperbolic terms by negative exponential 
terms. A similar idea was proposed by Dowell [56] study-
ing the asymptotic approximations of the characteristic 
functions, with similar results. The modified characteristic 
functions were used by Gartner and Cobb [66] in a com-
putational procedure to describe the biplanar dynamic and 
static responses of rotating spindle systems.

The set of modified characteristic functions was used in 
the Ritz method by Pao and Peterson [132] to plot the con-
tour of free vibration and buckling mode shapes of plates. 
The plates analyzed were square, fully clamped, and made 
of isotropic and composite materials. Besides showing the 
peaks and valleys of the first six mode shapes, the contour 
plots also reveal the fiber direction of the single-layer lami-
nate plate analyzed. Dasgupta and Huang [51] proposed a 
layer-wise model for the free vibration analysis of thick, 
arbitrarily laminated spherical panels with boundary con-
ditions at four edges being any combination of simply-
supported, free, clamped and guided in each lamina. The 
model relies on a displacement field described by finite ele-
ment interpolation shape functions in the thickness direc-
tion and the modified characteristic functions in the in-
plane and latitudinal directions. The authors state that, for 
a given accuracy, the combination of the Ritz and the finite 
element methods allows significant saving in computa-
tional resources relatively to a pure three-dimensional finite 
element analysis. More recently, van Hulzen et  al. [80] 
obtained the mode shapes needed to compute the axial and 
radial deformations of piezoelectric tube actuators using 
the Ritz method with the modified characteristic functions 
of fixed-free and fixed-fixed beams. Moreno-García et  al. 
[121] proposed a damage localization method where higher 
order derivatives of displacements of composite laminated 
plates are obtained by direct differentiation of the series 
defined by the Ritz method with modified characteristic 
functions. Taking advantage of the direct differentiation 
described in this paper, Moreno-García et  al. [122, 123] 
proposed a technique to define an optimal spatial sampling 
for damage localization in laminated composite plates. 
The modified characteristic functions have also been used 
as admissible functions in the Ritz method for the analysis 
of delaminated carbon fiber-reinforced polymer plates by 
Gallego et al. [62], carbon fiber-reinforced polymer plates 
with Young’s moduli reduction by Moreno-García et  al. 
[120] and Moreno-García [119]. In the aforementioned 
three works was proposed a damage localization method 
based on the Ritz method and wavelet analysis. Moreover, 

in [119] one can find more applications of these functions: 
plates with local density and stiffness changes, plates with 
cut-outs and stepped plates. A convergence study of natu-
ral frequencies and mode shapes is also included for this 
last type of plates. Besides the use of the modified char-
acteristic functions in the Ritz method mentioned above, 
they were also used in the formulation of hierarchical beam 
finite elements by Ganesan and Engels [65]. This kind of 
finite elements were applied to a simply supported beam 
and a four-bay frame. An excellent convergence of frequen-
cies was observed.

2.3  Orthogonal Polynomials

A set of orthogonal polynomials was proposed as admissi-
ble functions in the Ritz method by Bhat [22]. The orthogo-
nal polynomials are obtained with the Gram–Schmidt pro-
cess and the paper contains an appendix showing how to 
obtain the first polynomial in order to start this process. 
This first polynomial is such that it satisfies the essential 
(geometric) as well as the natural boundary conditions. 
Simply supported and clamped plates, plates with two adja-
cent edges simply supported and the other two free, and 
plates with two adjacent edges clamped and the other two 
free were studied. The natural frequencies of simply sup-
ported plates were compared with exact theoretical results, 
whereas the natural frequencies of the other three cases 
were compared with results reported in Leissa [99] and 
Dickinson and Li [55], where characteristic beam functions 
and simply supported plate functions were used, respec-
tively. It was found that the use of orthogonal polynomi-
als leads to superior results for lower modes. Bhat [23] also 
used orthogonal polynomials to obtain the deflections of a 
fully clamped plate and a plate with three edges clamped 
and the other free. Both plates were subjected to uniform 
loading and hydrostatic loading. It was found that the 
results correlate well with those presented by Timoshenko 
and Woinowsky-Krieger [154]. A graphical comparison 
of the first six orthogonal polynomials and corresponding 
characteristic functions, as defined in [160], for clamped-
clamped and clamped-free beams is also presented in [23]. 
This comparison shows a very close agreement between 
the results of these two types of functions. The orthogonal 
polynomials also provided good results of computations 
of natural frequencies and mode shapes of a rotating uni-
form cantilever beam, mounted on a hub, with a tip mass 
[24]. A parameter study of natural frequencies and mode 
shapes as a function of different rotational speeds and dif-
ferent combinations of tip mass, hub radius, and setting 
angles is also presented. Descriptions and applications of 
other type of orthogonal polynomials can be found in the 
extensive review written by Chakraverty et al. [38], namely 
orthogonal polynomials in two variables, which allow the 
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analysis of polygonal plates [26]. It is also worth mention-
ing the work of Bhat [25] in which the construction of the 
higher order orthogonal polynomials is made with frac-
tional power increments. The author mentions that this con-
struction is more cumbersome than the definition of simple 
orthogonal polynomials.

Due to the efficiency and accuracy of the results 
obtained with Bhat’s orthogonal polynomials for isotropic 
plates, this set of admissible functions has also been used 
in the analysis with the Ritz method of plates made of ani-
sotropic materials. For instance, besides isotropic plates, 
Dickinson and Di Blasio [54] studied orthotropic plates 
using orthogonal polynomials and the Ritz method. For 
clamped-free and simply supported-free boundary condi-
tions, they defined a simpler first polynomial that obey 
the essential (geometric) boundary conditions, but not the 
natural boundary conditions. A convergence study of the 
natural frequencies is performed and the results, presented 
in tabular and graphical format, are very satisfactory. Mode 
shapes, shear forces and bending moments are also com-
puted for isotropic plates, simply supported along two par-
allel edges and free on the other two or clamped-free on the 
other two. The results are compared with those obtained 
using characteristic functions, degenerated functions [18], 
and exact results, and it is found that the use of the pro-
posed functions yields better results than the ones in refer-
ence [18]. Frederiksen [61] applied the Ritz method with 
orthogonal polynomials for the free vibration analysis of 
completely free thick laminates using two different higher 
order plate theories. The first theory contains six unknown 
functions and the second only three. The author concluded 
that the second theory shows a good compromise between 
accuracy and computational efficiency. Nevertheless, since 
both theories are single layer theories they present some 
limitations on the analysis of single-ply and cross-ply lami-
nates. Another application of the Ritz method with orthog-
onal polynomials was presented by Cupial [50]. Although 
the author restricted the analysis to symmetrically lami-
nated plates and made use of the classical plate theory 
of composite plates, results for seven different cases of 
boundary conditions are reported in the paper. Nallim and 
Grossi [126] computed fundamental frequencies, maximum 
deflections and center moments of rectangular anisotropic 
plates with orthogonal polynomials and characteristic func-
tions. The convergence study performed in a simply sup-
ported plate and a plate with three edges clamped and one 
free showed that the orthogonal polynomials are faster and 
the results do not present oscillations. A general approach 
for the study of static and dynamic responses of arbitrary 
quadrilateral anisotropic plates with various boundary con-
ditions was presented by Nallim et  al. [128]. The proce-
dure relies on orthogonal polynomials and natural coordi-
nates. The numerical results presented in the paper include 

