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Abstract The evolutionary structural optimization (ESO)

method developed by Xie and Steven (Comput Struct

49(5):885–896, 1993), an important branch of topology

optimization, has undergone tremendous development over

the past decades. Among all its variants, the convergent

and mesh-independent bi-directional evolutionary struc-

tural optimization (BESO) method developed by Huang

and Xie (Finite Elem Anal Des 43(14):1039–1049, 2007b)

allowing both material removal and addition, has become a

widely adopted design methodology for both academic

research and engineering applications because of its effi-

ciency and robustness. This paper intends to present a

comprehensive review on the development of ESO-type

methods, in particular the latest convergent and mesh-in-

dependent BESO method is highlighted. Recent applica-

tions of the BESO method to the design of advanced

structures and materials are summarized. Compact Malab

codes using the BESO method for benchmark structural

and material microstructural designs are also provided.

1 Introduction

We observe over the past decades that topology opti-

mization has undergone a remarkable development in both

academic research [10, 23, 56] and industrial applications

[187]. By topology optimization, one aims to find an

optimal material layout within a prescribed design domain

so as to maximize or minimize certain objectives mean-

while satisfying one or multiple design constraints. The

most examined design case is to minimize structural

compliance, i.e., maximize stiffness, subject to a volume

constraint on material usage. An illustration of topology

optimization is given in Fig. 1. The key merit of topology

optimization over conventional shape or sizing optimiza-

tions is that the structural topology or the material layout

inside the design domain is not a priori assumed, resulting

much increased design freedom and consequently leading

to in most cases more efficient designs.

The prior investigation of topology optimization can be

traced back to over a hundred years ago by the versatile

Australian inventor Michell [91], who derived optimality

criteria for the least-weight layout of trusses. Michell’s

theory was extended until 70 years later by Rozvany and

his collaborators [103, 116, 117] for exact analytical opti-

mal solutions of grid-type structures. Numerical investi-

gations on topology optimization started afterwards along

with the revolutionary development of computing capa-

bilities and the advancement of numerical simulation

methods. Within the continuum framework, topology

optimization can be formulated as a discrete problem or a

binary design setting that the structure consists solely solid

material or void. However, the binary setting for structural

compliance designs is known as ill-posed that there exist

non-convergent sequence of admissible designs with con-

tinuously refined geometrical details [17, 71–73]. Bendsøe
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and Kikuchi [8] proposed to relax the problem by assuming

designable porous microstructures at a separated lower

scale upon the homogenization theory such that the prob-

lem becomes well-posed. This paper is also recognized as

the seminal paper to numerical topology optimization.

Since then topology optimization has undergone remark-

able development with the emergence of various methods,

including in chronological sequence: density-based meth-

ods [7, 184], evolutionary procedures [161, 162], bubble

method [27], topological derivative [130], level-set meth-

ods [1, 84, 122, 142, 153–158] and phase field method [11].

All these approaches are based on repeated numerical

simulations and according to the updating mechanisms

they can be categorized in general into two groups: either

density variation or shape/boundary variation. Reviews on

specific topology optimization methods have been given by

Rozvany [120] for density-based methods, by Huang and

Xie [55] for ESO-type methods, by van Dijk et al. [137] for

level-set methods and by Deaton and Grandhi [23] for a

general review on various methods and their applications.

Sigmund and Maute [127] have presented a critical review

and comparison on various methods.

As an important branch of topology optimization, the

evolutionary structural optimization (ESO) method was

initially proposed by Xie and Steven [161, 162] based on a

simple concept that a structure evolves towards an opti-

mum by gradual removing lowly stressed materials. The

ESO method was also recognized as a hard-kill method and

the associated discrete design space is not relaxed in con-

trast to density-based methods. The ESO method has been

extended for various design objectives using either

heuristic or empirical criteria, which may or may not be

based on sensitivity information [164]. It has been reported

that the ESO method is equivalent to a sequential linear

programming approximate method when the strain energy

is adopted as the update criterion [135]. A summary of the

early developments of the ESO-type methods can be found

in the first book on the subject by Xie and Steven [164].

Querin et al. [105, 107, 108] developed the early ver-

sions of bi-directional evolutionary structural optimization

(BESO) method allowing the recovery of the deleted ele-

ments which are neighboring to highly stressed elements.

One of the last major development of the ESO method is

the proposition of the convergent and mesh-independent

BESO method by Huang and Xie [48], which has incor-

porated a sensitivity filter scheme and a stabilization

scheme using the history information. The latest version of

BESO method has shown promising performance when

applying for a wide range of structural design problems

including stiffness and frequency optimization [59], non-

linear material and large deformation [47, 52], energy

absorption [58], multiple materials [53], multiple con-

straints [54], periodic structures [50], and so on [55, 144].

The second phase development of the ESO method (the

extension to bi-directional) and the various applications up

to the year 2010 have been summarized in the second book

on the subject by Huang and Xie [56].

The BESO method has been showing efficient and

robust performance and has become a widely adopted

design methodology for both academic researches and

engineering applications. This paper intends to provide a

comprehensive review on the development of ESO-type

methods, meanwhile summarizes recent applications of the

BESO method for the design of advanced structures and

materials, in particular the contributions after the year of

2007. This review is organized as follows: Sect. 2 gives

first a comprehensive review on the historical development

of ESO-type methods from the original proposition of the

ESO method [162] to the latest BESO method [48]; Sect. 3

provides a discussion on the famous Zhou–Rozvany

problem [183]; Sect. 4 summarizes recent BESO applica-

tions for the design of advanced structures; Sect. 5 sum-

marizes recent BESO applications for the design of

material microstructures; Sect. 6 summarizes recent BESO

applications for the design of multiscale structures; Sect. 7

presents two Malab codes using the BESO method together

with benchmark tests on design of structures and material

microstructures; conclusion is drawn in Sect. 8.

2 Historical Review on ESO/BESO Methods

Since the late 1980s, enormous progress has been made in

the theory, methods and applications of topology opti-

mization. Among various numerical methods for topology

optimization, ESO/BESO methods have been extensively

investigated by many researchers around the world. The

first book on ESO was published by Xie and Steven in 1997

[164]. Since then the field has experienced rapid develop-

ments with a variety of new algorithms and a growing

number of applications. There are many different versions

of ESO/BESO algorithms proposed by several dozens of

researchers in the past two decades. However, some of the

algorithms appeared in the literature are unreliable and

inefficient. This section provides a comprehensive and

systematic discussion on the latest techniques and proper

procedures for ESO/BESO, particularly the latest

Fig. 1 Illustration of typical structural topology optimization [149]
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convergent and mesh-independent BESO method with a

presentation of the standard design procedure for contin-

uum structures.

2.1 Original ESO Proposition

The evolutionalry structural optimization (ESO) method

was originally proposed by Xie and Steven in the early

1990s [162] and has since been continuously for a wide

range of topology optimization problems [164]. By

observing the evolution of naturally occurring structures

such as shells, bones and trees it becomes obvious that the

topology and shape of such structures achieve their opti-

mum over a long evolutionary period and adapt to what-

ever environment they find themselves in. With this idea in

mind, the ESO method was originally proposed using the

stress level as an indicator for the gradual removal of

inefficient material for a structure expecting that the

resulting structure could evolve towards an optimal shape

and topology.

By means of a numerical simulation method, e.g., the

mostly applied finite element method, the stress field of a

loaded structure can be easily determined. Ideally an

evenly distributed stress field is expected within the

structural domain for an optimal use of material, however it

is often not the case indicating the existence of inefficient

material. This observation leads to the original ESO

proposition that lowly stressed material is assumed to be

inefficiently used and is therefore removed gradually

according to a defined rejection criterion based on the local

stress level. The removal of material was undertaken by

deleting elements from the finite element model of the

structure, for which the original ESO method is also known

as a hard-kill method.

In the original ESO proposition [162], the stress level of

each element is determined by comparing the element von

Mises stress rvm
e with a prescribed critical or maximum von

Mises stress of the whole structure rvm
max. A rejection ratio

(crr) is defined and elements with von Mises stress lower

the threshold are deleted or removed from the model

rvm
e \ crr � rvm

max: ð1Þ

The cycle of finite element analysis and element

removal is repeated for several iterations using the same

rejection ratio until a steady state is reached, meaning that

there are no more elements satisfying this deletion

threshold. The rejection ratio can then be increased

according to a defined evolutionary rate cer

cnew
rr ¼ cold

rr þ cer ð2Þ

and the iteration process takes place again until a new

steady state is reached. The evolutionary process continues

until a desired optimum is reached, for example, the stress

level of all material are below the precribed ratio of the

maximum von Meses stress rvm
max.

Figure 2 shows the results of the evolutionary design

procedure of a two-bar frame structure [162]. The dimen-

sions of the two-bar frame structure is 10� 24 m2 and the

thickness is 0.001 m. The left hand side of the structure is

fully clamped and a shear stress of 1 MPa is applied on the

Fig. 2 ESO topologies for a two-bar frame for different rejection

ratios [162]: a crr ¼ 3%, b crr ¼ 6%, c crr ¼ 9%, d crr ¼ 12%,

e crr ¼ 15%, f crr ¼ 18%, g crr ¼ 21%, h crr ¼ 24%, i crr ¼ 30%
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edge of two elements at the center of the right hand side.

The whole structure is discretized into 25� 60 uniform

bilinear quadrilateral plane stress elements. The Young’s

modulus E ¼ 100 GPa and the Poisson’s ratio v ¼ 0:3 are

assumed. The ESO procedure starts from the full design

using an initial rejection ratio crr ¼ 1%. The evolutionary

rate ER is also set to cer ¼ 1%. The resulting topologies in

Fig. 2 are the steady state topologies for gradually

increasing rejection ratios. As the rejection ratio increases,

more and more relatively inefficient material is removed

from the structure. From the early stages of the evolution, it

is clear that the structure is to evolve into a two-bar frame.

The final two-bar system in Fig. 2i gives H ¼ 2L which

agrees well with the analytical solution.

Another example of using the ESO method for shape

optimization is given in Fig. 3, in which one seeks to find

the optimal shape for an object hanging in the air under its

own weight [164]. Two slots are cut at the top in the initial

model to create a stalk, which is fixed at the top end. By

gradually removing the least stressed material from the

surface, a final shape with uniform stress on the surface is

obtained. The result of in Fig. 3 reminds us of certain fruits

such as an apple and a cherry.

The ESO method has been extended to topology opti-

mization of structures with such constraints as buckling

load [85], frequency [163], temperature [78] or a combi-

nation of the above [104]. The ESO method has also been

used for various engineering applications such as the

underground excavation [113]. A summary of early appli-

cations of the ESO method on different physical field

problems have been given by Steven et al. [131]. It has also

been shown that the ESO method provides a useful tool for

engineers and architects who are interesting in exploring

structurally efficient forms and shapes during the concep-

tual design stage of a project [164].

To minimize the material usage under a given perfor-

mance constraint, the ESO method seems to follow a

logical procedure to reduce the structural weight (or

volume) by gradually removing inefficient material until

the prescribed constraint can no longer be satisfied.

However, it is possible that the material removed in the

early evolution iterations might be required afterwards.

The original ESO proposition is unable to recover the

material once it has been prematurely or wrongly

removed from the structure. Hence, while the ESO

method is capable of producing a much improved solution

over an initial guess design in most cases, the result may

not necessarily be an optimum. Li et al. [76] and

McKeown [87] have shown that such a fully stressed

design by the ESO method is equivalent to that of the

stiffness criterion, i.e. it cannot always minimize the

highest stress in the structure.

2.2 Early Developments of BESO

The early ESO developments were limited by allowing

only material removal from the structure, and those

removed ones cannot be readmitted in the later evolution,

an over-sized initial design setting is therefore required to

ensure that the final design is represented by adequate

elements. In certain cases the optimization is misled due to

the inappropriately defined initial setting [106]. As com-

plementary, a reverse method to the original ESO algo-

rithm, namely additive ESO (AESO), was proposed by

Querin et al. [105], by which the structure evolves from a

base structure of little material by gradually adding mate-

rial to highly stressed regions. Both ESO and AESO allow

only one directional variation of the structural material

layout by either material removal or material addition. The

early version of bi-directional ESO (BESO) was proposed

by Querin et al. [107] through a combination of ESO and

AESO concepts. In their BESO algorithm, elements with

the lowest von Mises stresses are removed satisfying the

first criterion in Eq. (3), and void elements near the highest

von Mises stress regions are switched on as solid elements

satisfying the second equation in Eq. (3) where ~re is an

approximation of the von Mises stress for void elements

from neighboring solid elements. The numbers of elements

to be removed and added are treated separately with a

rejection ratio crr and an inclusion ratio cir, respectively.

BESO allows for both material removal and addition, so

that the final optimum can be reached regardless of how the

initial design setting is defined. The optimality of the bi-

directional ESO method was validated by Querin et al.

[108].

rvm
e \ crr � rvm

max ! elementremoval;

~rvm
e [ cir � rvm

max ! elementaddition:

�
ð3Þ

The same two-bar frame structure as presented previ-

ously in Fig. 2 was reexamined using the BESO method. In
Fig. 3 ESO solutions of an object hanging in the air under its own

weight [164]
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contrary to the full solid starting structure as shown in

Fig. 2a, the BESO reexamination starts from a slender

topology as shown in Fig. 4a. During the initial evolution

iterations, elements were only added to the structure and

the topologies produced had a quadratic outside shape

(Fig. 4a–c). This is analogous of the equation for the

optimal height of a cantilever beam subject to a single

point load at the free end. As the structure continues to

evolve, a cavity was subsequently created and the structure

was split into two as shown in Fig. 4d. The BESO method

evolved rapidly the structure afterwards to the well known

classical optimal topology of Fig. 4f. It has been shown that

for this 2D example, the BESO method is as efficient as the

ESO method in terms of the required evolution time to

reach the same optimal solution. As the design efficiency is

highly dependent on the initial setting, by choosing a

proper starting structural topology the BESO method

ensures in general a quicker process than the ESO method.

Another initial research on BESO was conducted by

Yang et al. [174] for stiffness optimization. In their study,

the sensitivity numbers of the void elements are estimated

through a linear extrapolation of the displacement field

after the finite element analysis. The element sensitivity

number ae was defined as the variation of element com-

pliance due to the removal or addition of the element [20]:

ae ¼ uT
e keue ð4Þ

in which ue and ke are the element displacement vector and

stiffness matrix, respectively. By ranking all elements

using the corresponding sensitivity numbers, the solid

elements with the lowest sensitivity numbers are removed

from the structure, and the void elements with the highest

sensitivity numbers are changed into solid elements. Fig-

ure 5 gives two optimal designs for two load cases using

the BESO method for a lever arm, where the edge of the

left hole is rigidly fixed and loads are applied at the edge of

the right hole (point A). This method has been further

extended to three-dimensional structures [180].

The early development of ESO/BESO methods are lar-

gely based on a heuristic concept and is lacking in theo-

retical rigor. Most of the early work on ESO /BESO

neglected important numerical problems in topology opti-

mization, such as existence of solution, checker-board,

mesh-dependency and local optimum, etc. Continuous

efforts were conducted to overcome these deficiencies, for

instance: Li et al. [77] solved the checkerboard problem by

averaging the sensitivity number of an element with the

neighboring elements; Yang et al. [176] introduced a

perimeter constraint to the BESO method; Kim et al.

