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Abstract Understanding dynamic behavior of carbon

nanotubes has been of interest to researchers because of its

practical applications. Recent studies show that nonlocal

elasticity theory gives better results in the vibration of

carbon nanotubes. The necessity of nonlocal elasticity

theory, calibration of nonlocal parameter and application of

nonlocal elasticity theory in various studies related to

vibration of carbon nanotubes are discussed. This review

emphasizes the application of nonlocal elasticity theory in

the vibration of carbon nanotubes considering various types

of complicating effects, nonlinearity, functionally graded

material and different beam theories.
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1 Introduction

Production of nanostructures has become one of the chal-

lenging area for the scientists and researchers. Some of the

nanostructures are nanobeams, nanorods, nanoribons,

nanoplates, nanocones, nanosheets and nanoshells etc. These

materials have outstanding mechanical, electrical and ther-

mal properties [1] resulting from their nanoscale dimensions.

Carbon Nanotubes (CNTs) discovered by Ijima in 1991 is

another type of nanostructureswhich have opened a new area

in the field of nanotechnology. One may refer modelling and

composite of carbon nanotubes in the review articles [2–4].

These structures have applications in the field of nanode-

vices, nanosensors, nanooscillators, nanocomposites and

Nano-Optomechanical Systems (NOMS) etc. One of the

interesting characteristics of carbon nanotubes is that they

may be modeled as nanobeams. Hence static and dynamic

behaviors of CNTs have become one of the interesting topic

in the past five years. Static studies include bending and

buckling analyses while dynamic studies include vibration

and wave propagation analyses. This article focuses mainly

on vibration of CNTs and a few on wave propagation in

CNTs. There are mainly two types of studies related to

vibration of carbon nanotubes. One is experimental studies

[5–7] and other is theoretical modeling. Theoretical model-

ing is again categorized into atomistic modeling and con-

tinuum mechanics modeling. Atomistic modeling [8–11] is

confined to problems at molecular or atomic motions. Some

of these approaches are classicalMolecularDynamics (MD),

Tight Binding Molecular Dynamics (TBMD) and Density

Functional Theory (DFT). Conducting experiments at

nanoscale size is quite expensive and time consuming.

Hence, one needs huge computational tasks. So continuum

modeling has played a significant role in nanostructures

analysis. In this modeling, the structures are considered to be

homogeneous and continuum and their intrinsic atomic

structures are not taken into consideration. Hence accurate

prediction of crystal lattice structure by this model is

doubtful. Therefore atomistic-continuum modeling [12–14]

came into existance which make up the difficulties found

with atomistic modeling and continuum modeling. This

linkage between continuumand atomic chiralitywas done by

equating the molecular potential energy with the mechanical

strain energy of a representative volume element of a con-

tinuum model. In addition to above, continuum modeling
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analysis is dependent on material constants. Continuum

mechanics may be categorized into classical (local) contin-

uummechanics and nonlocal continuummechanics. Various

theories like rod, beam and shell are incorporated in the

continuum mechanics to study vibration behavior of CNTs.

Both analytical and numerical methods have been employed

to study vibration of Single Walled Carbon NanoTubes

(SWCNTs) and Multiwalled Carbon NanoTubes

(MWCNTs) based on classical continuum mechanics [15–

28] using various theories like Euler–Bernoulli, Timoshenko

and some higher order beam theories. In these studies, var-

ious complicating effects have also been investigated. The

significant influence caused by small scale effects such as

electric force, chemical bond and van der waals forces is

neglected when vibration of carbon nanotubes are investi-

gated based on classical continuum models. Both experi-

mental and atomistic simulation results show that at nano

scale, these small length scale effect such as lattice spacing

between individual atoms may not be neglected and the

material will no longer be homogenized into a continuum.

Study of nanostructures is a recent challenge with respect to

the physical properties of the materials at micro/nano scales

which is called the ‘Quantum’ or ‘size’ effect. The change in

physical properties is due to the fact that micro/nanostruc-

tures at very small scales (molecular or atomic scale) have

discrete nature. The system can no longer be modeled as a

continuum when the dimensions of a system reduce to

nanoscale. In this case, inter-atomic or intermolecular

spacing of that system plays an important role. As such, the

influence of long range inter-atomic and inter-molecular

cohesive forces on the static and dynamic responses of the

nanostructures becomes significantwhen the structures are at

nanoscale and hence cannot be neglected. Ignoring the small

scale effects in nanodesigning may cause completely

incorrect solutions and hence gives an improper designs. So,

small scale effects must be incorporated in the realistic

design of the nanostructures [viz., nanoresonantors,

nanoactuators, nanomachines and nanooptomechanical

Systems] having nanoscale length. Hence, application of

classical continuum model which ignores lattice spacing

between individual atoms is doubtful. So various nonclas-

sical continuum theories like strain gradient theory, couple

stress theory [29, 30], micropolar theory and nonlocal elas-

ticity theory are developed to incorporate size effect by

introducing an intrinsic length scale. Among these theories,

nonlocal elasticity theory which is a stress gradient elasticity

theory proposed by Eringen [31, 32] has been widely applied

in the vibration of nanotubes. According to this theory, the

stress at a specific point depends on the strain tensors of the

entire body. As a result, the constitutive relation is the spatial

integral of weighted averages of the contribution of strain

tensors of all points in the body to the stress tensor at a given

point.