trapezoidal, skew, rhomboidal, and general quadrilateral 
symmetrically laminated composite plates with several 
stacking sequences and different fiber angles. Nallim and 
Oller [127] extended the work reported in reference [128] 
to unsymmetrically laminated plates. The orthogonal poly-
nomials are used to approximate the three field displace-
ment components, i.e. the transverse deflection and the 
two in-plane stretching deformations. Very recently, Rango 
et al. [136] extended and generalized the method presented 
in references [128] and [127] for thick quadrilateral lami-
nated plates, based on the trigonometric shear deformation 
theory (TSDT). Sets of orthogonal polynomials are also 
selected by Hu et al. [73] to define the three linear displace-
ment functions and the two angular displacement functions 
of angle-ply laminated plates with twist. Frequency param-
eters and mode shapes are reported and the effects of fiber 
angle, twist angle, thickness ratio and stacking sequence is 
also presented in reference [73].

The orthogonal polynomials also allow the analysis of 
beams and plates with non-uniform properties [23]. Indeed, 
Bhat et al. [28] presented a comparative study of four meth-
ods in the computation of natural frequencies of plates with 
linearly varying thickness. One of the methods is the Ritz 
method with orthogonal polynomials as admissible func-
tions and the other three are the Ritz method with func-
tions including two exponents, the optimized Kantorovich 
method and the finite element method. Natural frequencies 
of stepped plates using the Ritz method with orthogonal 
polynomials were also computed by Lam and Amrutharaj 
[92]. The natural frequencies of plates with a linear vari-
ation of the thickness in one direction and subjected to 
rotational and translational elastic restrains at the edges 
were computed by Grossi and Bhat [69] using orthogonal 
polynomials in the Ritz method. The orthogonal polynomi-
als are also used in a method developed by Muthukumaran 
et al. [124] to study the effect of boundary conditioning on 
vibrations of a rectangular plate. According to the authors, 
in order to achieve the required results, and thus the tun-
ing of the structure, the boundary conditioning procedure 
implies the modification of translational and rotational 
stiffness distribution on the edges. The proposed method 
was later applied in reference [125] to structural tuning of 
a square plate, along with a fuzzy logic approach. With this 
approach, it is possible to obtain fuzzy sets of boundary 
stiffnesses and eigenvalue ratios. Liew et al. [107] analyzed 
moderately thick plates with the first order shear deforma-
tion theory of Mindlin. The transverse deflection and the 
two cross-sectional rotations are defined by three sets of 
orthogonal polynomials. Convergence studies for sim-
ply supported and fully clamped plates are also reported. 
Comparison of the results for simply supported thin and 
thick plates are in excellent agreement with the ones using 
trigonometric admissible functions. There is also a close 
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agreement of the solutions with the three-dimensional elas-
ticity solution results for moderately thick plates. It was 
also found that there are significant discrepancies between 
the results reported and the results of the classical plate the-
ory for moderately thick plates, in particular for the higher 
modes.

A method relying on the division of a structure with 
complex geometry into an assembly of simpler geometries 
was proposed by Bhat [27]. The displacement in each one 
of these simpler geometries is based on orthogonal func-
tions and the relation among them is defined by continuity 
conditions. An analysis of a beam fixed at both ends and 
with an intermediate support is reported in the paper. Two 
orthogonal functions in each one of the two segments are 
used. According to Bhat [27], the method can be viewed 
as a combination of the Ritz method and the finite element 
method and is named domain decomposition method by 
some authors. The extension of this method to two dimen-
sional structures, such as isotropic plates, single layer 
anisotropic plates, and symmetric laminated plates was 
reported by Liew et al. in [105], [104], and [106], respec-
tively. These papers present frequency parameters and 
mode shapes of plates with a large variety of mixed edge 
boundary conditions. Using Bhat’s orthogonal polyno-
mials, piecewise integration and an algorithm taking into 
account the continuity, Lam et  al. [96] obtained the fun-
damental frequency of a rectangular plate with one or two 
rectangular cutouts, a plate with abrupt change in thick-
ness, and a plate with a rectangular non-homogeneity. Both 
isotropic and orthotropic materials are considered. The 
method described in [96] was also applied to the analysis 
of simply supported and fully clamped isotropic plates with 
stiffened openings by Lam and Hung [94]. The authors 
report parametric studies of the fundamental frequency as a 
function of the geometry of the stiffened opening.

The buckling analysis of rectangular anisotropic plates 
under stress gradient and general boundary conditions was 
presented by Pandey and Sherbourne [130]. The authors 
used the results of the Ritz method with orthogonal polyno-
mials as benchmark solutions for a comparison with results 
obtained with the differential quadrature method. Although 
the analysis is limited to uniformly distributed edge load, 
an extensive discussion on the buckling behavior of ani-
sotropic composite plates with different boundary con-
ditions is presented in the paper. Pandey and Sherbourne 
[131] also proposed a method for the inhomogeneity design 
by controlling the spatial fiber distribution in a lamina of 
a composite plate. The aim of the authors of reference 
[131] is to improve the uniaxial and shear buckling behav-
ior of rectangular, uni-directional and cross-ply laminates 
under a variety of boundary conditions. The uniaxial and 
shear buckling analysis of rectangular, inhomogeneous, 
orthotropic, laminated composite plates under a variety of 

combinations of simple and clamped edges is performed by 
the Ritz method with orthogonal polynomials.

The use of orthogonal polynomials in the Ritz method 
for the free vibration analysis of Mindlin plates with side 
and internal cracks was reported by Huang et  al. [76]. 
Since these functions are continuous and are not singular 
anywhere in the domain, supplementary special functions 
are needed to describe the existence of the crack. Accord-
ing to the authors of reference [76], the asymptotic solu-
tions at the neighborhood of the crack tip are usually good 
candidates for these admissible functions. Thus, for a com-
plete description of the cracked Mindlin plate, the trans-
verse displacement of the mid-plane, and the two rotations 
of the mid-plane normal to each one of the two directions 
are defined by two sets of functions. Extensive convergence 
studies for simply supported and cantilevered rectangu-
lar plates with side cracks and internal cracks, as well as 
comparison with published results are reported in reference 
[76]. The approach is also used to compute natural frequen-
cies and nodal patterns as function of the length, location, 
and orientation of the cracks. An extension of the approach 
used in reference [76] to the free vibration of functionally 
graded material plates with side cracks [77] and internal 
cracks [78] was carried out by Huang et al. In the first case, 
the theory used was Reddy’s third-order plate theory and in 
the second case a three-dimensional elasticity theory was 
employed. Three-dimensional vibrations of rectangular 
parallelepipeds of functionally graded material having side 
cracks were also object of study by Huang et al. [79]. Very 
recently, Bose and Mohanty [30] used the Ritz method for 
the analysis of forced vibration of simply supported and 
clamped plates with a side crack. Like in similar works 
regarding cracked plates, the deflection function is defined 
by a first part describing the displacement of the uncracked 
plate and a second part is used to generate the presence of 
the crack. The first part is composed of orthogonal poly-
nomials, whereas the second part are the corner functions 
which are expanded by finite terms of polynomials, as pro-
posed by Hung and Leissa [74]. Although the Ritz method 
was also used in reference [74], the functions relative to 
the uncraked plate are not orthogonal polynomials, like in 
reference [75], but algebraic. The corner functions satisfy 
the natural boundary conditions of zero moment and shear 
force along the crack. There is a good agreement between 
the first five modes obtained with the Ritz method and the 
finite element method. The normalized mobility curves of 
a square plate with a side crack of arbitrary length, orienta-
tion, and position are also reported in reference [30]. The 
variation of the mobility is also parametrically studied for 
changes in crack length, angle, and position.

