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Abstract Research on topology optimization mainly

deals with the design of monoscale structures, which are

usually made of homogeneous materials. Recent advances

of multiscale structural modeling enables the consideration

of microscale material heterogeneities and constituent

nonlinearities when assessing the macroscale structural

performance. However, due to the modeling complexity

and the expensive computing requirement of multiscale

modeling, there has been very limited research on topology

optimization of multiscale nonlinear structures. This paper

reviews firstly recent advances made by the authors on

topology optimization of multiscale nonlinear structures, in

particular techniques regarding to nonlinear topology

optimization and computational homogenization (also

known as FE2) are summarized. Then the conventional

concurrent material and structure topology optimization

design approaches are reviewed and compared with a

recently proposed FE2-based design approach, which treats

the microscale topology optimization process integrally as

a generalized nonlinear constitutive behavior. In addition,

discussions on the use of model reduction techniques is

provided in regard to the prohibitive computational cost.

Keywords Topology optimization � Multiscale analysis �
Microstructure � Homogenization � Model reduction

1 Introduction

1.1 Design of Monoscale Structures

Since the seminal paper by [6], topology optimization has

undergone a remarkable development in both fields of

academic research (e.g., [8, 25, 60]) and industrial appli-

cation (e.g., [143]). Various approaches have been pro-

posed, such as density-based methods (e.g., [5, 141]),

evolutionary procedures (e.g., [59, 122, 123, 142]), level-

set methods (e.g., [1, 13, 97, 113]) and others, all with the

purpose of finding an optimal structural topology or

material layout within a given design domain for specified

objectives, constraints, and boundary conditions as is

shown in Fig. 1. A critical review and comparison of the

various design approaches has been recently presented by

[103].

Early works on topology optimization were restricted to

linear structural designs with the small deformation

assumption (e.g., [8]). In pursuing more realistic designs,

continuous efforts have been conducted to extend topology

optimization to nonlinear structural designs considering

various sources of nonlinearity, such as geometrical non-

linearity (e.g., [11, 12, 42, 76, 92, 111, 130]), material

nonlinearity (e.g., [4, 78, 96, 131, 133, 134]), and both

geometrical and material nonlinearities simultaneously

(e.g., [58, 61, 68]).

1.2 Design of Multiscale Structures

Note that all abovementionedworks focused on the design of

monoscale structures, in other words the considered struc-

tures aremade of homogeneousmaterials. In the recent years,

there is an increasing use of high-performance heterogeneous

materials such as fiber-reinforced composites, porous
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metallic materials, polymers and etc. When a structure made

of these materials is under consideration, one has to account

for material microscopic heterogeneities and constituent

behaviors so as to assess the structural performance with

more accuracy. Direct modeling of such structures including

each individual microstructure is rather difficult or even

impossible. Instead, a usual applied approach to bridge the

two scales (structure and material), is homogenization (e.g.,

[47, 54, 55, 81]). By means of homogenization, one may

evaluate the effective or homogenized constitutive behavior

of the considered microstructure or Representative Volume

Element (RVE) model and then use it to serve structural

assessment rather than direct modeling it (e.g., [48, 118, 126,

127]). The key hypotheses of homogenization are the sepa-

ration of scales and the periodicity. It is assumed that the

microscopic length scale is much smaller than the macro-

scopic length scale such that the microscale RVE can be

considered as periodically ordered pattern, while at the same

time, the RVE is large enough to be considered in continuum

mechanics framework, as is shown in Fig. 2.

However, such approach encounters difficulties when

geometrical and physical nonlinearities are present at the

material scale. For such reason, computational homoge-

nization approaches have been proposed (e.g. [30, 44, 66,

67, 70, 82, 83, 105]) and largely developed in the last

decade [43] in order to assess the macroscopic influence of

microscopic heterogeneities. Note that within the finite

element analysis framework, this approach is also known

as FE2 following [30]. In general, it asserts that each point

of the macroscopic discretization is associated with a RVE

of the (nonlinear) microstructured material. Then for each

macroscopic equilibrium iteration a nonlinear load incre-

ment needs to be computed for each of the (many) RVEs.

In return the average stress across the RVE is then used as

the macroscopic stress tensor without requiring effective

constitutive relations. A schematic illustration of the first-

order computational method [43] is shown in Fig. 3.

A downside of this very general FE2 method is the high

computational burden. First, many nonlinear load steps

need to be computed at the microscopic level which leads

to a prohibitive amount of computing time. Second, when

path-dependent constitutive behaviors are considered at the

microscopic scale, the microscopic degrees of freedom and

the history variables describing the material state need to

be stored for each point within each RVE which leads to a

distinct amount of additional storage requirements. In

nonlinear topology optimization the multiscale dilemma is

even more pronounced: not only is it required to solve the

multiscale problem once, but for many different realiza-

tions of the structural topology. For these reasons, there has

been very limited research on topology optimization of

multiscale nonlinear structures within the above mentioned

context. A first attempt towards FE2-based multiscale

topology optimization has been recently made by the

authors [115], where topology optimization is performed

for a two-scale structure made of a nonlinear elastic RVE

Design region Ω

ΓD ΓN

?
ΓD ΓN

ΩFig. 1 Illustration of structural

topology optimization

Fig. 2 Illustration of a two-scale structure and periodically patterned

RVE [118]

Macro scale:

Micro scale:

Solving B.V.P

Fig. 3 Illustration of first-oder computational homogenization

scheme [115]
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and an adaptive bi-level reduction strategy following [31,

32] is adopted to alleviate the computing cost. Note that,

when a linear RVE is assumed, topology optimization of

the structure made of this RVE is rather straightforward an

extension of the standard monoscale design, because the

effective constitutive of this RVEs can be explicitly

determined by homogenization.

1.3 Concurrent Material and Structure Designs

Topology optimization has not only been applied for

structural designs, but also for material microstructural

design. By means of inverse homogenization, the contin-

uously defined density model has also been used for tai-

loring material microstructures with prescribed constitutive

properties [100, 101], extreme thermal expansion coeffi-

cients [45, 104], extreme viscoelastic behavior (e.g., [2, 19,

65, 129]), maximum stiffness and fluid permeability (e.g.,

[49, 50]) and recently hyperelastic properties [112]. Similar

works have also been addressed by level-set methods (e.g.,

[17, 18]), ESO-type methods (e.g., [62, 63]). Some other

works (e.g., [3, 38, 46, 69, 87–89, 106, 139]) fall also into

this context. Up till now, topology optimization design of

materials with extreme constitutive properties follows a

rather standard routine [117]. An overview of material

microstructural designs has been given by [14].