[68, 70] introduced cavity control techniques into the

BESO method. With the purpose of reducing the compu-

tational effort, fixed grids have also been introduced to the

BESO method [67, 69].

Fig. 4 BESO design for a two-bar frame [108]

Fig. 5 BESO stiffness designs of a lever arm: the problem setting,

optimal design of load case 1 (tension), optimal design of load case 2

(tension and bending) from top to bottom [174]
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2.3 Convergent and Mesh-Independent BESO

As indicated in the above, one obvious deficiency of the

BESO method is mesh-dependency issue. The reason is

that the introduction of more holes can always lead to a

more efficient design. This effect is seen as a numerical

instability where a larger number of holes appear when a

finer finite element mesh is employed and it is termed as

mesh dependence. This is in fact a common issue for

almost all topology optimization methods not only to

BESO [128]. The BESO method with perimeter control

[176] has been shown to be capable of obtaining mesh-

independent solutions due to the introduction of one extra

constraint on the perimeter length. However, predicting the

value of the perimeter constraint for a new design problem

is not at all a trivial task.

Another problem is that ESO/BESO methods may result

in a non-convergent solution [10, 12]. In other words, the

solution may be worse and worse in terms of the objective

function, e.g., compliance, if the ESO/BESO procedure

continues without stop. That is one reason why the stop

criterion in the original ESO/BESO method is defined with

the objective volume rather than the objective function.

Obviously, the solution using this type of ESO/BESO pro-

cedure is problematic when a broken member with no or low

strain energy happens to be a part of the final topology [183].

To overcome the above-mentioned deficiencies, a

modified and much improved BESO method was proposed

by Huang and Xie [48]. The key contributions are twofold:

firstly, the filter scheme is adopted to make sure the exis-

tence of the solution, meanwhile avoid the checkerboard

pattern (see Fig. 6) and mesh-dependency issues; secondly,

the sensitivity number is modified using the historical

information to stabilize the optimization procedure. Dif-

ferent from the vague optimization setting in the previous

ESO/BESO methods, this paper first clearly formulated the

topology optimization problem with mean compliance

objective subject to a volume constraint.

In order to avoid mesh-dependency and checkerboard

patterns, sensitivity numbers are firstly smoothed by means

of a filter scheme

ae ¼
PNe

j¼1 wejajPNe

j¼1 wej

; ð5Þ

where wej is a linear weight factor

wej ¼ maxð0; rmin � Dðe; jÞÞ; ð6Þ

determined according to the prescribed filter radius rmin and

the element center-to-center distance Dðe; jÞ between ele-

ments Xe and Xj. Note that in the original proposition [48],

the element sensitivity numbers are firstly distributed on

nodes and the nodal sensitivity numbers are then used for

the evaluation of the filtered element sensitivity numbers.

The two schemes are somehow equivalent in piratical uses.

Here in order to simply the notations, the element-based

filter scheme is presented.

Attention needs to be paid here that the above filter

scheme is similar to the mesh-independency filter used in

[128] except that in Eq. (15) the element density is not

included in the denominator. A schematic illustration of the

filter scheme is shown in Fig. 7, where a checkerboard is

filtered with rmin ¼ 1:5 and rmin ¼ 3 times element length

le, respectively. It can be seen that the filter

scheme smooths the sensitivity numbers in the whole

design domain. Thus, the sensitivity numbers for void

elements are automatically obtained. They may have high

values due to high sensitivity numbers of the neighboring

solid elements. Therefore, some of the void elements may

be changed to solid elements in the next iteration.

The filter scheme is purely heuristic. However, by

adopting this simple scheme, many numerical problems in

topology optimization, such as checkerboard and mesh-

dependency, can be effectively overcome. It produces

results very similar to those obtained by applying a local

gradient constraint [10]. The filter scheme requires little

extra computational time and is very easy to implement in

the optimization algorithm.

Despite the use of the filter scheme, the objective

function and topology may not be convergent [56]. It

attributes to the inaccurate assessment of sensitivity num-

bers especially for adding elements (originally void) which

are not involved in the finite element analysis. With the

purpose of circumventing this problem, the accuracy of the

sensitivity numbers is further improved by considering the

Fig. 6 A typical checkerboard pattern in the ESO method [56]

0
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0.4

0.6

0.8

1

rmin

Fig. 7 A checkerboard two-phase field and the associated filtered

fields (rmin ¼ 1:5le and 3le) [149]
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sensitivity history of each element. A simple way to

achieve this is to average the current sensitivity number

with that of the previous iteration as [48, 52, 53]

aðlÞe  ðaðlÞe þ aðl�1Þ
e Þ=2; ð7Þ

where (l) and ðl� 1Þ denote the current and the previous

design iterations, respectively. Computational experience

has shown that this heuristic stabilization scheme by

averaging the sensitivity number with its historical infor-

mation is an effective way to stabilize the design process

and thus improve the convergence.

For the purpose of illustration, let us consider a stiffness

maximization problem of a short cantilever, which is uni-

formly discretized into 32� 20 quadrilateral bilinear ele-

ments. With the BESO method, large oscillations are often

observed in the evolution history of the objective function,

as illustrated in the Fig. 8a. The reason for such chaotic

behavior is that the sensitivity numbers of the solid and

void elements are based on discrete design variables of

element presence and absence, which makes the objective

function and the topology difficult to converge stably.

Figure 8b shows the evolution history obtained with the

adoption of the stabilization scheme defined in (17).

Compared to the result in Fig. 8a, the new solution is

highly stable in both the topology and the compliance value

once the volume fraction constraint (50%) is achieved. It is

worth pointing out that whilst the stabilization scheme of

(17) affects the search direction of the BESO algorithm it

has negligible influence on the final topology design once it

becomes convergent. Details of the parameters used for this

example can be found in [48].

2.4 Soft-Kill BESO Method

The conventional BESO method is known as a ‘‘hard-kill’’

method due to the complete removal of inefficient ele-

ments. The main advantage of the hard-kill approach is that

the computational time can be significantly reduced,

especially in the 3D case, because the deleted elements are

not involved in the subsequent finite element analyses.

However, there have been some doubts among researchers

about the theoretical correctness of the hard-kill ESO/

BESO methods, especially after Zhou and Rozvany [183]

has showed that the ESO/BESO methods fail on a certain

design problem, known as ‘‘Zhou–Rozvany problem’’ (see

Sect. 3). The complete removal of a solid element from the

design domain could result in theoretical difficulties in

topology optimization. It appears to be rather irrational

when a design variable (an element) is directly deleted

from the topology optimization problem.

An alternative effective way to ‘‘remove’’ an element is

to reduce the elastic modulus of the element or one of the

characteristic dimensions (such as the thickness) of the

element to a very small value. For example, Hinton and

Sienz [46] reduce the elastic modulus of elements which

are to be ‘‘removed’’ by dividing a prescribed large factor.

Rozvany and Querin [119] suggested a sequential element

rejection and admission (SERA) method in which the void

element is replaced by a soft element with a very low

Young’s modulus value. Zhu et al. [186] proposed to

replace the void element by an orthotropic cellular

microstructure. The prominent question is ‘‘does such an

optimal solid-void solution exist?’’. If not, a solid-void

optimization method will lose its target, and the resulting

solution becomes meaningless. Huang and Xie [53] pro-

posed a so called ‘‘soft-kill’’ BESO method using an arti-

ficial material interpolation scheme with penalization

similar to the treatment in the SIMP model [9].

Material interpolation schemes with penalization have

been widely used in the SIMP method to steer the solution

to nearly solid-void designs [7, 115, 184]. Bendsøe and

Sigmund [9] have compared the material interpolation

schemes to various bounds for effective material properties

in composite (e.g. the Hashin-Shtrikman bounds) and

showed that composite materials from intermediate densi-

ties are physically realizable. More importantly, such

material interpolation schemes with penalization
Fig. 8 Comparison of BESO topological evolution histories: a with-

out the stabilization scheme; b with the stabilization scheme [48]
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manifested that the solid-void optimal design do exist. To

achieve a nearly solid-void design, Young’s modulus of the

intermediate material is interpolated as a function of the

element density:

Ee ¼ npeE0; ne ¼ nmin or 1 ð8Þ

where E0 denotes Young’s modulus of the solid material

and p the penalty exponent. The binary design variable ne
is attached on an element declaring the absence (nmin) or

presence (1) of the element. Note that nmin is an artificially

defined small parameter (e.g., 0.001). It is assumed that

Poisson’s ratio is independent of the design variables. The

global stiffness matrix K can thus be expressed by the

element stiffness matrix ke and design variables ne as

KðnÞ ¼
XNe

e¼1

ke ¼
XNe

e¼1

npek0; ð9Þ

where k0 denotes the element stiffness matrix of solid and

Ne denotes the total number of finite elements. It is

assumed through out the paper that uniform mesh is used

for design. Thus all element stiffness matrix of solid can be

denoted by the same k0.

Using the adjoint method, the sensitivity of the struc-

tural compliance (fc ¼ uTKu) with regard to the change in

the e-th element can be found as [10]

ofc

one
¼ �pnp�1

e uT
e k0ue ð10Þ

where u and ue denote the global and element displacement

vectors, respectively. By the ESO/BESO methods, a

structure is optimized using discrete design variables. That

is to say that only two bound materials are allowed in the

design. Therefore, the sensitivity number used in the ESO/

BESO methods can be defined by the relative ranking of

the sensitivity of an individual element as [55]

ae ¼ �
1

p

ofc

one
¼ uT

e k0ue whenne ¼ 1

np�1
min uek0ue whenne ¼ nmin:

�
ð11Þ

It is noted that the sensitivity numbers of solid elements are

independent of the penalty exponent p and are indifferent

from (4), while the sensitivity numbers of soft elements

depend on the value of the penalty exponent p. The hard-

kill BESO method presented in the previous sections can

be viewed as a special case of the soft-kill BESO method

when the penalty exponent p approaches infinity. It was

also indicated that the hard-kill BESO method may not

applicable for other optimization problems, e.g. frequency

optimization [59].

A comparison study on the performance of the soft-kill

BESO method is given in Fig. 9. Figure 9a, b show the soft-

kill BESO optimal designs for p ¼ 1:5 and p ¼ 3:0,

respectively. The results indicate that the penalty exponent

p has negligible influence on the optimal design that both

optimal topologies are very close to the result of the hard-

kill BESO method as shown in Fig. 8. Figure 9c shows the

optimal topology using the SIMP method [10] with

p ¼ 3:0. Its topology is similar to soft-kill BESO designs

except for ‘‘grey’’ elements. To avoid premature conver-

gence to local optima, the continuation method has also bet

be applied by gradually increasing the penalty exponent

[118] or gradually decreasing the filter radius [124]. Fig-

ure 9d shows the final design via the continuation method

and the resulted optimal topology is almost identical to

Fig. 9a, b.

2.5 Standard Hard-Kill BESO Procedure

Consider a conventional structural compliance minimiza-

tion problem (fc ¼ uTKu, i.e., stiffness maximization)

subject to material volume fraction constraint as following

minn : fcðn; uÞ
subjectto : Ku ¼ f

: VðnÞ ¼
P

neve ¼ Vreq

: ne ¼ 0 or 1; e ¼ 1; . . .;Ne;

ð12Þ

in which K and u are the global structural stiffness and

displacement vector, ve is the element volume, VðnÞ and

Vreq are the total and required material volumes, respec-

tively. Ne denotes the total number of finite elements. The

binary design variable ne is attached on an element

declaring the absence (0) or presence (1) of the element.

Before elements are removed from or added to the

current design, the target volume for the current design

iteration V ðlÞ needs to be given first. Since the required

material volume Vreq can be greater or smaller than the

volume of the initial guess design, the target volume in

each iteration may decrease or increase step by step until

Fig. 9 Stiffness maximization designs of a cantilever: a soft-kill

BESO with p ¼ 1:5, b soft-kill BESO with p ¼ 3:0, c SIMP with

p ¼ 3:0 and d the continuation method [53]
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the constraint volume is achieved. The evolution of the

volume can be expressed by

V ðlÞ ¼ Vðl�1Þð1� cerÞ; ð13Þ

in which the evolutionary ratio cer determines the per-

centage of material to be added or removed from the design

of the previous iteration. Once the target required material

volume usage Vreq is attained, the optimization algorithm

alters only the topology but keeps the volume constant (up

to a certain tolerance).

At each design iteration, the sensitivity numbers which

denote the relative ranking of the element sensitivities are

used to determine material removal and addition. When

uniform meshes are used, the sensitivity number for the

considered objective is defined as following using the

element sensitivity as given in (4)

ae ¼ ofc=one ¼ uT
e k0ue: ð14Þ

In order to avoid mesh-dependency and checkerboard

patterns, sensitivity numbers are firstly smoothed by means

of the filter scheme as (15)

ae ¼
PNe

j¼1 wejajPNe

j¼1 wej

; ð15Þ

where wej is a linear weight factor

wej ¼ maxð0; rmin � Dðe; jÞÞ; ð16Þ

determined according to the prescribed filter radius rmin and

the element center-to-center distance Dðe; jÞ between ele-

ments Xe and Xj. To improve the convergence, the filtered

sensitivity numbers are further averaged with the sensi-

tivity numbers of the previous topology iteration

aðlÞe  ðaðlÞe þ aðl�1Þ
e Þ=2: ð17Þ

The update of the topology variables by the BESO

method is realized by means of two threshold parameters

ath
del and ath

add for material removal and addition, respec-

tively [33, 52]

nðlþ1Þ
e ¼

0 if ae� ath
del and nðlÞe ¼ 1;

1 if ath
add\ae and nðlÞe ¼ 0;

nðlÞe otherwise:

8><
>: ð18Þ

The present scheme indicates that solid elements are

removed when their sensitivity numbers are less than ath
del

and void elements are recovered when their sensitivity

numbers are greater than ath
add. The parameters ath

del and ath
add

are obtained from the following iterative algorithm [48]:

1. Let ath
add ¼ ath

del ¼ ath, where the value ath is determined

iteratively such that the required material volume

usage is met at the current iteration.

2. Compute the admission ratio car, which is defined as

the volume of the recovered elements divided by the

total volume of the current design iteration. If

car� cmax
ar , the maximum admission ratio, then skip

the next steps; otherwise, ath
del and ath

add are redeter-

mined in the next steps.

3. Determine ath
add iteratively using only the sensitivity

numbers of the void elements until the maximum

admission ratio is met, i.e., car � cmax
ar .

4. Determine ath
del iteratively using only the sensitivity

numbers of the solid elements until the required

material volume usage is met at the current iteration.

The introduction of cmax
ar stabilizes the topology optimiza-

tion process by controlling the number of recovered ele-

ments. Normally, cmax
ar is set to a value greater than 1% so

that it does not suppress the merit of the element recovery

scheme. Note that in stiffness related designs, the above

procedure can be reduced to a simpler scheme by assuming

that car� cmax
ar is always satisfied such that in practice only

ath needs to be determined.