Nonlocal stress tensor r at a point x is expressed as

r ¼
Z
V

K x0 � xj j; sð Þt x0ð Þdx0 ð1Þ

where t(x) is the classical macroscopic stress tensor at a

point x and is related to strain by Hooke’s law as follows

tðxÞ ¼ CðxÞ : eðxÞ ð2Þ

where C is the fourth-order elasticity tensor. In Eq. (1), Kðj
x0 � x j; sÞ denotes nonlocal modulus, j x0 � x j the Eucli-

dean distance, s the material constant which depends on

both internal length (lattice spacing) and external charac-

teristic length (wavelength). Equation (1) denotes the

weighted average of the contributions of the strain field of

all points in the body to the stress field at a point.

Above Eqs. (1) and (2) represent the nonlocal consti-

tutive behavior of a Hookean solid. Since it is difficult to

solve the integral constitutive relation, so equivalent dif-

ferential form was proposed which is as follows [33]

1� s2l252
� �

r ¼ t; s ¼ e0a

l
ð3Þ

where e0 is material constant, a the internal characteristic

length and l the external characteristic length.

Most of the studies employed differential constitutive

relation. Nonlocal constitutive equations contain internal

length scale as a material parameter and give information

about the forces between atoms. In case of nanostructures,

effect of material constant (s) could not be neglected since

the magnitude of external characteristic scale is relatively

of the same order as that of internal characteristic scale.

Nonlocal effects considered in the nonlocal elasticity the-

ory play an important role in the vibration analysis and is

determined by the magnitude of nonlocal parameter e0a.

Hence an accurate prediction of nonlocal parameter is

needed which is done by either molecular dynamics or

theoretical approach [34–41].

This paper provides a brief review on the application of

nonlocal elasticity theory in the vibration and wave prop-

agation analyses of CNTs using beam models. In all the

studies mentioned here, one may see that size effect plays a

crucial role in the vibration analysis of CNTs. Xu [42]

emphasized that nonlocal impact on natural frequencies

and vibrating modes is negligible for micro beams and

plays a significant role in case of nanobeams. Importance

of nonlocal effects [43] has been shown based on some of

the choosen problems. In this study, it has been shown that

microelectromechanical systems (MEMS) devices would

not exhibit nonlocal effects while nanoscale devices exhi-

bit. Hence nonlocal elasticity theory plays a vital role in the

modeling and design of nanoelectromechanical systems

(NEMS) devices [44, 45]. Since nonlocal elasticity theory

proposed by Eringen, most of the studies have been
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investigated using this theory. As such, various types of

beam theories have been employed. Some of the studies

give exact solutions for simple boundary conditions viz.,

simply supported case. But, since it is somehow difficult to

find exact solution for complex geometries with different

boundary conditions, so numerical methods like Finite

Element Method (FEM), Differential Quadrature (DQ)

method, Rayleigh–Ritz method, Homotopy Perturbation

method etc have been employed in the analysis. Seeing the

practical application of CNTs in day today life, researchers

have studied vibration analysis of CNTs considering

geometry of CNTs (radius, length and number of layers),

surrounding medium, temperature and boundary conditions

etc. This article reviews all these studies done so far.

Though Arash and Wang [46] have reviewed application of

nonlocal elastic theories in the modeling of CNTs and

graphene sheets. But to the best of our knowledge, there

exists no paper which gives recent trends and works on the

vibration of CNTs using beam models based on nonlocal

elasticity theory. This article is arranged in the following

manner: (1) different beam theories. In this section, we

have considered both SWCNTs and MWCNTs and under

this subsection, we have considered various complicating

effects, nonlinear vibration, functionally graded and wave

propagation. (2) Some of the studies based on rod models.

(3) Future direction and lastly (4) conclusion.

One may note that various theories such as Euler–Ber-

noulli theory, Timoshenko beam theory, Reddy beam the-

ory, Levinson beam theory and third order shear

deformation beam theory etc are developed recently to

study vibration of carbon nanotubes based on nonlocal

elasticity theory. Accordingly, the subsequent paragraphs

give the detail investigations in the above regard.

2 Euler–Bernoulli Beam Theory

Based on this theory, the displacement fields are given by

Reddy [150]

u1 ¼ uðx; tÞ � z
ow

ox

u2 ¼ 0

u3 ¼ wðx; tÞ

ð4Þ

where ðu1; u2; u3Þ are the displacements along x, y, z

coordinates respectively, (u, w) are the axial and transverse

displacements of the point (x, 0) on the mid plane (z = 0)

of the beam and t denotes time. Transverse shear and

transverse normal strains are neglected in this theory.

Strain displacement relation may be written as

exx ¼
ou

ox
� z

o2w

ox2
ð5Þ

where exx is the strain.

Governing equations of Euler–Bernoulli beam theory

may be written as

oN

ox
þ f ¼ m0

o2u

ot2
ð6Þ

o2M

ox2
þ q� �N

o2w

ox2
¼ m0

o2w

ot2
� m2

o4w

ox2ot2
ð7Þ

where �N is applied axial compressive force,

M ¼
R
A
zrxxdA, N ¼

R
A
rxxdA and (f(x, t), q(x, t)) are the

axial and transverse distributed forces. One may note that

governing equations for free vibration of nanobeams may

be obtained by setting �N and q to zero.