With the established models for material microstructural

design, one comes up naturally with the idea of concurrent

or integrate designs of both material ans structure. In other

words, by topology optimization one determines not only

the optimal spatial material layout distribution at the

macroscopic structural scale, but also the optimal local use

of the cellular material at the microscopic scale, as

schematically shown in Fig. 4. The most commonly

applied strategy is designing a universal material

microstructure at the microscopic scale either for a fixed

(e.g., [64, 106]) or concurrently changed (e.g., [26, 52, 124,

128, 144]) structure at the macroscopic scale. Obviously,

such designs have not yet released the full potentiality of

concurrent two-scale designs. A further step has been made

by [138], where several different cellular materials are

designed for a layered structure following a two-step

design procedure. In fact, an earlier attempt to the topic

traces back to [95], where simultaneous optimal designs are

performed for both structure and element-wisely varying

cellular materials following a decomposed design proce-

dure [9, 109]. This work has later been extended to 3D [22]

and to account for hyperelasticity [86]. Some more specific

types of concurrent design have been give by (e.g., [40, 41,

75, 98, 99]) for the concurrent design of structural topology

and composite laminate orientation and by [77] for the

concurrent structural topology optimization and the shape

optimization of closed liquid cell materials

Due to the intensive computational cost, though it was

assumed that cellular materials vary from point to point at

the macroscopic structural scale, in practice cellular

materials are defined in an element-wise manner (e.g., [22,

95]) or from layer to layer (e.g., [138]). Concerning mul-

tiscale structural design, microscale cellular materials are

optimized in response to the macroscale displacement

solution, the optimized cellular materials in turn modify the

macroscopic constitutive behavior. The equilibrium prob-

lem at the macroscopic scale is therefore in general non-

linear. Though this interface nonlinearity has been well

acknowledged (e.g., [8, 109]), in practice it has been

neglected in early works (e.g., [22, 95, 138]) for reasons

that both scale design variables were updated simultane-

ously and no converged local material design results were

required for macroscopic structural equilibrium.

Unlike previous design approaches, this nonlinearity has

not been neglected but specially addressed in our recent

work [114] treating the microscale material design inte-

grally as a generalized nonlinear constitutive behavior. The

nonlinear interface equilibrium due to the locally optimized

or adapted materials is addressed by means of FE2 method.

It has been shown that this FE2-based design approach can

provide similar topology solutions in comparison to the

iterative design approach (e.g., [64, 128]), while requiring

much less computing cost due to the reduced interchange

between the two scales. Another advantage of treating the

material optimization process as a generalized constitutive

behavior is that the existing model reduction strategies for

nonlinear heterogeneous materials can be applied

straightforwardly to improve the design efficiency, as we

have shown in [116].

1.4 Outline of this Paper

This paper is organized in the following manner. Nonlinear

topology optimization for monoscale structure designs is

reviewed at the first hand in Sect. 2 before dealing with

Macro structure

x1

x2

ρ(x) = 0 or 1

Micro cellular materials

point A

point B

y1

y2

η(xA, y) = 0 or 1

η(xB, y) = 0 or 1
y1

y2

Ω

ΩxA

ΩxB

Fig. 4 Illustration of concurrent topology optimization of material

and structure [114]
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multiscale structures. The general design procedure for

multiscale nonlinear structures is summarized in Sect. 3.

Section 4 reviews the inverse homogenization routine for

extreme material microstructural designs. Based on the

inverse homogenization, Sect. 5 presents two concurrent

material and structure design approaches, namely iterative

design approach and FE2-based design approach. Discus-

sions on the use of model reduction techniques are given in

Sect. 6 in regard to the prohibitive computational cost

when dealing with multiscale computations. The paper

ends with conclusions and perspectives in Sect. 7.

2 Nonlinear Topology Optimization

Among all exiting approaches for topology optimization,

the Bi-directional Evolutionary Structural Optimization

method (BESO; see, e.g., [60]) is applied to perform

topology optimization for its robustness and the perfor-

mance of the resulting structures (e.g., [58, 60]). In addi-

tion, as compared to continuously defined methods [8], the

discrete nature of the BESO method omits the definition of

additional pseudo-relationships between intermediate den-

sities and material constitutive behavior, resulting in

algorithmic advantages.

2.1 Topology Optimization Model

Topology design variables q ¼ ðq1; . . .; qNe
ÞT , are defined

in an element-wise manner, where Ne is the total number of

elements in the design domain. Within the framework of

the BESO method (and others) the design variables take

values of either 0 or 1, denoting void and solid materials,

qe ¼ 0 or 1; e ¼ 1; . . .;Ne: ð1Þ

whereas in practice an extremely small value qmin is

attributed to voids to prevent the stiffness matrix

singularity.

In linear elastic problems, topology design variables are

usually associated with the material Young’s modulus or

the element stiffness

ke ¼ qek0; ð2Þ

where ke is the element stiffness matrix of the associated

element and k0 is the element stiffness matrix with solid

material.

In general nonlinearity, when there is no closed-form

representation of the material’s constitutive law, topology

design variables are defined is association with the element

internal force vector feint as

feint ¼ qe

Z
Xe

BTðxÞrðxÞdXe; ð3Þ

where Xe denotes the domain of element e. The linear

strain-displacement matrix B relates the strain to element

displacement vector ue via

eðxÞ ¼ BTðxÞue: ð4Þ

rðxÞ is the stress response at point x in response to the

strain eðxÞ computed according to the applied material

constitutive law. In practice, for void elements the stress is

set directly to zero and the tangent stiffness tensor is set to

a small fraction of the initial stiffness tensor The effective

tangent stiffness tensor is defined as a small fraction of the

initial elastic tensor Ctan ¼ qminC
initial to avoid the

singularity.

Two types of design objectives are usually adopted in

nonlinear structural designs when the external force fext is

imposed, namely the end-compliance

fc ¼ fTextu; ð5Þ

and the complementary work

fw ¼ lim
n!1

1

2

Xn
i¼1

f
ðiÞ
ext þ f

ði�1Þ
ext

� �T

DuðiÞ
" #

; ð6Þ

where n is the number of load increments. The latter is

applied to avoid degenerated topologies, especially when

dealing with geometrical nonlinearity [12]. Without loss of

generality, the end-compliance fc is considered in the

following.