The cycle of finite element analysis and element

removal and addition continues until the target volume Vreq

is reached and the following convergence criterion defined

in the variation of the objective functions is satisfied:

cerr ¼
PN

i¼1ðf
ðl�iþ1Þ
c � f

ðl�N�iþ1Þ
c Þ

��� ���PN
i¼1 f

ðl�iþ1Þ
c

� derr
ð19Þ

where l is the number of current design iteration, derr is an

allowable convergence error and N is integral number

which is usually selected as 5 in most design cases which

means a stable compliance at least in successive 10

iterations.

3 Discussion on Zhou–Rozvany Problem

Rozvany and Zhou [183] examined the ESO/BESO meth-

ods on a specifically defined problem (see Fig. 10), known

as the Zhou–Rozvany problem and a conclusion was drawn

that both ESO/BESO methods are not able to always

guarantee an optimal design. Huang and Xie [49]

Fig. 10 Illustration of the Zhou–Rozvany problem [55]
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reexamined the problem and they found that not only the

ESO/BESO methods, but other well-established methods

such as SIMP and level-set methods would fail as well for

the Zhou–Rozvany problem. In the following a detailed

discussion on the challenge Zhou–Rozvany problem is

provided [183].

3.1 Zhou–Rozvany Problem [183]

The structure shown in Fig. 10 is used by Zhou and Roz-

vany [183] to show the breakdown of hard-kill optimiza-

tion methods, such as ESO/BESO. In this example, the

Young’s modulus is taken as unity and the Poisson’s ratio

is set to zero. The mean compliance of the ground structure

is about 194. If the design domain is discretized into 100

four node plane stress elements, the element in the vertical

tie has the lowest strain energy density. Thus, hard-kill

BESO method will remove that element from the ground

structure and results in the design as shown in Fig. 11a with

a mean compliance of 2186. This value is much higher than

that of any intuitive design obtained by removing one

element from the horizontal beam.

After removing an element in the vertical tie, the

resultant structure becomes a cantilever where the vertical

load is transmitted by flexural action. The region with the

highest strain energy density is at the left-bottom of the

cantilever. According to hard-kill ESO/BESO methods, an

element would be added in the neighboring region rather

than recovering the removed element in the vertical tie.

Therefore, Zhou and Rozvany [183] concluded that hard-

kill optimization methods such as ESO/BESO may produce

a highly non-optimal solution. In fact, soft-kill optimiza-

tion algorithms such as the level set method using contin-

uous design variables may also produce a similar result

[97]. To overcome this problem, the essence of such a

solution needs to be examined first.

3.2 Is it a Non-optimal or a Local Optimal Solution?

Obviously, the answer cannot be easily found by simply

comparing the objective values. Let us reconsider the

above example for a volume fraction of 96%. Hard-kill

optimization methods such as ESO/BESO will remove the

four elements from the vertical tie as shown in Fig. 11b.

This design is certainly far less efficient than an intuitive

design which removes four elements from the horizontal

beam.

It is known that the SIMP method with continuous

design variables guarantees that its solution should be at

least a local optimum. Therefore, this topology optimiza-

tion problem is tested by the SIMP method starting from an

initial guess design with ne ¼ 1 for all elements in the

horizontal beam and ne ¼ nmin ¼ 0:001 for the four ele-

ments in the vertical tie. It is found that when p� 3:1 the

final solution converges to the structure shown in Fig. 11c,

which is exactly the same as the initial guess design.

Because nmin is small, the SIMP solution in Fig. 11c can be

considered to be identical to the hard-kill ESO/BESO

solution in Fig. 11b. These results demonstrate that the

above solutions from hard-kill ESO/BESO methods and

SIMP are essentially a local optimum rather than a non-

optimum. Theoretically it would be more appropriate to

call such a solution a highly inefficient local optimum

rather than a non-optimum.

The occurrence of the above 0/1 local optimal design is

due to the large penalty p in the optimization algorithms.

Hard-kill ESO/BESO methods have an equivalent penalty

of infinity and therefore fail to obtain a better solution once

they reach the highly inefficient local optimum. Similarly,

the soft-kill BESO method with a finite penalty may also

fail because a large penalty (p� 1:5) is normally required

for topology optimization.

The exact value of the penalty p that is large enough to

cause a local optimum is dependent upon the optimization

problem. For the original Zhou and Rozvany [183] exam-

ple given in Fig. 10, the SIMP method will produce a much

more efficient solution than the one shown in Fig. 11d

when p ¼ 3 is used. However, if the original problem is

slightly modified by reducing the vertical load from 1 to

0.5, the SIMP method with p ¼ 3 will again fails in finding

Fig. 11 Designs of the Zhou–Rozvany problem: a hard-kill BESO

design for 99% volume fraction, b hard-kill BESO design for 96%

volume fraction, c a highly inefficient local optimum from SIMP

method when p� 3:1 for 96% volume fraction, d optimal design by

the continuation method for 96% volume fraction [55]
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Fig. 11d but leads to the highly inefficient local optimum

shown in Fig. 11c.

3.3 Avoidance of a Local Optimum Within

Optimization Algorithms

It is well-known that most topology optimization problems

are not convex and there exist various local optima.

Meanwhile, most global optimization methods seem to be

unable to handle problems of the size of a typical topology

optimization problem [10]. As shown in the previous

subsection, the ESO/BESO method and the SIMP method

fail to ensure a global optimum and the resulting topologies

are highly dependent on choices of optimization parame-

ters and initial guesses.

Based on the experience, the local optimum can be

avoided using the continuation method by gradually

increasing the penalty exponent [118]. For this particular

problem, the continuation method with Dp ¼ 0:1 produces

an optimal solution shown in Fig. 11d after about 700

iterations. The continuation method fails to produce a pure

0/1 global solution due to the numeric overflow although it

successfully avoids the above highly inefficient local

optimum. Theoretically, a global optimum cannot be

guaranteed even for the continuation method as noted by

Stolpe and Svanberg [133]

Therefore, it is unfair to expect the ESO/BESO methods

to overcome a local optimum while other well-established

methods would fail as well. To completely solve this

problem, further research is required for all topology

optimization methods, not just the ESO/BESO methods.

3.4 Avoidance of a Local Optimum Outside ESO/

BESO Optimization Algorithms

Nonetheless, it is necessary to find a solution outside the

ESO/BESO algorithms to avoid this type of highly inef-

ficient 0/1 local optima. Fortunately, a 0/1 highly ineffi-

cient local optimum can be easily identified even by

inspection. In the above example, the cantilever is a

substructure of the ground structure and its optimal

solution may be a 0/1 local optimum solution of the

whole structure. Therefore, 0/1 local optima widely exist

in topology optimization problems for a statically inde-

terminate structure.

Huang and Xie [49] proposed that this inefficient local

optimum can be detected by checking the boundary

conditions for a statically indeterminate structure after

each iteration. If a breakdown of boundary support is

detected before a satisfactory solution is obtained, it may

well indicate that thereafter the solution may be (but not

always) a highly inefficient local optimum and the cur-

rent optimization process should be stopped immediately.

Then, the problem should be re-calculated with a fine

mesh to avoid breakdown of the boundary. Edwards

et al. [26] and Huang and Xie [49] in their parallel but

independent studies have demonstrated that an optimal

design can be obtained with a refined mesh as shown in

Fig. 12.

It should be noted that the mesh refinement causes the

change of the original optimization problem of finding a

global optimum under a given mesh as argued by Rozvany

[120]. But, checking the boundary condition outside the

ESO/BESO algorithms is a conservative but effective way

to detect the occurrence of a highly inefficient 0/1 local

optimum for this particular problem.

4 Design of Advanced Structures

The latest version of of the BESO method, i.e., the con-

vergent and mesh-independent BESO method [48], has

been applied for a wide range of structural design prob-

lems. This section summarizes various extensions and

applications of the BESO method for advanced structural

designs, including: stiffness optimization with multiple

materials (Sect. 4.1), displacement-related structural

designs (Sect. 4.2), design-dependent structural designs

(Sect. 4.3), design of structural natural frequency (Sect.

4.4), design of nonlinear structures (Sect. 4.5), design of

periodic structures (Sect. 4.6) and shape optimization of

tunnels (Sect. 4.7).

Fig. 12 Designs of the refined Zhou–Rozvany problem: a refined

initial design (10,000 elements), b ESO design for 50% volume

fraction, c BESO design for 50% volume fraction [49]
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4.1 Stiffness Optimization with Multiple Materials

Huang and Xie [53] has extended the soft-kill BESO

method to optimize structures composed of multiple

materials with. The extension can be realized through a

straightforward introduction of a multiphase material

interpolation scheme following [6]. In the case of two solid

materials, the material interpolation scheme can be

expressed as

Ee ¼ npeE
ð1Þ þ ð1� npeÞEð2Þ ð20Þ

where Eð1Þ and Eð2Þ are Young’s moduli of two materials

and Eð1Þ[Eð2Þ 6¼ 0. When Eð2Þ ¼ 0, the above interpola-

tion is reduced to (8) for the case of solid-void designs.

In the case of more than two solid materials, saying

n types of materials with Young’s moduli

Eð1Þ[Eð2Þ[ � � � [EðNÞ. Topology design variables need

to be defined for each of the ‘‘N � 1’’ pairs of neighboring

phases

Ee ¼ ðnðjÞe Þ
p
EðjÞ þ ð1� ðnðjÞe Þ

pÞEðjþ1Þ; ð21Þ

where the design variable nðjÞe associated to the e-th element

for the j-th material is defined as follows

nðjÞe ¼
1; for Ee�EðjÞ

nmin; for Ee�Eðjþ1Þ:

�
ð22Þ

The sensitivity number for compliance minimization

design can be found through the sensitivity analysis with

respect to the design variables nðjÞe as

aðjÞe ¼ ðn
ðjÞ
e Þ

p�1ðuT
e kðjÞe ue � uT

e kðjþ1Þ
e ueÞ ð23Þ

where kðjÞe and kðjþ1Þ
e denote the element stiffness matrices

calculated from using EðjÞ and Eðjþ1Þ, respectively. It

should be noted that the sensitivity number aðjÞe is defined in

the whole design domain even though it is only used for

making adjustments between materials ‘‘j’’ and ‘‘jþ 1’’.

It is noted that there exit ‘‘N � 1’’ groups of sensitivity

numbers in the system to adjust the corresponding neigh-

boring materials. The BESO procedure for multiple mate-

rial designs is similar to that for solid-void designs except

that the sensitivity calculation and material adjustment

must be carried out for each of the ‘‘N � 1’’ groups. The

BESO design starts from the full design with material 1 and

triggers by evolutionary ratio which is defined as the pro-

portion of volume reduction of material 1 relative to the

total volume of material 1 in the current design. At the

same time, the volume of material 2 gradually increases

until the objective volume is achieved. Thereafter, the

volume of material 2 keeps constant and the volume of

material 3 gradually increases until the objective volume is

achieved, and so on. Transition between materials 1 and 2

is carried out according to the target volume of material 1

and sensitivity numbers að1Þe . Similarly, transition between

materials 2 and 3 is carried out according to the target

volume of material 2 and sensitivity numbers að2Þe , and so

on. The whole optimization procedure is stopped when

objective volumes for all materials are achieved and the

convergent criterion is satisfied. Figure 13 shows an opti-

mal design example of a half-beam structure which is made

of three material phases: void and two solids of different

elastic moduli.

The multiphase BESO algorithm has also been applied

for the design of material microstructures in both 2D and

3D cases [112], which will be detailed in Sect. 5.2. Some

further improvements to the multi-material BESO algo-

rithm have been provided recently by Ghabraie [37] with

the proposition of a new filter scheme and a gradual pro-

cedure inspired by the continuation method.

4.2 Displacement-Related Structural Designs

In most cases the objective of topology optimization is to

reduce the weight of structure where the constraint is

imposed on the compliance or the displacement. It is of

significant importance in practice to restraint the maximum

deflection of the structure below a certain critical value.

During the early developments, volume constraint was

more preferable because of the concept of progressive

removal of inefficient material. Rozvany [120] has doubted

the extensibility of the ESO-type methods to displacement

related designs. The first extension of the BESO method to

include displacement constraint was provide by Huang and

Xie [55]. In this work, the topology optimization problem

was defined to minimize the material volume with a dis-

placement constraint as

Fig. 13 BESO optimal design of a three-phase structure [53]
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min
n

: VðnÞ
subjectto : Ku ¼ f

: uj� u	j
: ne ¼ nmin or 1; e ¼ 1; . . .;Ne;

ð24Þ

where uj and u	j are the displacement of the j-th degree of

freedom and the prescribed allowable displacement value,

respectively. Note that, to a certain extent the above opti-

mization problem is equivalent to that in the conventional

setting where the compliance is minimized subject to a

given structural volume [18, 55].

In order to solve this problem using the BESO method,

the displacement constraint was proposed to be added to

the objective function with an introduction a Lagrange

multiplier k as

fobjðnÞ ¼ VðnÞ þ kðuj � u	j Þ: ð25Þ

It can be seen that when the displacement constraint is

satisfied, the above augmented objective is equivalent to

the original one and is independent on the value of the

Lagrange multiplier. With the SIMP material interpolation

model of (8), the derivative of the augmented objective

equals

ofobj

one
¼ ve � kpnp�1

e uT
ejk0ue; ð26Þ

where ve is the element volume and the sensitivity of the

displacement of the j-th degree of freedom is calculated

using the adjoint method [10]. uej is the virtual displace-

ment vector of the e-th element resulted from a dummy

load whose j-th degree of freedom is set to unity and the

remains are set to zero. When a uniform mesh is used (i.e.,

element volumes are the same), the relative ranking of

sensitivity of each element can be defined by the following

sensitivity number

ae ¼ �
1

kp
ofobj

one
� ve

� �
¼ np�1

e uT
ejk0ue: ð27Þ

Following the basic BESO procedure using the above

sensitivity numbers, Fig. 14 shows the volume minimiza-

tion design result of the the half beam structure shown in

Fig. 13 subject to a displacement constraint of 0.2 mm on

the loading point. The material volume of the structure is

reduced to 45% of the initial full design and the resulting

maximum deflection is 0.1997 mm which is very close to

the prescribed constraint limit.

An extension to this work was proposed by Zuo and Xie

[189] for a global control of displacements. In this exten-

ded work, the displacement constraint in (24) is substituted

by a global constant

maxfug� u	; for u 2 Xdisp ð28Þ

to constraint the maximum displacement within a selected

domain Xdisp below the allowable critical displacement u	.

The locations and directions of maximum nodal displace-

ments are dynamically detected, the numerical instabilities

of which are adaptively dealt with by several robust sta-

bilization strategies. Fig. 15a is an example that deals with

a simply-supported bridge with a uniform distributed load

on a non-designable deck layer at the bottom. The volume

Fig. 14 BESO optimal design for minimizing the structural volume

against the maximum deflection [55]

Fig. 15 BESO optimal design of a simply-supported bridge: a design

domain, b stiffness design with global displacement constraint of

u	 ¼ 6:5� 10�5 m in Y-direction (V ¼ 57:8%; umax ¼ 6:495�
10�5 m), c conventional stiffness design (V ¼ 57:8%; umax ¼
7:291� 10�5 m) [189]
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is to be minimized with the deck deflection in the vertical

direction (Y-direction) within a limit of 6:50� 10�5 m.

