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Abstract In this work we develop a new class of high

order accurate Arbitrary-Lagrangian–Eulerian (ALE) one-

step finite volume schemes for the solution of nonlinear

systems of conservative and non-conservative hyperbolic

partial differential equations. The numerical algorithm is

designed for two and three space dimensions, considering

moving unstructured triangular and tetrahedral meshes,

respectively. As usual for finite volume schemes, data are

represented within each control volume by piecewise

constant values that evolve in time, hence implying the use

of some strategies to improve the order of accuracy of the

algorithm. In our approach high order of accuracy in space

is obtained by adopting a WENO reconstruction technique,

which produces piecewise polynomials of higher degree

starting from the known cell averages. Such spatial high

order accurate reconstruction is then employed to achieve

high order of accuracy also in time using an element-local

space–time finite element predictor, which performs a one-

step time discretization. Specifically, we adopt a discon-

tinuous Galerkin predictor which can handle stiff source

terms that might produce jumps in the local space–time

solution. Since we are dealing with moving meshes the

elements deform while the solution is evolving in time,

hence making the use of a reference system very conve-

nient. Therefore, within the space–time predictor, the

physical element is mapped onto a reference element using

a high order isoparametric approach, where the space–time

basis and test functions are given by the Lagrange

interpolation polynomials passing through a predefined set

of space–time nodes. The computational mesh continu-

ously changes its configuration in time, following as clo-

sely as possible the flow motion. The entire mesh motion

procedure is composed by three main steps, namely the

Lagrangian step, the rezoning step and the relaxation step.

In order to obtain a continuous mesh configuration at any

time level, the mesh motion is evaluated by assigning each

node of the computational mesh with a unique velocity

vector at each timestep. The nodal solver algorithm pre-

forms the Lagrangian stage, while we rely on a rezoning

algorithm to improve the mesh quality when the flow

motion becomes very complex, hence producing highly

deformed computational elements. A so-called relaxation

algorithm is finally employed to partially recover the

optimal Lagrangian accuracy where the computational

elements are not distorted too much. We underline that our

scheme is supposed to be an ALE algorithm, where the

local mesh velocity can be chosen independently from the

local fluid velocity. Once the vertex velocity and thus the

new node location has been determined, the old element

configuration at time tn is connected with the new one at

time tnþ1 with straight edges to represent the local mesh

motion, in order to maintain algorithmic simplicity. The

final ALE finite volume scheme is based directly on a

space–time conservation formulation of the governing

system of hyperbolic balance laws. The nonlinear system is

reformulated more compactly using a space–time diver-

gence operator and is then integrated on a moving space–

time control volume. We adopt a linear parametrization of

the space–time element boundaries and Gaussian quadra-

ture rules of suitable order of accuracy to compute the

integrals. We apply the new high order direct ALE finite

volume schemes to several hyperbolic systems, namely the
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multidimensional Euler equations of compressible gas

dynamics, the ideal classical magneto-hydrodynamics

equations and the non-conservative seven-equation Baer–

Nunziato model of compressible multi-phase flows with

stiff relaxation source terms. Numerical convergence

studies as well as several classical test problems will be

shown to assess the accuracy and the robustness of our

schemes. Finally we briefly present some variants of the

algorithm that aim at improving the overall computational

efficiency.

1 Introduction

Many real world processes are modeled using time-de-

pendent partial differential equations (PDE), which are

based on the conservation of some physical quantities.

Therefore these mathematical and physical models are

typically addressed as conservation laws and they cover a

wide range of phenomena, such as environmental and

meteorological flows, hydrodynamic and thermodynamic

problems, plasma flows as well as the dynamics of many

industrial and mechanical processes.

In general any conservation law assumes that the mod-

eled medium is a continuum and describes the evolution of

the conserved quantity uðx; tÞ in the control volume x,

which can be chosen arbitrarily. The conserved quantity

depends both on space (x) and time (t) and any change of u,

i.e. the time evolution of u, is assumed to be due to some

fluxes F(u) across the boundary ox of the control volume

and, in some cases, also to a so-called source term S(u) that

may affect the evolution of u by either increasing or

decreasing the conserved quantity. A very general formu-

lation for a conservation law reads

o

ot

Z
x
u dV þ

Z
ox

FðuÞ n dS ¼
Z
x
SðuÞ; ð1Þ

where n represents the outward pointing unit normal vector

on the boundary ox. The above expression must be valid

for any control volume, hence leading to the following

partial differential equation:

ou

ot
þr � FðuÞ ¼ SðuÞ; ð2Þ

where Gauss’ theorem has been used to rewrite the

boundary integral as the volume integral of the divergence

of the fluxes r � FðuÞ.
The quantity u might also be a vector, hence involving

more conserved quantities. For instance, fluid dynamics is

governed by conservation laws which describe the evolu-

tion of three conserved quantities, namely mass, momen-

tum and total energy. As a consequence we obtain a system

of conservation laws, whenever the quantity u is given by a

vector. In this case a system matrix A can be defined as

A ¼ oF

ou
n ð3Þ

and the system is considered hyperbolic if for all n all

eigenvalues of matrix A are real and if a complete set of

eigenvectors exists.

In any case the governing equations (2) can generally be

solved using either an Eulerian or a Lagrangian approach.

In the first case the evolution of the conserved quantity u is

observed and computed in a fixed reference system, while

in the latter case the reference system is moving together

with the local velocity of the medium.

This work focuses on the solution of hyperbolic systems

of conservation laws of the form (2), considering a

Lagrangian-like approach, where the control volume xðtÞ
is moving and therefore is time-dependent. Specifically,

our task is to design high order accurate finite volume

schemes for the solution of hyperbolic systems adopting an

Arbitrary-Lagrangian–Eulerian approach. In the follow-

ing, Sect. 1.1 provides a general overview of high order

numerical methods for the solution of hyperbolic PDEs in

the Eulerian framework, while Sect. 1.2 presents a litera-

ture review of the state-of-the-art in the field of Lagrangian

numerical schemes. Finally, Sect. 1.3 gives the introduc-

tion to this work.

1.1 High Order Finite Volume Methods on Fixed

Grids

The Eulerian approach implies the introduction of nonlin-

ear convective terms in the governing equations because

the flow is observed in a fixed reference system, which

does not neither change nor move in time. These terms are

considered within the flux term F(u) of the conservation

law (2). A lot of research has been carried out in the past

decades in order to solve conservation laws of the form (2)

numerically, starting from the one-dimensional case. A

very famous and widespread approach is given by Go-

dunov-type finite volume methods [93, 180], where the

discrete solution is stored as constant data within each

control volume of the computational mesh and is evolved

in time by using the integral form of the conservation law

(1). Since the discrete solution in general exhibits jumps at

the element interfaces, the introduction of numerical fluxes

across the discontinuities of each cell is necessary. God-

unov suggested to obtain these numerical fluxes by solving

Riemann problems at each interface. Early work regarded

the exact solution of the Riemann problem [52, 93], that

was followed by the development of approximate Riemann

solvers, such as the linearized Riemann solver of Roe

[146], the HLL and HLLE Riemann solvers [82, 96] and
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the local Lax–Friedrichs (LLF) solver proposed by Rusa-

nov [147], which can be reinterpreted as an HLL-type flux

with a particular choice of the signal speeds. While the

above-mentioned HLL schemes are very robust, they smear

out contact discontinuities. An improvement was made by

Einfeldt and Munz [83] with the introduction of the

HLLEM Riemann solver, where the intermediate state was

assumed piecewise linear instead of piecewise constant.

Another well-known improvement of the original HLL

scheme is due to Toro et al. [175] with the design of the

HLLC Riemann solvers that use an enhanced wave model

that is able to capture also the intermediate contact wave.

Osher et al. [137] introduced a class of approximate Rie-

mann solvers based on path integrals, where the paths were

obtained by an approximation of the solution of the Rie-

mann problem by rarefaction fans. A simpler and more

general version of the Osher flux has recently been for-

warded by Dumbser and Toro [78, 79]. All those one-di-

mensional Riemann solvers can be used even in two- and

three-dimensional problems, where the discontinuities are

resolved at each boundary of the control volume along the

normal direction.

In order to design high order accurate finite volume

numerical schemes, a high order reconstruction operator in

space is needed as well as a time evolution of the conserved

quantities that allows the method to achieve high order of

accuracy even in time. Since linear monotone schemes are

at most of order one, as stated by the Godunov theorem

[94], a first contribution for the improvement of the order

of accuracy has been provided by the class of second order

accurate TVD schemes, which adopts a linear reconstruc-

tion in space and time, like the MUSCL scheme of van

Leer [180] and the second order method of Barth and

Jespersen on unstructured meshes [14]. Later on nonlinear

ENO reconstructions on unstructured grids have been

introduced [1, 163] as well as WENO reconstructions

[91, 100, 161]. Once the high order spatial reconstruction is

available, a suitable time stepping technique has to be used

to guarantee the final order of accuracy. Runge–Kutta (RK)

methods perform a multi-stage time-integration to evolve

the numerical solution from the current time level tn to the

next time level tnþ1. The higher is the order of accuracy,

the higher is the number of substages which are needed.

Furthermore, the reconstruction operator must be recom-

puted at each substage, hence drastically decreasing the

efficiency of the algorithm. For this reason RK methods are

at most of order four, because of the so-called Butcher

barriers [34], which cause the number of intermediate RK

substages to become larger than the formal order of

accuracy.

In recent years a valid alternative was proposed

by Toro et al., who developed the ADER approach

[12, 38, 68, 72, 129, 166, 167]. ADER is the abbreviation

for ‘‘Arbitrary high order schemes using DERivatives’’ and

the basic idea is to use the high order reconstructed states,

which are available from the reconstruction operator, to

evaluate the numerical fluxes at element interfaces. In this

way the initial data for the local Riemann problems

occurring at element boundaries are given by high order

piecewise polynomials, instead of piecewise constants as in

the original formulation of Godunov [94]. The first ADER

algorithms [106, 129, 157, 158, 166, 167, 176, 177] follow

the concept of Ben-Artzi and Falcovitz [15] based on the

solution of the generalized Riemann problem (GRP) at

zone boundaries. The time evolution is carried out by using

repeatedly the governing conservation law in differential

form to replace time derivatives by space derivatives,

which is the so-called Cauchy–Kovalewski or Lax–Wen-

droff procedure. The idea behind the GRP approach is a

temporal Taylor series expansion of the state at the inter-

face. However, problems arise when the solution is dis-

continuous. Since in general jumps are admitted at element

boundaries, conventional homogeneous Riemann problems

for the state and all space derivatives have first to be solved

at the interface, then the obtained results are plugged into

the Cauchy–Kovalewski procedure to obtain high order

accurate time derivatives. The resulting ADER schemes are

one-step fully discrete and of arbitrary order of accuracy in

space and time, and have been successfully used in the

framework of both finite volume (FV) and discontinuous

Galerkin (DG) methods, see [75–77, 157, 158]. An efficient

quadrature-free approach for the numerical flux integration

has been proposed in [76].

The most recent ADER methods [11, 12, 68, 72] evolve

the spatially high order accurate reconstruction polynomial

locally in time using a weak integral formulation of the

conservation law in space–time, hence obtaining a space–

time accurate representation of the solution within a cell.

This most recent version of the ADER schemes is more

similar to the original ENO scheme proposed by Harten

et al. [95], since it first evolves the data in each element by

solving a local Cauchy problem in the small, i.e. without

accounting for the neighbor cells, and then solves the

interactions at the zone boundaries. The main advantages

of this time evolution are: (i) the cumbersome Cauchy–

Kovalewski procedure is no more needed, and (ii) the

resulting technique can handle very general and different

hyperbolic systems of conservation laws. Furthermore stiff

sources are also treated properly, as highlighted in [73, 98].

1.2 Lagrangian Methods on Moving Meshes

Any Lagrangian method aims at following the fluid motion

as closely as possible, with a computational mesh that is
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moving with the local fluid velocity. In the Lagrangian

description of the fluid the nonlinear convective terms

disappear and Lagrangian schemes exhibit virtually no

numerical dissipation at contact waves and material inter-

faces. Therefore the Lagrangian approach allows such

discontinuities to be precisely located and tracked during

the computation, achieving a much more accurate resolu-

tion of these waves compared to classical Eulerian methods

on fixed grids. For this reason a lot of efforts has been

made in the last decades in order to develop Lagrangian

methods. Already John von Neumann and Richtmyer were

working on Lagrangian schemes in the 1950s [184], using a

formulation of the governing equations in primitive vari-

ables, which was also used later in [16, 35]. However, most

of the modern Lagrangian finite volume schemes use the

conservation form of the equations based on the physically

conserved quantities like mass, momentum and total

energy in order to compute shock waves properly, see e.g.

[37, 126, 132, 162]. Lagrangian schemes can be also

classified according to the location of the physical variables

on the mesh: when all variables are defined on a collocated

grid the so-called cell-centered approach is adopted

[50, 125–127, 148], while in the staggered mesh approach

[121, 122] the velocity is defined at the cell interfaces and

the other variables at the cell center.

Cell-centered Lagrangian Godunov-type schemes of the

Roe-type and of the HLL-type for the Euler equations of

compressible gas dynamics have first been considered by

Munz [132]. A cell-centered Godunov-type scheme has

also been introduced by Carré et al. [37], who developed a

Lagrangian finite volume algorithm on general multidi-

mensional unstructured meshes. The resulting finite vol-

ume scheme is node based and compatible with the mesh

displacement. In the work of Després et al. [56, 57] the

physical part of the system of equations is coupled and

evolved together with the geometrical part, hence obtain-

ing a weakly hyperbolic system of conservation laws that

is solved using a node-based finite volume scheme. Fur-

thermore they presented a cell-centered Lagrangian

method [50] that is translation invariant and suitable for

curved meshes. Maire [123–125] proposed first and second

order accurate cell-centered Lagrangian schemes in two-

and three- space dimensions on general polygonal grids,

where the time derivatives of the fluxes are obtained using

a node-centered solver that may be considered as a mul-

tidimensional extension of the Generalized Riemann

problem methodology introduced by Ben-Artzi and Fal-

covitz [15], Le Floch et al. [32, 113] and Titarev and Toro

[166, 168, 171]. Cell-centered discontinuous Galerkin

methods for solving the Lagrangian equations of gas

dynamics have been considered in [116, 181–183]. Since

Lagrangian schemes may lead to severe mesh deformation

after a finite time, it is necessary to remesh (or at least to

rezone) the computational grid from time to time. A very

popular approach consists therefore in Lagrangian remesh

and remap schemes, such as the family of cell-centered

ALE remap algorithms introduced by Shashkov et al. and

Maire et al. in [17, 19, 109, 110, 117, 148]. In

[33, 90, 149, 185] purely Lagrangian and Arbitrary-La-

grangian–Eulerian (ALE) numerical schemes with remap-

ping for multi-phase and multi-material flows are

discussed. All the Lagrangian schemes listed so far are at

most second order accurate in space and time.

Higher order of accuracy in space was first achieved in

[45–47, 118] by Cheng and Shu, who introduced a third

order accurate essentially non-oscillatory (ENO) recon-

struction operator into Godunov-type Lagrangian finite

volume schemes. High order of accuracy in time was

guaranteed either by the use of a Runge–Kutta or by a Lax–

Wendroff-type time stepping. The mesh velocity is simply

computed as the arithmetic average of the corner-extrap-

olated values in the cells adjacent to a mesh vertex. Such a

nodal solver algorithm is very simple and general and can

be easily applied to different complicated nonlinear sys-

tems of hyperbolic PDE in multiple space dimensions.

Cheng and Toro [48] also investigated Lagrangian ADER-

WENO schemes in one space dimension. In the finite

element framework high order Lagrangian schemes have

been developed for example by Scovazzi et al. [119, 160]

and also by Dobrev et al. [60–62], who solved the equa-

tions for Lagrangian hydrodynamics using high order

curvilinear finite element methods.

In the literature there are also other methods using a

Lagrangian approach and these schemes are at least briefly

mentioned in the following. For example, also meshless

particle schemes, such as the smooth particle hydrody-

namics (SPH) method, belong to the category of fully

Lagrangian schemes, see e.g. [86–89, 130]. SPH is gener-

ally used to follow the fluid motion in very complex

deforming domains. Since it is a particle method, no

rezoning or remeshing has to be applied. Furthermore, also

semi-Lagrangian methods should be mentioned. They are

typically adopted to solve transport equations [97, 145].