The minimization of structural end-compliance consid-

ering a constraint on material volume fraction can be for-

mulated as

min
q

: fcðq; uÞ

subject to : rðq; uÞ ¼ 0

: VðqÞ ¼
P

qeve ¼ Vreq

: qe ¼ 0 or 1; e ¼ 1; . . .;Ne;

ð7Þ

in which ve is the element volume, VðqÞ and Vreq are the

total and required material volumes, respectively. u is the

converged displacement solution. rðu; qÞ stands for the

residual

rðq; uÞ ¼ fext �
XNe

e¼1
qe

Z
Xe

BTrdXe: ð8Þ

2.2 Sensitivity Analysis

To implement topology optimization, sensitivity of the

design objective with respect to design variables needs to

be provided. The derivation of the objective sensitivity

requires applying the adjoint method [12]. Introducing a

vector of Lagrangian multipliers k, one may rewrite the
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objective in the following form without modifying the

objective value

f �c ðqÞ ¼ fTextuþ kTr; ð9Þ

where the term kTr equals zero when the equilibrium of (8)

is achieved, i.e., f �c ¼ fc.

Note that fext is invariant to the variation of design

variables, the derivative of the modified objective function

f �c with respect to qe equals

of �c
oqe
¼ fText

ou

oqe
þ kT

or

ou

ou

oqe
þ or

oqe

� �
: ð10Þ

With the purpose of eliminating ou=oqe, regrouping the

terms with ou=oqe in (10) yields

of �c
oqe
¼ fText � kTKtan

� � ou

oqe
þ kT

or

oqe
; ð11Þ

where

Ktan ¼ �
or

ou
ð12Þ

is the tangent stiffness matrix. Recall the symmetry of Ktan,

i.e., KT
tan ¼ Ktan, the first term of the right-hand side of (11)

can be eliminated by imposing

Ktank ¼ fext; ð13Þ

and yields

of �c
oqe
¼ kT

or

oqe
: ð14Þ

Finally, according to the residual definition (8), the sensi-

tivity of the objective equals

ofc

oqe
¼ of �c

oqe
¼ �kT

Z
Xe

BTrdXe: ð15Þ

2.3 BESO Updating Scheme

In the BESO method [60], an evolutionary ratio cer is

defined to determine the required volume of material usage

at each design iteration following

V ðlÞ ¼ max Vreq; ð1� cerÞV ðl�1Þ
n o

; ð16Þ

in which VðlÞ and Vðl�1Þ denote the required volumes of the

solid at the current (l-th) iteration and the previous itera-

tion, respectively. Note that in general the volume of the

solid of the structure decreases iteratively until the required

volume Vreq is achieved.

At each design iteration, the sensitivity numbers which

denote the relative ranking of the elemental sensitivities are

used to determine material removal and addition. The

sensitivity number for the considered objective is defined

as the opposite of the sensitivity divided by the element

volume

ae ¼ �
ofc

oqe

1

ve
: ð17Þ

Note that the division by element volumes can be omitted

when uniform mesh is used.

In order to avoid mesh-dependency and checkerboard

pattern, sensitivity numbers are smoothed by means of a

filtering scheme [74, 102]

ae ¼
PNe

j¼1 wejajPNe

j¼1 wej

; ð18Þ

where wej is a linear weight factor

wej ¼ maxð0; rmin � Dðe; jÞÞ; ð19Þ

determined according to the prescribed filter radius rmin and

the element center-to-center distance Dðe; jÞ. A schematic

illustration of the filtering scheme is shown in Fig. 5, where

a checkerboard filed is filtered with rmin ¼ 1:5 and rmin ¼ 3

times of element length, respectively. It can be seen that

the concerned field is smoothed by the filter scheme, for

which reason the sensitivity numbers of void elements can

be naturally obtained. By this scheme, void elements

neighboring to the regions of high sensitivity numbers have

higher potentiality to be recovered in the next iteration.

It has been examined that the topology and the objective

may encounter difficulties for convergence due to the dis-

crete nature of the BESO material model. To improve the

convergence of the solution, one may simply average the

current sensitivity numbers with with their historical

information [57]

aðlÞe  aðlÞe þ aðl�1Þe

� �
=2: ð20Þ

For variables updating, a threshold of sensitivity number

ath is determined by means of a bisection algorithm from

all sensitivity numbers satisfying the target volume at the

current design iteration [59]. The design variables are

updated according to

qe ¼ max qmin; signðae � athÞf g; ð21Þ

which means solids will be switched to voids if ae is lower
than ath, accordingly voids will be switched back to solids

when ae is higher than ath. The evolutionary design process

stops when the objective value or the structural topology

reaches convergence.

2.4 Numerical Example

A cantilever discretized into 100� 50 square shaped

bilinear elements is considered as shown in Fig. 6. Element
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dimensions is 1� 1 mm2 and assumed in plane strain

condition. The left end of the cantilever is fixed and an

external force is applied on the middle point of the right

edge. In regard to topology optimization, inefficient or

redundant materials are gradually removed according to the

sensitivity ranking from an initial full solid design in an

evolutionary rate of cer ¼ 2%. Sensitivity numbers are

filtered within a local zone controlled by a filter radius

rmin ¼ 6 mm. The constraint on the volume fraction of

solid is set to 60 %. For the purpose of comparison, the

linear elastic topology solution obtained using the same

parameter set is also given in Fig. 6.

In regard to nonlinear design, the present work is limited

to nonlinear elasticity subjected to small deformations. The

considered nonlinear constitutive behavior is governed by

an isotropic compressible potential of the form

wðeÞ ¼ 9

2
jem þ

e0r0
1þ m

eeq
e0

� �1þm
: ð22Þ

Here j denotes the bulk modulus, em ¼ TrðeÞ=3 is the

hydrostatic strain, and eeq is the equivalent strain defined by

eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ed : ed=3

p
with ed ¼ e� em1 and 1 being the sec-

ond-order identity tensor. m is the strain-hardening

parameter such that 0�m� 1. r0 and e0 are the flow stress

and reference strain, respectively. The stress-strain rela-

tionship is provided by:

r ¼ owðeÞ
oe
¼ jTrðeÞ1þ 2

3

r0
e0

eeq
e0

� �m�1
ed: ð23Þ

This is a commonly used constitutive model for the rep-

resentation of a number of nonlinear mechanical

phenomena (e.g., [27, 90, 136]). In particular, the cases

m ¼ 0 and m ¼ 1 correspond to perfectly rigid plastic and

linearly elastic materials, respectively.