The final topology in the deformed view is shown in

Fig. 15b, where the final maximum vertical deflection is

6:495� 10�5 m which satisfies the constraint of 6:50�
10�5 m. Stiffness optimization for this simply-supported

bridge is carried out as a comparison. The final optimal

topology in the deformed view is shown in Fig. 15c. The

stiffness design is produced by conventional stiffness

optimization under a volume constraint. With the same

volume fraction (57.8%), the maximum vertical deflection

of the stiffness design (7:291� 10�5 m) is 12.3% higher

than that of the deflection design. Comparing the two

deformed optimal designs, it is found that the deformation

of the middle part of the deck in the deflection design is flat

which reduces the maximum vertical deflection and out-

performs the stiffness design in this regard.

Another type of displacement related design can be

formulated as the minimization of the structural compli-

ance with constraints on both volume fraction and a certain

displacement [54]. For example, a local displacement

constraint may be imposed on the horizontal movement of

the roller support shown in Fig. 16. Such kind of constraint

arises when the displacement at a specific location, not

necessarily the loading point, is required to be within a

prescribed limit.

min
n

: fcðn; uÞ
subjectto : Ku ¼ f

: uj� u	j
: VðnÞ ¼

P
neve ¼ Vreq

: ne ¼ nmin or 1; e ¼ 1; . . .;Ne:

ð29Þ

Similar to the previous treatment, the objective function is

augmented with an introduction a Lagrange multiplier k as

fobjðnÞ ¼ fcðn; uÞ þ kðuj � u	j Þ; ð30Þ

and the corresponding sensitivity numbers are [54]

ae ¼ �
1

p

ofobj

one
¼ np�1

e uT
e k0ue � kuT

ejk0ue

� �
: ð31Þ

Figure 16 is a stiffness topology optimization problem

for a beam structure which is supported by both ends and

vertically loaded (P ¼ 100 N) in the middle of its upper

edge as depicted. The material is assumed with the

Young’s modulus E ¼ 1 GPa, the Poisson’s ratio ¼ 0:3.

The volume constraint is 30% of the design domain. The

optimal topology without any displacement constraint is

shown in Fig. 17a for comparison. Its mean compliance is

191 Nmm and the horizontal movement of the roller sup-

port A is 1.43 mm. When the movement of the roller

support is constrained to be 1.4, 1.2 or 1.0 mm, the

resulting topologies are shown in Fig. 17b–d. Their

according mean compliances are 191, 195 and 203 Nmm.

It can be seen that there is an increase of mean compliance

when a strict displacement constraint is applied.

It can be seen that the above optimization problem (29)

has multiple constraints. It is certainly possible to consider

other optimization problems with a local displacement

constraint in a similar manner, e.g. minimizing the struc-

tural volume against two displacement constraints in which

one displacement is directly related to the overall structural

performance.

By a switchmen of the compliance objective and the

displacement constraint in (29), the optimization model is

reformulated for the design of a compliant mechanism in

(32), which is usually a monolithic structure that transfers

an input force or displacement to another point through

elastic deformation (see Fig. 18).

max
n

: uout

subjectto : Ku ¼ f
: fcðu; nÞ� f 	c
: VðnÞ ¼

P
neve ¼ Vreq

: ne ¼ nmin or 1; e ¼ 1; . . .;Ne:

ð32Þ

In order to realize such design by using the BESO

method, Huang et al. [63] proposed to gradually vary the

Fig. 16 A beam structure supported by both ends [54]

Fig. 17 BESO optimal designs: a without a local displacement

constraint; b u	A ¼ 1:4 mm; c u	A ¼ 1:2 mm; d u	A ¼ 1:0 mm [54]
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design variables according to the evaluated sensitivity

numbers such that

ne ¼
minðne þ Dn; 1Þ if ae� ath

maxðne � Dn; nminÞ if ae\ath;

�
ð33Þ

where Dn is a user defined move limit.

4.3 Design-Dependent Structural Designs

Topology optimization of continuum structures with self-

weight loads has been studied by Yang et al. [177] and

Ansola et al. [4] using the modified ESO procedures (early

versions of BESO). Huang and Xie [57] revisited later the

same problem by using the soft/hard-kill BESO methods.

The basic formulation of the topology optimization prob-

lem may also consist of minimizing the compliance of the

structure with self-weight load subject to a constraint on

the structural volume as given in (12)

min
n

: fcðn; uÞ
subjectto : Ku ¼ f

: VðnÞ ¼
P

neve ¼ Vreq

: ne ¼ nmin or 1; e ¼ 1; . . .;Ne:

ð34Þ

Different from the topology optimization problem for fixed

external forces, here the applied force, f, includes the

design-dependent gravity load.

Yang et al. [177] showed that for compliance opti-

mization of structures with design dependent loads, the

ESO procedure can be carried out using a modified sensi-

tivity number:

ae ¼ uT
e keue þ 2DfTe ue

� 	
=ve ð35Þ

where Dfe is the change in the load vector due to the

removal of the e-th element and ve is the element volume.

As for BESO designs of the problem, Huang and Xie

[57] have derived the sensitivity numbers from a strict

sensitivity analysis with the adoption of the RAMP mate-

rial interpolation model [132]. By the RAMP model, the

density and the Young’s modulus are defined in terms of

the topology design variables as

qe ¼ neq0

Ee ¼
ne

1� qð1� neÞ
E0;

8<
: ð36Þ

where q0 and E0 are the density and Young’s modulus of

the solid material, q is a penalty factor which is larger than

0 for topology optimization problems. They have shown

that when hard-kill BESO method is adopted, i.e., param-

eter q in RAMP takes infinity, the corresponding sensitivity

numbers for structures with self-weight loads are the same

as that for structures with fixed external forces:

ae ¼
uT
e k0ue when ne ¼ 1

0 when ne ¼ nmin:

�
ð37Þ

Figure 19 shows a simply supported rectangular plate of

1 m � 0.5 m and the corresponding hard-kill BESO design

result. The objective of the problem is to find the optimal

topology of the structure withstanding its self-weight. The

amount of available material was restricted to 15% of the

design domain. The hard-kill BESO design process yields

an arch structure which spans the both end supports to

optimally withstand its self-weight.

Recently, Picelli et al. [100] have extended the hard-kill

BESO method for the design of structures subjected to fluid

pressure. Their proposition is based on the substitution of

void elements by incompressible fluid ones capable of

transferring pressure through the fluid region. The pressure

loading is automatically obtained by the use of coupling

matrices integrated over the fluid-structure interfaces.

Because of the discrete nature of the hard-kill BESO

Fig. 18 Illustration of a BESO design of compliant inverter [63]

Fig. 19 Design domain of a simply supported rectangular plate

subject to self-weight loading and the corresponding hard-kill BESO

design result [57]
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method, no intermediate density elements are allowed

during the optimization and the problem is solved without

any need for pressure load surface parametrization

schemes. Figure 20 shows the right half of a unitary

thickness two-dimensional piston head model and the

corresponding hard-kill BESO design result where the

volume fraction constraint is 30%. Due to combustion

explosion, the structure suffers a fluid pressure loading in

its top edge. They have shown that the BESO method

provides a simple yet effective design tool for the designs

involving pressure loads.

Based on the above-mentioned work, Picelli et al. [102]

have further extended the hard-kill BESO method for the

design of completely submerged buoyant modules with

design-dependent fluid pressure loading. The submerged

buoyant module is used to support offshore rig installation

and pipeline transportation at all water depths. The objec-

tive of such design is to identify the buoy design that has

the highest stiffness, allowing it to withstand deepwater

pressure whilst uses the least material and possesses a

minimum prescribed buoyancy. Figure 21 shows a subsea

buoy design problem and the corresponding hard-kill

BESO design result with the 30% volume fraction. Only

half of the buoy is considered for design with an inner and

outer radius, and the pipeline is attached to the buoy’s inner

edge. A inequality constraint is considered in the design to
guarantee minimum required buoyancy effects. The final

topology design result in Fig. 21 is a bubble-like structure.

4.4 Design of Structural Natural Frequency

Frequency optimization is of great importance in many

engineering fields, e.g., aerospace and automotive indus-

tries. Compared with the extensive research on stiffness

optimization, there has been much less work concerned

with topology optimization for natural frequency. By the

finite element method, the dynamic behavior of a structure

can be represented by the following general eigenvalue

problem

ðK� x2
j MÞuðjÞ ¼ 0 ð38Þ

where K is the global stiffness matrix, M is the global mass

matrix, xj is the j-th natural frequency and uðjÞ is the

eigenvector related to the j-th natural frequency. The

topology optimization model for the maximization of nat-

ural frequencies are conventionally defined as

max
n

: xj

subjectto : ðK� x2
j MÞuðjÞ ¼ 0

: VðnÞ ¼
P

neve ¼ Vreq

: ne ¼ nmin or 1; e ¼ 1; . . .;Ne:

ð39Þ

Early contributions on the natural frequency design were

conducted by Xie and Steven [163] and Yang et al. [175]

by using the hard-kill ESO method and an early version of

Fig. 20 Design domain of a piston head structure under pressure

loading and the corresponding hard-kill BESO design result [100]

Fig. 21 A fluid-structure design problem and the corresponding hard-

kill BESO design result [102]
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BESO method, respectively. In the early works, the sen-

sitivity number is defined as

aðjÞe ¼
1

mðjÞ
ðuðjÞe Þ

Tðx2
j me � keÞuðjÞe ð40Þ

where mðjÞ is the modal mass corresponding to the j-th

natural frequency. This sensitivity number definition gives

the change of xj due to the removal of the j-th element.

It has been shown that soft-kill BESO method with the

adoption of SIMP type material interpolation model is not

suitable for frequency optimization. This is mainly due to

artificial localized modes in low density regions [24, 98]. In

order to adapt soft-kill BESO method for structural natural

frequency designs, Huang et al. [59] developed a new

material interpolation scheme for both density and Young’s

modulus:

qe ¼ neq0

Ee ¼
nmin � npmin

1� npmin

ð1� npeÞ þ npe

� �
E0:

8<
: ð41Þ

The corresponding sensitivity numbers are derived from

the sensitivities of the design variables. When nmin tends to

zero and p[ 1, the sensitivity numbers can be expressed as

[59]

aðjÞe ¼

1

xj

ðuðjÞe Þ
T k0 �

x2
j

p
m0

 !
uðjÞe ; ne ¼ 1

�xj

2p
ðuðjÞe Þ

Tm0uðjÞe ; ne ¼ nmin

8>>><
>>>:

ð42Þ

in which k0 and m0 are the stiffness and mass matrices of

solid elements when uniform mesh is used. Note the sen-

sitivity numbers for soft elements do not approach to zero.

This is why the hard-kill BESO method misleads the search

direction and needs the artificial corrections [190].

Figure 22a shows a first natural frequency maximization

design problem. The beam structure is simply supported at

the two ends. The prescribed material volume fraction is

50%. The material is assumed with the Young’s modulus

E ¼ 10 MPa, the Poisson’s ratio v ¼ 0:3, and mass density

q ¼ 1 kg/m3. The optimal design result is given in Fig. 22b

and the first two eigenmodes of the optimal design are

given in Fig. 22c, d.

The soft-kill BESO method for frequency designs

developed by Huang and Xie [59] has been extended for

the frequency designs of fluid-structure [138] and acoustic-

structure [101] interaction systems. The interaction

between two phases follows their early development [100].

Another extension has been recently given by Munk et al.

[92] for structural optimization with dynamic and buckling

objectives.

4.5 Design of Nonlinear Structures

Most of early works on topology optimization were

restricted to linear structural designs. In pursuing more

realistic designs, continuous efforts have been conducted to

extend topology optimization to nonlinear structural

designs considering various sources of nonlinearity. With

regard to nonlinear structural designs, displacement-con-

trolled loading is most widely considered due to stability

considerations (e.g., [19, 52, 58, 86, 121, 179]). Within the

nonlinear framework, structural stiffness maximization is

equivalent to the maximization of the mechanical work

expended in the course of the deformation process. In

practice, the total mechanical work fw, is approximated by

numerical integration using the trapezoidal rule, i.e.

fw �
1

2

Xnload

i¼1

f
ðiÞ
ext þ f

ði�1Þ
ext

� �T
DuðiÞ: ð43Þ

Here nload is the total number of displacement increments,

DuðiÞ is the i-th increment of the nodal displacement vector

and f
ðiÞ
ext is the external nodal force vector (comprising

surface tractions, reaction forces and volume forces) at the

i-th load increment.

During the optimization the material volume fraction is

prescribed. Then the optimization problem discretized with

Ne elements can be formulated as (e.g., [33, 52])

Fig. 22 Soft-kill BESO design of a simply supported beam:

a problem illustration, b maximization design of the first natural

frequency, c the first eigenmode of the optimal design, d the second

eigenmode of the optimal design[59]
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max
n

: fwðn; uÞ
subjectto : rðn; uÞ ¼ 0

: VðnÞ ¼
P

neve ¼ Vreq

: ne ¼ nminor1; e ¼ 1; . . .;Ne:

ð44Þ

Here ve is the volume of element e and the vector r denotes

the residual

rðn; uÞ ¼ fext �
XNe

e¼1

ne

Z
Xe

BTrdXe: ð45Þ

Recall attention that by this model the hard-kill BESO

model is adopted that discrete design variable ne ¼ nmin=1

indicates the existence of the associated solid element e,

whereas the constitutive behavior is assumed independent

on ne.
The prior extension of the hard-kill BESO method to the

above nonlinear design problems were conducted by

Huang and Xie [47, 52, 58]. In their work, the sensitivity

numbers are simply defined as

ae ¼
Xnload

i¼1

ðwðiÞe � wði�1Þ
e Þ ¼ wðnÞe ð46Þ

where w
ðiÞ
e is the element strain energy at the i-th load

increment. The given sensitivity number means that the

decrease of the total external work due to removing one

element is equal to the total strain energy of the element in

its final deformed state and irrelevant to the size of dis-

placement intervals. It has been shown that with this sen-

sitivity number definition, one may successfully conduct

designs involving both material and geometrical

nonlinearities.

Figure 23a shows a simply supported beam. It is

assumed that the available material can only cover 30%

volume of the design domain. Both material and geomet-

rical nonlinearities are considered. The material is assumed

with the Young’s modulus E ¼ 200 GPa, the Poisson’s

ratio v ¼ 0:3, yield stress ry ¼ 300 MPa and plastic

hardening modulus Eh ¼ 0:3E. BESO design starts from

the initial guess design with 30% material of the design

domain as shown in Fig. 23a to save computation time.

BESO designs are carried out for three different displace-

ment loads (20, 50, 100 mm) applied at the center of bot-

tom edge and the design results are given in Fig. 23b–d. It

can be observed that the design result is dependent on the

degree of the displacement load.

Recently, Xia et al. [151] proposed anther sensitivity

number definition for the nonlinear design case following a

rigorous sensitivity analysis. By the adjoint method, the

sensitivity of the objective with respect to design variables

equals

ofw

one
¼� 1

2

Xnload

i¼1

�
kðiÞ
� �TZ

Xe

BTrðiÞdXe

þ lðiÞ
� �TZ

Xe

BTrði�1ÞdXe


 ð47Þ

in which kðiÞ and lðiÞ are the solutions of the corresponding

adjoint systems (see [151] for details).