In Eqs. (6) and (7), m0 and m2 are mass inertias and are

defined as follows:

m0 ¼
Z
A

qdA; m2 ¼
Z
A

qz2dA

where A and q denote cross sectional area and mass density

of nanobeams respectively.

Some of the commonly used boundary conditions based

on Euler–Bernoulli beam theory are given below:

Simply Supported Transverse displacement (w) is 0 and

transverse shear force (Qx) is unknown. In addition, the

bending moment should be specified while slope is not

specified.

Clamped Transverse displacement and slope are speci-

fied to be 0 whereas shear force and bending moment are

unknown.

Free Transverse deflection as well as the slope are not

specified whereas shear force and bending moment

should be specified.

Based on this theory, various investigations have been

carried out for SWCNTs and MWCNTs considering

various complicating effects, nonlinearity and combina-

tion of functionally graded materials with nanotubes.

Some wave propagation analysis of nanotubes has also

been discussed.

2.1 Single Walled Carbon NanoTubes (SWCNTs)

There are two types carbon nanotubes: Single Walled

Carbon NanoTubes (SWCNTs) and Multi Walled Carbon

NanoTubes (MWCNTs). SWCNTs have one single layer of

graphene cylinders while MWCNTs have many layers. In

this section, we will discuss recent investigations done for

SWCNTs based on Euler–Bernoulli beam theory. One

should keep in mind some of the important points [47]

while applying nonlocal beam models in the vibration of

CNTs. Authors [47] have derived governing equations for

nonlocal Euler Bernoulli and Timoshenko beams. Then
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they have pointed out some of the facts which have been

overlooked in some of the studies due to which inaccurate

results may have been obtained.

Analytical method [97] and numerical methods like Ritz

method [48–50] and finite element method [50, 51, 52]

have been applied to solve governing equation of vibration

of Euler–Bernoulli beams using nonlocal elasticity theory.

Authors [99] found expression for frequency parameter ðkÞ
of nonlocal simply supported Euler–Bernoulli beams as

k ¼ n2P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2P2a2

p

where n takes positive integral values, a is the scaling

effect parameter and k ¼ qAx2L4

EI
. The parameters

q;A;x; L;E and I are density of nanotubes, cross sectional

area, natural frequency, length of nanotube, Young’s

modulus and mass moment of inertia respectively.

As mentioned above, Ritz method and finite element

method are two types of methods used by few researchers

in their studies. The basis functions for FEM are taken

element wise whereas the basis functions for Rayleigh–

Ritz method are taken for the whole domain. Analytical

and FEM solutions have been found only for some of the

common boundary conditions. Till now, all the boundary

conditions have not been taken into consideration since

these solutions are quite difficult to solve. In this regard,

Rayleigh–Ritz method is an efficient numerical method in

handling all set of classical boundary conditions [50]. One

may observe from the numerical and analytical results

that frequency parameters decrease when scaling effect

parameters increase [50, 53, 99]. Figure 1 shows the

variation of frequency parameter with scaling effect

parameter.

Next, in the following paragraph, we have discussed

how the solutions are affected by surrounding medium,

thermal effect, fluid conveying nanotubes and different

shapes of nanotubes. The significance of nonlocal effects is

emphasized in case of cracked nanobeams in which two

segments are connected by rotational spring [54]. In case of

cracked nanobeams, natural frequencies decrease when

nonlocal parameter increases and the influence of nonlocal

effect can be clearly seen in case of higher modes.

Sixth order compact finite difference method [55] has

been used to study free vibration analysis of nanobeams

embedded in an elastic medium using nonlocal Euler

Bernoulli theory. Nanocantilever shows different results

compared to other boundary conditions. Upto critical

height ratio (CHR), nonlocal frequencies are larger than

local frequencies and beyond CHR, the trend is exactly

opposite [56].

Knowledge of dynamic behavior of rotating nanostruc-

tures is important in the production of nanomachines. So

few studies have been analyzed for bending vibration

characteristics of rotating nanocantilever beams [57, 58]. In

Ref. [57], one may see that as rotational angular velocity

increases, the small scale effect on the frequency response

is increased in first mode while it is decreased in higher

modes. Frequency parameters increase with rotating

angular velocity [58] in both local and nonlocal elasticity

models. In case of rotating nanotubes, fundamental fre-

quency parameter increases with tensile axial preload and

decreases with increase in compressive preload [59].

Nonlocal parameter is dependent on the aspect ratio except

in slender nanotubes and plays an important role on the

dynamic displacements [60, 61].

Vibration behavior of carbon nanotubes embedded in a

pasternak medium has been analyzed by Soltani et al. [62]

under a thermal environment. Bubnov–Galerkin method

has been applied by Mustapha and Zhong [63] to study

thermo-mechanical vibration of SWCNTs. The difference

between local and nonlocal frequency is comparatively

high at low temperature change [64]. Fundamental fre-

quency and critical flow velocity increase with temperature

change at low temperature while they decrease with tem-

perature change [65] at high temperature. Waviness in the

curved SWCNTs causes increase in natural frequency as

compared to straight SWCNTs [66].