The free vibration characteristics of transverse shear 
deformable cross-ply laminated circular cylindrical shells 
was studied by Soldatos and Messina [148] using the Ritz 
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method with orthogonal polynomials. The analysis relies 
on several shear deformable Love-type shell theories. The 
results were compared with available experimental data 
and relevant analytical results. The comparisons showed a 
fast convergence of the method, independently of the type 
of shell theory. Later, these authors extended the applica-
bility of the method described in [148] to the advance study 
of the influence of edge boundary conditions on the vibra-
tion characteristics of complete cross-ply laminated cylin-
drical shells [117] and angle-ply laminated plates, circular 
cylinders and cylindrical panels [149]. More recently, simi-
lar approaches were developed by Sun et al. [152] and Song 
et al. [150], who studied the vibration of rotating cylindri-
cal shells with arbitrary edges and symmetrically laminated 
composite cylindrical shells with arbitrary boundary con-
ditions, respectively. The previous models based on the 
Ritz method are extended for the vibration analysis of the 
rotating laminated composite cylindrical shells with elastic 
edges supports by Song et al. [151].

The Ritz method with orthogonal polynomials is also 
used in the modeling and theoretical analysis of micro-
electro-mechanical systems (MEMS) by Rinaldi et  al. 
[138–140]. In these works the authors applied the Ritz 
method to obtain the natural frequencies and mode shapes, 
along with a quantitative experimental approach for the 
characterization of non-classical boundary conditions, of 
cantilever probes for atomic force microscopy (AFM) by 
electro-thermal–mechanical testing. The microcantilever 
end support is modeled with artificial rotational and trans-
lational springs. In more recent years, the Ritz method with 
orthogonal polynomials has also been applied to other cou-
pled problems. One example is the work of Jeong and Kang 
[84], who developed a theoretical method to compute the 
natural frequencies and mode shapes of multiple rectangu-
lar plates fully in contact with a laterally bounded liquid. 
An approximation of the wet dynamic displacement of the 
plates was given by a combination of the orthogonal poly-
nomials. A derivation of the liquid displacement potential 
satisfying the liquid boundary conditions is formulated 
and, for a compatibility requirement along the contacting 
surface between the plates and the liquid, the wet dynamic 
modal functions of the plates were expanded by the finite 
Fourier transform. An excellent agreement is observed 
between the results of the proposed method and those 
from a three-dimensional finite element analysis. Typical 
wet mode shapes of three and four rectangular plates are 
reported as well as studies of the effects of the number of 
plates and the liquid gap size on the natural frequencies. 
An electromechanically-coupled analytical model of piezo-
electric energy harvesting skin based on Kirchhoff plate 
theory was proposed by Yoon et al. [159]. The Ritz method 
with orthogonal polynomials takes into account the iner-
tia and stiffness effects of the surface-bonded piezoelectric 

patch in order to enhance the predictive capability of the 
electromechanically-coupled analytical model. Parashar 
and Kumar [133] developed a model for the calculation of 
natural frequencies and modes of piezoceramic cylindri-
cal shells. The results obtained with the Ritz method were 
compared with the ones from shell theory, experiment and 
finite element analysis and a close agreement is observed. 
Bose and Mohanty [31] developed a sound radiation model 
of a cracked plate using the Ritz method. In addition to the 
orthogonal polynomials, corners functions are introduced 
to generate the crack tip singularity. It is found a good 
agreement between the natural frequencies obtained from 
the Ritz method and those obtained from the finite element 
method. The radiation efficiency and sound power obtained 
from the Ritz method are also close to those obtained from 
the boundary element method. A study on the variations of 
normalized sound power, which are shown to be due to a 
change in the crack parameters, is also reported.

2.4  Non‑orthogonal Polynomials

Kim et  al. [86] proposed a set of simpler polynomials 
generated by incrementing the power of the multiplying 
co-ordinate. This set does not form an orthogonal set and 
thus one losses some computational advantages. Neverthe-
less, according to the authors, the main advantage of these 
functions is that there is no need for complicated generat-
ing procedures similar to the one applied in generating the 
orthogonal polynomials. The evaluation of the integrals is 
also much simpler. This set of non-orthogonal polynomi-
als is equivalent to the one obtained using the orthogonally 
generated polynomials if, in the process of generating this 
polynomials, a constant weight function and a specific 
starting function are used. The authors demonstrate this 
equivalence in an appendix presented in reference [86]. 
The frequency parameters of different isotropic plates, with 
various boundary conditions, springs at points and concen-
trated masses are also investigated. Square isotropic sim-
ply supported and clamped plates under shear load and a 
square clamped orthotropic plate under hydrostatic in-plane 
loads are also studied. A study of transitions from fully 
simply supported to fully clamped plate, from fully free to 
fully simply supported plate, and from fully free to fully 
clamped plate is also reported. The transitions are accom-
plished by applying increasingly rotational and/or transla-
tional springs of equal value along the four edges. Several 
of the results reported are compared with those available in 
the literature.

The non-orthogonal polynomials proposed in [86] are 
also used by Young and Dickinson [163] for the analy-
sis of free vibration of rectangular plates with straight or 
curved internal line supports. Natural frequencies and 
mode shapes are reported for simply supported plates with 
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oblique straight line internal supports, with curved line 
supports extending between two diagonally opposite cor-
ners, and with central internal circular supports. The nat-
ural frequencies for the two first cases are compared with 
available results found in the literature. In order to study 
the dynamic response of laminated angle-ply plates with 
clamped conditions subjected to explosive blast loading, 
Lam and Chun [93] computed the mode shapes using the 
Ritz method with the non-orthogonal polynomials. They 
applied the mode superposition method to obtain the dis-
placement, at different times, of symmetrically, anti-sym-
metrically, and non-symmetrically square plates with four 
layers and found out that the symmetrically stacked plate 
has the least central deflection. The set of non-orthogonal 
polynomials proposed by Kim et al. [86] was also used in 
the Ritz method by Fasana and Marchesiello [59] for the 
vibration analysis of sandwich beams. Both the transverse 
and in-plane displacements are considered in the analysis. 
The loss factor of the beam is computed by substituting the 
shear modulus of the core with the complex form. In such a 
case, the ratio of the imaginary part to the real part of each 
eigenvalue gives the loss factor of the beam at each vibra-
tion frequency. Only simply supported and clamped-free 
beams are analyzed, but the paper presents a large num-
ber of comparisons with values found in the literature. The 
authors state that the results have a good agreement with 
the values reported in literature. Young [162] expressed 
the three displacements of thick shells arbitrarily deep in 
one direction with the non-orthogonal polynomials and the 
Ritz method was used to obtain the frequency parameters 
of simply supported and cantilevered cylindrical panels, 
cylindrical shells with shear diaphragm conditions at both 
ends, and closed barrel shells clamped at both ends. The 
results obtained are compared with published results or 
with results from the finite element method.

