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Moreover, the use of a single body-fitted mesh for the 
simulation of flows with moving domains, requires the 
deformation of the existing grid or the generation of a new 
one at each time step. This procedure is highly demand-
ing in terms of computational cost for relatively large body 
motions. For simple movement patterns, such as rotat-
ing domains or sliding planes, it is possible to use sliding 
mesh techniques [1, 2]. In these cases, the computational 
domain is divided into two subdomains, namely moving 
and static subdomains. The information is transferred from 
one domain to the other through their interface, by using 
suitable interpolation techniques [1, 2].

A different approach in the simulation of moving bodies 
is the Immersed Boundary (IB) method, first introduced by 
Peskin [3] for the simulation of heart valves. Cartesian rec-
tangular meshes are commonly used in the IB approach and 
they are decoupled from the immersed body mesh. Lately, 
IB has also been adapted to unstructured meshes [4]. In 
the classical IB approach, the boundary is introduced as 
a forcing term in the governing equations. These methods 
are attractive because of their simplicity. However, the 
major drawbacks are the occurrence of non-divergence-free 
velocities in incompressible flows [5], non-physical pres-
sure oscillations in compressible flows, and the difficulty to 
get high-order accuracy near the walls [6]. A different class 
of IB methods is the cut-cell method introduced by Clarke 
[7], which does not exhibit of these problems. In the cut-
cell method the immersed boundaries cut the mesh, creat-
ing a set of irregularly shaped cells upon which the equa-
tions are discretized. A drawback of this approach is the 
increased complexity, compared to the classical IB meth-
ods, since the original mesh needs to be cut by the moving 
bodies every time step, which forces to recompute the geo-
metrical information and the integration points.

Abstract  In this work a higher-order accurate finite vol-
ume method for the resolution of the Euler/Navier–Stokes 
equations using Chimera grid techniques is presented. The 
formulation is based on the use of Moving Least Squares 
approximations in order to obtain higher-order accurate 
reconstruction and connectivity between the overlapped 
grids. The accuracy and performance of the proposed 
methodology is demonstrated by solving different bench-
mark problems.

1  Introduction

The development of numerical methods for the simulation 
of problems involving highly complex geometries, which 
are frequent in many engineering problems, remains a 
very active research field in computational fluid dynamics 
(CFD). For these problems, the construction of multi-block 
structured meshes, when possible, is highly time consum-
ing. In this context the use of unstructured grids becomes 
competitive but, unfortunately, this kind of mesh typology 
requires the use of more complex schemes when higher-
order approximations are desired.

 *	 Luis Ramírez 
	 luis.ramirez@udc.es

1	 Group of Numerical Methods in Engineering, Universidade 
da Coruña, Campus de Elviña, 15071 A Coruña, Spain

2	 Hydro‑Environmental Research Centre, School 
of Engineering, Cardiff University, The Parade, 
Cardiff CF24 3AA, UK

3	 Laboratoire de Dynamique des Fluides, Arts et Métiers 
ParisTech, 151 Boulevard de l’Hôpital, 75013 Paris, France

http://orcid.org/0000-0003-0072-9398
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-017-9213-8&domain=pdf


692	 L. Ramírez et al.

1 3

In this context, the use of the overset grid approach, also 
known as Chimera method [8–12], has become a competi-
tive alternative. In the Chimera method, firstly developed 
by Steger et al. in 1983 [8], the domain is subdivided into 
a set of overlapping grids. The partial differential equations 
are solved separately on each grid. The overlapped grids are 
connected through interpolation to exchange the necessary 
information between them. This approach exhibits flexible 
grid adaptation, the ability to handle complex geometries, 
and provides an easy mechanism to deal with the relative 
motion of dynamic bodies.

The interpolation between the different grids is a cru-
cial stage for a higher-order Chimera method. In [12], it is 
shown that the use of linear interpolation schemes in con-
junction with high-order methods leads to a decrease of the 
global accuracy of the solution. In fact, the overall order 
of accuracy is conditioned by the smallest one. As it was 
pointed out by several authors [10, 12], the order of the 
interpolation scheme must be higher or equal to the order of 
accuracy of the discretization scheme, in order to maintain 
the global accuracy of the numerical method. In this work 
we address this problem by using Moving Least Squares 
(MLS) approximations [13, 14]. The present approach 
may be considered as a generalization of the approach 
presented by the authors in [1] in the simulation of bod-
ies under arbitrary motions. Moreover, we use a high-order 
finite volume method based on MLS (FV-MLS) [15–20] 
as the numerical scheme to solve the governing equations. 
In this method, high-order discretization of the governing 
equations is achieved using Moving Least Squares approxi-
mations for the computation of the successive derivatives 
that are required in the Taylor reconstruction. In this frame-
work, the use of MLS for the exchange of data from one 
grid to another seems to be a natural choice. However, this 
approach could be used with any other numerical method.