Although these schemes use a fixed mesh, as in the clas-

sical Eulerian approach, the Lagrangian trajectories of the

fluid are followed backward in time in order to compute the

numerical solution at the the new time level, see for

example [28, 42, 43, 101, 115, 143]. There is also the class

of Arbitrary-Lagrangian–Eulerian (ALE) methods

[44, 64, 84, 85, 99, 140, 162], where the mesh moves with a

velocity that does not necessarily have to coincide with the

local fluid velocity. This method is often used for fluid-

structure interaction (FSI) problems, but it is also used

together with Lagrangian remap schemes.
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1.3 Towards High Order ALE ADER-WENO

Schemes

The aim of this work is to design a new family of high

order accurate Arbitrary-Lagrangian–Eulerian (ALE) one-

step ADER-WENO finite volume schemes for the solution

of nonlinear systems of conservative and non-conservative

hyperbolic partial differential equations.

The work is based on the already existing high order

ADER finite volume solver [68, 72] mentioned in Sect. 1.1,

which is used here as a starting point for the development

of the new Lagrangian algorithms. From Sect. 1.2 we know

that no better than third order accurate non-oscillatory

finite volume Lagrangian schemes have ever been pro-

posed on unstructured meshes in two and three space

dimensions, hence leading to a challenging task that mat-

ches the research frontier of numerical methods on moving

mesh. Furthermore, the new algorithm emerging from this

work will be so general that it will be applicable to a wide

range of scientific fields, since it is based on a very general

formulation of the governing PDE, which many hyperbolic

systems can be cast into.

The first contribution to this new class of numerical

methods, which will be addressed as direct ALE ADER-

WENO schemes, has been presented by Dumbser et al.

[80], where the authors proposed the first one-dimensional

high order ALE ADER-WENO finite volume schemes for

hyperbolic balance laws with stiff source terms. In this case

high order of accuracy in time was achieved by using the

local space–time Galerkin predictor method introduced in

[72, 98] for the Eulerian case, whereas a high order WENO

reconstruction algorithm was used to obtain high order of

accuracy in space.

Then, this paper contains all the contributions for ALE

ADER-WENO methods that have been done in the last

three years of research. In [22, 70] Boscheri and Dumbser

extended the one-dimensional algorithm [80] to unstruc-

tured triangular meshes for conservative and non-conser-

vative hyperbolic systems with stiff source terms. In [26]

three different nodal solver techniques have been applied to

the Euler equations of compressible gas dynamics as well

as to the equations for magnetohydrodynamics and have

been compared with each other. The multidimensional

HLL Riemann solver presented in [63] for the Eulerian

framework on fixed grids has been used as a nodal solver

for the computation of the mesh velocity in [26] and for the

computation of the space–time fluxes of a high order

Lagrangian-like finite volume scheme in [21]. In the latter

reference it has been shown that the adoption of a multi-

dimensional Riemann solver allows the use of larger time

steps in multiple space dimensions and therefore leads to a

computationally more efficient scheme compared to a

method based on classical one-dimensional Riemann

solvers. In [23] the ALE ADER-WENO finite volume

schemes have been applied to conservative and non-con-

servative hyperbolic systems on unstructured tetrahedral

moving meshes, while in [24] Boscheri and Dumbser

introduce a quadrature-free formulation for the numerical

flux computation in the ALE context. In order to reduce the

computational efforts, which is typically higher for

Lagrangian schemes than for Eulerian methods, in [29, 67]

the first high order time-accurate local time stepping ALE

ADER-WENO schemes have been presented in one and

two space dimensions, while in [31] the expensive WENO

reconstruction procedure has been replaced with the very

recently developed MOOD paradigm [49, 58, 59, 120],

which requires the use of only one central reconstruction

stencil because the limiting procedure is carried out a

posteriori instead of a priori, as done in the WENO for-

mulation. Finally, in [27] the ALE ADER-WENO method

is applied to the unified first order hyperbolic Godunov–

Peshkov–Romenski [141] (GPR) model of continuum

mechanics, while in [25] we have extended the presented

algorithm to high order curvilinear elements.

The rest of the work is structured as follows. In Sect. 2

we describe in detail the new high order ALE ADER-

WENO finite volume schemes, considering what has been

done in [22, 23, 70]. The algorithm will be presented in a

very general way, treating both conservative and non-

conservative hyperbolic systems as well as the presence of

algebraic source terms which are allowed to become stiff.

Next, Sect. 2.3 focuses on the techniques used to carry out

the mesh motion, i.e. the numerical strategies adopted to

evaluate the mesh velocity and consequently to compute

the new node location. Section 3 contains numerical con-

vergence studies up to sixth order of accuracy in space and

time together with numerical results for several classical

test problems applied to different hyperbolic balance laws.

In Sect. 4 we give an overview of some modifications

introduced in our algorithm to improve the computational

efficiency. Finally, in Sect. 5 we discuss some concluding

remarks and we provide an outlook to future research and

developments.

For a more detailed discussion about any of the topics

illustrated and described within this work, we refer the

reader to the above mentioned references. For the sake of

generality, the new family of high order direct ALE

ADER-WENO finite volume schemes presented in this

paper adopts an ALE approach, so that the local mesh

velocity can in principle be chosen independently from the

local fluid velocity. As a consequence the method in gen-

eral allows a mass flux and even when the mesh velocity is

set to be equal to the fluid velocity the proposed scheme is

not meant to be a pure Lagrangian method in sensu stricto.

In this sense, our scheme falls into the category of direct

ALE methods.
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2 Finite Volume Framework on Moving
Unstructured Meshes

In this work we consider nonlinear systems of hyperbolic

balance laws which may also contain non-conservative

products and stiff source terms. In our approach we rely on

a very general formulation of the governing equations

which can be applied to several hyperbolic systems. This

gives our algorithm the possibility to cover a wide range of

physical phenomena, namely all the ones that are governed

by equations which can be cast into the following form:

oQ

ot
þr�FðQÞþBðQÞ �rQ ¼ SðQÞ; x 2X�Rd; t 2Rþ

0 ;

ð4Þ

where Q ¼ ðq1; q2; . . .; qmÞ denotes the vector of conserved

variables, F ¼ ðf; g; hÞ is the conservative nonlinear flux

tensor, B ¼ ðB1;B2;B3Þ contains the purely non-conser-

vative part of the system written in block-matrix notation

and SðQÞ represents a nonlinear algebraic source term that

is allowed to be stiff. We furthermore introduce the

abbreviation P ¼ PðQ;rQÞ ¼ BðQÞ � rQ to make nota-

tion easier. The balance law (4) is defined in the multidi-

mensional physical computational domain X, where

d 2 ½2; 3� denotes the number of space dimensions and x ¼
ðx; y; zÞ is the position vector. In the following we present

the algorithm for d ¼ 3, since for the two-dimensional case

the method can be easily derived setting to zero the third

spatial coordinate, i.e. z ¼ 0, as well as all its related

quantities.

In a Lagrangian framework the computational domain

XðtÞ � Rd is time-dependent and is discretized at the

current time tn by a set of non-overlapping control volumes

Tn
i that can be either triangles (d ¼ 2) or tetrahedra

(d ¼ 3). NE denotes the total number of elements contained

in the domain and the union of all elements is called the

current mesh configuration T n
X of the domain

T n
X ¼

[NE

i¼1

Tn
i : ð5Þ

Since we are dealing with a moving computational

domain where the mesh configuration continuously changes

in time, it is more convenient to map the physical element Tn
i

to a reference element TE via a local reference coordinate

system n� g� f. The spatial reference element TE is the

unit tetrahedron (or the unit triangle in 2D) shown in Fig. 1

and is defined by the nodes ne;1 ¼ ðne;1; ge;1; fe;1Þ ¼ ð0; 0; 0Þ,
ne;2 ¼ ðne;2; ge;2; fe;2Þ ¼ ð1; 0; 0Þ, ne;3 ¼ ðne;3; ge;3; fe;3Þ ¼
ð0; 1; 0Þ and ne;4 ¼ ðne;4; ge;4; fe;4Þ ¼ ð0; 0; 1Þ, where n ¼
ðn; g; fÞ is the vector of the spatial coordinates in the refer-

ence system, while the position vector x ¼ ðx; y; zÞ is defined

in the physical system. Let furthermore Xn
k;i ¼ ðXn

k;i;

Yn
k;i; Z

n
k;iÞ be the vector of physical spatial coordinates of the

k-th vertex of element Tn
i . Then the linear mapping from Tn

i

to TE is given by

x¼Xn
1;iþ Xn

2;i�Xn
1;i

� �
nþ Xn

3;i�Xn
1;i

� �
gþ Xn

4;i�Xn
1;i

� �
f:

ð6Þ

When d¼ 2 the same transformation applies for the coor-

dinates x and y, setting f¼ 0. The vertices of Tn
i are given a

connectivity C with a counterclockwise convention, as

illustrated in Fig. 1, hence

C ¼
ð1; 2; 3Þ; if d ¼ 2;

ð1; 2; 3; 4Þ; if d ¼ 3:

�
ð7Þ

The finite volume approach is based on the integral

formulation of the conservation law (4), hence providing

discrete evolution equations for integral cell averages. As a

consequence, data are represented and stored as cell aver-

ages which are evolved in time. The main advantage of

working in the context of finite volume schemes is that the

integral formulation of the governing equations must hold

for arbitrary control volumes, hence yielding almost no

restrictions in the discretization of the computational

domain X. The piecewise constant cell averages are defined

at each time level tn within the control volume Tn
i as

Qn
i ¼

1

jTn
i j

Z
Tn
i

Qðx; tnÞdx; ð8Þ

with jTn
i j denoting the volume of element Tn

i . The key point

of any finite volume schemes is the so-called numerical

flux function, which computes the fluxes across the

boundaries of the control volume Tn
i . According to God-

unov’s idea [94], the numerical flux function can be defined

Fig. 1 Spatial mapping from the physical element Tn
i defined with x

to the unit reference element TE in n for triangles (top) and tetrahedra

(bottom). Vertices are numbered according to the local connectivity C
given by (7)
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by solving local Riemann problems at the interfaces of the

control volumes. If we limit us to use only the values given

by (8) to evaluate the numerical fluxes, we obtain a first

order accurate numerical scheme. In order to construct

higher order finite volume schemes we need to improve the

order of accuracy of the solution employed for the com-

putation of the numerical flux function. In the next

Sect. 2.1 a WENO reconstruction technique is described

and used to obtain piecewise higher order polynomials

whðx; tnÞ from the known cell averages Qn
i . High order of

accuracy in time is achieved later in Sect. 2.2 by applying a

local space–time Galerkin predictor method to the recon-

struction polynomials whðx; tnÞ.

2.1 Polynomial WENO Reconstruction

The WENO reconstruction operator produces piecewise

polynomials whðx; tnÞ of degree M. The whðx; tnÞ are com-

puted for each control volume Tn
i from the known cell aver-

ages within a so-called reconstruction stencil Ss
i , which is

composed of an appropriate neighborhood of element Tn
i and

contains a prescribed total number ne of elements which

depends on the order M of the polynomial. We do not use the

original pointwise WENO method first introduced by Shu

et al. [100, 102, 188], but we adopt the polynomial formulation

proposed in [74, 75, 91, 106] and also used in [169, 179],

which is relatively simple to code and which allows the

scheme to reach very high order of accuracy even on

unstructured tetrahedral meshes in three space dimensions.

In [13, 106, 135] it has been shown that the total number

of elements ne must be greater than the smallest number M
needed to reach the formal order of accuracy M þ 1. As

suggested in [74, 75] we normally take ne ¼ d � M, with

M ¼ 1

d!

Yd
k¼1

ðM þ kÞ: ð9Þ

According to [75] we always use seven ð1� s� 7Þ and

nine ð1� s� 9Þ reconstruction stencils in two and three

space dimensions, respectively. Specifically, s ¼ 1 denotes

the central stencil, while one half of the remaining stencils

are the so-called forward stencils and the others are the

backward reconstruction stencils, as depicted in Figs. 2 and

3. For reconstruction, each element Tn
i and its surrounding

elements are first mapped to the reference coordinate sys-

tem n� g� f using the mapping (6) in order to avoid ill-

conditioned reconstruction matrices, see [1]. The three

types of stencils (central, forward and backward) are then

obtained by a recursive algorithm which adds recursively

neighbor elements to the stencil until the prescribed num-

ber ne is reached. Therefore:

• for the central stencil (s ¼ 1), we first add the Neumann

neighbors of Tn
i (i.e. the direct side neighbors

surrounding element Tn
i ) to the stencil, and then

recursively continue adding the neighbors of these

neighbors, until the desired total number of elements in

the stencil ne is reached;

• each of the forward stencils (2� s� 4 in 2D and

2� s� 5 in 3D) is filled with elements using the same

recursive algorithm, but adding only those elements

whose barycenters are located in the corresponding

forward sector. On triangular meshes (d ¼ 2) the three

forward sectors are spanned by a vertex of the triangle

and the pair of vectors connecting this vertex with the

two vertices of the opposite edge, while for tetrahedra

(d ¼ 3) the four forward stencils are defined by a vertex

k of the tetrahedron Tn
i and the triplet of vectors

connecting k to the three vertices of the opposite face;

• the backward stencils (5� s� 7 in 2D and 6� s� 9 in 3D)

are constructed in the same way as the forward stencils.

The associated backward sectors cover the remaining part

ofRd that has not been covered by the forward stencils and

are spanned by the negative vectors of the forward stencils

and the opposite edge or face barycenter in two and three

space dimensions, respectively.

For the central stencil we use a simple Neumann-type

neighbor search algorithm that recursively adds direct face

neighbors to the stencil, until the desired number ne is

reached. For the remaining one-sided stencils we use a

Voronoi-type search algorithm, which fills the stencil

starting from the vertex neighborhood of the control vol-

ume and then using recursively vertex neighbors of stencil

elements. Figures 2 and 3 show the stencils used for the

WENO reconstruction technique on triangular and tetra-

hedral meshes, respectively.

Once the stencil search procedure has been carried out,

each stencil contains a total number of elements ne that

depends on the reconstruction degree M given by (9), hence

Ss
i ¼

[ne
j¼1

Tn
mðjÞ; ð10Þ

where 1� j� ne is a local index which progressively

counts the elements in the stencil number s and m(j) rep-

resents a mapping from the local index j to the global index

of the element in T n
X.

The high order reconstruction polynomial for each

candidate stencil Ss
i for element Tn

i is written in terms of

the orthogonal Dubiner-type basis functions wlðn; g; fÞ
[51, 65, 105] on the reference element Te, i.e.

ws
hðx; tnÞ ¼

XM
l¼1

wlðnÞŵ
n;s
l;i :¼ wlðnÞŵ

n;s
l;i ; ð11Þ

where the mapping to the reference coordinate system is

given by (6) and ŵn;s
l;i denote the unknown degrees of
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freedom (expansion coefficients) of the reconstruction

polynomial on stencil Ss
i for element Tn

i at time tn. In the

rest of this manuscript we will use classical tensor index

notation based on the Einstein summation convention,

which implies summation over two equal indices.

Integral conservation is required for the reconstruction

on each element Tn
j of the stencil Ss

i , yielding

1

jTn
j j

Z

Tn
j

wlðnÞŵ
n;s
l;i dx ¼ Qn

j ; 8 Tn
j 2 Ss

i : ð12Þ

Inserting the transformation (6) into the above expression

(12), an analytical integration formula can be obtained that

is a function of the physical vertex coordinates Xn
k;j of the

element. The resulting algebraic expressions of the inte-

grals appearing in (12) can be obtained for example at the

aid of a symbolic computer algebra system like MAPLE.

Up to M ¼ 3 we use the aforementioned analytical inte-

gration, while for higher reconstruction degrees the inte-

grals in (12) are simply evaluated using Gaussian

quadrature formulae of suitable order, see [164] for details,

since the analytical expressions become too cumbersome.

The reconstruction matrix, which is given by the integrals

of the linear system (12), depends on the geometry of the

control volumes in stencil Ss
i . Therefore, since in the

Lagrangian framework the mesh is moving in time, the

reconstruction matrix can not be inverted and stored once

and for all during a pre-processing stage, like in the

Eulerian case. As a consequence, we assemble and solve

the small reconstruction system (12) for each element Tn
i

directly at the beginning of each time step tn using opti-

mized LAPACK subroutines. This makes the ALE WENO

reconstruction computationally more expensive but at the

same time also much less memory consuming compared to

the original Eulerian WENO algorithm presented in

[74, 75], since no reconstruction matrices are stored.