With (47) at hand, the sensitivity numbers are defined as

ae ¼
ofw

one

� �b

whenne ¼ 1

0 whenne ¼ nmin

8<
: ð48Þ

in which b is a numerical damping coefficient similar to the

one applied in the Optimality Criteria method for density-

based methods [10, 126]. In the presence of dissipative

effects, the sensitivity numbers vary by several orders of

magnitude resulting in instabilities of the topology evolu-

tion process, especially when removing certain structural

branches (see e.g., [33]). For this reason, the damping

scheme constraining the variance of the sensitivity num-

bers is introduced to stabilize the topological evolution

process in particular for dissipative structural designs. In

addition, another stabilization scheme was developed in

Fig. 23 BESO nonlinear designs: a design domain, initial guess

design and support conditions, b design result for d ¼ 20 mm,

c design result for d ¼ 50 mm, d design result for d ¼ 100 mm [52]
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[151] by progressively reducing the sensitivity filtering

radius. By setting initially a large filter radius value and

reducing it gradually, the emergence of the redundant

structural branches, which are to be eliminated afterwards

and are the main reasons deteriorating the design process,

could be avoided.

Figure 24 shows a cantilever benchmark design prob-

lem. The left end of the cantilever is clamped, and a portion

of the right-end edge (20%) is prescribed with displace-

ment loading. The volume fraction of the solid material to

be preserved is set to 60%. An elastoplastic material is

assumed with the elastic Young’s modulus E ¼ 75 GPa

and the Poisson’s ratio v ¼ 0:3. The dissipative material

behavior is described by the von Mises yield criterion with

linear isotropic hardening. Hardening modulus Eh ¼ 1000

MPa and yield stress ry ¼ 100 MPa are used. The

numerical damping coefficient is set to b ¼ 0:5 and the

filter radius is gradually reduced from the initial rmin ¼
20le to rmin ¼ 4le, where le is the element length.

Two plastic design results corresponding to two differ-

ent displacement loads (5 and 20 mm) and their perfor-

mances subject to the same 20 mm load are presented

Fig. 24. For simplicity, we refer to the left design as an

approximately linear design result and the right design as

fully nonlinear design result. The objective value of the

linear design subjected to the higher loading is 207.54 J,

while the nonlinear design attains 221.23 J. By the

comparison of force-displacement curves in Fig. 24, it is

shown that since the mechanical response of the structure is

mostly linear for the first half of the loading, the linear

design slightly outperforms the nonlinear design up to

7.5 mm tip deflection which can be seen from the force

displacement curve. However, as can be observed, the

nonlinear design much outperforms the linear design

afterwards for higher tip deflections. We can also observe

that high plastic strains are concentrated at the clamped end

of the linear design, while the frontal region is barely

plastic at all. In comparison to the linear design, material is

moved from the frontal region to the clamped end, making

the plastic strains are more evenly diffused in the whole

structure and resulting in advantageous nonlinear

performance.

4.6 Design of Periodic Structures

Periodic structures such as the honeycomb core of a

sandwich plate are widely used in structural designs due to

their lightweight and ease of fabrication [140]. A light-

weight cellular material usually possesses periodic

microstructures. For the design of periodic structures, the

macroscopic distribution of the designable material must

be periodic even though the stress/strain distribution may

not exhibit any periodic characteristics. Huang and Xie

[51] have extend the BESO method for the design of

general macroscopic structures with additional constraints

on the periodicity of the geometry of substructures.

The objective of such design is to find an optimal

periodic structure in terms of stiffness with a given amount

of material. A two dimensional case is shown in Fig. 25 to

demonstrate a periodic structure. The design domain is

divided into Nm ¼ m1 � m2 repeatable unit cells, where m1

and m2 denote the number of cells along directions x and

y respectively. It is noted that the special case of Nm ¼
1� 1 corresponds to the conventional topology optimiza-

tion problem. The structural stiffness maximization

Fig. 24 BESO designs of an elastoplastic cantilever and a compar-

ison of the force-displacement curves [151]

x

y

Fig. 25 A 2D design domain with m1 � m2 ¼ 6 repeatable cells

where m1 and m2 denote the number of unit cells along the x and

y directions; nðkÞe is the design variable associated to the e-th element

of the k-th cell [51]
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problem can now be formulated using the design variables

nðkÞe , where k and e denote the cell number and the element

number in the cell, respectively (see Fig. 25), as

min
fnð1Þ;���;nðNmÞg

: fcðn; uÞ

subjectto : Ku ¼ f

: V ¼ Nm

P
nðkÞe v

ðkÞ
e ¼ Vreq

: nð1Þe ¼ � � � ¼ nðNmÞ
e ; e ¼ 1. . .;N

ðkÞ
e ;

: nðkÞe ¼ nmin or 1; k ¼ 1; . . .;Nm:

ð49Þ

where v
ðkÞ
e is the volume of the e-th element in the k-th unit

cell and Ne is the number of elements of one unit cell. In

the above equation, the condition nð1Þe ¼ � � � ¼ nðNmÞ
e

ensures that the status (nmin or 1) of elements at the cor-

responding locations in all unit cells are the same that the

e-th elements in all cells are removed or added simulta-

neously. Therefore, the optimization process can be con-

ducted in a representative unit cell, which can be selected

from any unit cell by the user. The element sensitivity

number for hard-kill BESO method is defined as the vari-

ation of the overall compliance due to the combined

change of the e-th elements in all unit cells as

ae ¼
PNm

k¼1ðu
ðkÞ
e ÞTk0u

ðkÞ
e when nðkÞe ¼ 1

0 when nðkÞe ¼ nmin:

(
ð50Þ

By this model the topology of a periodic structure is

defined by the representative unit cell, because the whole

structure is divided into Nm identical cells. Therefore, the

stabilization schemes in the BESO method need only to be

carried out for the representative unit cell. However, it

should be pointed out that the finite element analysis still

needs to be performed on the whole structure because the

mechanical responses in different cells are not the same.

Figure 26a shows a 2D rectangular domain with L ¼ 32

and H ¼ 20. The inner core with height h ¼ 16 is the

design domain. The plate is fixed on the left side and

loaded vertically on the right side. Hard-kill BESO method

is carried out for the design of the inner core space with a

volume constraint of 50%. Figure 26b–e gives the design

results corresponding to four different cell resolutions

(Nm ¼ 2� 1; 4� 2; 8� 4 and 16� 8), respectively.

The BESO method for generating periodic structures

[51] has been adopted for the exploration a new type of

lightweight footbridge in the form of perforated tubes (see

Fig. 27). The left top figure of Fig. 27 shows the BESO

results of the bridge with various cross-sectional shapes.

The left bottom figure of Fig. 27 is a 3D printout of a

section of the periodic bridge design. The practicality of

the optimal design was verified through a reinforced con-

crete prototype constructed in the laboratory at RMIT

University as shown in the right figure of Fig. 27. The same

method has also been adopted by Zuo et al. [191] for the

design of wheels with rotationally periodic patterns (see

Fig. 28).

4.7 Reinforcement Design of Underground

Excavations

Underground excavation in either soil or rock induces

complex stress redistribution around the opening princi-

pally depending on excavation geometry, in situ stresses

and material properties. Finding the optimal shape for an

excavation based on stress distribution has practical sig-

nificance in increasing stability and lowering support costs.

Following the original stress level based rejection criterion,

the ESO method was firstly applied for underground

Fig. 26 BESO design of a periodic sandwich cantilever: a problem

definition, b design for Nm ¼ 2� 1, c design for Nm ¼ 4� 2,

d design for Nm ¼ 8� 4, e design for Nm ¼ 16� 8 [51]

Fig. 27 BESO periodic design of a footbridge: proposal of the

footbridge (left top), 3D printout of a section (left bottom), reinforced

concrete prototype of a section (right) [56]
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excavation shape optimization by Ren et al. [113]. Liu

et al. [82] tackled tunnel designs by a namely fixed-grid bi-

directional evolutionary structural optimisation (FG

BESO). An extension of the hard-kill BESO method for a

simultaneous optimization of shape and distributed rein-

forcement of an underground excavation was provided by

Ghabraie et al. [38] for the linear elastic case. Further

extensions of the BESO method to handle nonlinear

materials were provided by Nguyen et al. [95] and Ren

et al. [114]. Representative design results for underground

excavation shape optimization and reinforcement opti-

mization obtained by using the ESO-type methods are

shown in Figs. 29 and 30, respectively.

The above-mentioned works performed shape optimiza-

tion rather than topology optimization using the ESO-type

methods, which means that a fixed topology of the structure

is kept, i.e. no new holes shall be created to alter the original

topology. In the numerical implementation, this requires no

element to be removed or added except those on the

boundary. To do so, an identification of boundary elements

needs to be carried at the first hand. The sensitivity number

ranking and element removal/addition are thereafter per-

formed on only the identified boundary elements.

5 Design of Material Microstructures

Topology optimization has also been widely applied for

design advanced materials since the pioneering work by

Sigmund [123, 125]. Combined with the inverse

homogenization method, topology optimization has been

showing astonishing potentiality in design of materials with

tailored constitutive properties. A series of works on the

subject has been conducted using the density-based approa-

ches afterwards concerning material properties such as ther-

mal expansion coefficients (e.g., [39, 129]), viscoelastic

behavior (e.g., [2, 16, 178]) and fluid permeability (e.g.,

[41, 42]). Some other works fall also into this context (e.g.,

[34, 66, 93, 94, 96, 134]). Similar works have also been

readdressed using level-set methods (e.g., [14, 15, 143]. An

overview on the subject has been given by Cadman et al. [13].

Up till now, the material topology design procedure follows a

rather standard routine, which has been summarized in a

recent educational paper by Xia and Breitkopf [147].

Following basically the same design routine, a series of

extensions of the BESO method to material designs has

been conduced by Xie and Huang’s research group of in

the RMIT University (e.g., [60]). It has been shown that the

BESO method is not only applicable for material designs

but also provides extraordinarily effectiveness in such

designs for the sake of its heuristic update algorithm. In the

following, we review first in Sect. 5.1 the standard material

topology design routine. A series of categorized summaries

on recent advancement of material designs using the BESO

method is provided afterwards on design of materials with

extreme properties (Sect. 5.2), design of isotropic/ortho-

tropic materials (Sect. 5.3), design of functionally graded

materials (Sect. 5.4), design of phononic/photonic bandgap

materials (Sect. 5.5), and design of multiphysics materials

(Sect. 5.6).

Fig. 28 CAD model of the ten-cell optimal design of the 3D wheel:

front view (left) and perspective view of the wheel core (right)[191]

Fig. 29 ESO shape optimization of an excavation at a tunnel

intersection [113]

Fig. 30 Simultaneous optimization of shape and distributed rein-

forcement of an underground excavation using the hard-kill BESO

method: top figure is a single tunnel under biaxial stress; bottom

figures are the design results for load ratios of r3=r1 ¼ 0:4 (left),

r3=r1 ¼ 0:7 (middle) and r3=r1 ¼ 1:2 (right) [38]
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5.1 Material Topology Design

The key ingredient of material topology design is to evaluate

properly the homogenized or the effective constitutive

behavior of the considered cellular material microstructure.

In most cases the cellular material is assumed to be period-

ically patterned at a separated lower scale compared to the

macroscopic length scale as illustrated in Fig. 31. The peri-

odic cellular material is also know as representative volume

element (RVE) because it retains all information required to

predict locally the macroscopic scale constitutive behavior.

Considering design objectives and constraints related the

evaluated effective properties, one may apply one method or

another to update the cellular topology and repeat the pro-

cedure until the defined convergence is achieved. In the

following we take the linear elastic case for instance and

present several key ingredients with regard to material

topology design including the homogenization theory,

numerical implementations and optimization model settings.

5.1.1 Homogenization

The conventional homogenization method [40, 90]

assumes two separated scales as illustrated in Fig. 31.

Within the macroscopic domain X, the macroscopic dis-

placement �uðxÞ, the macroscopic strain �eðxÞ and the

macroscopic stress �rðxÞ are considered. Their counterparts

at the microscopic scale are the displacement uðx; yÞ, the

infinitesimal strain eðx; yÞ and the stress rðx; yÞ. In the case

of linear elasticity, we have the following relationship

�rðxÞ ¼ Chom : �eðxÞ ð51Þ

in which the homogenized elastic stiffness tensor Chom is to

be determined by solving the RVE boundary value problem

subject usually to periodic boundary conditions upon six

independent overall strain values in the general 3D case.

Within the scope of linear elasticity, there exit two

equivalent approaches for the determination of the effec-

tive or the homogenized stiffness tensor Chom of periodi-

cally patterned microstructure [43]. One is the asymptotic

approach, derived in a systematic way using the two-scale

asymptotic expansion method [40]. Another is the energy-

based approach [90, 123] employing the average stress and

strain theorem as is the relationship presented in Eq. (51).

By the asymptotic approach, the homogenized stiffness

tensor is given by averaging the integral over a specified

the RVE Xrve as

Chom
ijkl ¼

1

jXrvej

Z
Xrve

Cijpqðe0ðklÞ
pq � e	ðklÞpq ÞdXrve; ð52Þ

where the Einstein index summation notation is used and

e	ðklÞpq is the Xrve-periodic solution ofZ
Xrve

Cijpqe
	ðklÞ
pq

ovi

oyj
dXrve ¼

Z
Xrve

Cijpqe
0ðklÞ
pq

ovi

oyj
dXrve; ð53Þ

where v is Xrve-periodic admissible displacement field and

e0ðklÞ
pq corresponds to the three (2D) or six (3D) linearly

independent unit test strain fields.

The energy-based approach imposes the unit test strains

directly on the boundaries of the RVE, inducing eAðklÞpq

which corresponds to the superimposed strain fields

ðe0ðklÞ
pq � e	ðklÞpq Þ in (52). Detailed implementation of periodic

boundary conditions will be given in Sect. 5.1.2. Equa-

tion (52) can be rewritten in an equivalent form in terms of

mutual energies

Chom
ijkl ¼

1

jXrvej

Z
Xrve

Cpqrse
AðijÞ
pq eAðklÞrs dXrve: ð54Þ

Whilst most works apply the asymptotic approach for the

design of material microstructures (see [13]), its extension

to nonlinear material designs is not a straightforward task.

In contrast, the formulation of the energy-based approach

(54) is more compact that facilitates the numerical imple-

mentation [123, 147] and its extension to nonlinear mate-

rial designs is also rather straightforward (e.g., [141]). The

energy-based approach is adopted for for the following

derivations.

5.1.2 Periodic Boundary Conditions

The microscale stress field rðx; yÞ is evaluated by solving

the RVE equilibrium problem subject to the overall strain

�eðxÞ. By the assumption of periodicity, the displacement

field of the RVE subjected to a given strain �eðxÞ can be

written as the sum of a macroscopic displacement field and

a periodic fluctuation field ~u [90]

x1
x2 y1

y2

Fig. 31 Illustration of a two-scale structure and periodically

patterned RVE [147]
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uðx; yÞ ¼ �eðxÞ � yþ ~uðyÞ; ð55Þ

such that

heðx; yÞi ¼ �eðxÞ; ð56Þ

because h~ui vanishes for its periodicity.