The outline of the paper is as follows: First, the gov-
erning equations and the numerical discretization is pre-
sented in Sect. 2. Next, the Moving Least Squares method 
is described in Sect. 3. Then, the Chimera method is pre-
sented in Sect.  4. Next, some numerical results are pre-
sented in Sect.  5 in order to evaluate the accuracy and 
robustness of the proposed method when solving different 
two-dimensional benchmark problems. Finally, the corre-
sponding conclusions are drawn.

2 � Governing Equations

The Navier–Stokes equations, written in general form as a 
system of conservation laws, read as

(1)
�U

�t
+ � ⋅

(
FH − FE

)
= S

where U is the vector of variables, S represents a source 
term, and fluxes are split into a hyperbolic-like part, FH

,

and an elliptic-like part, FE, which is null for the Euler 
equations.

The finite volume discretization of the system of con-
servation laws (1) for a control volume I reads

where AI is the area of the control volume I, UI represents 
the average value of U over the control volume I, Nf  is the 
number of edges (in 2D) of the control volume, NG repre-
sents the number of quadrature points for each edge, ig 
is the corresponding quadrature weight for the quadrature 
point (ig) at each cell edge, and n̂j is the unitary normal n 
times the length of edge j.

The hyperbolic-like part, FH, is computed at the 
integration points by means of a “broken” reconstruc-
tion. This high-order reconstruction is achieved using 
a high-order Taylor expansion from the cell centroid. 
Mathematically, this statement can be expressed as 
 = (U+

,U−), where  is the numerical flux that 
solves the Riemann problem stated at the integration 
points. Reconstructed values U+ and U− are the left and 
right states of cell I.

The elliptic-like fluxes are computed centered at the 
integration points. That is, in Fig. 1 the elliptic-like flux, 
FE, is computed directly at the integration points using a 
continuous approach. The reader is referred to [17, 21] 
for further details.

(2)AI

�UI

�t
=

Nf∑

j=1

NG∑

ig=1

[(
FE − FH

)
⋅ n̂j

]
ig
ig

Fig. 1   Schematic illustration of the cell I and its integration points
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3 � Interpolation Operator: Moving Least Squares 
Reproducing Kernel Approximations

In this section we briefly introduce the Moving Least Squares 
(MLS) approximations [13], which are the key ingredient of 
the new high-order Chimera method presented in this paper. 
For a more complete description of MLS, we refer the inter-
ested reader to [14].

For the sake of brevity, we only recall here that the MLS 
approximation structure of a variable u at a point x can be 
expressed as

The approximation of u evaluated at x is written in terms 
of vector N of MLS shape functions Nk (k = 1, ..., nx). In 
order to compute the MLS shape functions we need a set of 
nx neighboring points, which defines the stencil where the 
variable uk is known. The number of neighbors, nx, depends 
on the required order of accuracy. A typical stencil for a 
2D cubic basis, which is third-order accurate, is shown in 
Fig. 2.

The definition of the stencil is a very important issue. The 
stencil should be as compact as possible, and the selection of 
neighbors must be suitable for general grids. It is important 
to remark that these stencils are typically centered around the 
cell, shown in Fig. 2. This kind of configurations reduces the 
spatial bias which is often found in patch-based piece-wise 
polynomial approximations.

In our case, the MLS method is applied by considering the 
centroids of every cell of the stencil as the neighbors required 
for the approximation given in expression (3). The MLS 
shape functions, NT, are obtained as

(3)û(x) =

nx∑

k=1

Nk(x)uk

(4)NT (x) = pT (x)M−1(x)PΩx
W(x)

where pT (x) is the vector defining the basis of functions 
(usually polynomials) with dimension m. For example, for 
a two-dimensional linear basis, pT (x) = [1, x, y] and m = 3. 
The order of MLS approximations is determined by the 
polynomial basis used in the construction of MLS shape 
functions. In all the examples presented in this work, a 
cubic polynomial basis has been used.

Moreover, PΩx
 is defined as the m × nx matrix 

where the basis functions are evaluated at each point 
of the stencil. We also define the diagonal matrix 
W(x) = diag{Wi(x − xi)} , where W is a suitable ker-
nel (or smoothing function). The moment matrix M(x) 
(dimension m × m) is obtained by minimizing an error 
functional (see [17] for details) and is defined as

The kernel function plays a very important role in the 
MLS method, since it assigns the corresponding weights 
to the different points considered in the approximation. 
A wide variety of kernel functions are found in the lit-
erature [22–25]. The choice of the kernel function deter-
mines the properties of the approximation [17, 19]. In 
this work, the so-called exponential kernel is used, what 
is defined in one dimension as

for k = 1, ..., nx, where d = ||xk − x|| and 
dm = 2max

(||xk − x||
)
, being dm the smoothing length, nx 

the number of neighbors, and x the reference point where 
the compact support is centered.

In Eq. (6) we introduce the coefficient c, which is 
defined as c = dm

sx
 where sx is the shape parameter of the 

kernel. This parameter has a relevant influence in the ker-
nel as it defines its properties and, thus, the properties of 
the numerical scheme [19]. In this work we have chosen 
the value of sx = 6 for the interpolations in the Chimera 
scheme, as explained on Sect. 4.