The following numerical parameters are chosen for the

current test case: m ¼ 0:5, j ¼ 20 MPa, r0 ¼ 1 MPa, and

e0 ¼ 1. Nonlinear topology optimization designs are car-

ried out for three different load forces 0.01 N, 0.2 N and 0.4

N and the corresponding topology design results are shown

in Fig. 7a–c, respectively. The nonlinear design algorithm

gives almost identical topology solution as is the case in

linear elasticity when the load force is small, as can be

viewed from Fig. 7a and the linear topology solution in

Fig. 6. When the load force increases, the topology design

result varies in response to the load force value as can be

observed from Fig. 7b, c for fext ¼ 0:2 N and 0.4 N,

respectively. From Fig. 7, one observes that materials move

towards the left end of the cantilever to resist the increasing

load force. The equivalent stress fields of the three

topologies are also given in Fig. 7 on exaggeratedly

deformed meshes. For the purpose of illustrations, the

elements neighboring to the loading tip with high stress

concentration are removed from the stress field plots.

3 Design of Multiscale Structures

Topology optimization design of multiscale structures can

be viewed as an extension of monoscale design except the

material constitutive law is governed by a single RVE or

multiple RVEs defined at the microscopic scale. In the case

of linear elasticity, the effective or the homogenized con-

stitutive behavior, i.e., the effective stiffness tensor of the

RVEs can be explicitly determined by means of homoge-

nization. In the contrary, when nonlinearities are present at

the microscopic scale, one has to turn to FE2-type solution

schemes because there exists no explicit closed-form rep-

resentation for the constitutive behavior of the RVE. In the

following, the FE2 method [30], is firstly reviewed and

summarized in Sect. 3.1. The implementation of a unified

periodic boundary conditions [119] is briefly reviewed in

0

0.2

0.4

0.6

0.8

1

rmin

Fig. 5 A checkerboard field and filtered fields (rmin ¼ 1:5 and 3)

Mesh size
100 x 50 

fext

Fig. 6 Illustration of a cantilever and its linear elastic topology

design of 60 % volume fraction
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Sect. 3.2. FE2-based nonlinear topology optimization

model is given in Sect. 3.3. Section 3.4 carries out the

design of a twoscale cantilever structure made of periodi-

cally patterned anisotropic short-fiber reinforced

composite.

3.1 FE2 Method

The FE2 method assumes the hypothesis of the separation

of scales and periodicity as is the case already shown in

Fig. 2. Each macroscale material point is attributed with a

prescribed RVE. At the macroscale the material appears to

be homogeneous but with unknown mechanical properties.

These mechanical properties are related to the hetero-

geneities of the RVE at the microscale which contribute

strongly to the overall mechanical response observed at the

larger scale.

Let x and y denote the position of a point at the macro

and micro scales, respectively. Within the macroscopic

domain X, the macroscopic displacement �uðxÞ, the

macroscopic strain �eðxÞ and the macroscopic stress �rðxÞ are
considered. Their microscopic counterparts at the micro-

scale are the displacement uðx; yÞ, the infinitesimal strain

eðx; yÞ and the stress rðx; yÞ. While the constitutive model

for each material phase of the RVE at the microscale is

assumed to be known, explicit constitutive relations on the

macroscale that can account for the microstructural

heterogeneities are rarely ever at hand. Therefore, the

macroscopic stress can often only be computed as a func-

tion of the microscopic stress state by means of volume

averaging according to

�rðxÞ ¼ hrðx; yÞi ¼ 1

jXlj

Z
Xl

rðx; yÞdXl; ð24Þ

in which rðx; yÞ is evaluated by solving the boundary value

problem of the RVE by constraining heðx; yÞi equal to �eðxÞ,
i.e.,

�eðxÞ ¼ heðx; yÞi ¼ 1

jXlj

Z
Xl

eðx; yÞdXl; ð25Þ

where periodic boundary conditions (p.b.c.) are usu-

ally applied to define this constraint in accordance

with the assumed periodicity assumption. Note that

when cracks, voids and rigid inhomogeneities are

present in the RVE, the foregoing definitions for the

macroscopic stress and stain tensors need to be

extended [81].

The schematic illustration of the FE2 method has already

been shown in Fig. 3. In summary, the FE2 method consists

of the following steps:

1. evaluate �eðxÞ with an initially defined setting;

2. define p.b.c. on the RVE according to �eðxÞ;
3. evaluate rðx; yÞ by solving the RVE problem;

4. compute �rðxÞ via volume averaging rðx; yÞ;
5. evaluate the structural tangent stiffness matrix;

6. update uðxÞ using the Newton–Raphson method;

7. repeat 2-6 until the equilibrium is achieved.

Note that in the case of linear elasticity, we have the fol-

lowing relationship

�rðxÞ ¼ Chom : �eðxÞ ð26Þ

in which the homogenized elastic stiffness tensor Chom can

be determined by solving the RVE boundary value problem

for six independent overall strain values in general 3D

case.

x10-3

0.5 1 1.5 2 2.5 3 3.5 4 4.5

MPa

0.01 0.02 0.03 0.04 0.05 0.06

MPa

0.02 0.04 0.06 0.08 0.1

MPa

(a) (b) (c)

Fig. 7 Nonlinear topology designs and the equivalent stress fields (deformation exaggerated 10 times). a fext ¼ 0:01 N, fc ¼ 2.5e-5 J.

b fext ¼ 0:2 N, fc ¼ 0:067 J. c fext ¼ 0:4 N, fc ¼ 0:456 J
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3.2 Periodic Boundary Conditions

The microscale stress field rðx; yÞ is evaluated by solving

the RVE equilibrium problem subject to �eðxÞ. By the

assumption of periodicity, the displacement field of the

RVE subjected to a given strain �eðxÞ can be written as the

sum of a macroscopic displacement field and a periodic

fluctuation field u� [81]

uðx; yÞ ¼ �eðxÞ � yþ u�ðyÞ; ð27Þ

such that

heðx; yÞi ¼ �eðxÞ; ð28Þ

because hu�i vanishes for its periodicity.
In practice, (27) cannot be directly imposed on the

boundaries because the periodic fluctuation term u� is

unknown. The general expression of (27) needs to be

transformed into a certain number of explicit constraints

between the corresponding pairs of nodes on the opposite

surfaces of the RVE [119]. Consider a 2D RVE as shown in

Fig. 8, the displacements on a pair of opposite boundaries

are

uðx; yÞkþ ¼ �eðxÞ � ykþ þ u�ðyÞ
uðx; yÞk� ¼ �eðxÞ � yk� þ u�ðyÞ

(
ð29Þ

where superscripts ‘‘kþ’’ and ‘‘k�’’ denote the pair of two

opposite parallel boundary surfaces that are oriented per-

pendicular to the kth direction. The periodic term u� can be

eliminated through the difference between the

displacements

uðx; yÞkþ � uðx; yÞk� ¼ �eðxÞ � ðykþ � yk�Þ: ð30Þ

With specified �eðxÞ, the right-hand side becomes a constant

and such equations can be easily imposed in the the finite

element analysis as nodal displacement constraint equa-

tions. At the same time, this form of boundary conditions

meets the periodicity and continuity requirements for both

displacement as well as stress when using displacement-

based finite element analysis [120].