In practice, constraint of (55) cannot be directly imposed

on the boundaries because the periodic fluctuation term ~u is

unknown. The general expression of (55) needs to be

transformed into a certain number of explicit constraints

between the corresponding pairs of nodes on the opposite

surfaces of the RVE [159]. Consider a 2D RVE as shown in

Fig. 32, the displacements on a pair of opposite boundaries

are

uðx; yÞkþ ¼ �eðxÞ � ykþ þ ~uðyÞ
uðx; yÞk� ¼ �eðxÞ � yk� þ ~uðyÞ

(
ð57Þ

where superscripts ‘‘kþ’’ and ‘‘k�’’ denote the pair of two

opposite parallel boundary surfaces that are oriented per-

pendicular to the k-th direction. The periodic term ~u can be

eliminated through the difference between the

displacements

uðx; yÞkþ � uðx; yÞk� ¼ �eðxÞ � ðykþ � yk�Þ: ð58Þ

With specified �eðxÞ, the right-hand side becomes a constant

and such equations can be easily imposed in the the finite

element analysis as nodal displacement constraint equa-

tions. At the same time, this form of boundary conditions

meets the periodicity and continuity requirements for both

displacement as well as stress when using displacement-

based finite element analysis [160].

5.1.3 FEM Solution to Periodic RVE Problem

When both the geometry and the loading exhibit symme-

tries, which is the case here, the periodic boundary con-

ditions can be simplified to conventional boundary

conditions [45]. To keep the derivations general, such

simplification is not applied here. Instead, the periodic

boundary conditions are imposed in a direct manner as

presented previously. With regard to the finite element

solution of Equation (58), the direct solution scheme by

eliminating the redundant unknowns is adopted here. Note

that, apart from the direct solution scheme, there exist two

other types of solution schemes using penalty methods and

Lagrange multipliers [90].

Separating the global displacement vector u into four

parts: u	1 denotes the prescribed displacement values, u2

denotes the unknowns corresponding to the interior nodes,

u3 and u4 denote unknowns corresponding to the nodes

located on the opposite boundaries of the base cell satis-

fying u4 ¼ u3 þ w	, where �w is a prescribed value com-

puted via a given e0ðklÞ according to Equation (58). The

equilibrium equation the RVE problem can be expanded to

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

2
6664

3
7775

u	1
u2

u3

u4

2
6664

3
7775 ¼

f1

f2

f3

f4

2
6664

3
7775; ð59Þ

where f1 is an unknown vector and equals to the reaction

forces at the nodes with prescribed displacements, f2 ¼ 0,

and f3 þ f4 ¼ 0 due to the assumption of periodicity. Note

that K is symmetric, i.e. Kij ¼ Kji in (59). Eliminating the

first row, adding the third and fourth rows, and using the

relationship u4 ¼ u3 þ w	 reduces Equation (59) to

K22 K23 þK24

sym: K33 þK34 þK43 þK44

� �
u2

u3

� �

¼ �
K21

K31 þK41

� �
u	1 �

K24

K34 þK44

� �
w	:

ð60Þ

and allows for the solution of the system.

5.1.4 Optimization Model

By the finite element method, the cellular material is dis-

cretized into Ne finite elements and the same number of

topology design variables g 2 RNe are correspondingly

defined. The homogenized elastic stiffness tensor derived

from the energy-based approach (54) can be approximately

written in the form

Chom
ijkl ¼

1

jXej
XNe

e¼1

ðuAðijÞ
e ÞTkeðgeÞuAðklÞ

e ð61Þ

where u
AðklÞ
e are element displacement solutions corre-

sponding to the unit test strain fields e0ðklÞ. ke ¼ gek0 is the

element stiffness matrix and ge takes values gmin (a small

positive value) and 1 indicating void and solid materials,

respectively. k0 is the element matrix of solid material.

The mathematical formulation for the design of cellular

material with extreme properties reads as follows

y 

1+y 

1-

y1

y2

y 0
1

y 0
2

jj

Fig. 32 An illustrative 2D rectangular RVE [146]
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min
g

: fobjðChom
ijkl ðgÞÞ

subjectto : KuAðklÞ ¼ fðklÞ; k; l ¼ 1; . . .; d
: VðgÞ ¼

P
vege ¼ Vreq

: ge ¼ gmin or 1; e ¼ 1; . . .;Ne

ð62Þ

where K is the global stiffness matrix, uAðklÞ and fðklÞ are

the global displacement vector and the external force

vector of the test case (kl), respectively. d is the spatial

dimension, ve is the element volume, VðnÞ and Vreq are the

total and required material volumes, respectively.

The objective fobjðCH
ijklðgÞÞ is a function of the homog-

enized stiffness tensors. For instance, the maximization of

the material bulk modulus in the 2D case corresponds to

the minimization of

fobj ¼ � Chom
1111 þ Chom

1122 þ Chom
2211 þ Chom

2222

� 	
ð63Þ

and the maximization of material shear modulus corre-

sponds to the minimization of

fobj ¼ �Chom
1212: ð64Þ

The sensitivity of the objective function ofobj=oge can be

computed using [123]

oChom
ijkl

oge
¼ 1

jXej
ðuAðijÞ

e ÞTk0uAðklÞ
e ; ð65Þ

in accordance with the adopted objective definition.

With the evaluated sensitivity at hand, we can optimize

the topology of the cellular material towards one optimum

solution following the standard BESO update procedure

presented in Sect. 2. A series of categorized summaries on

recent advancement of material designs using the BESO

method is provided in the following sections.

5.2 Design of Materials with Extreme Properties

Huang et al. [60] have extended for the first time the BESO

method for the design of material microstructures with

maximized elastic moduli. Following basically the same

design routine as presented in the previous section, material

microstructures of certain prescribed porosities can be

designed by using the BESO method for both 2D and 3D

cases, yielding maximized effective bulk and shear moduli

(see Figs. 33 and 34). Figure 33 gives the designed material

microstructures with maximized bulk moduli where the

volume fractions of the solid are 50% in both 2D and 3D

cases. Figure 34 shows the design material microstructures

with maximized shear moduli where the volume fractions

of the solid are 45 and 30% in 2D and 3D cases,

respectively.

With the adoption of th multiphase material interpola-

tion models in Sect. 4.1, Radman et al. [112] have further

extend the work in [60] for the design of multiphase

material microstructures. The designed extreme material

composites made of 3 different constituent phases are

given in Figs. 35 and 36 for bulk modulus maximization

and shear modulus maximization, respectively.. A partic-

ular merit of the multiphase BESO method lies in the fact

that distinctive interfaces are guaranteed between con-

stituent phases in the generated microstructures which

make the manufacturing of generated materials quite

straightforward in comparison to the other multiphase

topology optimization approaches.

Another extension of the work in [60] has been provided

by Huang et al. [64] for design composite materials with

optimized viscoelastic characteristics, such as damping or

stiffness maximization at the operation frequency along a

certain direction. The viscoelastic response of materials is

often utilized for wide applications such as vibration

reduction devices. In their work, both storage and loss

moduli of composite materials are calculated through the

Fig. 33 Materials with maximized bulk moduli in 2D/3D cases [60]

Fig. 34 Materials with maximized shear moduli in 2D/3D cases [60]

Fig. 35 Multiphase materials with maximized bulk moduli in 2D/3D

cases, where the Young’s moduli for dark blue, light blue and yellow

are 4, 2, 1, respectively; the prescribed volume fractions of for three

phases are 30, 40, 30% in the 2D case and 30, 50, 20% in the 3D case

[112]. (Color figure online)
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homogenization analysis using complex variables. Com-

posites made of two constituent phases, stiff elastic phase

and soft viscoelastic phase, are designed using the BESO

method for the damping maximization along both x- and

y-directions in the 2D case as shown in Fig. 37. By their

work, it has been shown that the damping property of

composites can be greatly enhanced by properly mixing a

small amount of a viscoelastic material with an elastic

material, whilst negligible improvement on the stiffness of

composites.

It has been shown that the BESO method is quite efficient

and robust in designing materials. The number of design

iterations for the design is linked to the material removal

ratio in the BESO method, which results in in general less

iterations required using the BESO method in comparison to

the other approaches according to the authors’ experience. In

addition, the BESO method appears less suffering from the

non-uniqueness issue in designing periodic microstructures

for the sake of its intuitive variables updating scheme, which

makes the BESO method an efficient design tool for material

microstructural architecture.

5.3 Design of Isotropic and Orthotropic Materials

As can be observed from the representative results in the

last subsection (e.g., Figs. 33, 34, 35, 36), square

symmetry is automatically maintained for bulk and shear

moduli maximization designs when a square symmetric

initial topology guess is used and periodic boundary

conditions are implemented. In practice, it is highly

attractive to be able to design materials possessing par-

ticular symmetric properties to yield desirable perfor-

mances. For instance, isotropic materials, in which the

properties of materials are invariant with respect to

material orientation, are the most common materials used

in industry and attractive for engineering applications [5].

To do so, additional constraints on the relationships of the

homogenized elastic tensors need to be introduced to the

basic material optimization model of (62) presented in

Sect. 5.1.4.

On top of the seminal work [60], Radman et al. [109]

extended the BESO method for the bulk/shear modulus

maximization design subject to both an isotropy constraint

and a volume constraint such as

min
g

: fobjðChom
ijkl ðgÞÞ

subjectto : KuAðklÞ ¼ fðklÞ; k; l ¼ 1; . . .; d
: gisoðChom

ijkl ðgÞÞ ¼ 0

: VðgÞ ¼
P

vege ¼ Vreq

: ge ¼ gmin or 1; e ¼ 1; . . .;Ne

ð66Þ

in which the isotropy constraint is defined satisfying in the

2D plane stress case

giso ¼ Chom
1111 þ Chom

2222 � ðChom
1122 þ Chom

2211Þ � 4Chom
1212 ¼ 0

ð67Þ

and in the 3D case

giso ¼ 2ðChom
1111 þ Chom

2222 þ Chom
3333Þ � ðChom

1122 þ Chom
3311

þ Chom
2233 þ Chom

2211 þ Chom
1133 þ Chom

3322Þ
� 4ðChom

2323 þ Chom
1313 þ Chom

1212Þ ¼ 0:

ð68Þ

To solve the above problem, a Lagrange multiplier is

introduced to make a balance between fulfillment of the

objective function and the isotropy constraint such that

f 	obj ¼ ð1� jkjÞfobj þ kþ giso ð69Þ

where the Lagrange multiplier k 2 ½�1; 1
 is determined

using a bisection algorithm to satisfy the isotropy con-

straint [109]. It can be seen that the modified objective

function is equivalent to the original one when the isotropy

constraint is satisfied.

Isotropic materials with maximized bulk or shear mod-

ulus in both 2D and 3D cases have been provided in [109].

For illustration, Fig. 38 compares the material design

results for shear modulus maximization design with and

without the isotropy constraint. The volume fraction con-

straint of the solid phase is 25%. The comparison clearly

show the difference between designing square symmetric

Fig. 36 Multiphase materials with maximized shear moduli in 2D/3D

cases, where the Young’s moduli for dark blue, light blue and yellow

are 4, 2, 1, respectively; the prescribed volume fractions of for three

phases are 30, 40, 30% in the 2D case and 25, 45, 30% in the 3D case

[112]

Fig. 37 Optimized results for maximizing damping of composites

made of stiff elastic phase (black) and soft viscoelastic phase (white)

where the volume fractions of viscoelastic phase are 20, 40, 60% and

corresponding loss tangents are 0.53, 0.61, 0.64 from left to right,

respectively [64]
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cellular materials without the isotropy constraint and iso-

tropic cellular materials with the isotropy constraint.

Following basically the same design procedure of [109],

Yang et al. [173] extended the BESO method for designing

the stiffest orthotropic material with prescribed ratios for

Young’s moduli, where the ratios between the Young’s

moduli in three directions indicate the level of orthotropy

and the bulk modulus indicates the overall stiffness. Fig-

ure 39 gives several orthotropic material design results

with 50% volume constraint for various modulus ratios

a13 ¼ a23 from 1.0 to 0.5, where a13 is the ratio of the

moduli along direction 1 and 3 and similarly for a23.

Starting with a13 ¼ a23 ¼ 1:0, it can observed from

Fig. 39a that materials are mainly distributed on three

orthogonal panels yielding high moduli along the three

directions. When the panels in-plane of axes 1 and 2

becomes thinner as shown in Fig. 39b, c, the two in-plane

moduli along directions 1 and 2 are accordingly reduced.

With a13 ¼ a23 ¼ 0:7 in Fig. 39d, the stiffeners are only

left at the four corners and materials from those stiffeners

are re-distributed to the four longitudinal panels with the

increase of the thickness. As a13 ¼ a23 further decreases as

in Fig. 39e, f, the in-plane stiffeners are completely

removed and the four longitudinal panels form a cylinder-

like topology, yielding relative high values of in plane

moduli along directions 1 and 2.

Another extension of the BESO method for the design of

orthotropic materials was carried out by Xie et al. [166], in

which a series of designs of orthotropic materials with

various magnitudes of negative/zero compressibility in one

or two directions were provided. Compressibility is a

measure of the relative volume change of a solid or fluid as

a response to a pressure change. Usually a material con-

tracts in all directions when the pressure increases. How-

ever there are some exceptional materials which expand

under hydrostatic pressure in one or two directions. There

has been increasing interest in the negative compressibility

behavior, mostly due to its many potential applications

such as sensitive pressure sensors, pressure driven actuator

and optical telecommunication cables. Apart form provid-

ing numerical designs in [166], a physical prototype of one

of such material designs is fabricated using a 3D printer

and tested in the laboratory under either unidirectional

loading or triaxial compression. Figure 40 shows a typical

negative linear compressibility (NLC) material design. In

order to examine the behavior of the NLC design under

uniform pressure, a triaxial compression test using a stan-

dard triaxial test machine commonly used for soil testing

under hydraulic pressure. It is seen that the original cube

has become narrower and taller under uniform pressure - a

clear sign of the NLC effect.

5.4 Design of Functionally Graded Materials

Functionally graded materials (FGMs) have attracted great

interest in recent years with applications in various areas

such as aerospace/automotive structures and armor com-

posites. As a category of inhomogeneous materials, FGMs

demonstrate a gradual change in material properties. One

way to design FGMs is to take advantage of variation in

microstructural topology, i.e., using the microstructural

design to determine the optimal spatial distribution of

selected materials.
Fig. 38 Materials with maximized shear moduli: a with the isotropy

constraint, b without the isotropy constraint [109]

Fig. 39 Orthotropic material design results for various modulus

ratios a13 ¼ a23 [173]

Fig. 40 A typical NLC material design and triaxial compression test

on a correspondingly printed 8� 8� 8 cells [166]

462 L. Xia et al.

123



Radman et al. [110] introduced the application of BESO

for the efficient design of cellular FGMs with a gradual

variation of bulk or shear modulus. By this work, the

design domain is divided into a series of connected cells

and the elasticity characteristics within each cell are esti-

mated using the homogenization theory. All cells are

designed for the targeted stiffness with a desired gradation.