The high-order approximation derivatives of field vari-
ables u(x) can be expressed in terms of the derivatives of 
the MLS shape function. Hence the n-th derivative can be 
obtained as

The interested reader is referred to [17, 18, 21] for a com-
plete description of the computation of MLS derivatives.

(5)M(x) = PΩx
W(x)PT

Ωx

(6)Wk(xk, x, sx) =
e
−
(

d

c

)2

− e
−
(

dm

c

)2

1 − e
−
(

dm

c

)2

(7)
�nû

�xn
=

nx∑

ki=1

�nNk(x)

�xn
uk

Fig. 2   Stencil for interior cells of the MLS approximation centered at 
cell centroid I
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4 � An Overset/Chimera Approach

One challenge in the development of a higher-order Chi-
mera method is the preservation of the global order of the 
numerical scheme. The problem appears when the informa-
tion is transferred between overlapping grids. For simplic-
ity, we focus on a set of two overlapping grids, even though 
the methodology is valid for any arbitrary set of grids. In 
Fig. 3 we schematically present an example of the domain 
discretization addressed in this work by using two overlap-
ping grids: a rectangular background grid with quad ele-
ments (Grid A) and a circular shape near-body grid with 
triangular elements (Grid B). The near-body grid could 
be attached to a body present on the flow (e.g. a moving 
body), whereas the background grid discretizes the compu-
tational domain as if the body was not present in the flow.

For each time step the following procedure is performed:

1.	 First, we identify the cells where the system of conser-
vation laws is computed. We label them as non-over-
lapped cells. This set is composed of all the cells of the 
near-body grid and those cells of the background grid 
that are not completely covered by the near-body grid 
and the solid body. A hole-cutting process is used to 
determine the overlapped cells on the background grid. 
For this schematic example, non-overlapped cells are 
shown in Fig.  4. Note that in problems with moving 
bodies this procedure is performed at each time step. 

Overlapped cells are inactive and they are not com-
puted. Instead, the value of the variables in these cells 
is interpolated from the near-body grid to the back-
ground grid at the end of each time step.

2.	 Once the non-overlapped cells are identified, the gov-
erning equations are solved for each grid indepen-
dently. In Fig. 5 we schematically plot the background 
and the near-body grids where equations are solved. 
During this procedure, two interfaces are defined inside 
the computational domain: ΓA defines an instantaneous 
boundary for the background grid, which separates the 
overlapped cells from the non-overlapped cells of this 
grid. The other boundary, ΓB, defines the outer bound-
ary for the near-body grid. Note that the position and 
shape of ΓA may vary in time as the near-body grid is 
moving.

Considering two overlapped grids, the procedure of 
the Chimera method presented here is defined by three 
sub-steps. When more than two overlapped grids are pre-
sent, the procedure follows the same rationale.

(a)	 Transference of data to the overlapped cells: This sub-
step is performed by MLS approximations at the cen-
troids of the overlapped cells on the Background grid. 
The MLS approximation for an overlapped cell I reads 

Grid B

Grid A

Fig. 3   Schematic representation of a circular-shaped solid using two 
overlapped grids. Background grid is labeled as Grid A, whereas the 
near body grid is labeled as Grid B

Grid A

Grid B

Fig. 4   Schematic representation of non-overlapped cells of Grids A 
and B. Note that all the cells belonging to Grid B are non-overlapped 
cells
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where S(A ∪ B) refers to the set of cells belonging to 
both Grids A and B which forms the stencil of centroid 
I. This stencil is defined as the union of the closest 
cells to centroid I considering the cells of Grid B and 
the non-overlapped cells of Grid A. A schematic rep-
resentation is plotted in Fig. 6. As indicated in Sect. 3, 
the number of cells of the stencil is variable depending 
on the required order of the approximation.

(8)UI =
1

AI
∫ UdA =

1

AI
∫

S(A∪B)∑

j=1

Nj(xI)UjdA

(b)	 Resolution of the near-body grid: In a finite volume 
framework, we need to define the right and left states 
at both sides of the interface of a Riemann problem 
in order to compute the fluxes. In this work, we use 
the information of Grids A and B to create a fictitious 
state at the outer side of ΓB , which is used to com-
pletely define the fluxes at ΓB. Thus, for a certain cell 
IB with a given edge eI in ΓB, we define a fictitious cell 
called halo cell (Ihalo), which is the specular reflection 
of cell IB. This is schematically shown in Fig. 7.

	 The mean value of the conservative variables at Ihalo is 
approximated by Moving Least Squares as follows 

(9)UHalo =
1

AHalo
∫ UdA =

1

AHalo
∫

nx∑

j=1

Nj(xHalo)UjdA

Fig. 5   Schematic representation of the grids for the resolution of the 
equations on the background and the near-body grids. ΓA (in blue) 
defines the instantaneous boundary of the background grid. ΓB is the 
outer boundary of the near body grid

Fig. 6   Schematic representation of the stencil of the overlapped cell. 
Shaded cells indicate the stencil used for the computation of UI in Eq. 
(8)

Fig. 7   Schematic representation of the flux exchange at the near-
body grid. A halo cell Ihalo is created allowing the computation of 
fluxes
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where AHalo is the area associated to the halo cell Ihalo 
and N(xHalo) is the vector of MLS shape functions cen-
tered at the centroid of Ihalo. In order to compute the 
MLS shape functions N(xHalo) is required the defini-
tion of the neighboring cells of Ihalo. We define this set 
of cells as the stencil of IA, which is the closest cell of 
the background grid to Ihalo, as shown in Fig. 8.