Vibration of viscous fluid conveying SWCNTs has been

investigated by Lee and Chang [67] to examine the effects

of nonlocal parameter, viscosity, aspect ratio and elastic

medium on the fundamental frequency. Nonlocal Euler–

Bernoulli beam theory has been applied to study vibration

characteristics of nonuniform SWCNTs conveying fluid

embedded in viscoelastic medium [68]. Small scale effect

has significant effect on critical flow velocities for fluid

conveying beams with nano length scale but this effect is
Fig. 1 Variation of frequency parameter of simply supported Euler

Bernoulli nanobeams with scaling effect parameter
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neglected for microbeams [69]. Knowledge of vibration

characteristics of fluid conveying nanotubes may help to

design nanofluidic devices [70].

Since CNTs can undergo large deformations within the

elastic limit, so nonlinear analysis is quite important. Some

studies on nonlinear vibration based on nonlocal Euler–

Bernoulli beam theory include effective resonant frequency

of a cantilever SWCNTs with rippling deformation [71],

nonlinear vibration of SWCNTs resting on an elastomeric

substrate under thermal effects [72], nonlinear flexural

vibrations of elastically supported nonuniform nanobeams

[73], nonlinear vibration of simply supported SWCNTs

embedded in Pasternak-type foundation [74] and nonlocal

effect on nonlinear vibrations of Euler–Bernoulli beam

[75].

Functionally graded materials (FGMs) have been graded

to achieve specific thermal and mechanical properties to

increase the functionality of the structure. Now a days,

FGMs are used in nanoelecromechanical system to achieve

high sensitivity and desired performance. Hence few

studies [76, 77] are illustrated here related to functionally

graded nanobeams. Wave propagation analysis in carbon

nanotubes based on nonlocal elasticity theory has become

one of the interesting area in the field of nanotechnology.

Some studies on wave propagation in carbon nanotubes

[78–80] have also been reported.

2.2 Multi Walled Carbon NanoTubes (MWCNTs)

One should note the difference between governing equa-

tions of DWCNTs and SWCNTs [47] based on Euler–

Bernoulli beam theory. Multiwalled carbon nanotubes

having length L [82] consist of n nanotubes of cylindrical

shape. It lies on a Winkler foundation having foundation

modulus as j and is subjected to an axial stress rx.
Equations of motion for multiwalled carbon nanotubes

are given by

D1ðw1;w2Þ ¼ L1ðw1Þ � c12ðw2 � w1Þ

þ g2c12
o2w2

ox2
� o2w1

ox2

� �
¼ 0

ð8Þ

Diðwi�1;wi;wiþ1Þ ¼ LiðwiÞ þ cði�1ÞðiÞðwi � wi�1Þ
� cðiÞðiþ1Þðwiþ1 � wiÞ

� g2cði�1ÞðiÞ
o2wi

ox2
� o2wi�1

ox2

� �

þ g2cðiÞðiþ1Þ
o2wiþ1

ox2
� o2wi

ox2

� �
¼ 0

for i ¼ 2; 3; . . .; n� 1

ð9Þ

Dnðwn�1;wnÞ ¼ LnðwnÞ þ cðn�1ÞðnÞðwn � wn�1Þ

� g2cðn�1ÞðnÞ
o2wn

ox2
� o2wn�1

ox2

� �
¼ f ðx; tÞ

ð10Þ

where f(x, t) is the external force acting on the outermost

nanotube and LiðwiÞ is the differential operator given by

LiðwiÞ¼EIi
o4wi

ox4
þqAi

o2wi

ot2
þAirx

o2wi

ox2

� g2Ai q
o4wi

ox2ot2
þrx

o4wi

ox4

� �
þdin jwn�jg2

o2wn

ox2

� �

ð11Þ

Here, the index i ¼ 1; 2; . . .; n refers the order of the nan-

otubes with the innermost nanotube indicated by i ¼ 1 and

the outermost nanotube indicated by i ¼ n. Also, wiðx; tÞ is
the transverse deflection of the ith nanotube, 0� x� L and

t1 � t� t2. In the above equations, din is the Kronecker’s

delta, g ¼ e0a is the nonlocal parameter, E the Young’s

modulus, Ii and Ai are the moment of inertia and the cross

sectional area of the ith nanotube respectively. The coef-

ficient cði�1ÞðiÞ is the interaction coefficient of van der

Waals forces between the ði� 1Þ and ith nanotubes with

i ¼ 2; . . .; n.
Variational formulations help to find solutions using

various numerical methods like finite element method,

Rayleigh–Ritz method etc. This also helps to derive natural

and geometric boundary conditions correctly. Hence it is

very necessary to obtain variational formulations. In this

regard, semi inverse method developed by He [81] is one

way to find. In this method, trial functions were used for

deriving variational principles. Based on this method, some

of the studies are discussed below. Semi inverse method

[82, 83] has been applied to derive variational principles

for the vibration of multiwalled carbon nanotubes based on

nonlocal Euler–Bernoulli beam theory.