In particular, the method addressed the connectivity issue

of adjacent cells. Generally when designing the j-th cell,

the connectivity of previous cells (as shown in Fig. 41)

between cells j and j� 1 and between j� 1 and j� 2 (if

j[ 2) is maintained by applying the filtering technique

(15) over the these three cells together. Note that cells j,

j� 1 and j� 2 are treated independently that cells j and

j� 1 are optimized for their individual targeted stiffness

whilst the topology of cell j� 2 is kept unchanged. Due to

the effect of filtering, the material within cell j� 1 is

gradually redistributed to ensure its proper connections

with neighboring cells j� 2 and j.

An example is shown in Fig. 42 where eight cells were

designed with variation in the average shear modulus from

40 to 5% of that of the solid phase. From the optimal

design result, one could clearly observe that the optimized

microstructures with proper connectivity between neigh-

boring cells. The resulting shear moduli were in excellent

agreement with the prescribed values along the gradation

direction. A straightforward extension of the FGMs design

procedure [110] has been conducted by Radman et al. [111]

for stiffness maximization design of functionally graded

materials with prescribed variation of thermal conductivity.

5.5 Design of Photonic/Phononic Bandgap Materials

Photonic crystals are optical structures consist of dielectric

materials with different refractive indexes. They have lat-

tice constants around the wavelength of light and period-

icity in one, two or three dimensions. Photonic crystals are

also called photonic band gap (PBG) structures because of

their ability of prohibiting the propagation of electromag-

netic waves within certain frequency ranges [29, 65]. In

practice, a broader band gap means broader available

bandwidth of signals and applications, so it is of great

significance to design photonic crystals with large band

gaps.

Toward an efficient and easy-implement optimization

for photonic band gap structures, Meng et al. [88] extended

recently the BESO method for maximizing photonic band

gaps. Photonic crystals are assumed to be periodically

composed of two dielectric materials of different permit-

tivities. Based on the finite element analysis and sensitivity

analysis, BESO starts from a simple initial design without

any band gap and gradually re-distributes dielectric mate-

rials within the unit cell such that the resulting photonic

crystal possesses a maximum band gap between two

specified adjacent bands. Due to the polarization of elec-

tromagnetic waves, transverse magnetic polarization (TM

mode) and transverse electric polarization (TE mode) can

be considered separately. It has been shown that the design

of photonic crystals is very sensitive to the change of the

design variable when binary design variables are used

(g ¼ gminor1) unless an extreme fine mesh is used. Instead

of using an extreme fine mesh, the design variable of the

BESO method in the work are assigned with discrete

intermediate design values as is the case of (33)

ge ¼
minðge þ Dg; 1Þ if ae� ath

maxðge � Dg; gminÞ if ae\ath;

�
ð70Þ

where Dg ¼ 0:1 is a user defined move limit.

Figure 43 gives several representative design results of

photonic crystals for TE modes with maximum band gaps

from the first to the third band and their corresponding

band diagrams. It has been found that there exit many local

optima for the design for PBG structures and the optimized

result is highly dependent on the choice of initial guess.

The PBG design algorithm [88] has been afterwards

extended for the design of photonic crystals with broad all-

angle negative refraction (AANR) frequency range [89].

Negative refraction refers to the phenomenon that when

light beams travel to the interface of two materials, they

refract to the same side of the surface normal. By this work,

the conditions of the occurrence of AANR are identified at

the first hand and then the AANR frequency range is

enlarged by the extended BESO design algorithm.

Meanwhile, the BESO method has also been extended

for the design of phononic band gap crystals by Li et al.

Fig. 41 Illustration of the progressive FGMs design procedure [110]
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[79]. Phononic crystals are usually artificial periodic

inhomogeneous composites which are constructed with

inclusions embedded in a substrate, and their constituents

have high contrast in mechanical properties, such as elastic

modulus and mass density [83]. One important and useful

feature of phononic crystals is to forbid the propagation of

elastic and acoustic waves within certain range of fre-

quencies, for which they are also named phononic band gap

crystals. Applications of phononic band gap crystals

including sound insulation, shock isolations, acoustic wave

filtering, waveguides, negative refraction as well as

acoustic cloaking [99]. Since phononic crystals to elastic

waves are similar to photonic crystals to electromagnetic

waves, the contribution by Li et al. [79] follows straight-

forwardly the BESO design algorithm developed in [88]

except that both band gaps for out-of-plane and in-plane

waves have been considered for the design for phononic

crystals. Considering the fact that the design of phononic

structures may sustain a certain amount of static loadings,

Li et al. [80] have further restrained the minimum bulk or

shear modulus during the maximization design of band

gaps size. Figure 44 shows several representative design

results of phononic crystals for out-of-plane mode with an

additional constraint on bulk modulus, which results in

slim connection structures.

5.6 Design of Multiphysics Materials

Apart from mechanical properties as reviewed in the pre-

vious subsections, the BESO method has also been exten-

ded for the design of periodic composites with extreme

transport properties [185] and with extreme magnetic per-

meability and electrical permittivity [61]. In both cases,

periodic composites are assumed to be made of two

material phases with high contrast constitutive behaviors.

For given volume fractions of both material phases, the aim

is to find one appropriate distribution such that the com-

posite possesses an extreme or a desirable effective prop-

erty. The basic procedure for the design of these

multiphysics materials follows tightly the standard design

procedure as presented in Sect. 5.1 except for the modifi-

cation of the governing equation and interested effective

property according to the dealing physic problem. By these

works, we may conclude that the BESO method is equiv-

alent efficient and robust in designing multiphysics

materials.

Figure 45 shows two representative optimized compos-

ites targeting for the lower and higher Hashin-Strikman

(HS) bounds [44], respectively. The transport property of

Fig. 42 3D FGMs with

variation in shear moduli:

a optimized microstructures,

b cross section of FGMs

showing internal structure [110]

Fig. 43 Optimized 3� 3 unit cells of photonic crystals and their

band diagrams for TE band gaps where the black and white colors

represent gallium arsenide and air, respectively: a the first band gap,

b the second band gap, c the third band gap [88]
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the material denoted by green (light) is assumed 3 times of

that of the material denoted by black (dark). The volume

fraction of each material phase of the composite is set 50%.

It can be observed from Fig. 45a that to reach the lower HS

bound, the bi-connected low transport phase (black) forms

a matrix separating the high transport phase (light green)

and the high transport phase takes a circular shape.

Oppositely from Fig. 45a, the areas occupied by low

transport phase are now occupied by the high transport

phase in Fig. 45b , and vice versa to reach the higher HS

bound.

6 Design of Multiscale Structures

In the recent years, there is an increasing use of high

performance heterogeneous materials such as fibrous

composite, concrete, metallic porous material and metal

alloy for their advantageous overall characteristics, which

result in superior structural mechanical response and ser-

vice performance [150]. Though from the structural level

point of view these materials can be considered homoge-

neous and conventional design approaches for homoge-

neous structures can still be used, the pronounced

heterogeneities have significant impact on the structural

behavior. Therefore, in order to allow for reliable

mechanical designs, one needs to account for material

microscopic heterogeneities and constituent behaviors so

as to accurately assess the structural performance.

Meanwhile, the fast progress made in the field of

material science allows us to control the material

microstructure composition to an unprecedented extent

[35, 152]. The overall behavior of heterogeneous materials

depends strongly on the size, shape, spatial distribution and

properties of the constituents. With all these in mind, one

comes up naturally with the idea that designing materials

simultaneously along with the design of structures would

result in higher-performance structures. In addition, the

recently emerging and rapidly developing techniques of 3D

printing or additive manufacturing, such as fused deposi-

tion modeling, stereolithography, selective laser sintering,

etc., provide the capability of manufacturing extremely fine

and complex microstructures, which make it possible to

generate more innovative, lightweight, and structurally

efficient designs.

This section reviews recent applications and extensions

of the BESO method to the design of multiscale structures,

including: design of multiscale nonlinear structures (Sect.

6.1), design of materials for structural performance (Sect.

6.2), simultaneous design of structure and the underlying

materials (Sects. 6.3 and 6.4).

6.1 Design of Multiscale Nonlinear Structures

Generally speaking, topology optimization design of mul-

tiscale structures (Fig. 46) can be viewed as an extension of

conventional monoscale design except that the material

constitutive law is governed by one or multiple represen-

tative volume elements (RVEs) defined at the microscopic

scale. In the case of linear elasticity, topology optimization

design of a structure made of the RVE is a rather

Fig. 44 Optimized 3� 3 unit cells phononic crystals and their band

diagrams for out-of-plane mode with bulk modulus constraint where

the black and white colors represent silicon and air, respectively: a the

first band gap; b the second band gap; c the third band gap [80]

Fig. 45 Optimized unit cells and their corresponding 4� 4 unit cells

targeting for a the lower HS bound transport property, b the higher

HS bound transport property [185]
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straightforward application of conventional linear design

routine [55, 126], because the effective or homogenized

constitutive behavior of the considered RVEs can be

explicitly determined by homogenization analysis.

When nonlinearities are present at the microscopic

scale, i.e., nonlinear RVEs are under consideration, topol-

ogy optimization design of such multiscale structures is a

rather challenging task. In particular the multiscale

dilemma in terms of heavy computational burden is even

more pronounced in topology optimization: not only is it

required to solve the time-consuming multiscale problem

once, but for many different realizations of the structural

topology. For instance the most widely applied multiscale

modeling approach, FE2 following [28], asserts that each

point of the macroscopic discretization is associated with a

RVE of the (nonlinear) microstructured material. Then for

each macroscopic equilibrium iteration a nonlinear load

increment needs to be computed for each of the (many)

RVEs. In return the average stress across the RVE is then

used as the macroscopic stress tensor without requiring

effective constitutive relations. A schematic illustration of

the first-order computational method [36] is shown in

Fig. 47.

Pioneering works on topology optimization of multi-

scale nonlinear structures have been conducted by the first

author and and his collaborators [33, 146, 149]. A direct

application of the BESO method for the design of multi-

scale nonlinear elastic structures within the FE2 multiscale

modeling framework have been given by Xia and Breitkopf

[146]. As for more severe loading path dependent material

nonlinearity such as plasticity, Fritzen et al. [33] have

developed an extended BESO method with the adoption of

an established model order reduction method potential-

based Reduced Basis Model Order Reduction (pRBMOR,

[30–32]) and parallelization on modern Graphics Process-

ing Units (GPUs). It has been shown that the implemen-

tation of pRBMOR with GPU acceleration enables to

design multiscale elastoviscoplastic structures using the

previously developed design framework in realistic com-

puting time and with affordable memory requirement.

In general, FE2-based multiscale structural design fol-

lows the same design algorithm that is presented in Sect.

4.5 , except for the application of the FE2 method for the

evaluation of structural performance. The stiffness maxi-

mization of nonlinear multiscale structures is formulated in

consistent with the homogeneous case in (44) as

max
n

: fwðn; �uÞ
subjectto : �rðn; �uÞ ¼ 0

: VðnÞ ¼
P

neve ¼ Vreq

: ne ¼ nminor1; e ¼ 1; . . .;Ne:

ð71Þ

Here �u is the macroscopic nodal displacement vector and �r

denotes the macroscopic residual

�rðn; uÞ ¼ �fext �
XNe

e¼1

ne

Z
Xe

�BT �rdXe: ð72Þ

in which �fext is the macroscopic loading force, �B is the

macroscopically defined strain-displacement matrix and �r

is the macroscopic stress.

Figure 48 shows a two-scale cantilever structure made

of periodically patterned anisotropic short-fiber reinforced

composite. Following [181], the matrix material is assumed

to be highly nonlinear while the fibers are assumed to be

linear elastic and much more rigid than the matrix. The

structural stiffness is to be maximized and the volume

fraction constraint is 60%. It important to emphasize that it

requires solving 4� 100� 50 (4 Gauss integration points

for each element) nonlinear RVE boundary value problems

for each iteration of each load increment. This number

would decrease progressively with iterations as the

removed elements are no longer evaluated for the structural

response.

Fig. 46 Illustration of topology design of multiscale structures [146] Fig. 47 First-oder computational homogenization scheme [146]
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For the purpose of comparison, two different loading

cases are considered and their corresponding designs are

shown in Fig. 49. The topology shown in Fig. 49a is similar to

the conventional linear design result, indicating that an

external force load at the level of 0.01 N does not result in

much difference in the design results. However, when the

external load is increased to 0.2 N, one can observe obvious

topological differences between the design results shown in

Fig. 49a, b, which are due to the existence of the reinforcing

fibers. The equivalent stress field of the topology solution in

Fig. 49b is given in Fig. 50 together with the equivalent stress

fields of the RVEs at several selected points. The elements

neighboring the loading tip with high stress concentration are

removed from the macroscale field plot for the purpose of

illustration. From the deformed RVEs shown in Fig. 50, one

can observe that the RVEs at points A and D are under

compression, the RVE at point B is under tension, and the

RVE at point C is subjected to a mechanical shear state,

which are in agreement with their macroscale deformation

states. One may also note from the stress fields that the

presence of fibers results in higher stress concentrations at

the interface of the matrix and the fibers. The higher stress

concentrations are responsible for the initial material failure

or crack at the microscopic scale which cannot be detected

when using the conventional monoscale fracture analysis

(e.g., [21]). There is also a potential application of such

feature in stress-related topological designs (e.g.,

[25, 75, 157]), where the stress constraints may be consid-

ered to limit the maximum stress at the microscopic scale.

6.2 Design of Materials for Structural Performance

The optimized material microstructures as reviewed in Sect.

5 are only optimum in terms of general effective properties or

certain desirable material properties. The structure made of

the resulting materials may not be efficient or optimal for

specific boundary conditions of practical service. For such

reason, Huang et al. [62] extended the BESO method for the

optimal design of the underlying material microstructures

with the design objective of maximizing the macroscopic

structural stiffness. By their work, the macroscale structure is

assumed to be made of one universal material microstruc-

ture. The set of topology design variables g is defined at the

microscopic scale. Note that upon the homogenization the-

ory, the resulting material microstructures are infinitesimal

in comparison to the macroscale structure. In other words, if

the algorithm for designing periodic structures is adopted

(Sect. 5.4), the homogenization based material design result

corresponds to the periodic design result when number of

periodic cells goes to infinity. A comparison study with this

aim was provided by Xie et al. [165] and Zuo et al. [192].

The optimization model for this particular problem can

be formulated as following

max
g

: fcðg; uÞ
subjectto : KðgÞu ¼ f

: VðgÞ ¼
P

geve ¼ Vreq

: ge ¼ gminor1; e ¼ 1; . . .;Ne:

ð73Þ

Different from the homogeneous case as (12), the global

stiffness matrix in the above formulation is dependent on

the topology of the underlying material microstructure

KðgÞ ¼
XNe

e¼1

Z
Xe

BTChomðgÞBdXe ð74Þ

in which Chom is the homogenized elastic matrix governed

by the microscale topology g.