While the mesh is moving in time, we always assume

that the connectivity of the mesh and therefore also the

topology of each reconstruction stencil remains constant in

time. Therefore, the definition of the stencils Ss
i does not

need to be updated during the simulation. This is a very

important simplification, since the stencil search may be

quite time consuming in multiple space dimensions on

unstructured meshes.

Since each stencil Ss
i is filled with a total number of

ne ¼ d �M elements, system (12) results in an overdeter-

mined linear system that has to be solved properly by either

using a constrained least-squares technique (LSQ), see

Fig. 2 Two-dimensional WENO reconstruction stencils in the physical (top row) and in the reference (bottom row) coordinate system for M ¼ 2,

hence ne ¼ 12: one central stencil (left), three forward stencils (center) and three backward stencils (right)
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[75], or a more sophisticated singular value decomposition

(SVD) algorithm. The use of the reference coordinate

system ensures the matrix of the linear system (12) to be

reasonably well conditioned.

As stated by the Godunov theorem [94], linear mono-

tone schemes are at most of order one and if the scheme is

required to be higher order accurate and non-oscillatory, it

must be nonlinear. Therefore a nonlinear formulation has

to be used for the final WENO reconstruction polynomial.

We first measure the smoothness of each reconstruction

polynomial obtained on stencil Ss
i by a so-called oscillation

indicator rs [102],

rs ¼ Rlmŵn;s
l;i ŵ

n;s
m;i; ð13Þ

which is computed on the reference element using the

(universal) oscillation indicator matrix Rlm, which,

according to [75], is given by

Rlm ¼
X

1� aþbþc�MZ

Te

oaþbþcwlðn; g; fÞ
onaogbofc

� o
aþbþcwmðn; g; fÞ
onaogbofc

dndgdf:
ð14Þ

In two space dimensions the above expression holds with

f ¼ 0 and c ¼ 0. The nonlinearity is then introduced into

the scheme by the WENO weights xs, which read

~xs ¼
ks

rs þ �ð Þr ; xs ¼
~xsP
k ~xk

; ð15Þ

with the parameters r ¼ 8 and � ¼ 10�14. According to

[75] the linear weights are chosen as k1 ¼ 105 for the

central stencil and ks ¼ 1 for the remaining one-sided

stencils. Formula (15) is intended to be read component-

wise. For a WENO reconstruction based on characteristic

variables see [74]. A weighted nonlinear combination of

the reconstruction polynomials obtained on each candidate

stencil Ss
i yields the final WENO reconstruction polyno-

mial and its coefficients:

whðx; tnÞ ¼
XM
l¼1

wlðnÞŵn
l;i; with ŵn

l;i ¼
X
s

xsŵ
n;s
l;i :

ð16Þ

2.2 Local Space–Time Galerkin Predictor

on Moving Curved Meshes

The reconstructed polynomials whðx; tnÞ computed at the

current time tn are then evolved during one time step, i.e.

up to time tnþ1, locally within each element TiðtÞ without

requiring any neighbor information. As a result, one

Fig. 3 Three-dimensional WENO reconstruction stencils in the physical (top row) and in the reference (bottom row) coordinate system for

M ¼ 2, hence ne ¼ 30: one central stencil (left), four forward stencils (center) and four backward stencils (right)
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obtains piecewise space–time polynomials of degree M,

denoted by qhðx; tÞ. This allows the scheme to achieve

also high order of accuracy in time. Such an element-

local time-evolution procedure has also been used within

the MUSCL scheme of van Leer [180] and the original

ENO scheme of Harten et al. [95], who called this ele-

ment-local predictor with initial data whðx; tnÞ the solution

of a Cauchy problem in the small, since no information

from neighbor elements is used. The coupling with the

neighbor elements occurs only later in the final one-step

finite volume scheme (see Sect. 2.4). While the original

ENO scheme of Harten et al. uses a higher order Taylor

series in time together with the strong differential form of

the PDE to substitute time-derivatives with space

derivatives (the so-called Cauchy–Kovalewski or Lax–

Wendroff procedure [112]), here a weak formulation of

the governing PDE (4) in space–time is derived (see

Eq. 31 below). The resulting method does not require the

computation of higher order derivatives, but just point-

wise evaluations of the fluxes, source terms and non-

conservative products appearing in the PDE. This

approach has first been developed for the Eulerian

framework on fixed grids in [69, 72, 73, 98] and here we

extend it to moving unstructured meshes in multiple space

dimensions.

Let x ¼ ðx; y; zÞ and n ¼ ðn; g; fÞ be the spatial coordi-

nate vectors defined in the physical and in the reference

system, respectively, and let ~x ¼ ðx; y; z; tÞ and ~n ¼
ðn; g; f; sÞ be the corresponding space–time coordinate

vectors. Let furthermore hl ¼ hlð~nÞ ¼ hlðn; g; f; sÞ be a

space–time basis function defined by the Lagrange inter-

polation polynomials passing through a set of space–time

nodes ~nm ¼ ðnm; gm; fm; smÞ which are defined by the tensor

product of the nodes of classical conforming high order

finite elements in space and the Gauss–Legendre quadra-

ture points in time. The two-dimensional reference and

physical space–time element configuration as well as the

associated space–time nodes for the case M ¼ 2 are

depicted in Fig. 4.

Since the Lagrange interpolation polynomials define a

nodal basis, the functions hl satisfy the following interpo-

lation property:

hlð~nmÞ ¼ dlm; ð17Þ

where dlm denotes the usual Kronecker symbol. Following

[69] the local solution qh, the fluxes Fh ¼ ðfh; gh;hhÞ, the

source term Sh and the non-conservative product Ph ¼
BðqhÞ � rqh are approximated within the space–time ele-

ment TiðtÞ � ½tn; tnþ1� with

qh ¼ qhð~nÞ ¼ hlð~nÞ bql;i; Fh ¼ Fhð~nÞ ¼ hlð~nÞ bFl;i;

Sh ¼ Shð~nÞ ¼ hlð~nÞ bSl;i; Ph ¼ Phð~nÞ ¼ hlð~nÞ bPl;i:
ð18Þ

Because of the interpolation property (17) we evaluate

the degrees of freedom for Fh, Sh and Ph in a pointwise

manner from qh as

bFl;i ¼ Fðbql;iÞ; bSl;i ¼ Sðbql;iÞ; bPl;i ¼ Pðbql;i;rbql;iÞ;
rbql;i ¼ rhmð~nlÞbqm;i: ð19Þ

The degrees of freedom rbql;i represent the gradient of qh

in node ~nl.

An isoparametric approach is used, where the mapping

between the physical space–time coordinate vector ~x and

the reference space–time coordinate vector ~n is represented

by the same basis functions hl used for the discrete solution

qh itself. Therefore

xð~nÞ ¼ hlð~nÞ bxl;i; tð~nÞ ¼ hlð~nÞbtl; ð20Þ

where bxl;i ¼ ðbxl;i; byl;i;bzl;iÞ are the degrees of freedom of the

spatial physical coordinates of the moving space–time

control volume, which are unknown, while btl denote the

known degrees of freedom of the physical time at each

space–time node ~xl;i ¼ ðbxl;i; byl;i;bzl;i;btlÞ. The mapping in

time is linear and simply reads

t ¼ tn þ sDt; s ¼ t � tn

Dt
; ) btl ¼ tn þ sl Dt;

ð21Þ

where tn represents the current time and Dt is the current

time step, which is computed under a classical Courant–

Friedrichs–Levy number (CFL) stability condition, i.e.

Dt ¼ CFL min
Tn

i

di

jkmax;ij
; 8 Tn

i 2 Xn; ð22Þ

with di denoting the insphere or incircle diameter of ele-

ment Tn
i and jkmax;ij corresponding to the maximum abso-

lute value of the eigenvalues computed from the solution

Qn
i in Tn

i . In multiple space dimensions, the CFL condition

must satisfy the inequality CFL� 1
d

if one-dimensional

Riemann solvers are used, see [173].

Fig. 4 Iso-parametric mapping with M ¼ 2 of the space–time

reference element (left) to the physical space–time element (right)

used within the local space–time Discontinuous Galerkin (DG)

predictor for a triangular control volume
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The Jacobian of the transformation from the physical

space–time element to the reference space–time element

reads

Jst ¼
o~x

o~n
¼

xn xg xf xs

yn yg yf ys

zn zg zf zs

0 0 0 Dt

0
BBB@

1
CCCA ð23Þ

and its inverse is given by

J�1
st ¼ o~n

o~x
¼

nx ny nz nt
gx gy gz gt
fx fy fz ft

0 0 0
1

Dt

0
BBBBB@

1
CCCCCA
: ð24Þ

We point out that in the Jacobian matrix tn ¼ tg ¼ tf ¼ 0

and ts ¼ Dt, as can be easily derived from the time map-

ping (21).

In the following we introduce the notation adopted for

the nabla operator r in the reference space n ¼ ðn; g; fÞ
and in the physical space x ¼ ðx; y; zÞ:

rn ¼

o

on
o

og
o

of

0
BBBBBBB@

1
CCCCCCCA
; r ¼

o

ox
o

oy

o

oz

0
BBBBBB@

1
CCCCCCA

¼
nx gx fx
ny gy fy
nz gz fz

0
B@

1
CA

o

on
o

og
o

of

0
BBBBBBB@

1
CCCCCCCA

¼ on

ox

� �T

rn:

ð25Þ

Furthermore let us introduce the two integral operators

f ; g½ �s¼
Z

Te

f ðn; g; f; sÞ � gðn; g; f; sÞ dndgdf;

f ; gh i ¼
Z1

0

Z

Te

f ðn; g; f; sÞ � gðn; g; f; sÞ dndgdfds;
ð26Þ

that denote the scalar products of two functions f and g over

the spatial reference element TE at time s and over the

space–time reference element TE � 0; 1½ �, respectively.

The governing PDE (4) is then reformulated in the ref-

erence coordinate system ðn; g; fÞ using the inverse of the

associated Jacobian matrix (24) with sx ¼ sy ¼ 0 and st ¼
1
Dt according to (21) and adopting the gradient notation

illustrated in (25) above:

oQ

os
þ Dt

oQ

on
� on
ot

þ on

ox

� �T

rn � F þ BðQÞ � on

ox

� �T

rnQ

" #

¼ DtSðQÞ:
ð27Þ

Note that the Lagrangian nature of the scheme, i.e. the

moving space–time control volume, leads to the term
oQ
on

� on
ot

, which is not present in the Eulerian case introduced

in [69]. Relying on the following abbreviation

H ¼ oQ

on
� on
ot

þ on

ox

� �T

rn � F þ BðQÞ � on

ox

� �T

rnQ;

ð28Þ

Eqn. (27) simplifies to

oQ

os
þ DtH ¼ DtSðQÞ: ð29Þ

The numerical approximation of H is computed by the

same isoparametric approach used in (18) for the solution

and the flux representation, i.e.

Hh ¼ hlð~nÞ bHl;i: ð30Þ

Inserting (18) and (30) into (27), then multiplying Eqn.

(27) with the space–time test functions hkðnÞ and inte-

grating the resulting equation over the space–time refer-

ence element TE � ½0; 1�, one obtains a weak formulation of

the governing PDE (4):

hk;
ohl
os

� �
bql;i ¼ hk; hlh iDt bSl;i � bHl;i

� �
: ð31Þ

Since the mesh is moving, we also have to evolve in

time the geometry of the space–time control volume, i.e.

the vertex coordinates of element Tn
i , together with the

predictor solution qhðx; tÞ. The mesh motion is simply

described by the ODE system

dx

dt
¼ VðQ; x; tÞ; ð32Þ

with V ¼ VðQ; x; tÞ denoting the local mesh velocity. In

this work we are developing an Arbitrary-Lagrangian–

Eulerian (ALE) method, which allows the mesh velocity to

be chosen independently from the local fluid velocity, so

that the scheme may reduce either to a pure Eulerian

approach in the case where V ¼ 0 or to a more Lagrangian-

type algorithm if V coincides with the local fluid velocity

v. Any other choice for the mesh velocity is possible. The

velocity inside element TiðtÞ is also expressed in terms of

the space–time basis functions hl as
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Vh ¼ hlðn; sÞbVl;i; ð33Þ

with bVl;i ¼ Vðbql;i; bxl;i;btlÞ.
The weak formulation (31), which gives the local evo-

lution of the solution, and the ODE system (32), which

governs the element motion, constitute a coupled set of

equations that has to be solved simultaneously with an

iterative procedure, until the residuals of the predicted

solution q̂l;i and the new vertex position x̂l;i at iteration

r are less than a prescribed tolerance, typically set to 10�12.

Such a local finite element predictor, called Discontinu-

ous Galerkin (DG) predictor, has been designed also for the

treatment of stiff source terms [72, 81, 98] in the governing

equations (4), which might lead to a local time discontinuity

of the solution. Therefore the term on the left hand side of the

weak formulation (31) is integrated by parts in time, which

also allows to introduce the initial condition of the local

Cauchy problem in a weak form as follows:

hkðn; 1Þ; hlðn; 1Þ½ �1bql;i �
ohk
os

; hl

� �
bql;i

¼ hkðn; 0Þ;wlðnÞ½ �0ŵn
l;i þ hk; hlh iDt bSl;i � bHl;i

� �
:

ð34Þ

Adopting the following matrix-vector notation

K1 ¼ hkðn; 1Þ; hlðn; 1Þ½ �1� ohk
os

; hl

� �
;

F0 ¼ hkðn; 0Þ;wlðnÞ½ �; M ¼ hk; hlh i;
ð35Þ

the system (34) is reformulated as

K1bql;i ¼ F0ŵn
l;i þ DtM bSl;i � bHl;i

� �
: ð36Þ

Eqn. (36) constitutes an element-local nonlinear algebraic

equation system for the unknown space–time expansion

coefficients bql;i which can be solved using an iterative

scheme as

bqrþ1
l;i � DtK�1

1 M bSrþ1
l;i ¼ K�1

1 F0ŵn
l;i � DtM bHr

l;i

� �
; ð37Þ

where r denotes the iteration number. In case of stiff

algebraic source terms, the discretization of S must be

implicit, see [72, 80, 81, 98]. For an efficient initial guess

of this iterative procedure we refer the reader to [98].

The system (32), which governs the local mesh motion,

can be conveniently solved for the unknown coordinate

vector bxl;i ¼ ðxl;i; yl;i; zl;iÞ using the same approach, hence

K1bxl;i ¼ hkðn; 0Þ; xðn; tnÞ½ �0þDtM bVl;i; ð38Þ

where xðn; tnÞ is given by the mapping (6) based on the

known vertex coordinates of element Tn
i at time tn. The

iterative procedure stops when the prescribed tolerance has

been reached for both the residuals of (37) and (38).

For the sake of clarity the element-local predictor

strategy on moving meshes can be summarized by the

following steps:

– first we compute the local mesh velocity with (33),

usually by choosing the local fluid velocity, hence

obtaining bVl;i ¼ Vðbql;i; bxl;i;btlÞ;
– knowing the mesh velocity, the geometry is updated

locally within the predictor stage, i.e. obtaining the

element-local space–time coordinates bxl;i;

– the Jacobian matrix and its inverse are then evaluated

by using (23)–(24);

– finally we compute the term H according to (27) and

the new solution is evolved according to (31);

– we measure the residuals and if they are below the

prescribed tolerance we exit the loop, otherwise the

new solution at the iterative step r is used to start a new

step of the predictor algorithm.

Once we have carried out the above procedure for all the

elements of the computational domain, we end up with an

element-local predictor for the numerical solution qh, for

the fluxes Fh ¼ ðfh; gh; hhÞ, for the source term Sh and also

for the mesh velocity Vh.

2.3 Mesh Motion

Lagrangian schemes have been designed and developed in

order to compute the flow variables by moving together

with the fluid. As a consequence, the computational mesh

continuously changes its configuration in time, following

as closely as possible the flow motion.

Once the local predictor procedure has been carried out,

at each vertex k different velocity vectors Vn
k;j are defined,

depending on the number of elements Tn
j that belong to the

Voronoi neighborhood Vk of node k, as depicted in Fig. 5.