2.5  Product of Trigonometric Functions

Functions defined by the product of trigonometric func-
tions can also be used in the Ritz method. The first appli-
cation of this type of functions was carried out by Chai 
[32]. This researcher studied the free vibration of plates 
with and without a concentrated mass. The study relies on 
the Rayleigh method and a single term of the product of 
trigonometric functions is used. Comparative results for a 
square plate and the effect on the first natural frequency of 
the concentrated mass placed at the center and along the 
length of the plate are reported in [32]. It was found out 
that, although the first natural frequency for the concen-
trated mass placed at the center of a plate with two opposite 
simply supported edges and two opposite clamped edges is 
well predicted, the same is not true when the mass is placed 
away from the center. A related and complementary work 

to the one reported in [32] was published by Low et  al. 
[110]. Later, the results for off-center concentrated mass 
were improved by Chai [35]. The author used the Ritz 
method to compute the first natural frequency and observed 
that the percentage difference between experimental results 
and the computed results with 100 terms is in the range 
±15%, whereas this percentage can be as high as 43% with 
just one term. The case of a plate clamped in two opposite 
edges and simply supported in the other two is extensively 
studied in reference [34]. Besides this type of plate, Low 
et al. [112] analyzed fully clamped plates with an attached 
mass in a large number of positions and found out that the 
series with 100 terms can generally predict well the first 
three experimental natural frequencies of the plates regard-
less of the mass position, whereas if only one term is used 
the estimation is good only for the first natural frequency. 
Plots of frequency ratio as function of length ratio describ-
ing the position of the mass are reported. It was found that 
these plots show similar trends when the mass attached to 
the plates is different. The authors also describe a relation 
between the mode shape of the plates and the plots of the 
frequency ratio versus the length ratios in the two direc-
tions. Thus, it is possible to predict the mode shape using 
the iso-frequency curves. A complementary work to the 
one described in [112] was presented by Low et al. [113], 
who used a spectrum analyzer and a TV-holographic sys-
tem to obtain mode shapes of plates with mounted masses. 
The experimental data thus obtained was used to validate 
the results from the Ritz method with product of trigo-
nometric functions. It is suggested in this work that more 
terms in the series are needed to analyze the higher modes 
and heavier loads.

Chai et al. [37] developed a numerical model based on 
the product of trigonometric functions and the Ritz method 
for the study of tension effects on natural frequencies of 
clamped beams with a mass at mid-span. The main objec-
tive of including the tension effects was to justify the poor 
correlation of theory and experiment results for thin beams, 
as reported previously in reference [111]. Four beam speci-
mens with different dimensions and properties were stud-
ied and a good correlation between experimental data and 
the proposed numerical model results is observed when 
the tension at the extremities of the beams are accounted 
for. A single term of the product of trigonometric functions 
was also used by Chai and Khong [36], along with the strip 
method for the buckling analysis of laminated composite 
plates. The results are compared with those available in the 
literature and a parametric study is also carried out. The 
authors found out that the finite strip method may not be 
able to predict the buckling loads of laminated plates with 
significant magnitudes of the bending/twisting stiffnesses. 
A more complete study of buckling analysis of laminated 
composite plates is presented by Chai [33]. In this work, 
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a series of product of trigonometric functions is used in 
the Ritz method. The results with a series of 144 terms are 
compared with the ones in reference [36]. It was observed 
that the results correlate reasonably well with experimen-
tal data of five different plates with two opposite clamped 
edges and the other two edges simply supported, although 
in a case a different of +19% is observed. Another two 
sets of experimental data of eleven fully clamped plates 
and eleven plates with two opposite clamped edges and 
the other two edges simply supported are compared to the 
results and, in general, a good agreement is verified. The 
convergence studies show that 144 terms are necessary and 
sufficient to provide a converged solution. Very recently, 
Pirnat et  al. [134] developed a structural-acoustic model 
of a rectangular plate-cavity system with an attached dis-
tributed mass and internal sound source. The authors used 
the Ritz method because the finite element was found 
unsuitable since it gives a solution in discrete points and 
not as a continuous function. The natural frequencies and 
mode shapes of simply supported and clamped plates with 
attached mass were computed with different numbers of 
terms in the series defined by sine functions and products 
of trigonometric functions, respectively. The model was 
validated by comparing its results with those obtained 
experimentally.

2.6  Static Beam Functions

The use of static beam functions as admissible functions in 
the Ritz method was first proposed by Zhou [164]. These 
functions are based on the general solution of the differ-
ential equation of a Euler–Bernoulli beam under a point 
load. By varying the location of the point load applied 
to the beam a set of third order polynomial functions can 
be defined. The coefficients of the polynomials are deter-
mined from the boundary conditions. Besides the fre-
quency parameters of a clamped beam, the eigenvalues of 
five plates with different boundary conditions are also com-
puted. A close agreement with exact solution is observed, 
as well as a good accuracy relatively to results with char-
acteristic functions. However, according to Zhou [164], the 
computations of the matrices are simpler with static beam 
functions than with characteristic functions. It was also 
found that plates with clamped and/or simply supported 
edges present eigenvalues more accurate than those of a 
plate with free edges. The accuracy of the eigenvalues of a 
plate with no free corners is better than the accuracy of the 
eigenvalues of a plate with free corners. Lee and Lee [98] 
also applied the static beam functions to the free vibration 
analysis of rectangular plates on elastic point supports. The 
authors report the first three modes of a square plate with 
all four edges simply supported and with a central elastic 
point support. A study on the influence of the stiffness and 

the location of the elastic point support on the frequency 
parameter is also presented in reference [98]. The static 
beam functions based on a point load have been recently 
used by Lee et al. [97] in the free vibration analysis of sim-
ply supported and clamped thin isotropic plates with voids. 
The position of the voids is arbitrary and they are defined 
continuously by using the extended Dirac function. The 
numerical results are in agreement with alternative ones, 
but, according to the authors of reference [97], the model 
presented is less computational expensive.

A different set of static beam functions was proposed 
by Zhou [166]. In this case, the functions are the solution 
of the differential equation of a beam where the loads are 
expanded into a sine series. These static beam functions 
are a combination of a sine series and a third order poly-
nomial. The coefficients of the polynomial are defined by 
the boundary conditions. The accuracy and convergence 
is illustrated by numerical results of free vibration of iso-
tropic rectangular plates with various aspect ratios and 
boundary conditions. This type of admissible functions 
was also used by Zhou [165] to determine natural frequen-
cies of rectangular plates with elastic translational and/or 
rotational edges. The coefficients of the third order polyno-
mial depend on the translational and rotational stiffnesses 
at the edges. In reference [165] several numerical results 
are reported for square plates with various symmetrically 
distributed elastic stiffnesses. Although the convergence is 
very good, the accuracy worsens for small stiffnesses of the 
elastic restraints. This is because these admissible functions 
cannot be applied to fully free plates.