MWCNTs may behave similar to single beam in high

values of nonlocal parameter. In higher modes, natural

frequencies of multiple Euler–Bernoulli beams tend to

frequencies of its constituent beams [84]. Amplitude ratios

for nonlocal Euler–Bernoulli beam have been given for

DWCNTs [85]. Higher modes of DWCNTs are dominated

by van der walls interaction between the inner and outer

nanotubes [86]. Natural frequencies and associated ampli-

tude ratios (inner to outer tubes) are dependent on small

length scale [87]. In double nanobeam system [88], the

nonlocal effects are reduced with the increase in the stiff-

ness of the coupling springs during the out-of-phase modes

of vibration.

Bending vibration of coupled nanobeam system [89]

under prestressed condition has also been studied using
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nonlocal elasticity theory. Forced vibration of elastically

connected double walled carbon nanotubes carrying a

moving nanoparticle has been investigated using nonlocal

Euler–Bernoulli beam theory [90]. Longitudinal magnetic

effect on DWCNTs has been analyzed analytically [91, 92]

based on nonlocal Euler–Bernoulli theory. This study

shows that synchronous vibration phases of DWCNTs are

greatly influenced by nonlocal effects than asynchronous

vibration phases. Effect of small length scale on natural

frequencies of DWCNTs conveying fluid has been dis-

cussed by Wang [93]. First three vibration frequencies of

DWCNTs conveying fluid are lower than those of

SWCNTs [94].

Harmonic balance method and Davidon–Fletcher–Pow-

ell method are applied to study nonlinear free vibration of

double walled carbon nanotubes based on nonlocal Euler–

Bernoulli theory [95] and it may be noticed that noncoaxial

vibration amplitudes considering only nonlinear van der

Waals forces are larger than considering both geometric

nonlinearity and nonlinear van der Waals forces. Incre-

mental harmonic balance method has been adopted to study

nonlinear vibrations of embedded MWCNTs under thermal

environment [96]. Vibration characteristics of DWCNTs

subjected to initial stress [97] have been analyzed based on

the above theory. Small scale effect also plays an important

role in case of wave propagation analysis in DWCNTs

under temperature field [98].

3 Timoshenko Beam Theory

Timoshenko beam theory is based on constant shear stress

assumption. Therefore, shear correction factor is included

to compensate the error.

The displacement fields are based on [150]

u1 ¼ uðx; tÞ þ z/ðx; tÞ
u2 ¼ 0

u3 ¼ wðx; tÞ
ð12Þ

where / denote the rotation of cross section.

Strain displacement relations are given by

exx ¼
ou

ox
þ z

o/
ox

cxz ¼ /þ ow

ox

ð13Þ

where cxz is transverse shear strain.

Governing equations of Timoshenko beam theory are

given by

oQ

ox
þ q� �N

o2w

ox2
¼ m0

o2w

ot2

oM

ox
� Q ¼ m2

o2/
ot2

ð14Þ

where Q ¼
R
A
rxzdA. For other notations one may refer

Sect. 2.

Some of well known boundary conditions based on

Timoshenko beam theory are given below:

Simply Supported Transverse displacement is 0 and

transverse shear force is unknown. In addition, the

bending moment is specified while rotation is not

specified.

Clamped Transverse deflection as well as the rotation are

assumed to be 0. Shear force and bending moment are

unknown.

Free Transverse deflection as well as the rotation are not

specified. Shear force and bending moment are specified.

3.1 Single Walled Carbon NanoTubes (SWCNTs)

As in Euler–Bernoulli beams, one should also carefully

handle while applying nonlocal elasticity theory in

Timoshenko beams [47]. In this study, it is seen that

Timoshenko beam model predicts closer results with

molecular dynamics (MD) results than Euler–Bernoulli

beam model. Analytical [99, 100] and numerical solutions

[101, 102] for vibration of nonlocal Timoshenko nano-

beams show that frequency parameters are greatly affected

by nonlocal parameter. Frequency parameters decrease

with increase in nonlocal parameter (Fig. 2). Effect of

nonlocal parameter on the natural frequencies and mode

shapes has been shown in [103]. Meshless method with

radial basis function has been used in the bending, buckling

and free vibration of nonlocal Timoshenko nanobeams.

They found that global collocation is used for bending and

free vibration while local collocation is used for buckling

Fig. 2 Variation of frequency parameter of clamped-clamped

Timoshenko nanobeams with scaling effect parameter
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analysis [104]. Vibration of nanotubes embedded in an

elastic medium has been investigated based on nonlocal

Timoshenko beam theory [105]. Nonlocal parameter has

prominent effect particularly in case of cantilever carbon

nanotubes which will flutter at critical values of material

constant [106]. Nonlocal Timoshenko beam models yield

better fundamental frequencies of shorter SWCNTs than

local beam models [107].