3.3 FE2-Based Multiscale Structural Design

In general, FE2-based multiscale structural design follows

the same design algorithm that is presented in Sect. 2,

except for the application of the FE2 for the evaluation of

structural performance. Similarly, topology design vari-

ables are defined in association with the element internal

force vector �feint as

�feint ¼ qe

Z
Xe

�BTðxÞ�rðxÞdXe; ð31Þ

where the effective stress �rðxÞ is computed via the volume

averaging relation (24). The microscopic stress field rðx; yÞ
is determined from an underlying nonlinear microscale

equilibrium problem subjected to a prescribed overall

strain �eðxÞ. The macroscale strain is computed by the linear

relation �eðxÞ ¼ �BTðxÞ�ue with the specified matrix �BðxÞ and
the nodal displacement vector of the e-th element �ue. In

practice, for void elements the microscale solutions can be

saved and the effective stress is set directly to zero. The

effective tangent stiffness tensor is set to be a small fraction

of the homogenized elastic tensor of the considered RVE as
�Ctan ¼ qmin

�Chom to avoid the singularity.

To be in consistence with Sect. 2, the structural end-

compliance fc ¼ �fText �u, computed using the macroscale

external force �fext and the macroscale displacement solu-

tion �u, is considered as the design objective to be mini-

mized. The minimization of the end-compliance of

multiscale structures considering a constraint on material

volume fraction is defined in analogy to (7) in the form:

min
q

: fcðq; �uÞ

subject to : �rðq; �uÞ ¼ 0

: VðqÞ ¼
P

qeve ¼ Vreq

: qe ¼ 0 or 1; e ¼ 1; . . .;Ne:

ð32Þ

Here �rðq; �uÞ is the macroscale residual

�rðq; �uÞ ¼ �fext �
XNe

e¼1
qe

Z
Xe

�BT �rðxÞdXe: ð33Þ

The sensitivity of fc in the current context can also be

derived in analogy to Sect. 2.2 and equals

ofc

oqe
¼ of �c

oqe
¼ ��kT

Z
Xe

�BT �rðxÞdXe; ð34Þ

where the adjoint solution �k is computed from

�Ktan
�k ¼ �fext; ð35Þ

using the macroscale tangent stiffness matrix �Ktan.

y1+y1-

y1

y2

y0
1

y0
2

jj

Fig. 8 An illustrative 2D rectangular RVE [115]
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3.4 Numerical Example

In this example, a two-scale cantilever structure made of

periodically patterned anisotropic short-fiber reinforced

composite as shown in Fig. 9 is to be designed. Following

[136], both the matrix (phase 1) and the fibers (phase 2) are

assumed to be isotropic and compressible materials char-

acterized by the governing potential of Eq. (22). The matrix

material is highly nonlinear: mð1Þ ¼ 0:5, jð1Þ ¼ 20 MPa,

rð1Þ0 ¼ 1 MPa, and eð1Þ0 ¼ 1. The fibers are assumed to be

linear elastic and much more rigid than the matrix:

mð2Þ ¼ 1, jð2Þ ¼ 20 MPa, rð2Þ0 ¼ 1000 MPa, and eð2Þ0 ¼ 1.

The RVE (Fig. 9) is discretized into 20� 20 square

bilinear elements. The equivalent stress fields within the

RVE in cases of biaxial stretching and uniaxial stretching

combined with shear are shown in Fig. 10.

Topology optimization is carried out for the macroscale

structure with the same BESO parameters that are used in

Sect. 2.4, i.e., the evolutionary rate cer ¼ 2%, the filter

radius rmin ¼ 6 mm, the volume fraction constraint is 60%.

It important to emphasize that it requires solving 4�
100� 50 (4 Gauss integration points for each element)

nonlinear RVE boundary value problems for each iteration

of each load increment. This number would decrease pro-

gressively with iterations as the removed elements are no

longer evaluated for the structural response.

For the purpose of comparison, designs are also carried

out for the same three load forces, i.e., 0.01, 0.2 and 0.4 N

as considered in Sect. 2.4 and the corresponding design

results are shown in Fig. 11a–c. The topology shown in

Fig. 11 is similar to the topologies of Figs. 6 and 7a,

indicating that an external force load at the level of 0.01 N

does not result in much difference in the design results.

However, when the external load is increased to 0.2 and 0.4

N, one can observe obvious topological differences

between the design results shown in Figs. 11b, c and 7b, c,

respectively, which are due to the existence of the rein-

forcing fibers. The presence of fibers also results in lower

end-compliance values, i.e., increased stiffness, of the

design results (Figs. 7, 11).

The equivalent stress field of the topology solution in

Fig. 11b is given in Fig. 12 together with the equivalent

stress fields of the RVEs at several selected points. The

elements neighboring the loading tip with high stress

concentration are removed from the macroscale field plot

for the purpose of illustration. From the deformed RVEs

shown in Fig. 12, one can observe that the RVEs at points

A and D are under compression, the RVE at point B is

under tension, and the RVE at point C is subjected to a

mechanical shear state, which are in agreement with their

macroscale deformation states. One may also note from the

stress fields that the presence of fibers results in higher

stress concentrations at the interface of the matrix and the

fibers. The higher stress concentrations are responsible for

the initial material failure or crack at the microscopic scale

which cannot be detected when using the conventional

monoscale fracture analysis (e.g., [23]). There is also a

potential application of such feature in stress-related

topological designs (e.g., [10, 15, 16, 28, 51, 73, 140]),

where the stress constraints may be considered to limit the

maximum stress at the microscopic scale.

4 Material Microstructural Design

Before dealing with the concurrent material and structural

designs in the next Sect. 5, the standard material

microstructural design routine using the inverse homoge-

nization (e.g., [62, 100, 117]) is reviewed firstly in this

Section.