Figure 51a shows a two-scale half-MBB beam where the

macroscale structure is discretized into L� H square

shaped bilinear elements and the assumed microscale

material model is discretized into 40� 40 square shaped

bilinear elements. The volume fraction of solid for the

microscale material model is set to 60%, i.e., a micro-

Fig. 48 A two-scale cantilever made of periodically patterned short-

fiber reinforced composite [149]

Fig. 49 Design of two-scale structures in nonlinear elasticity for two

different loading cases: a fext ¼ 0:01 N, b fext ¼ 0:2 N [149]
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Fig. 50 The equivalent stress fields of Fig. 49b for the macroscale

structure (deformation exaggerated 10 times) and for the microscale

RVEs at selected points (deformation exaggerated 50 times) [149]
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porosity of 40% is assumed. Fig. 51b–e give the optimized

material topologies for different dimensions of the beam

structure. The topological transition from Fig. 51b–e due to

the increase of the beam length can be clearly observed.

The increased beam length requires more bending resis-

tance and results a shift of material distribution along

vertical direction to horizontal direction.

Recently, Xia and Breitkopf [145] have used the BESO

method and made a further step by designing pointwise

varying material microstructures to maximize the macro-

scale structural stiffness. Within the multiscale modeling

framework, the pointwise varying material microstructures

are optimized in response to the macroscale structural

response, meanwhile the optimized materials in turn

modify the macroscopic constitutive behavior. The equi-

librium problem at the macroscopic scale is therefore in

general nonlinear (e.g., [10, 136]). In the work of [145],

this scale-interface nonlinearity has been specially

addressed by treating the microscale material design inte-

grally as a generalized nonlinear constitutive behavior. The

nonlinear interface equilibrium due to the locally optimized

or adapted materials is addressed by means of FE2 method.

It has been shown that this FE2-based design approach can

provide similar topology solutions in comparison to the

conventional design strategy (e.g., [62, 171]), while

requiring much less computing cost due to the reduced

interchange between the two scales. Another advantage of

treating the material optimization process as a generalized

constitutive behavior is that the existing model reduction

strategies for nonlinear heterogeneous materials can be

applied straightforwardly to improve the design efficiency

[148].

Figure 52 shows a simple bridge-type structure and

corresponding design result of the pointwise underlying

material microstructures obtained by the FE2-based design

approach [145]. By reduced integration scheme, four Gauss

integration points are defined for each finite element and in

total 32 material models are considered at the microscopic

scale. Volume constraint for each cellular material model is

set to 60%. Note that, Fig. 52 is a zoomed view of the

design results, where the optimized cellular materials cor-

responding to the Gauss points are zoomed for the purpose

of illustration. Upon the homogenization theory, the opti-

mized cellular material only represents the optimal solution

at the microscopic scale for that material point, i.e., Gauss

integration point. Therefore, the optimized cellular mate-

rials in neighboring points represent only the tendency of

the topological variations while are not necessarily con-

tinuous with their neighborhood.

6.3 Simultaneous Design of Structures

and Materials

With the aforementioned works on material microstructural

design, one comes up naturally with the idea of simulta-

neous design of both macrosacle structure and the under-

lying material microstructures. In other words, by topology

optimization one determines not only the optimal spatial

material layout distribution at the macroscopic structural

scale, but also the optimal local use of the cellular material

at the microscopic scale, as schematically shown in Fig. 53.

The most commonly applied strategy is designing a

universal material microstructure at the microscopic scale

for a simultaneously changed macroscale structure [171].

min
q;g

: fcðq; g; uÞ
subjectto : Kðq; gÞu ¼ f

: Vq ¼
PNq

i¼1 qi ¼ Vmac
req

: Vg ¼
PNg

j¼1 gj ¼ Vmic
req

: qi ¼ qminor1; i ¼ 1; . . .;Nq

: gj ¼ gminor1; j ¼ 1; . . .;Ng;

ð75Þ

where Vq and Vg are the total volumes of solid elements at

the two scales, respectively. Vmac
req and Vmic

req are the required

(a)

(b) (c) (d)

Fig. 51 A two-scale half-MBB beam and the optimized microstruc-

tures for different macroscale structure dimensions [149]

Fig. 52 Design of pointwise material microstructures for a bridge-

type structure [145]
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volumes of solid elements defined at the two scales,

respectively. The global stiffness matrix in the above for-

mulation is dependent on both the topologies of the mac-

roscale structure q and the underlying material

microstructure g

Kðq; gÞ ¼
XNq

e¼1

qe

Z
Xe

BTChomðgÞBdXe: ð76Þ

It has been shown by Yan et al. [171] that different from

the continuum density-based method, the BESO method

utilizing discrete design variables is more suitable for

concurrent topology optimization of structures and mate-

rials because there is no need to assume any properties or

microstructures for intermediate materials for finite ele-

ment analysis. In [171] only one total weight fraction is

constrained. According to the total weight fraction, the

volume fractions for macro and micro scales are calculated

rather than pre-assumed volume fractions. Alternatively,

Xia and Breittkopf [149] readdressed the subject by con-

straining separately the volume fractions for the two scales.

The same two-scale half-MBB beam problem considered

previously in Fig. 51 is now readdressed for a simultaneous

design, where both macroscale and microscale volume

fraction constraints are set to 60%. As shown in Fig. 54,

both scale topologies are updated iteratively and adaptively

until the required material volume fractions are achieved.

Alternatively, Xia and Breitkopf [145] proposed an FE2-

based simultaneous design approach with the application of

the BESO method for topology optimization at both scales.

In this work, the material optimization process is treated as

a generalized nonlinear constitutive behavior, and the

resulting nonlinear scale-interface equilibrium problem is

resolved using the FE2 method. The proposed model

enables to obtain optimal structures with spatially varying

properties realized by the simultaneous design of

microstructures. The same two-scale half-MBB beam

structure (Fig. 51) has been investigated by the FE2-based

simultaneous design approach. The nonlinear scale-inter-

face equilibrium is particularly addressed by the FE2

method with an initial stiffness Newton-Raphson solution

scheme. Unlike the previous iterative design approach with

the microscale topology updated iteratively along the

macroscale topology design, the pointwise microscale

micro-optimizations are solved completely for each New-

ton-Raphson iteration of each design iteration. Once the

equilibrium is achieved, the macroscale topology is then

optimized based on the converged solution response. The

converged macroscale topology design result together with

several typical microscale material topologies are shown in

Fig. 55. Uniaxial materials may be sufficient at the main

branches of the structure, while in order to have a higher

structural performance, anisotropic materials have to be

Fig. 53 Illustration of simultaneous topology optimization of struc-

ture the underlying materials [145]

Fig. 54 Simultaneous design of the two-scale half-MBB beam and

the underlying material microstructure [149]. a Iteration 9. b Iteration

24. c Iteration 56

Fig. 55 FE2-based simultaneous design of structure and the under-

lying pointwise material microstructures together with several typical

microstructures [145]
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used at the joints of the main branches due to the more

complex loading status. Simultaneous design of structure

and the underlying pointwise materials would improve the

stiffness of the structure for almost 40% in comparison to

Fig. 54c.

One particular advantage of treating the material opti-

mization process as a generalized constitutive behavior is

that the design efficiency can be drastically improved by a

straightforward application of the existing model order

reduction strategy for nonlinear materials. Xia and Bre-

itkopf [148] have further integrated a reduced database

model namely Numerically EXplicit Potentials (NEXP,

[74, 181, 182]) to the simultaneous design framework. By

the NEXP model, a database from a set of numerical

experiments in the space of effective strain is built off-line.

Each value in the database corresponds to the strain energy

density evaluated on a material microstructure, optimized

in accordance to the imposed effective strain value. As a

result of this off-line phase, the effective strain-energy and

stress-strain relations required for the macroscopic equi-

librium solution can be evaluated in an explicit manner. As

shown by Fig. 56, this explicit NEXP approximation can

well serve the simultaneous design purpose providing ultra-

resolution structures at a significantly reduced computa-

tional cost.

6.4 Other Simultaneous Designs

Upon the above reviewed works on simultaneous designs,

there exist many other extended works on this subject using

the BESO method. A short summary of these extended

works on simultaneous design is provided below.

With regard to dynamic problems, Zuo et al. [188]

proposed a two-scale BESO optimization algorithm for

natural frequency maximization by means of simultaneous

design macroscale structures and the microscale composite

materials, where the two separate volume fraction con-

straints were assigned at two scales. Considering the lim-

itation of setting two independent volume fraction

constraints, Liu et al. [81] further extended the work by

constraining the total weight of two-scale structure such

that both scale volume fraction constraints are automati-

cally determined. Instead of maximizing the natural fre-

quency, Vicente et al. [139] extended the BESO method for

minimizing the frequency responses of two-scale systems

subject to harmonic loads. Another study on frequency

response designs using the BESO method was conducted

by Xu and Xie [167], by which the displacement response

mean square is minimized subject to random excitations.

Xu et al. [169] further carried out simultaneous design for

the maximization of dynamic strain energy of a two-scale

structure under dynamic loading based on the equivalent

static loads. Figure 57 gives a representative design result

of a clamped composite cantilever subject to a step load. It

is assumed that the cantilever is made of two porous

materials shown as the dark and light phases in Fig. 57a.

By the simultaneous design, both the macroscale material

layout (Fig. 57a) and the microscale architectures

(Fig. 57b, c) are obtained for the a defined dynamic design

objective.

With the multiple material phase interpolation scheme at

hand (Sect. 4.1), it is straightforward to extend the above

mentioned simultaneous design frameworks for the design

of multi-phase two-scale structures. Xu et al. [170] pro-

posed to design thermoelastic composite structures, where

the macroscale structure is assumed to be made a com-

posite material with three constituent phases. Da et al. [22]

assumed the macroscale structure is made of two different

composite materials and each of them consists of three to

four material phases at the microscopic scale. Xu et al.

[168] have also extended the dynamic compliance design

of two-scale structures to the multi-phase case considering

macroscale composite structures and microscale multi-

phase microstructures. Figure 58a gives one representative

Fig. 56 FE2-based simultaneous design of structure and the under-

lying pointwise material microstructures with the use of NEXP

approximation for the generalized nonlinear constitutive behavior

[148]

Fig. 57 Dynamic BESO simultaneous design of a composite

cantilever clamped on the left edge subject to a step load in the

middle of the right edge: a design result of the macroscale composite

cantilever made of two porous underlying materials, b microstructural

design result of the dark phase, c microstructural design result of the

light phase [169]
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stiffness maximization design of a thermoelastic composite

structure. The underlying composite material is assumed to

be made of one void phase and two solid phases with

different Young’s moduli and thermal expansion coeffi-

cients. Figure 58b, c are the design results corresponding to

cases of DT ¼ 0�C and DT ¼ 500�C, respectively. It can

be observed that the prescribed temperature has an clear

influence on both macroscale and microscale topologies.

With the aim to design structures with multi-functional

applications that require not only maximum structural

stiffness but also superior thermal insulation capabilities, a

multi-objective simultaneous design using the BESO

method was conduced by Yan et al. [172]. To achieve the

multi-functional needs, the two conflicting design objec-

tives were taken into account to maximize structural

stiffness at the macroscopic scale and minimize material

thermal conductivity at the microscopic scale.

7 Matlab Codes for Benchmark Designs

Two Matlab codes ‘‘esoL.m’’ and ‘‘esoX.m’’ using the

hard-kill BESO method are provided in the Appendix for

benchmark designs of structures and material microstruc-

tures, respectively. Both codes are built on top of the

88-line code [3] with the implementation of the hard-kill

BESO method. The second code ‘‘esoX.m’’ is a BESO

version of a recent educational code ‘‘topX.m’’ developed

by Xia and Breitkopf [147] for design of material

microstructures with extreme properties. It should be

emphasized that the hard-kill BESO method is adopted

here, however for programming consistency elements are

not truly deleted but assigned with an extremely low

Young’s modulus. In addition, the BESO update algorithm

presented in Sect. 2.5 is simplified here without adoption of

the admission ratio control such that only one threshold ath

needs to be determined. The design domain is assumed to

be rectangular and discretized into square plane stress

elements. Please refer to the two seminal papers [3] and

[147] for detailed explanations of the codes.

The main programs are called from the Matlab prompt

by the commands

esoL(nelx,nely,volfrac,er,rmin,ctp)

and

esoX(nelx,nely,volfrac,er,rmin,ctp)

where nelx and nely denote the number of elements

along the horizontal and vertical directions respectively,

volfrac is the prescribed volume fraction, er is the

evolutionary ratio, rmin is the filter radius, and ctp

specifies the case type of benchmark design.

In the case of structural designs, ctp in ‘‘esoL.m’’

takes values 1, 2 and 3, denoting three benchmark design

cases of stiffness maximization design subject to volume

fraction constraint: half-MBB beam design (Fig. 59),

clamped cantilever design (Fig. 60) and roller-supported

half-wheel design (Fig. 61).

In the case of material microstructural designs, ctp in

‘‘esoX.m’’ takes values 1 and 2, denoting two benchmark

design cases: bulk modulus maximization (Fig. 62) and

shear modulus maximization(Fig. 63).

Fig. 58 BESO simultaneous design of a thermoelastic composite

structure: a problem definitions, b design result for DT ¼ 0�C,

c design result for DT ¼ 500�C [170]

Fig. 59 Benchmark test case 1 of ‘‘esoL.m’’: a half-MBB beam

design problem and the corresponding BESO design result obtained

from calling esoL(100,40,0.6,0.02,6,1)

Fig. 60 Benchmark test case 2 of ‘‘esoL.m’’: a clamped cantilever

design problem and the corresponding BESO design result obtained

from calling esoL(100,50,0.6,0.02,6,2)
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8 Conclusion

This paper has provided a comprehensive review on the

development of ESO-type methods, in particular the

convergent and mesh-independent BESO method is

highlighted. Summaries on recent extensions and appli-

cations of the BESO method are drawn for three cate-

gories: (a) design of advanced structures, (b) design of

material microstructures, and (c) simultaneous design of

structures and their underlying materials. It has been

shown by the categorized summaries that the BESO

method is high efficient and robust in dealing with var-

ious design problems. We may draw the conclusion that

the BESO method has been recognized as one of the

most powerful and effective design tools and widely

adopted in both academic researches and engineering

applications. This review expects to provide a valuable

reference of the BESO method for both academic

researchers and industrial designers in structural opti-

mization design.
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Appendix A: Matlab Code ‘‘esoL.m’’ Usisng
the BESO Method for the Design of Structures

Fig. 62 Benchmark test case 1 of ‘‘esoX.m’’: material bulk modulus

maximization design results with 60 and 40% volume constraints

obtained from calling esoX(100,100,0.6,0.02,6,1) and

esoX(100,100,0.4,0.02,6,1)

Fig. 63 Benchmark test case 2 of ‘‘esoX.m’’: shear bulk modulus

maximization design results with 60 and 40% volume constraints

obtained from calling esoX(100,100,0.6,0.02,6,2) and

esoX(100,100,0.4,0.02,6,2)

Fig. 61 Benchmark test case 3 of ‘‘esoL.m’’: a roller-supported

half-wheel design problem and the corresponding BESO design result

obtained from calling esoL(100,60,0.6,0.02,6,3)
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Appendix B: Matlab Code ‘‘esoX.m’’ Using
the BESO Method for the Design of Material
Microstructures
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