Fig. 5 Geometrical notation for the arithmetic nodal solver: k is the

local node, Tn
j denotes one element of the neighborhood Vk and Vn

k;j is

the local velocity contribution of element Tn
j given by (41)
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In order to obtain a continuous mesh configuration at the

new time level tnþ1, one has to fix a unique time-averaged

node velocity Vn
k using a nodal solver algorithm. More-

over, the flow motion may become very complex, hence

highly deforming the computational elements, that are

compressed, twisted or even tangled. Therefore a suit-

able rezoning algorithm is typically used to improve the

mesh quality together with a so-called relaxation algorithm

to partially recover the optimal Lagrangian accuracy where

the computational elements are not distorted too much.

Indeed, the entire mesh motion is composed by three

main steps, namely the Lagrangian step, the rezoning step

and the relaxation step.

2.3.1 The Lagrangian Step

Here we only provide a very simple and straightforward

solution to determine a unique mesh velocity for each node

k of the mesh, that follows from the work proposed by

Cheng and Shu [45]. In such a very general approach the

node velocity is chosen to be the arithmetic average

velocity among all the contributions coming from the

neighbor elements, hence yielding an arithmetic nodal

solver. Since the mesh might be locally highly deformed,

we propose to modify this algorithm by taking a mass

weighted average velocity among the Voronoi neighbor-

hood Vk of node k, i.e.

Vn
k ¼

1

lk

X
Tn
j
2Vk

lk;jV
n
k;j; ð39Þ

with

lk ¼
X
Tn
j
2Vk

lk;j; lk;j ¼ qnj jTn
j j: ð40Þ

The local weights lk;j, which are the masses of the ele-

ments Tn
j , are defined multiplying the cell averaged value

of density qnj with the cell volume jTn
j j, while the local

velocity contributions Vn
k;j are computed integrating in time

the high order vertex-extrapolated velocity at node k as

Vn
k;j ¼

Z1

0

hlðnemðkÞ; gemðkÞ; femðkÞ; sÞds

0
@

1
AbVl;j; ð41Þ

where m(k) denotes a mapping from the global node

number k defined in the mesh configuration T n
X to the local

vertex number in element Tn
j , according to the local con-

nectivity C given by (7). If d ¼ 2 we simply set femðkÞ ¼ 0

and the space–time basis functions hl are defined on the

reference triangle TE with the mappings (6)–(21).

As a result of the nodal solver, we obtain a unique high

order accurate time-averaged vertex velocity Vn
k for each

vertex k, that is used to evaluate the Lagrangian node

position XLag
k of node k at time tnþ1 as

XLag
k ¼ Xn

k þ Dt Vn
k ; ð42Þ

where Xn
k denotes the coordinates of node k at the current

time level tn.

We should mention that a lot of efforts have been put in

the design and development of nodal solvers

[21, 26, 37, 63, 123–125]. Even though the approaches are

different, the aim is always to fix a unique velocity vector

for each vertex of the computational mesh, i.e. computing

Vn
k .

2.3.2 The Rezoning Step

The Lagrangian step allows the nodes to follow the fluid

motion as closely as possible. However, this may lead to bad

quality elements, where the Jacobians become very small or

even negative. This either drastically decreases the admis-

sible timestep, according to (22), or even leads to a failure of

the computation. Therefore, also a rezoned position should

be computed for each node k in order to improve the local

mesh quality without taking into account any physical

information. We use a different treatment for internal nodes

and boundary nodes. Specifically, the rezoning algorithm

presented in [92, 108] is adopted for inner nodes, while a

variant of the feasible set method proposed by Berndt et al.

[18] is used for the boundary nodes.

The rezoning algorithm aims at improving the mesh

quality locally, i.e. in the Voronoi neighborhood Vk of node

k, considering all the neighbor elements Tnþ1
j , which for

sake of simplicity will be addressed by j. The starting point

is the Lagrangian coordinate vector XLag
k obtained at the

end of the Lagrangian step. The rezoning procedure con-

sists in optimizing a goal function Kk that has to be defined

for each node k as

Kk ¼
X

Tnþ1
j

2Vk

jj; ð43Þ

where jj is the condition number of the Jacobian matrix Jj

of the mapping from the reference element to the physical

element j:

J2D
j ¼

xj;2 � xk yj;2 � yk

xj;3 � xk yj;3 � yk

� �

J3D
j ¼

xj;2 � xk yj;2 � yk zj;2 � zk

xj;3 � xk yj;3 � yk zj;3 � zk

xj;4 � xk yj;4 � yk zj;4 � zk

0
B@

1
CA:

ð44Þ

In (44), considering J3D
j ¼ Jj, the coordinate vector xj;l ¼

ðxj;l; yj;l; zj;lÞ represents the four nodes l ¼ 1; 2; 3; 4 of the

neighbor tetrahedron Tnþ1
j , which are counterclockwise
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ordered in such a way that node k corresponds to l ¼ 1. Note

that this is a local connectivity related to node k, hence it may

be different from the standard connectivity given by (7).

Then, the condition number of matrix Jj is given by

jj ¼ J�1
j

			
			 Jj

		 		: ð45Þ

The goal function Kk is computed according to [108] as the

sum of the local condition numbers of the neighbors, see

Eq. (43), and its minimization leads to a locally optimal

position of the free node k. As proposed in [92], the opti-

mized rezoned coordinates xRez
k for vertex k are computed

using the first step of a Newton algorithm, hence

xRez
k ¼ xLag

k � H�1
k Kkð Þ � rKk; ð46Þ

where Hk and rKk represent the Hessian and the gradient

of the goal function Kk, respectively:

Hk ¼
X

Tnþ1
j

2Vk

o2jj
ox2

o2jj
oxoy

o2jj
oxoz

o2jj
oyox

o2jj
oy2

o2jj
oyoz

o2jj
ozox

o2jj
ozoy

o2jj
oz2

0
BBBBBBBB@

1
CCCCCCCCA
;

rKk ¼
X

Tnþ1
j

2Vk

ojj
ox

;
ojj
oy

;
ojj
oz

� �
:

ð47Þ

For the boundary nodes we present a simplified but very

efficient version of the feasible set method proposed in [18]

for two-dimensional unstructured meshes. The original

feasible set method has been designed in order to find the

convex polygon on which a vertex can lie without invalid

elements in its neighborhood. In three space dimensions

such an algorithm becomes very complex and highly

demanding in terms of computational efforts. In our sim-

plified procedure the rezoned coordinates xRez;b
k of the

boundary node k are evaluated as a volume weighted

average among the barycenter coordinates xLag
c;j of each

neighbor element j, which have been projected onto the

boundary face. Hence,

xRez;b
k ¼ 1

ak

X
Tnþ1
j

2Vk

xLag
c;j � ak;j; ð48Þ

with the weights

ak;j ¼ jTnþ1
j j; ak ¼

X
Tnþ1
j

2Vk

ak;j ð49Þ

and the barycenter defined as usual as

xnþ1
c;j ¼ 1

d þ 1

X
xLag
k : ð50Þ

2.3.3 The Relaxation Step

Since our ALE scheme is supposed to be as Lagrangian as

possible, we do not want to rezone the mesh nodes where it

is not strictly necessary in order to carry on the computa-

tion. Therefore the final node position Xnþ1
k is obtained

applying the relaxation algorithm of Galera et al. [92], that

performs a convex combination between the Lagrangian

position and the rezoned position of node k, hence

Xnþ1
k ¼ XLag

k þ xk XRez
k � XLag

k


 �
; ð51Þ

where xk is a node-based coefficient associated to the

deformation of the Lagrangian grid over the time step Dt.
The values for xk are bounded in the interval [0, 1], so that

when xk ¼ 0 a fully Lagrangian mesh motion occurs,

while if xk ¼ 1 the new node location is defined by the

pure rezoned coordinates XRez
k . We point out that the

coefficient xk is designed to result in xk ¼ 0 for rigid body

motion, namely rigid translation and rigid rotation, where

no element deformation occurs. Further details about the

computation of xk can be found in [92].

2.4 High Order ALE Finite Volume Schemes

Since finite volume schemes are based on the integral

formulation of the conservation law, we first have to

clearly define the control volumes where integration will be

carried out. For each element Ti the new vertex coordinates

Xnþ1
k are connected to the old coordinates Xn

k with straight

line segments, yielding a multidimensional space–time

control volume Cn
i ¼ TiðtÞ � tn; tnþ1½ �, that involves overall

five space–time sub-surfaces in 2D or six sub-volumes in

3D, as depicted in Fig. 6. Specifically, the space–time

volume Cn
i is bounded on the bottom and on the top by the

element configuration at the current time level Tn
i and at the

new time level Tnþ1
i , respectively, while it is closed with a

(a) (b)

Fig. 6 Space–time evolution of element Ti within one timestep Dt in

two (a) and three (b) space dimensions. The dashed red lines denote

the evolution in time of the faces oCn
ij of the control volume Ti, whose

configuration at the current time level tn and at the new time level tnþ1

is depicted in black and blue, respectively. (Color figure online)
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total number of N i ¼ ðd þ 1Þ lateral sub-volumes oCn
ij ¼

oTijðtÞ � ½tn; tnþ1� that are given by the evolution of each

face oTijðtÞ of element Ti within the timestep

Dt ¼ ðtnþ1 � tnÞ. Therefore the space–time volume Cn
i is

bounded by its surface oCn
i which is given by

oCn
i ¼

[
TjðtÞ2N i

oCn
ij

0
@

1
A [ Tn

i [ Tnþ1
i : ð52Þ

For the sake of clarity from now on we will present the

finite volume scheme for the three-dimensional case, hence

addressing the sub-volumes with oCn
ij and the faces with

oTijðtÞ. If d ¼ 2 then volumes reduce to surfaces, while

surfaces reduce to segments and the algorithm formulation

can be easily derived by setting the z-aligned coordinate to

zero as well as all its related physical quantities.

In order to develop a Lagrangian-type finite volume

schemes on moving unstructured meshes, we rely on a

space–time divergence operator ~r that allows the gov-

erning PDE (4) to be reformulated more compactly as

~r � ~F þ ~BðQÞ � ~rQ ¼ SðQÞ; ~r ¼ o

ox
;
o

oy
;
o

oz
;
o

ot

� �T

;

ð53Þ

where the space–time flux tensor ~F and the system matrix
~B explicitly read

~F ¼ f; g; h; Qð Þ; ~B ¼ ðB1;B2;B3; 0Þ: ð54Þ

For the computation of the state vector at the new time

level Qnþ1, the balance law (53) is integrated over a four-

dimensional space–time control volume

Cni ¼ TiðtÞ � tn; tnþ1½ �, i.e.Z

Cni

~r � ~F dxdt þ
Z

Cni

~BðQÞ � ~rQ dxdt ¼
Z

Cni

SðQÞ dxdt:

ð55Þ

Application of the theorem of Gauss yieldsZ

oCni

~F � ~n dSþ
Z

Cni

~BðQÞ � ~rQ dxdt ¼
Z

Cni

SðQÞ dxdt;

ð56Þ

where the space–time volume integral on the left of (55)

has been rewritten as the sum of the fluxes computed over

the three-dimensional space–time volume oCni , given by the

evolution of each face of element TiðtÞ within the timestep

Dt, as depicted in Fig. 6. The symbol ~n ¼ ð~nx; ~ny; ~nz; ~ntÞ
denotes the outward pointing space–time unit normal

vector on the space–time surface oCn
i .

In order to simplify the integral computation, each of the

space–time sub-volumes is mapped to a reference element.

For the configurations at the current and at the new time

level, Tn
i and Tnþ1

i , we use the mapping (6) with

ðn; g; fÞ 2 0; 1½ �. The space–time unit normal vectors sim-

ply read ~n ¼ ð0; 0; 0;�1Þ for Tn
i and ~n ¼ ð0; 0; 0; 1Þ for

Tnþ1
i , since these volumes are orthogonal to the time

coordinate. For the lateral sub-volumes oCn
ij we adopt a

linear parametrization to map the physical volume to a

three-dimensional space–time reference prism, as shown in

Fig. 7. Starting from the old vertex coordinates Xn
ik and the

new ones Xnþ1
ik , that are known from the mesh motion

algorithm described in Sect. 2.3, the lateral sub-volumes

are parametrized using a set of linear basis functions

bkðv1; v2; sÞ that are defined on a local reference system

ðv1; v2; sÞ which is oriented orthogonally w.r.t. the face

oTijðtÞ of element Tn
i , e.g. the reference time coordinate s is

orthogonal to the reference space coordinates ðv1; v2Þ that

lie on oTijðtÞ. The temporal mapping is simply given by

t ¼ tn þ s Dt, hence tv1
¼ tv2

¼ 0 and ts ¼ Dt. The lateral

space–time sub-volume oCn
ij is defined by a total number

Nk of vertices of physical coordinates ~Xn
ij;k, namely Nk ¼ 4

or Nk ¼ 6 in two or three space dimensions, respectively.

The first three vectors ðXn
ij;1;Xn

ij;2;Xn
ij;3Þ are the nodes

defining the common face oTijðtnÞ at time tn, while the

(a) (b)

(a) (b)

Fig. 7 Physical space–time element (a) and parametrization of the

lateral space–time sub-volume oCn
ij (b) for triangles (top) and

tetrahedra (bottom). The dashed red lines denote the evolution in

time of the faces of the element, whose configuration at the current

time level tn and at the new time level tnþ1 is depicted in black and

blue, respectively. (Color figure online)
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same procedure applies at the new time level tnþ1. There-

fore the six vectors ~Xn
ij;k are given by

~Xn
ij;1 ¼ Xn

ij;1; t
n

� �
; ~Xn

ij;2 ¼ Xn
ij;2; t

n
� �

;

~Xn
ij;3 ¼ Xn

ij;3; t
n

� �
; ~Xn

ij;4 ¼ Xnþ1
ij;1 ; tnþ1

� �
;

~Xn
ij;5 ¼ Xnþ1

ij;2 ; tnþ1
� �

; ~Xn
ij;6 ¼ Xnþ1

ij;3 ; tnþ1
� �

;

ð57Þ

and the parametrization for oCn
ij reads

oCn
ij ¼ ~x v1; v2; sð Þ ¼

XNk

k¼1

bkðv1; v2; sÞ ~Xn
ij;k; ð58Þ

with 0� v1 � 1, 0� v2 � 1 � v1 and 0� s� 1. The basis

functions bkðv1; v2; sÞ for the reference space–time element

in 3D are given by

b1ðv1; v2; sÞ ¼ ð1 � v1 � v2Þð1 � sÞ;
b2ðv1; v2; sÞ ¼ v1ð1 � sÞ;
b3ðv1; v2; sÞ ¼ v2ð1 � sÞ;
b4ðv1; v2; sÞ ¼ ð1 � v1 � v2ÞðsÞ
b5ðv1; v2; sÞ ¼ v1s;

b6ðv1; v2; sÞ ¼ v2s:

ð59Þ

The corresponding basis functions for the two dimensional

case can be easily obtained by setting v2 ¼ 0, since the

space–time reference element is defined in the reference

system ðv1; sÞ, as shown in Fig. 7.

The coordinate transformation is associated with a

matrix T that reads

T ¼ ê;
o~x

ov1

;
o~x

ov2

;
o~x

os

� �T

; ð60Þ

with ê ¼ ðê1; ê2; ê3; ê4Þ and where êp represents the unit

vector aligned with the p-th axis of the physical coordinate

system (x, y, z, t). In the following ~xq denotes the q-th

component of vector ~x. The determinant of T produces at

the same time the space–time volume joCn
ijj of the space–

time sub-volume oCn
ij and the associated space–time nor-

mal vector ~nij, as

~nij ¼ �pqrs êp
o~xq
ov1

o~xr
ov2

o~xs
os

� �
=joCn

ijj; ð61Þ

where the Levi-Civita symbol has been used according to

the usual definition

�pqrs ¼
þ1; if ðp; q; r; sÞ is an even permutation ofð1; 2; 3; 4Þ;
�1; ifðp; q; r; sÞ is an odd permutation ofð1; 2; 3; 4Þ;
0; otherwise,

8><
>:

ð62Þ

and with

joCn
ijj ¼ �pqrs êp

o~xq
ov1

o~xr
ov2

o~xs
os

				
				: ð63Þ

We now need to discretize the integral form (56) to

obtain an evolution equation of the cell averages of the

state vector Q. The non-conservative term ~BðQÞ � ~rQ

appearing in (56) is integrated by using a path-conservative

approach [39, 40, 71, 73, 79, 131, 138, 139, 144, 178],

which follows the theory of Dal Maso–Le Floch and Murat

[53] and defines the non-conservative term as a Borel

measure. For a more detailed discussion on the known

limitations and problems associated with path-conservative

schemes see [3, 41]. One thus obtainsZ

oCni

~F þ ~D

 �

� ~n dSþ
Z

Cni noCni

~BðQÞ � ~rQ dxdt ¼
Z

Cni

SðQÞ dxdt;

ð64Þ

where a new term ~D has been introduced in order to take

into account potential jumps of the solution Q on the

space–time element boundaries oCni . This term is computed

by the path integral

~D � ~n ¼ 1

2

Z1

0

~B WðQ�;Qþ; sÞð Þ � ~n oW

os
ds: ð65Þ

The integration path W in (65) is chosen to be a simple

straight-line segment [40, 73, 79, 138], although other

choices are possible. Therefore it reads

W ¼ WðQ�;Qþ; sÞ ¼ Q� þ sðQþ � Q�Þ s 2 ½0; 1�;
ð66Þ

and the jump term (65) simply reduces to

~D � ~n ¼ 1

2

Z1

0

~B WðQ�;Qþ; sÞð Þ � ~n ds

0
@

1
A Qþ � Q�ð Þ;

ð67Þ

with Q�;Qþð Þ representing the two vectors of conserved

variables within element Tn
i and its direct neighbor Tn

j ,

respectively.