For nonlocal elastic structures, quadratic functionals

could not be obtained directly using minimum of potential

energy. They can be obtained from weak form of governing

equations [108]. Timoshenko beam model may be used for

short CNT biosensors [109]. Frequencies of embedded

SWCNTs are dependent on the nonlocal parameter and

also on the stiffness of the surrounding elastic medium

[110]. Mechanically based approach [111] for nonolocal

elasticity has been discussed to study dynamics of nonlocal

Timoshenko beam model. Nonlocal viscoelastic model

(extension of nonlocal elasticity model) was used to study

vibration of damped Timoshenko beams [112]. The non-

local viscoelastic constitutive relation for Timoshenko

beam is as follows

rxx � ðe0aÞ2
o2rxx
ox2

¼ E 1þ sd
o

ot

� �
z
oh
ox

rxz � ðe0aÞ2
o2rxz
ox2

¼ G 1þ sd
o

ot

� �
hþ ow

ox

� � ð15Þ

where E is the Young’s modulus, G the shear modulus, sd
the viscous damping coefficient, e0a the nonlocal param-

eter, w the transverse deflection and h the rotation of cross

section. Nondimensional fundamental frequency increases

with angular velocity [113]. Dynamic analysis of embed-

ded SWCNTs has been studied under a moving nanopar-

ticle [114]. Vibration of nanobeams has been analyzed to

examine effect of initial stress [115]. Effect of nonlocal

parameter on the frequency is greatly affected by temper-

ature change and frequencies decrease with thickness of

CNTs [116]. Piezoelectric materials have electromechani-

cal coupling effect due to mechanical deformations under

the application of electrical loads or electrical deformation

under the influence of mechanical loads. So these materials

have application in smart structures or systems. It is

therefore important to study piezoelectric materials [117].

Vibration characteristics also depend on the chirality of

zigzag carbon nanotubes [118].

Nonlocal Timoshenko beam theory is used to study

thermal vibration response of embedded SWCNTs [119].

This study shows that at low temperature change, the

effect of Winkler’s constant is negligible on nonlocal

frequency. At low temperature, frequencies including

thermal effect are larger than excluding thermal effect

while at high temperature, the trend is opposite [120].

For designing CNT-based fluidic devices, it is necessary

to know vibration property of fluid flow inside CNTs.

Nonlocal Timoshenko beam theory has been used to

study flexural vibration of viscoelastic carbon nanotubes

which convey fluids and has been embedded in viscous

fluid [121]. It is observed here that the critical flow

velocity including the effect of external fluid is lesser

than that without considering the effect of external fluids.

Timoshenko beam theory has been taken into consider-

ation for examining surface effects on frequency analysis

of nanotubes [122]. Investigations on nonlinear vibration

based on nonlocal Timoshenko beam theory include

nonlinear vibration of an embedded curved single walled

carbon nanotube under a harmonic load [123], nonlinear

free vibration of single walled carbon nanotube [124]

and nonlinear vibration of piezoelectric nanobeams

[125].

3.2 Multi Walled Carbon NanoTubes (MWCNTs)

Governing equations for multiwalled carbon nanotubes

based on nonlocal Timoshenko beam theory are given as

follows [126]

Da1ðw1;u1;w2Þ¼La1ðw1;u1Þ�c12Dw21þg2c12
o2Dw21

ox2
¼0

ð16Þ
Db1ðw1;u1Þ ¼ Lb1ðw1;u1Þ ¼ 0 ð17Þ

Da2ðw1;w2;u2;w3Þ¼ La2ðw2;u2Þþ c12Dw21

� c23Dw32

þg2 �c12
o2Mw21

ox2
þ c23

o2Mw32

ox2

� �
¼ 0

ð18Þ
Db2ðw2;u2Þ ¼ Lb2ðw2;u2Þ ¼ 0 ð19Þ

Daiðwi�1;wi;ui;wiþ1Þ
¼ Laiðwi;uiÞ þ cði�1ÞðiÞDwðiÞði�1Þ � cðiÞðiþ1ÞDwðiþ1ÞðiÞ

� g2cði�1ÞðiÞ
o2MwðiÞði�1Þ

ox2
þ g2cðiÞðiþ1Þ

o2Mwðiþ1ÞðiÞ
ox2

¼ 0

ð20Þ
Dbiðwi;uiÞ ¼ Lbiðwi;uiÞ ¼ 0 ð21Þ

where i ¼ 3; 4; . . .; n� 1

Danðwn�1;wn;unÞ ¼ Lanðwn;unÞ þ cðn�1ÞðnÞDwðnÞðn�1Þ

� g2cðn�1ÞðnÞ
o2MwðnÞðn�1Þ

ox2

¼ f ðx; tÞ
ð22Þ
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Dbnðwn;unÞ ¼ Lbnðwn;unÞ ¼ 0 ð23Þ

where Laiðwi;uiÞ and Lbiðwi;uiÞ are given as follows:

Laiðwi;uiÞ¼qAi

o2wi

ot2
�qAig

2 o4wi

ox2ot2
þksGAi

o

ox
ui�

owi

ox

� �

þAirx
o2wi

ox2
�Airxg

2o
4wi

ox4
þdin kwn�kg2

o2wn

ox2

� �

ð24Þ

Lbiðwi;uiÞ ¼ qIi
o2ui

ot2
� qIig

2 o4ui

ox2ot2
þ ksGAi ui �

owi

ox

� �

� EIi
o2ui

ox2

ð25Þ

In the above equations, u is the angle of rotation, Dwij is

the difference operator defined as Dwij ¼ wi � wj. Also, din
is the Kronecker’s delta, f(x, t) the forcing function, G the