4.1 Homogenization Strategies

Within the scope of linear elasticity, there exits two

equivalent approaches for the determination of the effec-

tive or the homogenized stiffness tensor Chom of periodi-

cally patterned microstructure [53]. One is the asymptotic

approach, derived in a systematic way using the two-scale

asymptotic expansion method [47]. Another is the energy-

based approach [100] employing the average stress and

strain theorem as is the relationship presented in Eq. (26).

By the asymptotic approach, the homogenized stiffness

tensor is given by averaging the integral over a specified

the RVE Xl as

Chom
ijkl ¼

1

jXlj

Z
Xl

Cijpq e0ðklÞpq � e�ðklÞpq

� �
dXl; ð36Þ

Mesh size
100 x 50 

fext

Fig. 9 Illustration of a two-

scale cantilever made of

periodically patterned short-

fiber reinforced composite
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Fig. 10 Equivalent stress fields (deformation exaggerated 50 times) of the short-fiber reinforced RVE for biaxial stretching (left,
�e11 ¼ �e22 ¼ 0:002; �e12 ¼ 0) and uniaxial stretching with shear (right, �e11 ¼ 0:001; �e22 ¼ 0; �e12 ¼ 0:002)
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Fig. 11 Design of two-scale structures in nonlinear elasticity. a fext ¼ 0:01 N, fc ¼ 2.2e�5 J. b fext ¼ 0:2 N, fc ¼ 0:051 J. c fext ¼ 0:4 N,

fc ¼ 0:317 J
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Fig. 12 The equivalent stress fields of the case b in Fig. 11 for the macro structure (deformation exaggerated 10 times) and for the micro RVEs at

selected points (deformation exaggerated 50 times)
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where the Einstein index summation notation is used and

e�ðklÞpq is the Y-periodic solution ofZ
Xl

Cijpqe
�ðklÞ
pq

ovi

oyj
dXl ¼

Z
Xl

Cijpqe
0ðklÞ
pq

ovi

oyj
dXl; ð37Þ

where v is Xl-periodic admissible displacement field and

e0ðklÞpq corresponds to the three (2D) or six (3D) linearly

independent unit test strain fields.

The energy-based approach imposes the unit test strains

directly on the boundaries of the RVE, inducing eAðklÞpq

which corresponds to the superimposed strain fields

ðe0ðklÞpq � e�ðklÞpq Þ in (36). Detailed implementation of periodic

boundary conditions has been given in Sect. 3.2. Equa-

tion (36) can be rewritten in an equivalent form in terms of

mutual energies

Chom
ijkl ¼

1

jXlj

Z
Xl

Cpqrse
AðijÞ
pq eAðklÞrs dXl: ð38Þ

Whilst most works apply the asymptotic approach for the

design of material microstructures [see 14], its extension to

nonlinear material designs is not straightforward. In con-

trast, the formulation of the energy-based approach (38) is

more compact that facilitates the numerical implementa-

tion [100, 117] and its extension to nonlinear material

designs is rather straightforward (e.g., [112]). In the fol-

lowing, the energy-based approach is employed.

4.2 Optimization Model

In finite element analysis, the RVE is discretized into Nl

finite elements and the same number of topology design

variables g 2 RNl are correspondingly defined in similar

manner as is in Sect. 2 for structural design. The homoge-

nized elastic stiffness tensor derived from the energy-based

approach (38) can be approximately written in the form

Chom
ijkl ¼

1

jXlj
XNl

e¼1
ðuAðijÞe ÞTkeðgeÞuAðklÞe

ð39Þ

where u
AðklÞ
e are element displacement solutions corre-

sponding to the unit test strain fields e0ðklÞ. ke ¼ gek0 is the
element stiffness matrix and ge takes values gmin (a small

positive value) and 1 indicating void and solid materials,

respectively. k0 is the element matrix of solid material.

The mathematical formulation of the design of material

microstructure with extreme properties reads as follows

min
g

: fobjðChom
ijkl ðgÞÞ

subject to : KuAðklÞ ¼ 0; k; l ¼ 1; . . .; d

: VðgÞ ¼
P

vege ¼ Vreq

: ge ¼ 0 or 1; e ¼ 1; . . .;Nl

ð40Þ

where K is the global stiffness matrix, uAðklÞ is the dis-

placement solution of the RVE with periodic boundary

conditions corresponding to e0ðklÞ imposed, d is the spatial

dimension, ve is the element volume, VðqÞ and Vreq are the

total and required material volumes, respectively.

The objective fobjðCH
ijklðgÞÞ is a function of the homog-

enized stiffness tensors. For instance, in the 2D case, the

maximization of the material bulk modulus corresponds to

the minimization of

fobj ¼ � Chom
1111 þ Chom

1122 þ Chom
2211 þ Chom

2222

� �
ð41Þ

and the maximization of material shear modulus corre-

sponds to the minimization of

fobj ¼ �Chom
1212: ð42Þ

The sensitivity of the objective function ofobj=oge can be

computed using [100]

oChom
ijkl

oge
¼ 1

jXlj
ðuAðijÞe ÞTk0uAðklÞe ; ð43Þ

in accordance with the applied objective definition.

4.3 Numerical Example

Material microstructure designs are carried out using the

same BESO updating scheme (Sect. 2.3). The square cel-

lular material under consideration is discretized into 80�
80 square shaped bilinear elements (1� 1 mm2) and the

same number of topology variables are correspondingly

defined. Young’s modulus and Poisson’s ratio of solid

material are set to 1 MPa and 0.3, respectively. The con-

straint of volume ratio of solid material is 60 %. The

evolution rate is set to cer ¼ 2%. In order to obtain the so-

called one-length scale microstructure [8], i.e., avoid too

detailed microstructures inside the cell, a larger filter radius

should be used in comparison to conventional structural

designs. Here, two radii rmin ¼ 12 mm and rmin ¼ 8 mm

are considered for the purpose of comparison.

In structural compliance minimization designs, a full

solid structure is usually chosen as the initial topology

guess [60]. However, this cannot be employed for material

designs because the applied periodic boundary conditions

would result in a uniformly distributed sensitivity field,

thus making the variable updating impossible. The influ-

ence of an initial guess on the final designs has been

thoroughly discussed in (e.g., [45, 101, 104]). In the

example, we simply follow [62] assigning four soft ele-

ments at the center to trigger topological changes.