The final one-step ALE finite volume scheme for non-

conservative hyperbolic systems takes the following form:

jTnþ1
i jQnþ1

i ¼ jTn
i jQn

i �
X
Tj2N i

Z1

0

Z1

0

Z1�v1

0

joCn
ijj ~Gij dv2dv1ds

þ
Z

Cni noCni

Sh�Phð Þdxdt;

ð68Þ

766 W. Boscheri

123



where the term ~Gij contains the Arbitrary-Lagrangian–

Eulerian numerical flux function as well as the path-con-

servative jump term, hence allowing the discontinuity of

the predictor solution qh that occurs at the space–time sub-

volume oCn
ij to be properly resolved. The volume and

surface integrals appearing in (68) are approximated using

multidimensional Gaussian quadrature rules, see [164] for

details. The term ~Gij can be evaluated using a simple ALE

Rusanov-type scheme [80] as

~Gij ¼
1

2
~Fðqþ

h Þ þ ~Fðq�
h Þ


 �
� ~nij þ

1

2

�
Z1

0

~BðWÞ � ~n ds� jkmaxjI

0
@

1
A qþ

h � q�
h


 �
;

ð69Þ

where q�
h and qþ

h are the local space–time predictor solu-

tion inside element TiðtÞ and the neighbor TjðtÞ, respec-

tively, and jkmaxj denotes the maximum absolute value of

the eigenvalues of the matrix ~A � ~n in space–time normal

direction. Using the normal mesh velocity V � n, matrix ~A~n

reads

~A~n ¼ ~A � ~n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2
x þ ~n2

y þ ~n2
z

q� � oF

oQ
þB

� �
�n�ðV �nÞ I


 �
;

ð70Þ

with I denoting the m� m identity matrix, A ¼ oF=oQþB

representing the classical Eulerian system matrix and n

being the spatial unit normal vector given by

n ¼ ð~nx; ~ny; ~nzÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2
x þ ~n2

y þ ~n2
z

q : ð71Þ

The numerical flux term ~Gij can be also computed

relying on a more sophisticated Osher-type scheme [136],

introduced in the Eulerian framework for conservative and

non-conservative hyperbolic systems in [78, 79]. It reads

~Gij ¼
1

2
~Fðqþ

h Þ þ ~Fðq�
h Þ


 �
� ~nij þ

1

2

�
Z1

0

~BðWÞ � ~n � ~A~nðWÞ
�� ��
 �

ds

0
@

1
A qþ

h � q�
h


 �
;

ð72Þ

where the matrix absolute value operator is computed as

usual as

jAj ¼ RjKjR�1; jKj ¼ diag jk1j; jk2j; . . .; jkmjð Þ; ð73Þ

with the right eigenvector matrix R and its inverse R�1.

According to [78, 79] Gaussian quadrature formulae of

sufficient accuracy are adopted to evaluate the path integral

present in (72).

Finally, let us underline that the integration over a

closed space–time control volume, as done in (56), auto-

matically satisfies the so-called geometric conservation law

(GCL), since application of Gauss’ theorem yieldsZ
oCni

~n dS ¼ 0: ð74Þ

Note that (74) is the time-integrated (fully discrete) version

of the classical GCL relation typically used in the

Lagrangian community, as fully detailed in [23]. For all the

applications and the test problems shown later in Sect. 3

the integral appearing in (74) has been evaluated for each

element and at each timestep using Gaussian quadrature

rules of sufficient accuracy. We could verify that condition

(74) has been always satisfied on the discrete level up to

machine precision.

Last but not least, we would like to state clearly that

within the family of high order one-step direct ALE

methods proposed in this work the choices of the Riemann

solver, the reconstruction technique and the mesh velocity

are deliberately independent from each other, hence the

method in general allows a mass flux. This means that even

for V ¼ v the proposed scheme is not meant to be a pure

Lagrangian method in sensu stricto. However, the family

of schemes presented in this framework is able to resolve

material interfaces and contact waves very well, much

better than traditional high order Eulerian methods on fixed

meshes.

3 Numerical Results

In order to validate the unstructured multidimensional

direct ALE ADER-WENO schemes presented in this work,

we solve a wide set of benchmark test problems using

different hyperbolic systems of governing equations that

can all be cast into form (4). We apply our new schemes to

different conservation laws, namely the multidimensional

Euler equations of compressible gas dynamics, the ideal

classical magneto-hydrodynamics (MHD) equations and

the non-conservative seven-equation Baer–Nunziato model

of compressible multi-phase flows with stiff relaxation

source terms.

Since the aim of this work is to design almost Lagran-

gian-like algorithms with our direct ALE formulation, for

each of the test cases we choose the local mesh velocity as

the local fluid velocity, hence

V ¼ v: ð75Þ

Furthermore, for each simulation, we explicitly write the

numerical flux that has been adopted as well as the order of

accuracy of the scheme and the mesh size.
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3.1 The Euler Equations of Compressible Gas

Dynamics

The first set of equations considered within this work are

the so-called Euler equations of compressible gas dynam-

ics, also known as hydrodynamics equations. They con-

stitute a conservative system of hyperbolic conservation

laws with no sources and they govern the fluid flow in case

of neutral, i.e. non-charged, fluids.

Let Q ¼ ðq; qu; qv; qw; qEÞ be the vector of conserved

variables with q denoting the fluid density, v ¼ ðu; v;wÞ
representing the velocity vector and qE being the total

energy density. Let furthermore p be the fluid pressure and

c the ratio of specific heats of the ideal gas, so that the

speed of sound is c ¼
ffiffiffiffi
cp
q

q
. The three-dimensional Euler

equations of compressible gas dynamics can be cast into

form (4), with the state vector Q previously defined and the

flux tensor F ¼ ðf; g; hÞ given by

f ¼

qu

qu2 þ p

quv

quw

uðqE þ pÞ

0
BBBBBB@

1
CCCCCCA
; g ¼

qv

quv

qv2 þ p

qvw

vðqE þ pÞ

0
BBBBBB@

1
CCCCCCA
;

h ¼

qw

quw

qvw

qw2 þ p

wðqE þ pÞ

0
BBBBBB@

1
CCCCCCA
:

ð76Þ

The term B appearing in (4) is zero for this hyperbolic

conservation law, because the system does not involve any

non-conservative product. The system is then closed by the

equation of state for an ideal gas, which reads

p ¼ ðc� 1Þ qE � 1

2
qv2

� �
: ð77Þ

Moreover we define the specific internal energy e� as

e� ¼ E � 1

2
jv2j ð78Þ

3.1.1 Numerical Convergence Studies

The convergence studies of our direct ALE ADER-

WENO finite volume schemes for the Euler equations of

compressible gas dynamics (76) are carried out consid-

ering the solution of a smooth convected isentropic vortex

first proposed on unstructured meshes by Hu and Shu

[100] in two space dimensions. The initial computational

domain for the three-dimensional case is the box Xð0Þ ¼
½0; 10� � ½0; 10� � ½0; 5� with periodic boundary conditions

imposed on each face. The domain reduces to the square

Xð0Þ ¼ ½0; 10� � ½0; 10� if d ¼ 2. The initial condition is

the same given in [100], where we set to zero the

z�aligned velocity component w, and it is given as a

linear superposition of a homogeneous background field

and some perturbations d:

U ¼ ðq; u; v;w; pÞ ¼ ð1 þ dq; 1 þ du; 1 þ dv; 0 þ dw; 1 þ dpÞ:
ð79Þ

The perturbation of the velocity vector v ¼ ðu; v;wÞ as well

as the perturbation of temperature T read

du

dv

dw

0
B@

1
CA ¼ �

2p
e

1�r2

2

�ðy� 5Þ
ðx� 5Þ

0

0
B@

1
CA; dT ¼ �ðc� 1Þ�2

8cp2
e1�r2

;

ð80Þ

where the radius of the vortex has been defined on the x� y

plane as r2 ¼ ðx� 5Þ2 þ ðy� 5Þ2
, the vortex strength is

� ¼ 5 and the ratio of specific heats is set to c ¼ 1:4. The

entropy perturbation is assumed to be zero, i.e. S ¼ p
qc ¼ 0,

while the perturbations for density and pressure are given

by

dq ¼ ð1 þ dTÞ
1

c�1 � 1; dp ¼ ð1 þ dTÞ
c

c�1 � 1: ð81Þ

The vortex is furthermore convected with constant

velocity vc ¼ ð1; 1; 0Þ. The final time of the simulation is

chosen to be tf ¼ 1:0, otherwise the deformations

occurring in the mesh due to the Lagrangian motion

would stretch and twist the control volumes so highly

that a rezoning stage would be necessary. Here we want

the convergence studies to be done with an almost pure

Lagrangian motion, hence no rezoning procedure is

admitted and the final time tf has been set to a suffi-

ciently small value. The exact solution Qe can be simply

computed as the time-shifted initial condition, e.g.

Qeðx; tf Þ ¼ Qðx � vctf ; 0Þ, with the convective mean

velocity vc previously defined. The error is measured at

time tf using the continuous L2 norm with the high order

reconstructed solution whðx; tf Þ, hence

�L2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

Xðtf Þ

Qeðx; tf Þ � whðx; tf Þ

 �2

dx

vuut ; ð82Þ

where hðXðtf ÞÞ represents the mesh size which is taken to

be the maximum diameter of the circumspheres or the

circumcircles of the elements in the final domain configu-

ration Xðtf Þ.
Figures 8 and 9 show some of the successively refined

meshes used for this test case. Convergence rates up to

sixth order of accuracy are reported in Tables 1 and 2.
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3.1.2 The Sedov Problem

A classical test case for hydrodynamics is the Sedov prob-

lem. We consider the spherical symmetric Sedov problem,

which describes the evolution of a blast wave generated at the

origin O ¼ ðx; y; zÞ ¼ ð0; 0; 0Þ of the initial cubic computa-

tional domain Xð0Þ ¼ ½0; 1:2� � ½0; 1:2� � ½0; 1:2�. It is a

well-known test case for Lagrangian schemes

[122, 123, 128] that becomes very challenging in the three-

dimensional case. An analytical solution which is based on

self-similarity arguments is furthermore available from the

work of Kamm et al. [103]. The computational domain is first

discretized with cubic elements, then each cube is split into

five tetrahedra. The computational domain is filled with a
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Fig. 8 Sequence of triangular meshes used for the numerical

convergence studies for the two-dimensional Euler equations of

compressible gas dynamics at different time outputs: t ¼ 0 (top row),

t ¼ 1 (middle row) and t ¼ 2 (bottom row). The total number of

elements NE is increasing from the left grid (NE ¼ 320), passing

through the middle one (NE ¼ 1298), to the right one (NE ¼ 5180)
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prefect gas with c ¼ 1:4, which is initially at rest and is

assigned with a uniform density q0 ¼ 1. The total energyEtot

is concentrated only in the cell cor containing the origin O,

therefore the initial pressure is given by

por ¼ ðc� 1Þq0

Etot

8 � Vor

; ð83Þ

where Vor is the volume of the cell cor, which is composed

by five tetrahedra, and the factor 1
8

takes into account the

spherical symmetry, since the computational domain Xð0Þ
is only the eighth part of the entire domain, which would

have to be considered if we did not assume the spherical

symmetry. According to [122] we set Etot ¼ 0:851072,

while in the rest of the domain the initial pressure is

p0 ¼ 10�6. At the final time of the simulation tf ¼ 1:0 the

exact solution is a symmetric spherical shock wave located

at radius r ¼ 1 with a density peak of q ¼ 6.

As done in [122] we consider two different meshes, the

first one m1 is composed by 20 � 20 � 20 cubes, while the

second one m2 involves 40 � 40 � 40 elements. We use the

third order accurate version of the ALE ADER-WENO

schemes together with the Rusanov-type numerical flux

(70) and the numerical solution for the Sedov problem has

been computed on both meshes m1 and m2. Figure 10

shows the solution for density at the final time of the

simulation as well as the mesh configuration and a

x

0

2

4

6

8

10

y

0

2

4

6

8

10

z

0

1

2

3

4

5

X
Y

Z

x

0

2

4

6

8

10

y

0

2

4

6

8

10

z

0

1

2

3

4

5

X
Y

Z

x

0

2

4

6

8

10

y

0

2

4

6

8

10

z

0

1

2

3

4

5

X
Y

Z

Fig. 9 Sequence of tetrahedral meshes at the initial time t ¼ 0 used

for the numerical convergence studies for the three-dimensional Euler

equations of compressible gas dynamics. The total number of

elements NE is increasing from the left grid (NE ¼ 60157), passing

through the middle one (NE ¼ 227231), to the right one

(NE ¼ 801385)

Table 1 Numerical convergence results for the two-dimensional

compressible Euler equations using the first up to sixth order ALE

ADER-WENO finite volume schemes with the Osher-type numerical

flux (72)

hðXðtf ÞÞ �L2
OðL2Þ hðX; tf Þ �L2

OðL2Þ

O1 O2

3.73E-01 9.525E-02 – 3.43E-01 1.716E-02 –

2.63E-01 6.907E-02 0.9 2.49E-01 1.109E-02 1.4

2.14E-01 5.700E-02 0.9 1.69E-01 5.766E-03 1.7

1.74E-01 4.752E-02 0.9 1.28E-01 3.027E-03 2.3

O3 O4

3.28E-01 1.614E-02 – 3.29E-01 4.717E-03 –

2.51E-01 6.943E-03 3.0 2.51E-01 1.822E-03 3.5

1.68E-01 2.290E-03 2.7 1.67E-01 4.379E-04 3.5

1.28E-01 9.274E-04 3.3 1.28E-01 1.313E-04 4.4

O5 O6

3.29E-01 4.946E-03 – 3.29E-01 2.051E-03 –

2.51E-01 1.465E-03 4.5 2.51E-01 5.803E-04 4.7

1.67E-01 2.594E-04 4.3 1.67E-01 8.317E-05 4.8

1.28E-01 6.966E-05 4.9 1.31E-01 1.994E-05 5.9

The error norms refer to the variable q (density) at time t ¼ 1:0

Table 2 Numerical convergence results for the three-dimensional

compressible Euler equations using the first up to sixth order ALE

ADER-WENO finite volume schemes with the Osher-type numerical

flux (72)

hðXðtf ÞÞ �L2
OðL2Þ hðX; tf Þ �L2

OðL2Þ

O1 O2

3.43E-01 1.081E-01 – 2.89E-01 2.214E-02 –

2.85E-01 9.159E-02 0.9 2.16E-01 1.202E-02 2.1

2.09E-01 6.875E-02 0.9 1.52E-01 5.865E-03 2.0

1.47E-01 4.899E-02 1.0 1.13E-01 3.254E-03 2.0

O3 O4

2.89E-01 1.718E-02 – 2.89E-01 4.116E-03 –

2.17E-01 7.641E-03 2.8 2.17E-01 1.369E-03 3.8

1.52E-01 2.601E-03 3.1 1.52E-01 3.273E-04 4.1

1.13E-01 1.049E-03 3.1 1.13E-01 9.802E-05 4.1

O5 O6

2.89E-01 2.272E-03 – 2.89E-01 1.015E-03 –

2.17E-01 6.605E-04 4.3 2.17E-01 2.312E-04 5.1

1.52E-01 1.234E-04 4.8 1.52E-01 3.090E-05 5.7

1.13E-01 2.932E-05 4.9 1.13E-01 6.576E-06 5.2

The error norms refer to the variable q (density) at time t ¼ 1:0
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Fig. 10 Third order results for the Sedov problem with ALE ADER-

WENO schemes on the coarse grid m1 (left column) and on the fine

grid m2 (right column). From top to bottom: solution for density at the

final time of the simulation (top row), mesh configuration at the final

time tf ¼ 1:0 (middle row) and comparison between analytical and

numerical density distribution along the diagonal straight line that

crosses the cubic computational domain (bottom row)
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comparison between the numerical and the exact density

distribution along the radial direction.