shear modulus and ks the shear correction factor. The

coefficient cðiÞði�1Þ is the interaction coefficient of van der

Waals forces between the ði� 1Þ and ith nanotubes with

i ¼ 2; . . .; n. It may be noted that, other parameters are

defined in Sect. 2.2. Various studies of MWCNTs viz.,

Free vibration analysis of embedded double walled carbon

nanotubes [127], semi inverse method to derive variational

principles for MWCNTs [128], vibration of in-plane loaded

double walled carbon nanotubes [129], vibration of carbon

nanotubes using nonlocal continuum mechanics [130],

nonlinear vibrations of embedded multiwalled carbon

nanotubes under thermal effect [131], nonlinear free

vibration of embedded double walled carbon nanotubes

[132], transverse wave propagation in DWCNTs [130],

flexural wave propagation in DWCNTs [133, 134] have

been analysed based on nonlocal Timoshenko beam theory.

4 Modified Nonlocal Beam Model

Most of the studies on carbon nanotubes are based on

partial elasticity theory and hence results obtained may be

inaccurate. In the partial nonlocal elasticity model, higher

boundary conditions for a higher order differential equation

do not exist. Based on Eringen’s nonlocal elasticity theory,

an exact nonlocal beam model [135] has been developed

where infinite order governing equation and the corre-

sponding higher order boundary conditions are taken into

consideration. In this model, effective nonlocal bending

moment is derived which is an infinite series of higher-

order nonlocal bending moments. In the equilibrium con-

dition, classical bending moment should be replaced with

effective nonlocal bending moment instead of nonlocal

bending moment.

Nonlocal beam model was first used by Lee and Chang

[136] for studying nonlocal effect on single walled carbon

nanotubes conveying fluid. In their study, they saw that

natural frequencies decrease with nonlocal parameter and

critical flow velocities do not change with nonlocal

parameter. Later it was pointed out that the equation used

by them should be improved and hence they got inaccurate

results [137]. At the same time, various studies have also

been carried out based on partial nonlocal models. Using

this exact nonlocal stress model, the vibration properties

and stability of nanotubes conveying fluid are examined

[138]. They found natural frequencies induce higher nat-

ural frequencies and the critical flow velocity with

increasing nonlocal parameter. Hence exact nonolocal

stress model gives different results to that of partially

nonlocal stress model. Some of the works based on this

theory are transverse vibration of simply supported nano-

beams with an initial axial tension [139], transverse

vibration of simply supported nanobeams subjected to

initial axial force [140], dynamic behaviour of axially

moving nanobeams [141], modeling of one dimensional

nanobeam by exact variational approach [142], free

vibration of thick nanostructures [143], transverse vibra-

tions of a nanobeam subjected to a variable initial axial

force [144], torsional vibration of axially moving nan-

otubes [145], thermal elasticity for nanobeam deformation

[146], initial axial tension on free vibration of cantilever

nanobeams [147] and wave propagation in carbon nan-

otubes [148, 149].

5 Other Beam Theories

5.1 Single Walled Carbon NanoTubes (SWCNTs)

Other than Euler–Bernoulli and Timshenko beam theories,

investigations have also been carried out using other beam

theories like parabolic shear deformation beam theory

(RBT) of Reddy, general exponential shear deformation

beam theory (ABT) of Aydogdu, Levinson beam theory,

refined theory of Thai and sinusoidal shear deformation

theory etc. Here some of them are cited below.

The displacement fields of Reddy beam theory are given

by Reddy [150]

u1 ¼ uðx; tÞ þ z/ðx; tÞ � c1z
3 /þ ow

ox

� �

u2 ¼ 0

u3 ¼ wðx; tÞ

ð26Þ

where c1 ¼ 4
ð3h2Þ and h is the height of the beam. One may

refer Sect. 2 for other notations.
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Governing equations of this theory are as follows:

� m0

o2w

ot2
� c1m4

o3/
oxot2

þ c21m6

o3/
oxot2

þ o4w

ox2ot2

� �

þ c1
o2P

ox2
¼ 0

� m̂2

o2/
ot2

þ c1m̂4

o2/
ot2

þ o3w

oxot2

� �
þ oM̂

ox
¼ 0

ð27Þ

where mi ¼
R
A
qzidA, i ¼ 0; 4; 6 are mass inertias,

m̂2 ¼ m2 � c1m4, m̂4 ¼ m4 � c1m6, M ¼
R
A
zrxxdA, P ¼R

A
z3rxxdA, Q ¼

R
A
rxzdA, R ¼

R
A
z2rxzdA, N ¼

R
A
rxxdA,

M̂ ¼ M � c1P, Q̂ ¼ Q� c2R and c2 ¼ 4
h2
.

Displacement fields of Levinson beam theory are same

as that of Reddy beam theory but governing equations are

same as that of Timoshenko beam theory. In this theory,

Levinson used a vector approach to derive equilibrium

equations while Reddy used variational consistent

approach for deriving equilibrium equations.