(c)	 Resolution of the Background grid: The system of 
conservation laws is solved for all the non-overlapped 
cells that belong to the Background grid. Note that 
the values of the overlapped cells are known from the 
transference of data at the previous time step. Thus, 
the right and left states for a non-overlapped cell that 
shares an edge with the instantaneous boundary ΓA are 
easily computed as an interior cell of a FV scheme.

5 � Numerical Results

This section presents the numerical results for several 
benchmark problems defined with the aim of assessing the 
accuracy and efficiency of the proposed method for both 
steady and unsteady problems. In all these cases a third-
order FV-MLS method is employed [15, 17, 18, 20]. In 
this work we have used an explicit time integration method 
based on a fourth-order Runge-Kutta method.

5.1 � Ringleb Flow

The first validation test is the Ringleb flow problem. This 
test case is widely used as a benchmark for compress-
ible codes [15, 26]. The flow is obtained as a solution of 
the hodograph equation. The transformation equations 
between the Cartesian variables (x, y) and the hodograph 
variables (V , �) are described in [26].

The square domain Ω = [−1.15,−0.75] × [0.15, 0.55] 
is discretized using two overlapped grids. Following the 
notation previously used, we call them Grid A (the back-
ground grid) and Grid B. Figure  9 shows the schematic 
description of the problem. The different combinations of 
sizes used for grids A and B are summarized in Table 1.

For this first test case we study the rate of convergence 
for the Chimera method with a static configuration. LN

1
, 

LN
2

 and LN
∞

 norms of the variables error and Lent,N
2

 norm 
of the entropy error are computed and summarized in 
Table 2. We observe that the optimal orders of accuracy, 

Fig. 8   Schematic representation of the stencil of the halo cell. 
Shaded cells indicate the stencil used for the computation of UHalo in 
Eq. (9)

Fig. 9   Schematic setup of the Ringleb Flow test case

Table 1   Ringleb Flow test case. Different combinations of Grids A 
and B for the Chimera Method

Combination Grid A
(Nx × Ny)A

Grid B
(Nx × Ny)B

Ringleb flow
 1 32 × 32 16 × 16
 2 48 × 48 24 × 24
 3 64 × 64 32 × 32
 4 96 × 96 48 × 48
 5 128 × 128 64 × 64
 6 192 × 192 96 × 96
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denoted as ON
1

, ON
2

, ON
∞

 and Oent,N

2
, are recovered for all 

norms.
We also compute the errors and convergence rates 

using a standard FV-MLS method on several single-block 
structured meshes. The resolution of this set of grids is 
the same as that of the Grid A shown in Table  1. The 
errors and convergence rates are reported in Table 3. It is 
observed that errors obtained using the Chimera method 
are smaller than those obtained with the standard method. 
This is due to the finer resolution of Grid B.

5.2 � Isentropic Vortex Convection

The second validation case corresponds to the unsteady vor-
tex convection. This test case is widely used as benchmark for 
moving grid formulations [1, 9–11, 27], since it has analytical 
solution, that reads

u(x, y, t)

a∞
=

u∞

a∞
−

K

2𝜋a∞
ŷe𝛼(1−r

2)∕2

v(x, y, t)

a∞
=

v∞

a∞
+

K

2𝜋a∞
x̂e𝛼(1−r

2)∕2

T(x, y, t)

T∞
= 1 −

K2(𝛾 − 1)

8𝛼𝜋2a2
∞

e𝛼(1−r
2)

𝜌(x, y, t)

𝜌∞
=

(
T(x, y, t)

T∞

) 1

𝛾−1

p(x, y, t)

p∞
=

(
T(x, y, t)

T∞

) 𝛾

𝛾−1

where x̂ = x − x0 − u∞t, ŷ = y − y0 − v∞t and 
r =

√
x̂2 + ŷ2. Here, the chosen parameters are � = 1, 

�∞ = 1, p∞ = 1, (u∞, v∞) = (2, 2), (x0, y0) = (−5,−5) and 
K = 5. With this set of parameters the vortex starts at the 
position (x, y) = (−5,−5) and at t = 5 reaches the position 
(x, y) = (5, 5).

In this test case we examine the accuracy when the vor-
tex travels through the overlapped region. A schematic 
description of the problem is drawn in Fig. 10a.

The square domain was discretized by means of the 
same grids used for the Ringleb test case (see Table 1). As 
a reference, in Fig. 10b we show the grids for combination 
number 3.

We consider several configurations for this test case: one 
static configuration and two different prescribed motions.

5.2.1 � Static Configuration

First, we analyze the case with a static grid configuration 
for A and B grids. Therefore, there is not relative motion 
between them. The results of L2, L1 and L∞ norms of the 
variables error and their corresponding convergence rates 
are presented in Table 4. As expected, the formal order of 
accuracy is recovered.