The free vibration analysis of laminated composite 
plates has also been carried out with static beam functions. 
Cheung and Zhou [41] established relations between point 
loaded beams and point supported plates, thus defining a 
new set of admissible functions which are composed of 
the static solutions of a beam under sine loads and under 
point loads. Unlike other functions, the proposed func-
tions directly satisfy both the geometric boundary condi-
tions and the zero displacements at the point supports. 
Besides results for isotropic square plates with point sup-
ports and symmetrically laminated square plates, which 
are compared with results available in the literature, results 
for point supported plates with different angles of fiber 
orientations, material properties, numbers of layers, loca-
tions of point supports and aspect ratios are also reported 
in reference [41]. After the studies described in reference 
[41], Cheung and Zhou published two papers where static 
beam functions were used for the free vibration analysis of 
rectangular symmetrically [45] and unsymmetrically [44] 
laminated composite plates with intermediate line sup-
ports. These authors also reported in reference [43] the use 
of static beam functions for the analysis of orthotropic rec-
tangular plates with elastic intermediate line supports and 
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edge constraints. In this work, the elastic rotational and the 
elastic translational constraints along the edges of the plate 
are considered simultaneously.

Tapered plates have also been analyzed by Cheung 
and Zhou [39]. They developed a set of admissible func-
tions which are the solutions of a tapered beam under an 
arbitrary load expanded into a Taylor series. This beam 
can be viewed as a strip with unit breadth taken from the 
rectangular plate in the longitudinal or transverse direc-
tions. Extensive results for plates with different taper fac-
tors and boundary conditions are reported in reference [39]. 
The free vibration of tapered beams has also been object 
of study with static beam functions, as proposed by Zhou 
and Cheung [169]. Cheung and Zhou demonstrate that it 
is also possible to analyze tapered plates with intermediate 
line supports by using functions which are the solutions of 
a tapered beam with intermediate supports [40]. In a simi-
lar fashion, point supported plates with variable thickness 
can also be studied using a set of static beam functions, as 
reported by Zhou [168]. Mindlin plates were also studied 
using static Timoshenko beam functions for different cases, 
like arbitrary boundary conditions and thickness [42], elas-
tically restrained edges [167], internal line supports [171], 
and variable thickness [46]. Zhou and Cheung [170] also 
studied the vibrations of tapered Timoshenko beams using 
the functions of Timoshenko beams with continuously 
varying cross section. Sets of static Timoshenko beam 
functions have also been used more recently in the free 
vibration and buckling analysis of vertical and horizontal 
Mindlin plates resting on a Pasternak elastic foundation and 
in contact with a fluid by Hosseini-Hashemi et al. [71, 72].

3  Ritz Method for the Analysis of Free Vibrations

In the analysis of free vibrations, the Ritz method relies on 
the Hamilton’s principle, which in turn is based on strain 
and kinetic energies. The strain energy stored in an elastic 
body of volume V is given by

where �x, �y, �z, �xy, �xz, �yz are the stress components, and 
�x, �y, �xy, �xz, �yz are the strain components. Considering a 
rectangular plate of length a, width b and thickness h with 
a Cartesian system of coordinates, as shown in Fig. 1, and 
bearing in mind the Kirchhoff assumptions, the Equation 
above simplifies to

(1)
U =

1

2
∫
V
(�x�x + �y�y + �z�z + �xy�xy + �xz�xz+

�yz�yz)dV ,

(2)U =
1

2 ∫V

(�x�x + �y�y + �xy�xy)dV .

Taking into account the constitutive relations, the kin-
ematic assumptions, and integrating in the z direction, Eq. (2) 
can be written as a function of the out-of-plane displacement 
w(x,  y,  t) and the bending stiffness D = Eh3∕

[
12(1 − �2)

]
, 

being � the Poisson’s ratio:

where A is the in-plane surface area of the plate. The 
kinetic energy of a body with density � is given by

where u(x, y, t) and v(x, y, t) are the in-plane displacements, 
and w(x, y, t) is the out-of-plane displacement. For a rectan-
gular plate subjected to out-of-plane vibrations, such that 
u(x, y, t) = v(x, y, t) = 0, and after integrating in the z direc-
tion, Eq. (4) reduces to

Considering the free vibration of a plate with harmonic 
motion of angular frequency �, the kinetic energy becomes

The Ritz method is based on the minimization of the 
energy functional defined by the difference between the 
kinetic energy T and the strain energy U:

(3)
U =

1

2
D∫A

(
�2w

�x2
+

�2w

�y2

)2

+2(1 − �)

[(
�2w

�x�y

)2

−
�2w

�x2
�2w

�y2

]
dA,

(4)T =
1

2
�∫V

[(
�u

�t

)2

+
(
�v

�t

)2

+
(
�w

�t

)2
]
dV ,

(5)T =
1

2
�h∫A

(
�w

�t

)2

dA.

(6)T =
1

2
�h�2 ∫A

w2dA.

(7)
�(T − U)

�Wkl

= 0,

y

x

h

ba

z

Fig. 1  Geometry of a rectangular plate
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with k = 1,… ,M; l = 1,… ,N; and where Wkl are param-
eters or coefficients of a series describing the out-of-plane 
displacement:

with Xm(x) and Yn(y) being admissible functions that must 
satisfy the essential boundary conditions at the edges 
(x = 0, y), (x = a, y) and (x, y = 0), (x, y = b), respectively. 
As seen in Eq. (8), there are M admissible functions in the 
x direction and N admissible functions in the y direction. 
Inasmuch as Wmn are parameters without dependence of 
the spatial variables, the derivative of order p of the out-
of-plane displacement with respect to x can be easily com-
puted as:

The derivatives in the y direction are computed in a similar 
way.

Since the kinetic and strain energies are quadratic in 
w(x, y), and the vibration is harmonic, Eq. (7) defines an 
eigenvalue problem of size M × N:

where the elements of matrices � and � for a plate with 
bending stiffness D, Poisson’s ratio �, material density �, in-
plane area A and thickness h are given by

The matrices � and � are real positive definite if one con-
siders a motion without rigid modes, i.e. if the plate has 
isostatic or hyperstatic conditions. In this case the eigen-
values and eigenvectors are real numbers greater than 
zero. The solution of the eigenvalue problem consists in 
the full matrix � and the diagonal matrix �, containing 
the parameters Wmn and the angular natural frequencies 
�n =

√
�n, respectively. Each row of � contains a set of 

parameters Wmn, which after being introduced in Eq. (8), 
allow the computation of the mode shape corresponding 
to the respective eigenvalue. It should be pointed out that 
in the present work all the integrals in Eqs. (11) and (12) 
were computed analytically, since this type of computation 

(8)w(x, y) =

M∑
m=1

N∑
n=1

WmnXm(x)Yn(y),

(9)
�pw(x, y)

�xp
=

M∑
m=1

N∑
n=1

Wmn

dpXm(x)

dxp
Yn(y).