Equations of motion, variational statements and analyt-

ical solutions have been given for bending, buckling and

vibration of beams using different nonlocal beam theories

like Euler–Bernoulli, Timoshenko, Reddy and Levinson

beam theories [150]. A generalized nonlocal beam theory

[151] has also been introduced to study bending, buckling

and free vibration of nanobeams. After the general for-

mulation, other well-known beam theories like Euler–

Bernoulli, Timoshenko, Reddy and Aydogdu are found as a

special case without repeating derivation of governing

equations. As such, generalized nonlocal beam theory is

given as below

Uðx; z; tÞ ¼ uðx; tÞ � z
ow

ox
þ f ðzÞu1ðx; tÞ

Vðx; z; tÞ ¼ 0

Wðx; z; tÞ ¼ wðx; tÞ

ð28Þ

where f ðzÞ ¼ 0 for Euler–Bernoulli beam theory, f ðzÞ ¼ z

for Timoshenko beam theory, f ðzÞ ¼ zð1� 4z2

3h2
Þ for Reddy

beam theory and f ðzÞ ¼ ðzÞð3Þ
�2 z

h2

ln3 for ABT.

In Eq. (14), (U, V, W) are displacements along x, y, z

directions respectively, u1 the rotation of cross section and

(u, w) are the axial and transverse displacements respec-

tively. They also gave analytical solutions for simply

supported nanobeams.

A nonlocal shear deformation beam theory [152] and

nonlocal sinusoidal shear deformation beam theory [153]

have been applied for bending, buckling and vibration of

nanobeams. Nonlocal sinusoidal shear deformation beam

theory includes quadratic variation of shear strains and

shear stresses through the thickness of the beam and has

some similarities with Euler–Bernoulli beam theory.

Vibration of nanotube structures under excitation of a

moving nanoparticle [154] has been investigated by non-

local Euler–Bernoulli, nonlocal Timoshenko and nonlocal

higher order beam theories. Nonlocal Rayleigh beam

model [155] has been applied to study flap wise vibration

characteristics of a rotating single walled carbon nanotube

embedded in an elastic medium and has been solved by

Differential Quadrature method. Nonlocal Rayleigh (NLR)

beam has been used to study vibration of SWCNTs that is

axially loaded and embedded in an elastic medium [156].

Effects of boundary conditions and initial axial forces have

been investigated for transverse vibration of single walled

nanotube structures embedded in an elastic medium based

on Euler Bernoulli, Timoshenko and other higher order

beam models [157]. Forced vibration analysis of func-

tionally graded nanobeams has been investigated using

generalized beam theory [158].

5.2 Multi Walled Carbon NanoTubes (MWCNTs)

Vibration of double walled carbon nanotubes subjected to a

moving nanoparticle has been investigated by Kiani [159]

using nonlocal Euler–Bernoulli, nonlocal Timoshenko and

nonlocal higher order beam theories. Nonlocal Rayleigh

beam theory [160] has been used to study free transverse

vibration of elastically supported double walled carbon

nanotubes subjected to axially varying magnetic fields.

6 Rod Models

Differential Quadrature method has been applied [161] to

investigate axial vibration of tapered nanorod using non-

local elasticity theory. Free axial vibration of nanorod in

terms of displacement is given by Danesh et al. [161]

EAðxÞ o
2uðx; tÞ
ox2

¼ 1� ðe0aÞ2
o2

ox2

� �
mðxÞ o

2uðx; tÞ
ot2

ð29Þ

where A(x) is cross sectional area, m(x) the mass per unit

length, q the density, u(x, t) the axial displacement and

E the elastic modulus.

Nonlocal elasticity has been employed to study axial

vibration of SWCNTs embedded in an elastic medium

[162]. Axial vibration of SWCNTs based mass sensor [163]

has been proposed using nonlocal elasticity theory. Some

of the other works based on rod models are axial vibration

of nanorod [164], axial wave propagation in coupled

nanorod [165], axial vibration of carbon nanotube hetero-

junctions [166], longitudinal vibration of SWCNTs with

attached buckyballs [167], longitudinal vibration of double

nanorod system [168], longitudinal vibration of nanorod
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with internal long range interactions [169] and torsional

vibration of carbon nanotube with attached buckyball

systems [170].

7 Future Directions and Conclusions

Application of nonlocal elasticity theory may be extended to

other types of nanostructures incluiding various complicat-

ing effects such as carbon nanotubes carrying nanoparticles

subjected to external force and carbon nanotubes carrying

fluid under magnetic field. Few works have been done using

rod models and hybrid nonlocal continuum model. Future

studies may include application of hybrid nonlocal model

using beamor rod theories.Most of the recent studies employ

analytical solutions for simply supported boundary condi-

tion. Some of the efficient numerical methods like homotopy

perturbation method, discrete convolution technique, Ado-

mian decompositionmay also be applied in the analysis. One

may develop analytical solutions for other boundary condi-

tions. It is seen that most of the studies include analysis by

numerical or analytical methods. One may also develop

solutions using theoretical proofs.

Present article includes importance of nonlocal elasticity

theory in the vibration of carbon nanotubes. Various inves-

tigations of vibration of carbon nanotubes based on nonlocal

elasticity theory have been cited and discussed. In this arti-

cle, authors have discussed vibration of SWCNTs and

MWCNTs using different beam theories including nonlinear

vibration, complicating effects and functionally graded

materials. Some of the references related with wave propa-

gation analysis in the CNTs have also been cited and dis-

cussed. Lastly, few analysis based on rod models have also

been included. Some of the future directions have also been

pointed out.
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