3.1.3 The Noh Problem

In [134] proposed this test case in order to validate

Lagrangian schemes in the regime of strong shock waves.

The initial computational domain is given by Xð0Þ ¼
½0; 1�d and the initial mesh is composed either by squares or

by cubes, that are split into either two right triangles (in

2D) or five right tetrahedra (in 3D). A gas with c ¼ 5
3

is

initially assigned with a unit density q0 ¼ 1 and a unit

radial velocity which is moving the gas towards the origin

of the domain O ¼ ð0; 0; 0Þ. Hence, the velocity compo-

nents are initialized with

u ¼ � x

r
; v ¼ � y

r
; w ¼ � z

r
; ð84Þ

and the initial pressure is p ¼ 10�6 everywhere. The gen-

eric radial position is given as usual as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

As time advances, an outward moving cylindrical or

spherical shock wave is generated which travels with

velocity vsh ¼ 1
3

in radial direction. According to

[123, 128, 134], the final time is chosen to be tf ¼ 0:6,

therefore the shock wave is located at radius R ¼ 0:2 and

the maximum density value is either qf ¼ 16 (d ¼ 2) or

qf ¼ 64 (d ¼ 3), which occurs on the plateau behind the

shock wave. Since the problem is set up in order to take

into account cylindrical or spherical symmetry, we impose

no-slip wall boundary conditions on the logically internal

faces of the domain, while moving boundaries have been

used on the remaining sides.

We use a fifth order accurate simulation of the Noh

problem with the Rusanov-type numerical flux (70). The

computational mesh is constructed with N3 ¼ 403 hexa-

hedra which are further split into 5 tetrahedra leading to a

total number of elements NE ¼ 32 � 104. For this difficult

problem we observe that the solution is slightly perturbed

by parasitical phenomenon mostly arising from the no-slip

boundary conditions. Nevertheless the spherical shock

wave is well located (Fig. 11).

For the two-dimensional case the domain is discretized

with a total number NE ¼ 5000 of triangles and we use

from second up to fourth order accurate finite volume

schemes. Figure 12 shows the initial and the final mesh

configuration and a comparison between the exact solution

and three high order accurate numerical results obtained

with the ALE ADER-WENO finite volume schemes pre-

sented in this paper. One can notice that the quality of the

solution becomes the better as the order of accuracy of the

scheme increases.

3.1.4 The Saltzman Problem

The Saltzman problem involves a strong shock wave that is

caused by the motion of a piston traveling along the main

direction of a rectangular box. This test case was first

proposed in [66] for a two-dimensional Cartesian grid that

has been skewed and it represents a very challenging test

problem that allows the robustness of any Lagrangian

scheme to be validated, because the mesh is not aligned

with the fluid motion. According to [128], we consider the

three-dimensional extension of the original problem

[36, 66], hence the initial computational domain is the box

Xð0Þ ¼ ½0; 1� � ½0; 0:1� � ½0; 0:1�. The computational mesh

is obtained as follows:

• the domain is initially meshed with a uniform Cartesian

grid composed by 100 � 10 � 10 cubic elements, as

done in [128];

• each cube is then split into five tetrahedra;

• finally we use the mapping given in [36, 128] to

transform the uniform grid, defined by the coordinate

vector x ¼ ðx; y; zÞ, to the skewed configuration

x0 ¼ ðx0; y0; z0Þ:

Fig. 11 Noh problem in 3D at

tf ¼ 0:6 with ALE ADER-

WENO schemes. Left final mesh

configuration. Right comparison

between density as a function of

cell radius for all cells and the

exact solution
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x0 ¼ xþ 0:1 � zð Þ 1 � 20yð Þ sinðpxÞ for 0� y� 0:05;

x0 ¼ xþ z 20y� 1ð Þ sinðpxÞ for 0:05\y� 0:1;

y0 ¼ y;

z0 ¼ z: ð85Þ

In 2D we consider the computational domain Xð0Þ ¼
½0; 1� � ½0; 0:1� and the computational mesh is composed of

200 � 20 triangular elements, obtained as follows:

• first we build a Cartesian mesh with 100 � 10 square

elements, as done in [118, 123];

• each square element is then split into two right

triangles;

• finally the uniform grid, defined by the coordinate

vector x ¼ ðx; yÞ, is skewed with the mapping

x0 ¼ xþ 0:1 � yð Þ sinðpxÞ;
y0 ¼ y;

ð86Þ

where x0 and y0 denote the deformed coordinates,

respectively.

The initial mesh configuration as well as the final mesh

configuration for d 2 ½2; 3� are depicted in Fig. 13.

According to [118], the computational domain is filled

with a perfect gas with the initial state Q0 given by

Q0 ¼ 1; 0; 0; 0; �ð Þ: ð87Þ

The ratio of specific heats is taken to be c ¼ 5
3
, � ¼ 10�4

and the final time is set to tf ¼ 0:6. The piston is traveling

from the left to the right side of the domain with velocity

vp ¼ ðup; vp;wpÞ ¼ ð1; 0; 0Þ and it starts moving at the

initial time while the gas is at rest. In the initial time steps

the scheme must obey a geometric CFL condition, i.e. the

piston must not move more than one element per time step.

Sliding wall boundary conditions have been set every-

where, except for the piston, which has been assigned with

moving slip wall boundary condition.

The exact solution Qexðx; tf Þ is a one-dimensional infi-

nite strength shock wave and it can be computed by solving

the Riemann problem given in Table 3. The details of the

algorithm that computes the exact solution of the Riemann

problem are given in the book of Toro [173]. The exact

solution has then to be shifted by a certain quantity d to the

right, corresponding to the movement of the piston during

the time of the simulation tf , i.e.

d ¼ up � tf : ð88Þ

It reads

Fig. 12 Top mesh configuration

for the Noh problem at the

initial time t ¼ 0 and at the final

time tf ¼ 0:6. Bottom fourth

order accurate density

distribution at the final time and

comparison between the exact

solution (solid line) and three

different high order accurate

numerical results, i.e. 2nd, 3rd

and 4th order ALE ADER-

WENO finite volume schemes
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Qexðx; tf Þ ¼
4; 4; 0; 0; 4ð Þ if x� xf ;

1; 0; 0; 0; �ð Þ if x[ xf ;

�
ð89Þ

where xf ¼ 0:8 is the shock location at time tf ¼ 0:6.

Figure 14 shows the evolution of the density solution

obtained using the third order accurate version of the two-

dimensional ALE ADER-WENO algorithm, while Fig. 15

plots a comparison between analytical and numerical

solution in 3D for density and velocity. A good agreement

with the exact solution can be noticed regarding both

density and velocity distribution at the final time tf ¼ 0:6.

The decrease of density near the piston, which affects all

computations, is due to the well known wall-heating

problem, see [172].

3.1.5 The Kidder Problem

Kidder [107] proposed this test problem, which has become

a benchmark for Lagrangian schemes [37, 123]. It consists

in an isentropic compression of a portion of a shell filled

with a prefect gas which is assigned with the following

initial condition:

q0ðrÞ
v0ðrÞ
p0ðrÞ

0
B@

1
CA ¼

r2
e;0 � r2

r2
e;0 � r2

i;0

qc�1
i;0 þ

r2 � r2
i;0

r2
e;0 � r2

e;0

qc�1
e;0

 ! 1
c�1

0

s0q0ðrÞc

0
BBBB@

1
CCCCA;

ð90Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
represents the general radial

coordinate, riðtÞ; reðtÞð Þ are the time-dependent internal and

external frontier that delimit the shell, qi;0 ¼ 1 and qe;0 ¼ 2

are the corresponding initial values of density and c ¼ 2 or

c ¼ 5
3

is the ratio of specific heats in two and three space

dimensions, respectively. Furthermore s0 denotes the initial

entropy distribution, that is assumed to be uniform, i.e.

s0 ¼ p0

qc
0

¼ 1. If d ¼ 2 we set z ¼ 0, as usual.

The initial computational domain Xð0Þ is either one

fourth (in 2D) or one eighth (in 3D) of the entire shell

and is depicted in Fig. 16. Sliding wall boundary condi-

tions are imposed on the lateral faces and on the bottom,

while on the internal and on the external frontier a space–

time dependent state is assigned according to the exact

analytical solution R(r, t) [107], which is defined at the

general time t for a fluid particle initially located at radius

r as a function of the radius and the homothety rate h(t),

i.e.

x
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0
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0.1

Fig. 13 Initial and final mesh

configuration for the Saltzman

problem in 2D (top) and in 3D

(bottom)

Table 3 One-dimensional

Riemann problem for obtaining

the exact solution of the

Saltzman problem

Left state Right state

q 1.0 1.0

u 1.0 -1.0

v 0.0 0.0

w 0.0 0.0

p 6:67 � 10�7 6:67 � 10�7
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Rðr; tÞ ¼ hðtÞr; hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

s2

r
; ð91Þ

where s is the focalisation time

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 1

2

ðr2
e;0 � r2

i;0Þ
c2
e;0 � c2

i;0

s
ð92Þ

with ci;e ¼
ffiffiffiffiffiffiffiffi
c pi;e
qi;e

q
representing the internal and external

sound speeds. As done in [37, 123], the final time of the

simulation is chosen in such a way that the compression

rate is hðtf Þ ¼ 0:5, hence tf ¼
ffiffi
3

p

2
s and the the exact loca-

tion of the shell is bounded within 0:45�R� 0:5.

Fig. 14 Evolution of the

density solution for the

Saltzman problem at output

times t ¼ 0, t ¼ 0:2, t ¼ 0:4 and

t ¼ 0:6
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Fig. 15 Third order numerical results with ALE ADER-WENO schemes for the Saltzman problem: density (left) and velocity (right) distribution

and comparison with analytical solution at time t ¼ 0:6
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The Osher-type flux (72) is adopted to perform the

simulation of the Kidder problem, in order to precisely

identified the location of the internal and external frontier.

In the simulations of the Kidder problem we also measure

the associated absolute error |err|, that can be evaluated as

the difference between the analytical and the numerical

location of the internal and external radius at the final time

tf .

The two-dimensional computational domain is dis-

cretized with a characteristic mesh size of h ¼ 1=100 for a

total number of NE ¼ 3180. Figure 17 displays the fourth

order numerical results obtained. The evolution of the

density distribution has been plotted as well as the time-

dependent location of the internal and the external frontier,

which has been compared against the exact solution of

Kidder previously described.

In three space dimensions a total number of NE ¼
111534 tetrahedra has been used to discretize the compu-

tational domain. We use again the fourth order version of

our ALE ADER-WENO scheme together with the Osher-

type flux (72). Figure 18 shows the initial and the final

density distribution of the shell as well as the evolution of

the internal and external frontier location during the

simulation.

The absolute error |err| associated to the internal and

external frontier evolution for both simulations is reported

in Table 4, where one can appreciate that our direct ALE

algorithm able to follow the shell compression very closely

and precisely.

3.2 The Ideal Magnetohydrodynamics (MHD)

Equations

The equations of ideal classical magnetohydrodynamics

(MHD) are used to describe the motion of charged fluids

like plasma fluids. They constitute a more complicated

hyperbolic conservation law compared to the Euler

equations presented in Sect. 3.1, especially because this

system introduces an additional constraint regarding the

divergence of the magnetic field that must remain zero in

time, i.e.

r � B ¼ 0: ð93Þ

If the magnetic field B is initialized with data that are

guaranteed to be divergence-free, then Eq. (93) is always

satisfied for the exact solution. The difficulty appears at the

discrete level, where the numerical divergence-free con-

straint has to be carefully taken into account and properly

treated. To overcome this problem, we adopt the hyper-

bolic version of the generalized Lagrangian multiplier

(GLM) divergence cleaning approach proposed by Dedner

et al. [54], hence adding to the MHD system one more

variable W as well as one more linear scalar PDE that aims

at transporting the divergence errors out of the computa-

tional domain with an artificial divergence cleaning speed

ch. The augmented MHD system can be cast into form (4)

and reads

o

ot

q

qv

qE

B

w

0
BBBBBB@

1
CCCCCCA

þr �

qv

qvv þ ptotI �
1

4p
BB

vðqE þ ptotÞ �
1

4p
Bðv � BÞ

vB � Bv þ wI

c2
hB

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 0:

ð94Þ

The non-conservative part of the ideal MHD system is

zero, the velocity vector is denoted by v ¼ vi ¼ ðu; v;wÞ
and similarly the vector of the magnetic field is addressed

with B ¼ Bi ¼ ðBx;By;BzÞ. The system is then closed by

the equation of state

p ¼ c� 1ð Þ qE � 1

2
v2 � B2

8p

� �
; ð95Þ
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Fig. 16 Position and mesh

configuration of the shell at

times t ¼ 0 and at t ¼ tf in two

(left) and three (right) space

dimensions
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Fig. 17 Density distribution for the Kidder problem at output times t ¼ 0:00, t ¼ 0:05, t ¼ 0:10, t ¼ 0:15 and t ¼ tf (from top left to bottom left).

Evolution of the internal and external radius of the shell and comparison between analytical and numerical solution (bottom right)
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with c representing the ratio of specific heats and the total

pressure being defined as ptot ¼ pþ 1
8p B2.

3.2.1 The MHD Rotor Problem

The first test case for the ideal classical MHD equations is

the MHD rotor problem proposed by Balsara et al. [10]. It

consists in a fluid of high density that is rotating very

quickly, surrounded by a fluid at rest with low density. The

initial computational domain Xð0Þ is a sphere of radius

R0 ¼ 0:5 and transmissive boundary conditions are

imposed at the external boundary. The generic radial

position is denoted by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and at radius

R ¼ 0:1 the inner region with the high density fluid is

separated by the outer region. Therefore the initial density

distribution is q ¼ 10 for 0� r�R and q ¼ 1 in the rest of

the domain, while the angular velocity x of the rotor is

assumed to be constant and it is chosen in such a way that

at r ¼ R the toroidal velocity is vt ¼ x � R ¼ 1. The initial

discontinuity for density and velocity occurring at the

frontier r ¼ R is smeared out according to [10], where a

linear taper bounded by 0:1� r� 0:13 is applied in such a

way that the internal values for density and velocity match

exactly those ones of the outer region. The pressure is p ¼
1 in the whole computational domain and a constant

magnetic field B ¼ ð2:5; 0; 0ÞT is imposed everywhere. The

divergence cleaning velocity is taken to be ch ¼ 2, while

the ratio of specific heats is set to c ¼ 1:4 and the final time

is tf ¼ 0:25. In two space dimensions the computational

domain reduces to a circle and the z coordinate as well as

all its related quantities disappear.

We use a computational grid with a characteristic mesh

size of h ¼ 1=200 to run the two-dimensional MHD rotor

problem. Numerical results obtained with a fourth order

ALE ADER-WENO scheme with the Rusanov-type flux

(70) are depicted in Fig. 19. We can notice a good agree-

ment with the solution presented in [10], although the mesh

used for the simulation is coarser than the one adopted by

Balsara and Spicer.

In three space dimensions the computational domain is

discretized with a total number of tetrahedra of

NE ¼ 1089071. The numerical results for the three-di-

mensional MHD rotor problem have been obtained using a

third order scheme with the Rusanov-type flux (70) and

they are depicted in Fig. 20. The rezoning procedure

described in Sect. 2.3 allows the mesh to be reasonably

well shaped, even with the strong deformations produced

by the velocity field of the rotor. Figure 21 shows the

initial and the final mesh configuration and the corre-

sponding density distribution.