(10)�� = ���,

(11)

Kkl =
∑M

m=1

∑N

n=1
D ∫

A

�
d2Xk

dx2

d2Xm

dx2
YlYn

+ �

�
d2Xk

dx2
XmYl

d2Yn

dy2
+ Xk

d2Xm

dx2

d2Yl

dy2
Yn

�

+XkXm

d2Yl

dy2

d2Yn

dy2
+ 2(1 − �)

dXk

dx

dXm

dx

dYl

dy

dYn

dy

�
dA,

(12)Mkl = �h

M∑
m=1

N∑
n=1

∫A

XkXmYlYndA.

is much more efficient than numerical integration. For 
instance, the computation of matrices � and � using the 
Simpson’s rule is about forty times slower than the direct 
computation with analytical integrations [121].

The six sets of admissible functions for the direction 
x, Xm(x), of a clamped rectangular plate are defined as 
follows:

(1) Characteristic Functions (CF) [160]: 

where the parameters �m are the solutions of the non-
linear equation 

 and with 

The functions in Eq. (13) are, therefore, the same as 
the ones that define the mode shapes of a vibrating uni-
form clamped beam.

(2) Modified Characteristic Functions (MCF) [67]: 

 with 

(13)
Xm(x) = Am cos

(�mx
a

)
+ Bm sin

(�mx
a

)

+ Cm cosh

(�mx
a

)
+ Dm sinh

(�mx
a

)
,

(14)cos(�m) −
2e−�m

1 + e−2�m
= 0,

A
m
= −1, B

m
= −

cosh(�
m
) − cos(�

m
)

sinh(�
m
) − sin(�

m
)
,

C
m
= 1, D

m
=

cosh(�
m
) − cos(�

m
)

sinh(�
m
) − sin(�

m
)
.

(15)
Xm(x) = Am cos

(�mx
a

)
+ Bm sin

(�mx
a

)

+ Cme
−�mx

a + Dme
−�m (a−x)

a ,

A
m
= 1, B

m
= −

1 + (−1)me−�m

1 − (−1)me−�m
,

C
m
= −

1

1 − (−1)me−�m
, D

m
=

(−1)m

1 − (−1)me−�m
,

Table 1  Number of functions for which the computation fails and 
type of failure for each set of admissible function

Set of admis-
sible functions

Number of 
functions M

Type of failure

CF 8 Results with complex eigenvalues
MCF 97 Huge increase of computational time
OP 9 Results with complex eigenvalues
NOP 8 Results with complex eigenvalues
PTF 96 Huge increase of computational time
SBF 73 Results with complex eigenvalues
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Fig. 2  Graphical representation 
of the matrix � using M = 5 
and the six sets of admissible 
functions. (Color figure online)

Fig. 3  Graphical representation 
of the matrix � using M = 5 
and the six sets of admissible 
functions. (Color figure online)

Fig. 4  Graphical representation 
of the matrices � and � using 
M = 20 and three sets of admis-
sible functions. (Color figure 
online)
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and where the parameters �m are the same ones as the 
ones needed to define the characteristic functions [Eq. 
(14)].

(3) Orthogonal Polynomials (OP) [22]: Given the polyno-
mial, 

satisfying the essential (geometric) boundary condi-
tions, the remaining orthogonal polynomials of the set 
are generated by the Gram–Schmidt process: 

 with 

For clamped plates, the coefficients of the polynomial 
are A0 = A1 = 0, A2 = a2, A3 = −2a and A4 = 1.

(4) Non-Orthogonal Polynomials (NOP) [86]: 

(5) Product of Trigonometric Functions (PTF) [32]: 

(6) Static Beam Functions (SBF) [166]: 

(16)

X0(x) =
A0 + A1x + A2x

2 + A3x
3 + A4x

4

√
∫ a

0

[
A0 + A1x + A2x

2 + A3x
3 + A4x

4
]2
dx

,

(17)
X1(x) =

(x−B1)X0(x)√
∫ a

0 [(x−B1)X0(x)]
2
dx

,

Xm(x) =
((x−Bm)Xm−1(x)−CmXm−2(x))√

∫ a

0 [(x−Bm)Xm−1(x)−CmXm−2(x)]
2
dx

,

Bm = ∫
a

0

xX2
m−1

(x)dx∕∫
a

0

X2
m−1

(x)dx,

Cm = ∫
a

0

xXm−1(x)Xm−2(x)dx∕∫
a

0

X2
m−2

(x)dx.

(18)Xm(x) = (a − x)2xm+1.

(19)Xm(x) = sin

(
�x

a

)
sin

(
m�x

a

)
.

 where 

Since both edges in the y direction, (x, y = 0), (x, y = b), 
are also clamped, the functions Yn(y) are defined in a similar 
way. Thus, the admissible functions Yn(y) can be defined for 
the y direction by replacing the variable x for y, the length a 
for the width b, and m for n in the Equations above. To bet-
ter grasp the differences of these sets of functions, the plots 
of functions with m = 1, 2, 10 and 15 are presented in The 
Appendix.

4  Results of the Comparative Study

The plate analyzed is a clamped rectangular plate with 
constant thickness and the standard properties of alu-
minum (E = 70 GPa, � = 0.33 and � = 2700 kg/m3). The 
length, width and thickness dimensions of the plate are 
1 × 0.5 × 0.002 m3, respectively. The computations pre-
sented in this work were carried out in an  Intel® Core™ 
i7 with 8 cores at 3.4 GHz, 8 GB of RAM, and double 
precision calculations in  MATLAB® platform. In all the 
computations, the number of functions is the same in the 
two directions and thus M = N in Eqs. (8), (11) and (12). 
Table  1 shows the values of M for which the computa-
tion fails and the type of failure for each set of admissible 

(20)Xm(x) = Am + Bmx + Cmx
2 + Dmx

3 + sin

(
m�x

a

)
,

A
m
= 0, B

m
= −

m�

a
,

C
m
=

m�((−1)m + 2)

a2
,

D
m

= −
m�((−1)m + 1)

a3
.
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Fig. 5  Frobenius norm of (a) matrix � and (b) matrix � versus the number of functions. (Color figure online)
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functions. A first type of failure observed is such that one 
obtains eigenvalues in the complex domain and, thus, natu-
ral frequencies with real and imaginary parts (CF, OP, NOP 
and SBF functions). It is also observed that some functions 
(MCF and PTF functions) and some values of M lead to a 
huge increase in the computational time comparatively to 
the time in the computation with M − 1. In these cases the 
computations were stopped without obtaining a result. This 
problem is mainly due to the amount of physical memory 
available and the need to use the swap memory for the 
computations.