Microstructures with maximized bulk moduli and shear

moduli are shown in Figs. 13 and 14, respectively. It can be
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observed that lower-valued filter radii result in more

detailed microstructural features.

5 Concurrent Material and Structure Design

This section reviews firstly the conventional decomposition

strategy for concurrent material and structure design. Two

concurrent material and structure design approaches,

namely iterative design approach and FE2-based design

approach, are then summarized and their performances are

compared.

5.1 Problem Statement

Generalized mathematical formulations for concurrent

cellular material and structure designs can be found in

[109] and its application for continuous models has been

given by [95]. Let x and y denote positions of a point at

macroscopic and microscopic scales, respectively. The

structural compliance minimization problem is stated in

terms of two levels of design variables: the pointwise

topology design variable qðxÞ at the macroscale (structure)

and the pointwise topology design variable gðx; yÞ at the
microscale (material).

Recall [8], using the principle of minimum potential

energy, the minimum compliance problem in a displace-

ment-based formulation is:

max
ðq;gÞ2Aad

min
u2U

1

2

Z
X
Cijkh x; qðxÞ; gðx; yÞð Þ oui

oxj

ouk

oxh
dX� lðuÞ

	 

:

ð44Þ

Here Cijkh x; q; gð Þ is the fourth-order elastic stiffness tensor
at material point x depending on both values of qðxÞ and
gðx; yÞ at the two sales. U denotes the space of kinemati-

cally admissible displacement fields and l(u) is the loading

potential term. Note that though Eq. (48) is defined under a

linear assumption, Cijkh may depend in a nonlinear way on

the design variables. Aad is the assembled admissible set of

design variables consists of two defined admissible sets Aq

and Ag for qðxÞ and gðx; yÞ, respectively,

Aad ¼ q; g j qðxÞ 2 Aq; gðx; yÞ 2 Ag
� �

: ð45Þ

In the case of discrete topology design models (e.g., BESO,

[64, 114, 116, 128]), Aq and Ag are simply defined as:

Aq ¼ q j q ¼ 0 or 1;

Z
X
qðxÞdX ¼ V s

req

	 

; ð46Þ

and

Ag ¼ g j g ¼ 0 or 1;

Z
Xx

gðx; yÞdXx ¼ Vx
req

	 

; ð47Þ

where Vs
req and Vx

req are the allowed material volume at the

macro and micro scales, respectively. Note that, Vx
req can

vary from point to point.

In the case of continuous topology optimization models

(e.g., SIMP, [86, 95, 138]), the elastic stiffens tensor and

Vx
req for macroacale point x are functions of qðxÞ. In the

current context, the discrete-valued qðxÞ indicates only the

existence of an additional fine scale (qðxÞ ¼ 1) or not

(qðxÞ ¼ 0). We can therefore extract qðxÞ outside Cijkh and

the remaining is the homogenized elastic stiffness tensor

Chom
ijkh depending on gðx; yÞ, i.e.

max
ðq;gÞ2Aad

min
u2U

1

2

Z
X
qðxÞChom

ijkh x; gðx; yÞð Þ oui
oxj

ouk

oxh
dX� lðuÞ

	 

:

ð48Þ

5.2 Problem Decomposition

The separation of the two scale variables and the inter-

change of the equilibrium and local optimizations of (48)

result in a reformulated displacement-based problem

max
q2Aq

min
u2U

Z
X
�w x; u; gðx; yÞð ÞdX� lðuÞ

	 

; ð49Þ

where the pointwise maximization of the strain energy

density �w

Fig. 13 Microstructures with maximized bulk moduli obtained using

filter radii 12 mm (left, bulk modulus 0.2411 MPa) and 8 mm (right,

bulk modulus 0.2404 MPa)

Fig. 14 Microstructures with maximized shear moduli obtained using

filter radii 12 mm (left, shear modulus 0.1688 MPa) and 8 mm (right,

shear modulus 0.1746 MPa)
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�w ¼ max
g2Ag

1

2
qðxÞChom

ijkh x; gðx; yÞð Þ oui
oxj

ouk

oxh
ð50Þ

is treated as a subproblem for the prescribed qðxÞ and

u(x) at macroscale point x. From the reformulated form of

(49), a hierarchical iterative solution strategy is straight-

forwardly established for the concurrent material and

structure design.

The outer maximization problem of (49) is the ‘‘master’’

problem dealing with the macroscale material distribution

in terms of qðxÞ for the macroscale structure. The inner

maximization problems of (49), i.e., (50), are the ‘‘slave’’

problems corresponding to the stiffness maximizations of

the microscale materials in terms of gðx; yÞ for the evalu-

ated macroscale strain �eðxÞ.
The middle layer minimization problem of (49) seeks

kinematically admissible equilibrium displacements for the

locally optimum energy function, for the given distribution

of the macroscale topology of qðxÞ. Note that, since the

locally optimum energies depend on the displacement field

in a complex fashion via the optimization problems of (50),

the equilibrium statement of (49) is in fact a constitutively

nonlinear elastic problem.

5.3 Discretized Models

Within the context of finite element analysis, both topology

design variables

q ¼ ðq1; . . .; qNs
ÞT ; ð51Þ

and

gx ¼ ðgx1; . . .; gxNx
ÞT ; ð52Þ

written in vector form, are defined in an element-wise

manner at both scales. Ns and Nx are the numbers of dis-

crete elements at the macro- and microscales, respectively.

Here, the superscript x of gx denotes a vector of microscale

topology variables at each macroscale point x.

Following the decomposition strategy presented in Sect.

5.2, the ‘‘master’’ problem of (49) is equivalent to the

minimization of the macroscale end-compliance �fc, sub-

jected to a material volume fraction constraint

minq;gx : �fcðq; �uÞ
subject to : �Kðq; gxÞ�u ¼ �fext

: Vq ¼
P

qivi ¼ V s
req

: qi ¼ 0 or 1; i ¼ 1; . . .;Ns:

ð53Þ

The macroscale stiffness matrix �Kðq; gxÞ is governed by

both scale variables:

�Kðq; gxÞ ¼
XNs

i¼1
qi

Z
Xi

�BT �ChomðgxÞ �BdXi; ð54Þ

in which the homogenized stiffness matrix �Chom at mac-

roscale point x, depending on the microscale material

topology gx, is computed via (39). The sensitivity of �fc with

respect to qi associated with the i-th macroscale element is

o�fc
oqi
¼ ��uTi

Z
Xi

�BT �ChomðgxÞ �BdXi �ui: ð55Þ

The ‘‘slave’’ problems of Eq. (49), the microscale material

stiffness maximizations subjected to microscale material

volume fraction constraints, are defined at the macroscale

points where qðxÞ ¼ 1 in the following form

maxgx : �wðgxÞ
subject to : KxðgxÞux ¼ 0

: heðuxÞi ¼ �eðxÞ
: Vg ¼

P
gjv

x
j ¼ Vx

req

: gj ¼ 0 or 1; j ¼ 1; . . .;Nx:

ð56Þ

Note that, there exists no external force at the microscopic

scale. The microscale systems are constrained by means of

the imposed periodic boundary conditions, satisfying the

equality between heðuxÞi and �eðxÞ. The sensitivity of �wðgxÞ
with respect to the gxj associated with the j-th microscale

element is

o �wðgxÞ
ogxj

¼ 1

2
ðuxj Þ

Tkx0u
x
j ; ð57Þ

where kx0 is the stiffness matrix of the element with full

solid material when gxj ¼ 1.