5.2.2 � Prescribed Motion 1: Sinusoidal displacement 
of Grid B

Next, a relative motion between grids is added. Position 
of Grid B depends on time according to the expression 

Table 2   Ringleb Flow. 
Accuracy orders for the 3rd 
order Chimera method in the 
static configuration

Combination LN
1  error ON

1
LN
2  error ON

2
LN
∞

 error ON
∞ L

ent,N

2  error O
ent,N

2

Ringleb flow. Static configuration
 1 3.86 × 10−9 – 1.14 × 10−8 – 1.50 × 10−8 – 2.82 × 10−9 –
 2 1.37 × 10−9 2.58 3.72 × 10−9 2.79 5.92 × 10−9 2.31 9.13 × 10−10 2.80
 3 6.27 × 10−10 2.73 1.66 × 10−9 2.83 2.93 × 10−9 2.46 4.03 × 10−10 2.86
 4 2.01 × 10−10 2.82 5.18 × 10−10 2.88 1.05 × 10−9 2.55 1.25 × 10−10 2.90
 5 8.76 × 10−11 2.89 2.24 × 10−10 2.93 4.98 × 10−10 2.59 5.38 × 10−11 2.93
 6 2.63 × 10−11 2.98 6.69 × 10−11 2.99 1.66 × 10−10 2.71 1.63 × 10−11 2.95

Table 3   Ringleb Flow. 
Accuracy orders for the 3rd 
order FV-MLS with a single-
block structured grid

Grid A LN
1  error ON

1
LN
2  error ON

2
LN
∞

 error ON
∞ L

ent,N

2  error O
ent,N

2

Ringleb flow. Single mesh configuration
 1 4.21 × 10−9 – 1.21 × 10−8 – 1.54 × 10−8 – 2.89 × 10−9 –
 2 1.48 × 10−9 2.58 3.94 × 10−9 2.76 6.04 × 10−9 2.31 9.43 × 10−10 2.77
 3 6.74 × 10−10 2.73 1.76 × 10−9 2.81 2.98 × 10−9 2.46 4.17 × 10−10 2.84
 4 2.15 × 10−10 2.82 5.49 × 10−10 2.87 1.06 × 10−9 2.55 1.29 × 10−10 2.89
 5 9.37 × 10−11 2.89 2.37 × 10−10 2.92 5.03 × 10−10 2.59 5.59 × 10−11 2.92
 6 2.81 × 10−11 2.97 7.07 × 10−11 2.98 1.68 × 10−10 2.70 1.69 × 10−11 2.94
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(x, y) = (0,A sin(2�ft)). We chose an amplitude of A = 1 
and a frequency of f = 0.5. This configuration is schemati-
cally shown in Fig. 10a.

The results of L1, L2 and L∞ norms of the variables error 
and their corresponding convergence rates are found in 
Table 5. The formal order of accuracy is recovered and the 
accuracy is very similar to that of the static configuration. 
No numerical artifacts are observed when the vortex travels 
through the overlapped region.

5.2.3 � Prescribed Motion 2. Grid B Following the Vortex

In this test case, we impose a movement to Grid B in order 
to follow the vortex displacement, i.e. the position of Grid 
B varies with time according to (x, y) = (u∞ t, v∞ t). As it 

can be seen in Fig. 11 the initial location of Grid B is dif-
ferent from the previous configurations of the problem.

The results are summarized in Table  6. It is observed 
that the order of the method is recovered. We also observe 
that the accuracy is increased with respect to the two previ-
ous cases. This is due to the finer mesh resolution around 
the vortex.

5.3 � Subsonic Inviscid Flow Around a NACA 0012

The next problem corresponds to a subsonic flow around 
a NACA 0012 airfoil. The aim of this test case is to dem-
onstrate the ability of the proposed methodology to deal 
with complex geometries and unstructured meshes. In 
this case, Grid B is an unstructured grid. The computa-
tional domain is a circle where the fairfield is located at 
30 chords. The total number of non-overlapped cells is 
13189. A close view of non-overlapped cells around the 
airfoil is shown in Fig. 12a. Note the disparity of element 
sizes between Grid A and Grid B.

The freestream Mach number is M = 0.63 and the 
angle of attack is � = 2 degrees. Slip and adiabatic 
boundary conditions are applied at solid walls.