4.1  Matrices Topology

In this section the topology of the matrices � and � gener-
ated by the Ritz method [see Eqs. (10), (11) and (12)] will 
be analyzed. Figures 2 and 3 present a graphical represen-
tation of the matrices � and �, respectively, for the six 
sets of admissible functions and M = 5. It can be seen that 
the CF, MCF and OP functions lead to matrices where the 
higher values are close to the diagonal, being more scatter 
the matrices obtained when the NOP, PTF and SBF func-
tions are used. The NOP functions present the lowest val-
ues of Kkl, being this a remarkable behavior of these func-
tions. This type of functions show a decrease of the Kkl 
values as k and l increase. An inverse and also remarkable 
behavior is observed for the SBF functions. To analyze the 
behavior with a higher number of terms in the series defin-
ing the displacement [see Eq. (8)], Fig. 4 shows a graphical 
representation of the matrices � and � using M = 20 for 
the MCF, PTF and SBF functions. The results are similar to 
the ones in Figs. 2 and 3b, e, f, respectively.

To study quantitatively the variation of Kkl and Mkl with 
the number of functions, the Frobenius norms of the matri-
ces were computed. The Frobenius norms of matrices � 
and � are defined, respectively, by:

(21)

||�||F =

√√√√M×N∑
k=1

M×N∑
l=1

|Kkl|2

||�||F =

√√√√M×N∑
k=1

M×N∑
l=1

|Mkl|2

101 10210−6

10−4

10−2

100

102

104

Number of functions

D
is

ta
nc

e 
of

 1
0 

fre
qu

en
ci

es
 (H

z)

CF
MCF
OP
NOP
PTF
SBF

101 102

10−2

100

102

104

Number of functions

D
is

ta
nc

e 
of

 1
0 

m
od

e 
sh

ap
es

CF
MCF
OP
NOP
PTF
SBF

a b

Fig. 6  Distance of (a) the frequencies and (b) the mode shapes to the references versus the number of functions. (Color figure online)

101 102
100

102

104

106

108

1010

Number of functions

D
is

ta
nc

e 
of

 1
0 

m
od

e 
sh

ap
es

 d
er

iv
at

iv
es

MCF, p =1
SBF, p =1
MCF, p =2
SBF, p =2
MCF, p =3
SBF, p =3
MCF, p =4
SBF, p =4

Fig. 7  Distance of the mode shapes derivatives to the references ver-
sus the number of functions. (Color figure online)



801A Review and Study on Ritz Method Admissible Functions with Emphasis on Buckling and Free Vibration…

1 3

Figure 5 shows the values of the Frobenius norm of matri-
ces � and � versus the number of functions, using differ-
ent sets of admissible functions. It is observed that the NOP 
functions present very low values, in agreement with what 
is observed in Figs. 2 and 3. The OP, PTF and MCF func-
tions present moderate values of the Frobenius norm, being 
the SBF functions the ones with higher values. The CF 
functions have a very large increase from M = 6 to M = 7.

4.2  Convergence

To study the convergence in respect to the number of func-
tions used, the distance to a reference was defined, both for 
frequencies and mode shapes. This reference was chosen as 

the solution obtained using MCF with M = 96, which cor-
responds to the maximum number of functions used in this 
work. Therefore, the distance df  relative to frequencies was 
defined as:

where nm is the number of mode shapes taken into account, 
fi the computed frequencies and f (ref)

i
 the frequencies of the 

reference. Also, to compare the mode shapes and its deriva-
tives, the corresponding values were computed in a square 
mesh of 200 points in the x-direction and 100 points in the 
y-direction, and the distance for the transversal displace-
ment was defined as:

(22)
df =

nm∑
i=1

(
fi − f

(ref)

i

)
,
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where np is the number of points in the mesh 
(np = 200 × 100), nm is the number of mode shapes con-
sidered (nm = 10), wi,j(x, y) is the value of the transversal 
displacement of the computed mode shape i in point j and 

(23)
dm =

nm∑
i=1

np∑
j=1

|||wi,j(x, y) − w
(ref)

i,j
(x, y)

|||
nm∑
i=1

np∑
j=1

(
w
(ref)

i,j
(x, y)

)

nm × np

,

w
(ref)

i,j
(x, y) is the corresponding value of the transversal dis-

placement of the reference mode shape in the same point.
To study the convergence of the mode shape derivatives 

the following distance was defined and used:

(24)

d(p)
m

=

nm�
i=1

np�
j=1

������
�pwi,j(x, y)

�xp
−

�pw
(ref)

i,j
(x, y)

�xp

������
nm�
i=1

np�
j=1

⎛⎜⎜⎝
�pw

(ref)

i,j
(x, y)

�xp

⎞⎟⎟⎠
nm × np

,

10−3 10−2 10−1 100 101 10210−6

10−4

10−2

100

102

104

Elapsed time to compute matrices K and M (s)

D
is

ta
nc

e 
of

 1
0 

fre
qu

en
ci

es
 (H

z)

CF
MCF
OP
NOP
PTF
SBF

10−3 10−2 10−1 100 101 10210−4

10−2

100

102

104

106

Elapsed time to compute matrices K and M (s)

D
is

ta
nc

e 
of

 1
0 

m
od

e 
sh

ap
es

CF
MCF
OP
NOP
PTF
SBF

a b

Fig. 9  Distance of (a) the frequencies and (b) the mode shapes to the references versus elapsed time to compute the matrices � and �. (Color 
figure online)

10−4 10−2 100 10210−6

10−4

10−2

100

102

104

Elapsed time to compute eigenvalues (s)

D
is

ta
nc

e 
of

 1
0 

fre
qu

en
ci

es
 (H

z)

CF
MCF
OP
NOP
PTF
SBF

10−1 100 101 102 103 10410−4

10−2

100

102

104

106

Elapsed time to compute eigenvalues and eigenvectors (s)

D
is

ta
nc

e 
of

 1
0 

m
od

e 
sh

ap
es

CF
MCF
OP
NOP
PTF
SBF

a b

Fig. 10  Distance of (a) the frequencies and (b) the mode shapes to the references versus the elapsed time to compute (a) the eigenvalues and (b) 
the eigenvectors. (Color figure online)



803A Review and Study on Ritz Method Admissible Functions with Emphasis on Buckling and Free Vibration…

1 3

being p the order of the derivative (p = 1, 2, 3 and 4). The 
derivatives are computed according to Eq. (9).

Figure 6 shows the distances df  and dm in Eqs. (22) and 
(23) versus the number of functions used in the computa-
tions. It can be seen that the SBF functions have a better con-
vergence than the MCF functions, especially for the frequen-
cies; the CF and MCF functions have similar behaviors, up to 
the point where the computations with the CF functions must 

be stopped. The PTF and OP functions are the ones present-
ing the worst convergence. The observed bad convergence of 
the OP functions seems to be in disagreement with the results 
presented in reference [54], where it was concluded that this 
kind of admissible functions have a better convergence than 
the CF. This is only true when only the convergence of the 
first frequency (nm = 1) is considered and not the conver-
gence of all the first 10 (nm = 10).