3.2.2 The MHD Blast Wave Problem

The blast wave problem constitutes a benchmark in mag-

netohydrodynamics. A strong circular fast magnetosonic

shock wave is traveling from the center to the boundaries

of the initial computational domain Xð0Þ, which is a sphere
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Fig. 18 Left density distribution of the shell at times t ¼ 0 and at t ¼ tf . Right evolution of the internal and external radius of the shell and

comparison between analytical and numerical solution for the three-dimensional ALE ADER-WENO scheme

Table 4 Absolute error for the internal and external radius location

between exact (rex) and numerical (rnum) solution in 2D (left) and in

3D (right)

rex 2D ALE ADER-WENO 3D ALE ADER-WENO

rnum jerrj2D rnum jerrj3D

0.450000 0.450008 7.73E-06 0.449749 2.51E-04

0.500000 0.499990 1.02E-05 0.499720 2.80E-04
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(in 3D) or a circle (in 2D) of radius R0 ¼ 0:5. The frontier

delimited by radius R ¼ 0:1 splits the domain into two

parts, hence defining an inner state Ui and an outer state

Uo, that are initially assigned in terms of primitive vari-

ables U ¼ ðq; u; v;w; p;Bx;By;Bz;wÞ as

Uðx; 0Þ ¼
Ui ¼ 1:0; 0:0; 0:0; 0:1; 70; 0:0; 0:0ð Þ if r�R;

Uo ¼ 1:0; 0:0; 0:0; 1000; 70; 0:0; 0:0ð Þ if r[R;

�

ð96Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. We set transmissive boundary

conditions at the external boundary. The final time of the

computation is tf ¼ 0:01 and the ratio of specific heats is

taken to be c ¼ 1:4. For the MHD blast wave problem we

use the same mesh adopted for the MHD rotor problem

described in the previous section both in two and in three

space dimensions.

The numerical results depicted in Fig. 22 have been

computed using a third order accurate ALE ADER-

WENO finite volume scheme with the Rusanov-type flux

(70). We plot the logarithm of density and pressure, as

well as the magnitude of both the velocity and the mag-

netic field, and the solution looks very similar to the

results given in [9].

Due to the very strong shock wave, the velocity of the

flow is quite high and the fluid is pushed by the magnetic

field towards the boundary of the computational domain.

Therefore we use the rezoning algorithm which allows the

mesh elements to recover a more regular shape in order to

carry on the simulation until the final time tf . Figure 23

shows a comparison between the fully Lagrangian mesh

configuration and the rezoned mesh configuration at time

t ¼ 0:004.

The numerical solution in 3D is depicted in Fig. 24 and

is in qualitative agreement with the results shown previ-

ously for d ¼ 2 in Fig. 22, where the two-dimensional

version of our Lagrangian-like WENO algorithm has been

used to run this test case. The tetrahedral mesh at the final

time t ¼ 0:01 is depicted in Fig. 25.

Fig. 19 Numerical results for the two-dimensional ideal MHD rotor problem: density, pressure, magnetic pressure and a coarse mesh

configuration at time t ¼ 0:25. A 4th order direct ALE ADER-WENO scheme has been used
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3.3 The Baer–Nunziato Model of Compressible

Two-Phase Flows

Multi-phase flow problems, such as liquid-vapor and solid-

gas flows are encountered in numerous natural processes,

such as avalanches, meteorological flows with cloud for-

mation, volcano explosions, sediment transport in rivers

and on the coast, granular flows in landslides, etc., as well

as in many industrial applications, e.g., in aerospace

engineering, automotive industry, petroleum and chemical

process engineering, nuclear reactor safety, paper and food

manufacturing and renewable energy production. Most of

the industrial applications are concerned with compressible

multi-phase flows as they appear for example in combus-

tion processes of liquid and solid fuels in car, aircraft and

rocket engines, but also in solid bio-mass combustion

processes. Already the mathematical description of such

flows is quite complex and up to now there is no univer-

sally agreed model for such flows. One wide-spread model

is the Baer–Nunziato model for compressible two-phase

flow, which has been developed by Baer and Nunziato [8]

for describing detonation waves in solid-gas combustion

processes. High resolution shock capturing finite volume

schemes combined with a stiff relaxation approach have

been successfully applied to this system by Saurel and

Abgrall [5, 150]. In this work we will use the original

choice of Baer–Nunziato, which has also been adopted in

several papers about the exact solution of the Riemann-

problem of the Baer–Nunziato model, see [7, 55, 159]. A

reduced five-equation model has been proposed in [104],

for the solution of which a Godunov type scheme has been

presented in [133]. Approximate Riemann solvers of Baer–

Nunziato-type models of compressible multi-phase flows

can be found for example in [73, 79, 165, 170]. Numerical

schemes for compressible multi-phase flows on moving

meshes have been considered for the one-dimensional case

in [154] and an efficient Eulerian approach on fixed

unstructured grids has been proposed in [4]. For further

Fig. 20 Third order ALE ADER-WENO numerical results for the ideal MHD rotor problem at time t ¼ 0:25. Top density and pressure. Bottom

magnitude of the magnetic field and Mach number
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work on numerical methods for compressible multi-phase

flows see, for example, [2, 6, 114, 142, 152, 153,

155, 156, 186].

The first phase is normally addressed as the solid phase,

while the second one as the gas phase and in the following

we will use the subscripts 1 and 2 to define them. We will

write equivalently also the subscripts s and g to denote the

solid and the gas phase. Let k ¼ 1; 2 be the phase number

and /k be the volume fraction of phase k with the condition

/1 þ /2 ¼ 1, while qk and pk represent the corresponding

density and pressure, respectively. Let furthermore the

velocity vector of each phase be addressed with

uk ¼ ðuk; vk;wkÞ. The full seven-equation Baer–Nunziato

model with relaxation source terms results in a non-con-

servative system of nonlinear hyperbolic PDE that can be

written as

o

ot
/1q1ð Þ þ r � /1q1u1ð Þ ¼ 0;

o

ot
/1q1u1ð Þ þ r � /1q1u1u1ð Þ þ r/1p1 ¼ pIr/1 � k u1 � u2ð Þ;

o

ot
/1q1E1ð Þ þ r � /1q1E1 þ /1p1ð Þu1ð Þ ¼ �pIot/1 � k uI � u1 � u2ð Þ;

o

ot
/2q2ð Þ þ r � /2q2u2ð Þ ¼ 0;

o

ot
/2q2u2ð Þ þ r � /2q2u2u2ð Þ þ r/2p2 ¼ pIr/2 � k u2 � u1ð Þ;

o

ot
/2q2E2ð Þ þ r � /2q2E2 þ /2p2ð Þu2ð Þ ¼ pIot/1 � k uI � u2 � u1ð Þ;

o

ot
/1 þ uIr/1 ¼ lðp1 � p2Þ;

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ð97Þ

where only strongly simplified interphase drag and pressure

relaxation source terms are considered. Further details on

the choice and the formulation of such terms can be found

Fig. 21 Mesh configuration and density distribution for the three-dimensional MHD rotor problem at the initial time t ¼ 0:0 (top) and at the final

time t ¼ 0:25 (bottom)
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Fig. 22 Numerical results for the two-dimensional MHD blast wave

problem at time t ¼ 0:01 obtained with a third order accurate ALE

ADER-WENO scheme. Top logarithm (base 10) of the density and

logarithm (base 10) of the pressure. Bottom magnitude of the velocity

and the magnetic field
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Fig. 23 Mesh configurations for the MHD blast wave problem in 2D at time t ¼ 0:004. Left fully Lagrangian mesh motion. Right Lagrangian

mesh motion with the rezoning stage (Sect. 2.3)
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in [104]. The so-called stiffened gas equation of state is

then used for each of the two phases to close the system:

ek ¼
pk þ ckpk
qkðck � 1Þ : ð98Þ

The specific total energy of each phase is Ek ¼ ek þ 1
2

u2
k

with ek denoting the corresponding internal energy, while

in system (97) l is a parameter which characterizes pres-

sure relaxation and k is related to the friction between the

phases. According to [8, 104] the velocity at the interface

I is taken to be the solid velocity, while for the interface

pressure we choose the gas pressure, hence

uI ¼ u1 pI ¼ p2: ð99Þ

Other choices are possible, see [150, 151] for a detailed

discussion.

Since this physical model involves two phases, namely

the solid phase and the gas phase, we decide to move the

mesh with the solid phase velocity, hence

V ¼ uI ¼ u1; ð100Þ

which coincides with the interface velocity, according to

our assumptions

The resolution of material interfaces, which are given by

jumps in the volume fraction /k, is a challenging task for

the numerical methods applied to the Baer–Nunziato model

(97). We stress that the present approach is a so-called

diffuse interface approach, which may not be suitable for

all situations occurring in the simulation of multi-fluid and

multi-material problems. For so-called sharp interface

approaches, the reader is referred to aforementioned

references.

3.3.1 Riemann Problems

The high order ALE ADER-WENO finite volume schemes

proposed in this work are validated by applying them to 1D

Riemann problems that are solved in a 2D and 3D

Fig. 24 Third order ALE ADER-WENO numerical results for the three-dimensional Blast problem at time t ¼ 0:01. Top logarithm (base 10) of

the density and logarithm (base 10) of the pressure. Bottom magnitude of the velocity field and the magnetic field
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geometry on unstructured triangular and tetrahedral

meshes. The exact solution for these 1D Riemann problems

can be found in [7, 55, 159]. From the above mentioned

articles we have chosen a subset of four Riemann prob-

lems, whose initial conditions are listed in Table 5. Some

of the test cases use the stiffened gas EOS, some of them

consider just a mixture of two ideal gases.

The initial computational domain is given either by

Xð0Þ ¼ ½�0:5; 0:5� � ½�0:05; 0:05� if d ¼ 2 or Xð0Þ ¼
½�0:5; 0:5� � ½�0:05; 0:05� � ½�0:05; 0:05� if d ¼ 3. The

domain is discretized using a characteristic mesh size of

h ¼ 1=200, corresponding to an equivalent one-dimensional

resolution of 200 cells. The initial discontinuity is located at

x ¼ 0 and the final simulation times are listed in Table 5. In

x-direction we use transmissive boundaries, while periodic

boundary conditions are imposed along the remaining

directions.

Friction and pressure relaxation are neglected in the first

three Riemann problems RP1, RP2 and RP4, while for RP5

we use a moderately stiff interphase drag k ¼ 103 and

pressure relaxation l ¼ 102. RP5 involves two almost pure

ideal gases that differ in their value of c. As done in

[70, 73] the exact solution for RP5 is computed using the

exact Riemann solver for the Euler equations of com-

pressible gas dynamics [173] with two different values of c
on the left and on the right of the contact discontinuity,

respectively. In this test problem the algebraic source term

in the full Baer–Nunziato system (97) becomes stiff, but it

can be properly treated by the local space–time predictor

presented in Sect. 2.2.

The numerical results are shown in Figs. 26, 27, 28

and 29 and are compared with the exact solution. RP1

and RP4 have been run in 2D, while for RP2 and RP5 the

three-dimensional results are displayed. On the top left of

each figure a sketch of the mesh is depicted, while the

other sub figures contain a one-dimensional cut through

the reconstructed numerical solution wh along the x-axis,

evaluated at the final time on 200 equidistant sample

points. Due to the Lagrangian-like formulation of the

method, the solid contact is resolved in a very sharp

manner in all cases, which was actually the main aim in

the design of a high order ALE scheme for the com-

pressible Baer–Nunziato model. Also for the other waves

we can note in general a very good agreement between

our numerical results and the exact reference solutions

given in [7, 55, 159].

Fig. 25 View of the unstructured tetrahedral grid at time t ¼ 0:01 for

the 3D MHD blast wave problem

Table 5 Initial states left

(L) and right (R) for the

Riemann problems solved in 2D

and 3D with the Baer–Nunziato

model

qs us ps qg ug pg /s te

RP1 [55] cs ¼ 1:4; ps ¼ 0; cg ¼ 1:4; pg ¼ 0; k ¼ l ¼ 0

L 1.0 0.0 1.0 0.5 0.0 1.0 0.4 0.10

R 2.0 0.0 2.0 1.5 0.0 2.0 0.8

RP2 [55] cs ¼ 3:0; ps ¼ 100; cg ¼ 1:4; pg ¼ 0; k ¼ l ¼ 0

L 800.0 0.0 500.0 1.5 0.0 2.0 0.4 0.10

R 1000.0 0.0 600.0 1.0 0.0 1.0 0.3

RP4 [159] cs ¼ 3:0; ps ¼ 3400; cg ¼ 1:35; pg ¼ 0; k ¼ l ¼ 0

L 1900.0 0.0 10.0 2.0 0.0 3.0 0.2 0.15

R 1950.0 0.0 1000.0 1.0 0.0 1.0 0.9

RP5 [73] cs ¼ 1:4; ps ¼ 0; cg ¼ 1:67; pg ¼ 0; k ¼ 103; l ¼ 102

L 1.0 0.0 1.0 1.0 0.0 1.0 0.99 0.2

R 0.125 0.0 0.1 0.125 0.0 0.1 0.01

Values for ci, pi and the final time te are also given
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3.3.2 Explosion Problems

We use the same initial condition given for the Riemann

problems in Table 5 to solve the compressible Baer–Nun-

ziato equations either on a circular or a spherical

computational domain XðtÞ with initial radius R ¼ 1:0 in

2D and R ¼ 0:9 in 3D. In all cases the initial state Qðx; 0Þ
is assigned taking

Qðx; 0Þ ¼ Qi; if jxj\rc
Qo; else

�
; ð101Þ
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Fig. 26 Results for Riemann problem RP1 of the seven-equation Baer–Nunziato model in 2D at time t ¼ 0:1
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with rc ¼ 0:5 representing the location of the initial dis-

continuity. The left state reported in Table 5 is assumed to

be the inner state Qi, while the right state represents here

the outer state Qo. In particular, the first explosion problem

EP1 uses the initial condition of RP1, EP2 corresponds to

RP2 and EP3 to RP4, respectively. In the fourth explosion

problem EP4 we use again the initial values of RP2 and we

set k ¼ 105 and l ¼ 0, hence adopting a stiff interphase

drag. The reference solution is obtained by solving an

equivalent non-conservative one-dimensional PDE in

radial direction with geometric reaction source terms, for

details see [173] for the Euler equations and [174] for the

x
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Fig. 27 Results for Riemann problem RP2 of the seven-equation Baer–Nunziato model in 3D at time t ¼ 0:1
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Baer–Nunziato model. In our case here the reference

solution has been obtained by using a path-conservative

second order TVD scheme [79] on a very fine (fixed) 1D

mesh consisting of 10,000 cells.

In two space dimensions the initial mesh spacing is of

characteristic size h ¼ 1=250, leading to a total number of

NE ¼ 431,224 triangular elements used to discretize XðtÞ,
while in 3D we use a characteristic mesh size of h ¼ 1=100

for r� rc and h ¼ 1=50 for r[ rc for a total number of

tetrahedra of NE ¼ 2,632,305. Numerical results for EP1

and EP3 have been collected using the two-dimensional

version of the algorithm, whereas we perform a three-di-

mensional computation for EP2 and EP4. The numerical

results are compared with the 1D reference solution in

Figs. 30, 31, 32 and 33. On the top left of each figure a 3D

visualization of either the solid or the gas density is shown,

in order to verify that either the cylindrical or the spherical

symmetry is reasonably maintained on the unstructured

meshes used here. The other sub figures show a one-di-

mensional cut through the reconstructed numerical solution

wh on 100 equidistant sample points along the x-axis. We

use the path-conservative Osher-type method (72) since it

is less dissipative than the Rusanov-type scheme (69),

hence a better resolution of the material contact can be

achieved. Since the mesh is moving with the interface

velocity uI, i.e. V ¼ uI ¼ u1, the contact discontinuity of

the first phase /1 is very well resolved in all cases. The

quality of the three-dimensional results is lower towards

the external boundary of the computational domain

because a coarser grid with h ¼ 1=50 has been used there.

This was necessary to reduce the amount of computational

resources needed to carry on the computation.

3.3.3 Two-Dimensional Riemann Problems

Kurganov and Tadmor [111] have collected a very nice set

of numerical solutions for two-dimensional Riemann

problems of the compressible Euler equations [187]. Here,

we propose two 2D Riemann problems for the compress-

ible Baer–Nunziato model, however, without following the

guidelines laid out in [111, 187], which lead to exactly one

elementary wave at each interface, but we just simply take
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Fig. 28 Results for Riemann problem RP4 of the seven-equation Baer–Nunziato model in 2D at time t ¼ 0:15
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as initial data some of the data used for the 1D Riemann

problems before, see Table 5. The initial computational

domain is the square Xð0Þ ¼ ½�0:5; 0:5� � ½�0:5; 0:5� and

reflective wall boundaries are applied everywhere. The

initial condition is given by four piecewise constant states

defined in each quadrant of the two-dimensional coordinate

system:

Qðx; 0Þ ¼

Q1 if x[ 0 ^ y[ 0;

Q2 if x� 0 ^ y[ 0;

Q3 if x� 0 ^ y� 0;

Q4 if x[ 0 ^ y� 0:

8>>><
>>>:

ð102Þ

The initial conditions for the two configurations presented

in this work are listed in Table 6.