We compare the results with those obtained using a 
single mesh of 19716 cells, which is shown in Fig. 12b. 
Drag and lift coefficients are computed and summarized 
in Table 7. We observe that the value of these coefficients 
is practically identical when using single and Chimera 

Fig. 10   a Schematic setup of the 2D Vortex Convection problem. b 
Structured mesh using combination 3 as given in Table 1

Table 4   Isentropic Vortex 
Convection. Accuracy orders for 
the 3rd order Chimera method 
in the static configuration

N LN
1  error ON

1
LN
2  error ON

2
LN
∞

 error ON
∞

Isentropic vortex convection. Static configuration
1244 3.04 × 10−3 – 9.43 × 10−2 – 1.80 × 10−1 –
2780 1.27 × 10−3 2.17 4.10 × 10−2 2.07 7.07 × 10−2 2.32
4924 6.31 × 10−4 2.43 2.39 × 10−2 1.89 4.59 × 10−2 1.51
11036 2.46 × 10−4 2.33 9.83 × 10−3 2.20 1.81 × 10−2 2.30
19580 1.17 × 10−4 2.59 4.67 × 10−3 2.59 8.06 × 10−3 2.83
43964 3.86 × 10−5 2.75 1.49 × 10−4 2.83 2.52 × 10−3 2.87

Table 5   Isentropic Vortex 
Convection. Accuracy orders for 
the 3rd order Chimera method 
in the prescribed sinusoidal 
motion configuration

N LN
1  error ON

1
LN
2  error ON

2
LN
∞

 error ON
∞

Isentropic vortex convection. Sinusoidal displacement of Grid B
 1244 3.13 × 10−3 – 9.48 × 10−2 – 1.81 × 10−1 –
 2780 1.26 × 10−3 2.27 4.25 × 10−2 2.00 7.69 × 10−2 2.12
 4924 6.35 × 10−4 2.39 2.46 × 10−2 1.92 4.33 × 10−2 1.76
 11036 2.40 × 10−4 2.41 9.88 × 10−3 2.26 1.77 × 10−2 2.40
 19580 1.15 × 10−4 2.57 4.78 × 10−3 2.53 8.27 × 10−3 2.65
 43964 3.90 × 10−5 2.68 1.62 × 10−4 2.67 2.87 × 10−3 2.62
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grids. Our results also agree with the expected theoretical 
reference values [15].

Moreover, the distribution of the pressure coefficient 
around the airfoil is presented in Fig. 13. Similar results 
are obtained with both approaches.

Mach isolines are plotted in Fig. 14, where the smooth 
transition between grids is appreciated. No numerical 
artifacts are observed.

5.4 � Supersonic Flow Around a Cylinder

In this numerical example we study the supersonic flow 
around a cylinder of radius R = 1. The aim of this numeri-
cal example is to analyze the performance of the proposed 
methodology with supersonic flows and non-smooth solu-
tions. The freestream Mach number is M = 3. Following 
[1], the parameters for this case are the pressure coefficient 
(CP), the stand-off distance normalized by the diameter of 
the cylinder, and the normalized stagnation pressure (p0).

Following [28] we have used a shock detector based on 
MLS and the limiter of Van Albada [29]. Slip boundary 

conditions are imposed at the surface of the cylinder and 
freestream conditions are imposed at the outer radius 
Router = 10.

In this case we study two configurations

5.4.1 � Static Configuration

First, a static configuration is analyzed. The computational 
domain is discretized with two non-conformal grids, as it 
can be seen in Fig. 15. The parameters for this configura-
tion are compared with the ones obtained using a single 
mesh configuration, and results are presented in Table  8; 
Fig. 16.

In Fig. 17 the Mach isolines obtained with the proposed 
methodology are plotted and compared with the ones 
obtained with a single grid configuration. Note that both 
solution are practically coincident. Again, no numerical 
artifacts are observed through the interface, which location 
is highlighted in red.

5.4.2 � Prescribed Motion

Once the performance of the Chimera method with a static 
configuration was analyzed in presence of a strong shock, 
the next step is to prescribe motion. The aim of this case is 
to study the behavior of the proposed methodology when 
Grid B moves through a shock. The schematic configura-
tion of this case is represented in Fig. 18.

The overlapped grid (Grid B) is initially centered at 
(x, y) = (−2.50, 0). The location of Grid B changes depend-
ing on the physical time according to the expression 
(x, y) = (A sin(2�ft), 0). We chose an amplitude of A = 0.75 
and a frequency of f = 2.0. For this case the background is 
discretized with 7200 cells and the overlapped grid is dis-
cretized with a structured grid of 256 cells. The results are 
shown in Table 9 and Fig. 19.

In Fig.  20 the Mach isolines are plotted at different 
instants of time, so the location of Grid B is captured along 
its range of movement.

Fig. 11   Schematic setup of the 2D Vortex Convection problem for 
the Grid B following the vortex configuration

Table 6   Isentropic Vortex 
Convection. Accuracy orders for 
the 3rd order Chimera method 
for the case of Grid B following 
the vortex

N LN
1  error ON

1
LN
2  error ON

2
LN
∞

 error ON
∞

Isentropic vortex convection. Grid B follows the vortex
 1244 1.32 × 10−3 – 3.95 × 10−2 – 4.91 × 10−2 –
 2780 4.49 × 10−4 2.69 1.50 × 10−2 2.41 2.05 × 10−2 2.12
 4924 1.98 × 10−4 2.85 7.00 × 10−3 2.66 9.41 × 10−3 1.76
 11036 6.20 × 10−5 2.88 2.22 × 10−3 2.84 2.98 × 10−3 2.40
 19580 2.73 × 10−5 2.87 9.63 × 10−4 2.92 1.27 × 10−3 2.65
 43964 9.31 × 10−6 2.66 2.93 × 10−4 2.94 3.56 × 10−4 2.62
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5.5 � Steady Re = 40 Flow Around a 2D Cylinder