To study the convergence of the derivatives, only the two 
sets of admissible functions with better convergence (MCF 
and SBF) were studied. Figure 7 shows the distances d(p)m  in 
Eq. (24) versus the number of functions, being p = 1, 2, 3 
and 4. Like in Fig. 6b, the SBF functions present a better and 
faster convergence than the MCF functions for the first four 
derivative orders. We can also observe in this Figure that the 
higher the derivative order p, the slower the convergence, in 
accordance with results in reference [101].

4.3  Computational Time

Figure 8 shows the elapsed time to compute the matrices � 
and � [which involves the computation of the integrals in 
Eqs. (11) and (12)], the elapsed time to solve the eigenvalue 
problem with only the eigenvalues as outputs, and the elapsed 
time to solve the eigenvalue problem with the eigenvalues and 
eigenvectors as outputs versus the number of functions, using 
different sets of admissible functions. For the computation of 
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Table 2  Norm of the computed 
OP functions

i 1 2 3 4 5 6 7 8 9

∫
a

0

[pi(x)]
2dx

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0002 0.9950 1.9432
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the matrices, the SBF, OP and NOP functions are consider-
ably slower than the CF, MCF and PTF functions, which pre-
sent similar behaviors. Indeed, the differences in the elapsed 
time is approximately one order of magnitude. It can be seen 
that for the computation of eigenvalues there is no significant 
differences among the sets of admissible functions, while for 
the eigenvalues and eigenvectors, the NOP functions present 
a higher elapsed time than the other functions.

4.4  Time Versus Accuracy

Linking the subjects of the two previous sections, Fig.  9 
shows the distances df  and dm versus the elapsed time to com-
pute the matrices � and �. It can be seen that the MCF func-
tions are the best option, followed by the SBF (except the first 
points), CF, PTF, OP and NOP functions. However, for prac-
tical reasons, the elapsed time to solve the eigenvalue prob-
lem must also be taken in consideration. Although in Fig. 8 
it is shown that this time is similar for equal M, the different 
convergencies of some admissible functions means that some 
of these functions need fewer terms in the series in order to 
obtain the same accuracy. Therefore, in practice, some func-
tions will be faster than others. Figure 10 shows the distance 
df  versus the elapsed time to compute the eigenvalues and the 
distance dm versus the elapsed time to compute the eigenvec-
tors. It can be seen in both cases that the SBF functions have 
a better performance than the MCF, CF, PTF, OP and NOP 
functions (in this order). Adding the elapsed time reported in 
Figs. 9 and 10, we obtain the total elapsed time to compute 
the matrices, eigenvalues and eigenvectors. The results can be 
seen in Fig.  11. For matrices and eigenvalues (Fig.  11a), it 
can be seen that the best choice are the MCF functions for 
lower values of M and the SBF functions for higher values. 
The CF, PTF, NOP and OP functions follow them. If, besides 
computing the eigenvalues, we also compute the eigenvec-
tors (Fig. 11b), the SBF functions are the better option, except 
when using a few number of functions M, but with small dif-
ferences in respect to the MCF functions. The NOP functions 
are clearly the worse option.

4.5  Numerical Stability

To study the numerical stability, the coefficient maximum 
eigenvalue/minimum eigenvalue was computed, accord-
ing to reference [129]. The results can be seen in Fig. 12. 
The coefficient is monotonically increasing with very simi-
lar results for all the admissible functions. In the case of 
SBF functions, we can see that for some values of M before 
they give wrong results, this coefficient increases more than 

the coefficients of other functions, revealing the instabil-
ity which leads to complex frequencies with M = 73. The 
instability of CF and NOP functions can be explained look-
ing at Fig. 5. The CF functions have a very large increase 
in their values from M = 6 to M = 7, while the NOP func-
tions have very low values of the Frobenius norm. Both 
behaviors explain the wrong results provided by this type 
of functions with M = 8. A special mention must be made 
to the OP functions, because a wrong result was obtained 
with M = 9, despite no previous signs of instability. This 
fact can be explained by looking at Table 2 and Eqs. (25) 
and (26). Table  2 shows the norm of the computed poly-
nomials pi(x). Although this norm must be one by defini-
tion [see Eqs. (16) and (17)], numerical errors can produce 
inaccurate values, as can be seen for i = 7 and i = 8, and 
especially i = 9, where the value is almost the double. The 
reason for this behavior can be seen in Eqs. (25) and (26), 
where the order of magnitude of each coefficient for the 
polynomial with i = 8 and i = 9 are shown:

For i = 9, these orders of magnitude, multiplied by two 
when the norm of the polynomial is computed (because of 
the square), implies a loss of information in the units range 
using double precision. Because the result of the integral, 
by definition, must be one, the error is in the same order of 
magnitude as the result, leading this large relative error to 
wrong results.

5  Conclusions

Six sets of admissible functions used in the Ritz method 
were tested, in order to study the performance of these 
functions for the computation of a large number of natural 
frequencies and mode shapes in terms of the numerical 
behavior: convergence, computational time, and stabil-
ity. In terms of convergence, the SBF and MCF functions 
present the better results. Regarding the elapsed time to 
compute the matrices � and �, the SBF, OP and NOP 
functions are slower than the other three sets of admissi-
ble functions (CF, MCF and PTF), which present a simi-
lar trend with the number of functions M. For the com-
putation of eigenvalues and eigenvectors the results are 
similar for the six sets of admissible functions. Consider-
ing a balance between time and accuracy, the MCF and 

(25)
p8(x) ≃ −103x2 + 104x3 − 105x4 + 106x5 − 107x6

+107x7 − 107x8 + 107x9 − 106x10 + 106x11

(26)

p9(x) ≃ 104x2 − 105x3 + 106x4 − 107x5 + 107x6

−108x7 + 108x8 − 108x9 + 108x10 − 107x11 + 107x12
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SBF functions are again the ones with better results. The 
CF, OP, NOP and SBF functions present evidences of 
numerical instability, while the MCF and PTF functions 
have a very good numerical behavior. Considering all the 
three numerical features, we conclude that the CF, OP, 
NOP and PTF functions should be discarded as appropri-
ate for the computation of higher natural frequencies and 
mode shapes, the SBF functions can be used with some 
necessary cautions about the numerical stability, while 
the MCF functions present the better numerical behavior 
taking into account all the features studied.
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Appendix

This Appendix presents the plots of admissible functions 
with m = 1, 2, 10 and 15 (Figs. 13, 14, 15, 16, 17 and  18). 
We see that the shapes of the functions with m = 1 and 2 
are very similar (with the exception of the Non-Orthogonal 
Polynomials), but for m = 10 and 15 the shape varies sub-
stantially. It is also clear a breakdown of the Characteristic 
Function with m = 15 for large values of x (Fig. 13d). The 
symmetry of the Orthogonal Polynomials is lost for values 
of m > 7.

0 0.2a 0.4a 0.6a 0.8a a
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

X
1
(x
)

0 0.2a 0.4a 0.6a 0.8a a
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

X
2
(x
)

0 0.2a 0.4a 0.6a 0.8a a
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

X
10
(x
)

0 0.2a 0.4a 0.6a 0.8a a
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

X
15
(x
)

a b

c d

Fig. 13  Characteristic functions: (a) m = 1, (b) m = 2, (c) m = 10, and (d) m = 15
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