The computational domain is discretized using an

unstructured triangular mesh composed of NE ¼ 90,080

elements with an initial characteristic mesh spacing of

h ¼ 1=200. The reference solution is computed with a high

order Eulerian one-step scheme as presented in [79, 174],

using a very fine mesh composed of NE ¼ 2,277,668 tri-

angles with characteristic mesh spacing h ¼ 1=1000. The

obtained results together with the Eulerian reference solu-

tion are depicted in Figs. 35 and 36, where we can observe

a very good qualitative agreement of the Lagrangian-like

solution with the Eulerian fine-grid reference solution. For

the first test problem, the initial and the final mesh are

depicted in Fig. 34.

4 Algorithm Efficiency Improvements

In this paper we have designed and presented a new family

of Arbitrary-Lagrangian–Eulerian (ALE) finite volume

schemes, called direct ALE ADER-WENO schemes, where

high order of accuracy in time is obtained by using a local

space–time Galerkin predictor on moving curved meshes,

while a high order accurate nonlinear WENO method is

adopted to produce high order essentially non-oscillatory
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Fig. 29 Results for Riemann problem RP5 of the seven-equation Baer–Nunziato model in 3D with drag and pressure relaxation

(k ¼ 103;l ¼ 102) at time t ¼ 0:2 and comparison with the exact solution

788 W. Boscheri

123



reconstruction polynomials in space. The mesh is moved at

each time step according to the solution of a nodal solver

algorithm that assigns a unique velocity vector to each

node of the mesh. A rezoning procedure can also be

applied when mesh distortions and deformations become

too severe. The space–time mesh is then constructed by

straight edges connecting the vertex positions at the old

time level tn with the new ones at the next time level tnþ1,

yielding closed space–time control volumes, on the

boundary of which the numerical flux must be integrated.
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Fig. 30 Results obtained for the cylindrical explosion problem EP1 of the seven-equation Baer–Nunziato model in 2D at time t ¼ 0:15 and

comparison with the reference solution
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The entire algorithm can be divided into three main

parts, namely the WENO reconstruction, the local space–

time predictor and the numerical flux evaluation. In order

to investigate the efficiency of our numerical method, we

perform the simulation of a very simple test problem, i.e.

the three-dimensional smooth isentropic vortex described

in Sect. 3.1.1. We run the second, third and fourth order

accurate version of the numerical scheme and we measure

the computational cost of each part of the algorithm, which

is reported in Table 7.

The most expensive part of the algorithm is the flux

evaluation, since in the Lagrangian framework no
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Fig. 31 Results obtained for the cylindrical explosion problem EP2 of the seven-equation Baer–Nunziato model in 3D at time t ¼ 0:15 and

comparison with the reference solution
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quadrature-free approach is in principle possible, due to the

continuous evolution of the geometry configuration that

does not allow the flux computation to be treated as done

for the Eulerian case in [74], where the space–time basis

used for the flux integrals in (68) are integrated on the

reference space–time element in a pre-processing step and

stored only once. As the order of accuracy increases the

relative cost of the WENO reconstruction procedure also
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Fig. 32 Results obtained for the cylindrical explosion problem EP3 of the seven-equation Baer–Nunziato model in 2D at time t ¼ 0:15 and

comparison with the reference solution
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increases because the reconstruction stencils become lar-

ger, while the local space–time predictor step is the least

expensive part of the whole algorithm.

In the following we will briefly mention and present

some modifications of the direct ALE ADER-WENO

algorithm that have been designed starting from the

analysis and the data highlighted in Table 7. Specifically,

the following strategies have been investigated in order to

improve the overall algorithm efficiency:

• In [29] we propose a local time stepping (LTS)

algorithm for moving unstructured triangular meshes,
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Fig. 33 Results obtained for the cylindrical explosion problem EP4 of the seven-equation Baer–Nunziato model in 2D with k ¼ 105 at time

t ¼ 0:18 and comparison with the reference solution
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where each element of the mesh has to obey only a less

restrictive local CFL stability condition, hence using its

own optimal local timestep to reach the final time of the

simulation. The new algorithm is based on a non-

conforming mesh in time, with hanging nodes that are

continuously moving and in principle never match the

same time level, unless either an intermediate output

time or the final time of the simulation is reached. As a

consequence, the reconstruction is carried out locally,

i.e. within each control volume, computing a virtual

geometry and a virtual set of cell averages of the

surrounding elements that are both evaluated using the

high order space–time predictor solution;

• In [21] we employ the genuinely multidimensional

HLL Riemann solvers developed by Balsara et al. [63]

as a building block for genuinely multidimensional

numerical flux evaluation that allows the scheme to run

with larger time steps compared to conventional finite

volume schemes that use classical one-dimensional

Riemann solvers in normal direction. The space–time

flux integral computation is carried out at the bound-

aries of each triangular space–time control volume

using the Simpson quadrature rule in space and Gauss–

Legendre quadrature in time. In this approach the

multidimensional HLL Riemann solver is also

employed as nodal solver;

• A new and efficient quadrature-free approach for the

numerical flux integration is presented in [24]. The

space–time boundaries of the space–time control vol-

umes are split into simplex sub-elements, i.e. either

triangles in 2D or tetrahedra in 3D, hence leading to

space–time normal vectors as well as Jacobian matrices

that are constant within each sub-element. Within the

space–time Galerkin predictor stage (see Sect. 2.2) that

solves the Cauchy problem inside each element in the

small, the discrete solution and the flux tensor are

approximated using a nodal space–time basis. Since

these space–time basis functions are defined on a

Table 6 Initial conditions for

the two-dimensional Riemann

problems

qs us vs ps qg ug vg pg /s

Configuration C1 (cs ¼ 1:4; cg ¼ 1:67; ps ¼ pg ¼ 0, k ¼ 105, l ¼ 102)

Q1 : ðx[ 0; y[ 0Þ 2.0 0.0 0.0 2.0 1.5 0.0 0.0 2.0 0.8

Q2 : ðx\0; y[ 0Þ 1.0 0.0 0.0 1.0 0.5 0.0 0.0 1.0 0.4

Q3 : ðx\0; y\0Þ 2.0 0.0 0.0 2.0 1.5 0.0 0.0 2.0 0.8

Q4 : ðx[ 0; y\0Þ 1.0 0.0 0.0 1.0 0.5 0.0 0.0 1.0 0.4

Configuration C2 (cs ¼ 3:0; cg ¼ 1:4; ps ¼ 100;pg ¼ 0, k ¼ l ¼ 0)

Q1 : ðx[ 0; y[ 0Þ 1000.0 0.0 0.0 600.0 1.0 0.0 0.0 1.0 0.3

Q2 : ðx\0; y[ 0Þ 800.0 0.0 0.0 500.0 1.5 0.0 0.0 2.0 0.4

Q3 : ðx\0; y\0Þ 1000.0 0.0 0.0 600.0 1.0 0.0 0.0 1.0 0.3

Q4 : ðx[ 0; y\0Þ 800.0 0.0 0.0 500.0 1.5 0.0 0.0 2.0 0.4
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Fig. 34 Mesh for configuration C1 at times t ¼ 0 (left) and t ¼ 0:15 (right)
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reference element and do not change, their integrals

over the simplex sub-surfaces of the space–time

reference control volume can be integrated once and

for all analytically during a pre-processing step. The

resulting integrals are then used together with the

space–time degrees of freedom of the predictor in order

to compute the numerical flux that is needed in the

finite volume scheme;

• The work proposed in [30, 31] is devoted to the

improvement of the reconstruction part of the algo-

rithm. The expensive WENO approach on moving

meshes, used to obtain high order of accuracy in space,

is replaced by the very recent a posteriori MOOD

paradigm [49, 58, 59, 120] which is shown to be less

Fig. 35 Results obtained with the two-dimensional third order direct

ALE ADER-WENO scheme for the 2D Riemann problem C1 at time

t ¼ 0:15 (left column). The reference solution computed with an

Eulerian method on a very fine mesh is also shown (right column). 30

equidistant contour lines are shown for the solid density qs (top row),

the gas density qg (middle row) and the solid volume fraction /s

(bottom row). In this test problem stiff relaxation source terms are

used setting k ¼ 105 and l ¼ 102

Fig. 36 Results obtained with the two-dimensional third order direct

ALE ADER-WENO scheme for the 2D Riemann problem C2 at time

t ¼ 0:15 (left column). The reference solution computed with an

Eulerian method on a very fine mesh is also shown (right column). 30

equidistant contour lines are shown for the solid density qs (top row),

the gas density qg (middle row) and the solid volume fraction /s

(bottom row)

Table 7 Computational cost of the second, third and fourth order

version of the direct ALE ADER-WENO finite volume schemes

presented in this work

Component of the algorithm Oð2Þ Oð3Þ Oð4Þ

WENO reconstruction (%) 22 30 40

Space–time predictor (%) 5 9 3

Flux evaluation (%) 73 61 57

Total time (s) 135 423 2040

The times used for the WENO reconstruction, the local space–time

predictor and the flux evaluation are given in percentage w.r.t. the

total time of the computation. The isentropic vortex test case

(Sect. 3.1.1) has been used on a coarse grid with 60,157 tetrahedra

until the final time tf ¼ 1:0. The simulation has been run in parallel on

four Intel Core i7-2600 CPUs with a clock-speed of 3.40 GHz
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expensive but still as accurate. This a posteriori MOOD

strategy ensures the numerical solution in each cell at

any discrete time level to fulfill a set of user-defined

detection criteria. If one cell value is not satisfying the

detection criteria, then the solution is locally re-

computed by progressively decrementing the order of

the polynomial reconstructions, following the so-called

cascade of schemes. A very robust scheme is employed

as a last resort for genuinely problematic cells. The

cascade of schemes defines how the decrementing

process is carried out, i.e. how many schemes are tried

and which orders are adopted for the polynomial

reconstructions. Furthermore the iterative MOOD loop

allows the numerical solution to maintain some inter-

esting properties such as positivity, mesh validity, etc.

From the aforementioned improvements, in a very recent

work [20] we have combined the quadrature-free flux

evaluation [24] with the a posteriori MOOD stabilization

technique [30, 31]. We have measured the efficiency ratio

b of this new algorithm compared to the original formu-

lation of the ALE ADER-WENO methods discussed in this

paper. Table 8 reports the outputs in 2D, while Table 9

refers to the three-dimensional case: NE denotes the total

number of elements of the computational mesh, N repre-

sents the number of time steps needed to carry on the

simulation until the final time and sE ¼ tCPU
NE �N gives the time

used per element update. Also the total computational time

of the simulation (tCPU) is provided as well as the final

efficiency ratio computed as

b ¼ sWGQ
E =sMQF

E ; ð103Þ

where the ALE ADER-WENO scheme is referred to as

‘‘WGQ’’ (WENO Gaussian Quadrature) and the new more

efficient algorithm is addressed with ‘‘MQF’’ (MOOD

Quadrature-Free).

The simulations have been run with our MPI parallel

code ‘‘PDESol’’ on 64 threads in 2D on the AMD Opteron

cluster STiMulUs in Trento (Italy), while we have used

2048 threads in 3D on the SuperMUC supercomputer based

in Munich (Germany).

5 Conclusions

In this work we have developed a new family of high order

Arbitrary-Lagrangian–Eulerian one-step ADER-WENO

finite volume schemes on unstructured triangular and

tetrahedral meshes [22, 23, 70]. The algorithm is formu-

lated in a very general manner so that it can be applied to

both conservative and non-conservative hyperbolic systems

Table 8 Computational

efficiency of the new ALE MQF

and the original WGQ direct

ALE-ADER algorithm [22] for

the two-dimensional test cases

presented in this paper

Test case NE ALE MQF ALE WGQ b

N tCPU sMQF
E

N tCPU sWGQ
E

Sedov 3200 625 2:29 � 103 1:15 � 10�3 638 7:41 � 103 3:63 � 10�3 3.2

Saltzman 2000 1069 3:81 � 103 1:78 � 10�3 1055 9:59 � 103 4:55 � 10�3 2.5

Explosion 17,340 190 4:20 � 103 1:28 � 10�3 185 1:20 � 104 3:75 � 10�3 2.9

Blast 17,864 668 4:84 � 104 4:06 � 10�3 639 5:64 � 104 4:94 � 10�3 1.2

Rotor 17,864 501 3:19 � 104 3:56 � 10�3 513 4:41 � 104 4:82 � 10�3 1.4

NE represents the total number of elements of the computational mesh, N is the number of time steps

needed to carry on the simulation until the final time, tCPU is the total computational time and sE ¼ CPUtime
NE �N

gives the time used per element update. Finally b ¼ sGFE =sQFE indicates the efficiency ratio

Table 9 Computational

efficiency of the new ALE MQF

and the original WGQ direct

ALE-ADER algorithm [23] for

the three-dimensional test cases

presented in this paper

Test case NE ALE MQF ALE WGQ b

N tCPU sMQF
E

N tCPU sWGQ
E

Sedov 320,000 2435 2:66 � 106 3:42 � 10�3 2241 2:11 � 107 2:94 � 10�2 8.6

Saltzman 50,000 5232 1:68 � 106 6:41 � 10�3 5536 9:15 � 106 3:31 � 10�2 5.2

Explosion 3,376,130 784 1:07 � 107 4:05 � 10�3 773 1:28 � 108 4:90 � 10�2 12.1

Blast 1,089,071 877 4:91 � 106 5:14 � 10�3 747 6:98 � 106 8:58 � 10�3 1.7

Rotor 1,089,071 787 3:75 � 106 4:37 � 10�3 1189 7:74 � 106 5:98 � 10�3 1.4

NE represents the total number of elements of the computational mesh, N is the number of time steps

needed to carry on the simulation until the final time, tCPU is the total computational time and sE ¼ CPUtime
NE �N

gives the time used per element update. Finally b ¼ sGFE =sQFE indicates the efficiency ratio
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of balance laws, with and without stiff source terms.

A WENO reconstruction technique is used to achieve high

order of accuracy in space, while an element-local space–

time Galerkin finite element predictor on moving curved

meshes is employed to obtain a high order accurate one-

step time discretization. To the knowledge of the author,

this is the first better than second order accurate Lagran-

gian-type finite volume scheme ever presented on

unstructured tetrahedral meshes. The final ALE finite vol-

ume scheme belongs to the category of direct ALE meth-

ods, because an additional remapping stage, which is

typically used in the context of indirect ALE and pure

Lagrangian schemes, is unnecessary in our case. This is

possible because the new class of ALE algorithms pro-

posed within this work is based directly on a space–time

conservation formulation of the governing PDE system,

which furthermore allows the geometric conservation law

(GCL) to be satisfied by the scheme by construction (see

[23] for details). The mesh motion procedure has been

described in details, considering all the steps needed to

move the mesh, namely the Lagrangian step, the rezoning

step and the relaxation step. In order to improve the overall

algorithm efficiency several variants of the original

scheme have been mentioned and briefly presented in Sect.

4. Numerical convergence studies up to sixth order of

accuracy in space and time have been shown and the new

family of direct ALE ADER-WENO schemes have been

applied to different hyperbolic systems of conservation

laws, namely the multidimensional Euler equations of

compressible gas dynamics, the ideal classical magneto-

hydrodynamics (MHD) equations and the non-conservative

seven-equation Baer–Nunziato model of compressible

multi-phase flows with stiff relaxation source terms. Sev-

eral classical test problems have been run for each system

of PDEs in order to assess the robustness of the new

schemes. The obtained numerical results have been care-

fully compared with exact or other numerical reference

solutions.

In [25] we have extended the presented algorithm to

curvilinear unstructured meshes, thus the space–time

control volumes involved in the finite volume scheme are

no longer defined by linear basis functions but by a high

order isoparametric approximation. We plan to investi-

gate pure Lagrangian algorithms, i.e. numerical methods

with zero mass flux across element interfaces, in the

context of ADER schemes and the extension to high

order Discontinuous Galerkin schemes is also left for the

future. Furthermore the use of curvilinear meshes will

allow the first better than third order pure Lagrangian

finite volume schemes to be developed on unstructured

meshes, using the already existing framework presented

in this paper.

Last but not least, another important topic will be the

application of the present scheme to more realistic real

world simulations in engineering and physics.
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