In this test case we consider the steady flow around a cir-
cular cylinder as a validation case of the proposed Chimera 
method for viscous flows. The freestream Mach number 
is M∞ = 0.1 and the Reynolds number is set as Re = 40. 
The diameter of the cylinder is D = 1. We impose no-slip 
boundary condition and adiabatic boundary condition at 

Fig. 12   Subsonic Inviscid flow around a NACA 0012. Close view a 
Non-overlapped cells and b Single mesh configurations

Table 7   Subsonic Inviscid flow around a NACA 0012 airfoil. Lift 
(CL) and Drag (CD) coefficients

Method CL CD

Chimera configuration 0.3336 2.81 × 10−4

Single mesh 0.3335 2.53 × 10−4

Theoretical results [15] 0.335 0
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Fig. 13   Subsonic Inviscid flow around a NACA 0012. Pressure coef-
ficient distribution around the airfoil surface
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Fig. 14   Subsonic Inviscid flow around a NACA 0012. Mach field 
and contours

Fig. 15   Supersonic flow over a cylinder with static configuration. a 
Geometry description and b non-conformal grids

Table 8   Supersonic Inviscid flow around a cylinder with static con-
figuration

Method p0∕(p)∞ Stand-off 
distance/D

Single mesh 11.888 0.415
Chimera mesh 11.886 0.416
Reference solution [30] 12.061 −
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solid walls. In Fig.  21 we show a close view of the non-
overlapped cells close to the cylinder. The computational 
domain is discretized with two grids, A and B, with 10114 
and 3600 cells respectively, and 200 elements along the 
cylinder surface.

In Fig. 22 we present the velocity field and the stream-
lines obtained with the present Chimera method. A pair of 
symmetric contra-rotating vortex appear at the wake, show-
ing that the Chimera method obtains the right wake pattern.

In Table 10 we show some of the geometrical param-
eters of the closed wake obtained with the Chimera 
method: the separation angle �s at the cylinder surface, 
the length of the circulation region (L), and the coordi-
nates (a,  b) of the vortex center. These parameters are 
shown schematically in Fig. 22. In addition we show the 
drag coefficient (CD) and front and back pressure coeffi-
cients (Cp(0) and Cp(�)). The results obtained by the new 
Chimera method agree well with previous computations 
performed by using single-grid methods [21, 31, 32] 
(Fig.23)
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0.4
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C
P
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Single Mesh

Fig. 16   Comparison of the pressure coefficient CP distribution 
around the cylinder

Fig. 17   Supersonic flow around a cylinder with static configuration. 
Comparison of Mach isolines. The location of the interface between 
grids is highlighted in red

Fig. 18   Supersonic flow over a cylinder with prescribed motion. a 
Geometry description and b non-conformal grids

Table 9   Supersonic Inviscid flow around a cylinder with prescribed 
motion

Method p0∕(p)∞ Stand-off 
distance/D

Single mesh 11.888 0.415
Chimera mesh 11.926 0.414
Reference solution [30] 12.061 −
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Fig. 19   Comparison of the pressure coefficient CP distribution 
around the cylinder for the supersonic flow around the cylinder with 
prescribed motion
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5.6 � Flow Past an Oscillating Circular Cylinder

In this section we address the problem of a cylinder that 
oscillates transversely (cross-flow) in a free stream. This 
case shows the ability of the proposed scheme for the simu-
lation of moving boundary flow problems. This test case 
has been widely studied to validate and analyze moving 
boundary methods [33–37]. Following the work of Guilm-
ineau and Queutey [33], the trajectory of the center of the 
circular cylinder (denoted as (xB, yB)) is imposed as xB = 0 
and yB = A sin(2�fet), where A is the amplitude of oscilla-
tion and (fe) is the oscillation frequency. In this work we 
analyze an amplitude of A = 0.2 and two frequencies 
fe = 0.8f0 and fe = 1.1f0, where the quantity f0 denotes the 
natural frequency of vortex shedding for a static test case. 
The flow conditions are M∞ = 0.1 and Re = 185. In a pre-
liminary simulation the static case was computed until the 
vortex shedding reached an stable periodic state and we 
obtained a Strouhal number St =

f0D

u∞
= 0.195. The compu-

tational domain is discretized with the same mesh of the 
previous test case (shown in Fig. 21).

5.6.1 � Prescribed Motion: f
e
= 0.8f0.

In this configuration, the frequency of vortex shedding 
synchronizes with the frequency of an imposed perturba-
tion, leading to a periodic state [33]. In Fig. 24, the vorti-
city contours are plotted at different times of one period 
of the prescribed motion (as indicated in Fig.  23). The 
instantaneous pressure coefficient around the cylinder is 
plotted in Fig. 25 and compared with the results obtained 
by Guilmineau and Queutey [33]. Minor discrepancies are 
observed, due to the use of different grids. Note that the 
grid used in the present computations is 4 times coarser 
than the one employed by Guilmineau and Queutey [33].

Fig. 20   Comparison of Mach isolines for the supersonic flow around 
a cylinder with prescribed motion. The overset grid is highlighted in 
red

Fig. 21   Steady Laminar flow around a 2D cylinder. Non-overlapped 
cells

Fig. 22   Steady Laminar flow around a cylinder. Velocity contours 
and streamline pattern of the steady enclosed wake flow around a cyl-
inder at Re = 40 obtained using the MLS-based Chimera method. We 
also show several geometrical parameters
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The periodic variations of the drag and lift coefficients 
are plotted as a function of the vertical position of the cyl-
inder in Fig. 26. In order to compare with other references, 
in Table 11 we show the time-average drag coefficient (CD), 
the root mean square values of the drag and lift coefficients 
(CD,rms and CL,rms) and the time-average pressure drag coef-
ficient (CD,p). The results are in good agreement with oth-
ers obtained with different approaches.

5.6.2 � Prescribed Motion: f
e
= 1.1f0.

Next, the frequency of the prescribed motion is increased 
to fe = 1.1f0. The drag and lift coefficients (CD and CL) ver-
sus time are plotted in Fig. 27. For fe∕f0 > 1 the drag and 
lift coefficient exhibits the influence of a higher harmonic 
[38]. In Fig. 28 the vorticity contours are compared for the 
prescribed motions fe = 0.8f0 and fe = 1.1f0 when the cyl-
inder is located at the extreme upper position. A close view 
around the cylinder is plotted in Fig. 29. The wake topol-
ogy presents a different structure when compared with the 
one obtained for fe = 0.8f0.

In order to compare with other references, in Table 12 
we show the time-average drag coefficient (CD), the root 
mean square values of the drag and lift coefficients (CD,rms 
and CL,rms). Again, the results are in good agreement with 
those obtained using finer grids.

Table 10   Steady Laminar flow 
around a cylinder. Comparison 
of results using the new 
Chimera scheme with other 
computations using single-grid 
methods

Method CD L / R 2b / D 2a / D �s Cp(0) Cp(�)

Present method 1.568 4.20 1.168 1.264 52.69 deg −0.512 1.180
Chassaing et al. [21] 1.565 4.3 1.17 1.34 52.71 deg −0.516 1.205
Niu et al. [31] 1.574 − − − − −0.555 1.147
He and Doolen [32] 1.499 4.49 − − 52.89 deg −0.487 1.133
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Fig. 23   Spatial location of the different snapshots shown in Fig. 24

-2 0 2 4 6 8 10 12

-2

0

2 a

-2 0 2 4 6 8 10 12

-2

0

2 b

-2 0 2 4 6 8 10 12

-2

0

2 c

-2 0 2 4 6 8 10 12

-2

0

2 d

-2 0 2 4 6 8 10 12

-2

0

2 e

Fig. 24   Flow past an oscillating circular cylinder: Prescribed motion 
with fe = 0.8f0. Vorticity contours at different instants of time of the 
period, as indicated in Fig. 23
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Fig. 25   Flow past an oscillating circular cylinder: Prescribed motion 
with fe = 0.8f0. Comparison of the instantaneous pressure coefficient 
CP distribution around the cylinder with the results of Guilmineau 
and Queutey [33]. The location of Grid B is (xB, yB) = (0, 0) while 
moving downwards
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Fig. 26   Flow past an oscillating circular cylinder: Prescribed motion 
with fe = 0.8f0. Time periodic drag and lift coefficients (CD and CL)

Table 11   Flow past an oscillating circular cylinder: Prescribed 
motion with fe = 0.8f0. The time-average drag coefficient (CD), root 
mean square values of the drag and lift coefficients (CD,rms and CL,rms) 
and the the time-average pressure drag coefficient (CD,p)

Method CD
CD,rms CL,rms CD,p

Present method 1.267 0.041 0.071 1.017
Guilmineau et al. [33] 1.195 0.036 0.08 −
Schneiders et al. [34] 1.279 0.042 0.082 1.027
Uhlmann [35] 1.354 − 0.166 −
Yang et al. [37] 1.281 0.042 0.076 −
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Fig. 27   Flow past an oscillating circular cylinder: Prescribed motion 
with fe = 1.1f0. Drag and lift coefficients (CD and CL) versus time
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Fig. 28   Flow past an oscillating circular cylinder. Comparison of the 
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when the cylinder is located at its extreme upper position. Note the 
different structure of the wakes
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6 � Conclusions

In this work we have proposed a new higher-order accurate 
Chimera method for overlapped arbitrary grids. Moving 
Least Squares approximations are used to transfer the data 
from one grid to another. The geometrical flexibility and 
accuracy of the MLS approximation allow for the transfer 
of information between overlapped grids preserving the 
order (> 2) of the scheme. The new Chimera method is 
presented in the framework of higher-order finite volume 
schemes for compressible flows. The numerical examples 
have shown that the present methodology is applicable to 
a wide variety of problems, including problems where the 
solution presents discontinuities. In spite of that, accurate 
results free of numerical artifacts are obtained.
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