5.4 Concurrent Design Approaches

5.4.1 Iterative Design Approach

Following the decomposition strategy reviewed above,

the straightforwardly developed concurrent design

approach is summarized in Algorithm 1. The macroscale

topology is updated iteratively until the chosen criterion

convergence is achieved. For each macroscale design

iteration, the microscale material stiffness maximizations

are carried out and the homogenized elastic matrices of

the currently optimized microscale topologies are evalu-

ated to serve the next macroscale design iteration. This

concurrent design algorithm has been mostly applied for

continuous topology optimization designs (e.g., [22, 95,

138]), because the intermediate value of the macroscale

variable can be imposed naturally to the microscale

models as the upper bounds of volume fraction con-

straints and for the same reason the global convergence is

guaranteed.
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5.4.2 Simplified Design Approach

In the contrary, the concurrent design approach summa-

rized in Algorithm 1 is not applicable when using discrete

design schemes such as ESO-type methods [60]. Because

of the discrete nature, the microscale volume fraction upper

bounds are not linked to their corresponding macroscale

variables. The discrete-valued qðxÞ indicates only the

existence of an additional fine scale when qðxÞ ¼ 1). The

microscale volume fraction upper bounds are user-pre-

scribed values within this context. Direct implementation

of Algorithm 1 with discrete variables would result in the

divergence of the design process [114]. In practical

implementations (e.g., [64, 124, 125, 128]), a simplified

version of Algorithm 1, as summarized in Algorithm 2, is

adopted. Algorithm 2 in fact avoids solving the ‘‘slave’’

material stiffness maximization problems (56) while

treating both scale variables q and gx in an integral manner.

The updating of the microscale variables uses directly the

sensitivity of macroscale end-compliance �fc with respect to

the microscale variables gx, i.e.,

o�fc
ogxj
¼ ��eTðxÞ o

�ChomðgxÞ
ogxj

�eðxÞ; ð58Þ

where the evaluation of the derivative of Chom with respect

to gxj follows (43). Algorithm 2 has been so far applied to

the concurrent design cases when a universal microscale

material is assumed and optimized concurrently with the

macroscale topology. However, when it comes to multiple

or pointwise microscale materials, Algorithm 2 is not

applicable and results in the divergence of the design

process according to our experiments. This is because the

updating of the microsacle topologies are terminated once

the associated macroscale elements are deleted while there

is no guarantee that the deleted elements would not be

recovered in the following iterations. When a universal

microscale material gl is assumed, the updating of the

microscale variables uses the following sensitivity

o�fc
oglj
¼ �

XNs

i¼1
�uTi

Z
Xi

�BT o
�ChomðglÞ
oglj

�BdXi �ui: ð59Þ

5.4.3 FE2-Based Design Approach

Note that, both Algorithms 1 and 2 have neglected the

interface nonlinearity of the nonlinear equilibrium state-

ment of (49) due to local material optimizations. Unlike the

iterative design approach, the scale-interface nonlinearity

has been particularly addressed in our recent works [114,

116] by a FE2-based design approach, treating the micro-

scale material optimization process integrally as a gener-

alized nonlinear elastic behavior. In this context, the

nonlinearity comes from the microscale optimizations. The

microscale model is optimized upon the macroscale strain

value at associated integration point. Then the effective

stress is evaluated on the optimized microscale topology

and returned to the upper scale. With the effective stress-

strain relationship, scale-interface nonlinear equilibrium is

then searched by means of Newton–Raphson method. The

macroscale topology is then optimized using the converged

solution.

Due to the particularity of the concerned nonlinearity,

conventional Newton–Raphson solution scheme using

tangent stiffness matrix is not applicable here. As can be

observed in Fig. 15, the tangent stiffness matrix for uð1Þ is

in fact the linear stiffness matrix Koptðuð1ÞÞ itself. Using
this stiffness matrix results in the divergence of the solution

of the scale-interface nonlinear equilibrium. The solution

of this type of nonlinearity itself is still an open issue

according to the authors’ knowledge. We propose to use an

initial stiffness Newton–Raphson solution scheme based on

a reasonable hypothesis that the structure constituted by the

optimized materials (KoptðusolÞ), is stiffer than the other

structures (Koptðuð1ÞÞ; . . .) corresponding to the other

admissible solutions. In this scheme, the applied initial
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stiffness matrix K0 is constructed assuming the microscale

material is full of solid material. Though not rigorous

enough, this solution scheme is capable of dealing with this

scale-interface nonlinearity with satisfactory according to

[114, 116].

The FE2-based design approach is summarized in

Algorithm 3. Since the microscale optimizations are treated

as a generalized nonlinear material behavior, this algorithm

does not suffer the divergence issue when using discrete

variables as is the case of Algorithm 2. Unlike Algorithms

1 and 2, the FE2-based design algorithm uses only the

effective stress-strain relationship while the homogenized

elastic matrices are not required, which saves significant

computing cost. Moreover, the extension of the FE2-based

design algorithm is more straightforward to the cases when

other geometrical or physical nonlinearities are present at

the microscopic scale.

5.5 Numerical Examples

In this section, a two-scale half-MBB beam as shown in

Fig. 16a is considered with the external force �fext ¼ 1N.

The macroscale structure is discretized into L� H square

shaped bilinear elements and each element is of dimensions

1� 1 mm2. The assumed microscale material model is

discretized into 40� 40 square shaped bilinear elements

without specific unit due to the assumption of scale sepa-

ration. Both scale topology design variables are defined in

element-wise manner. At the microscopic scale, Young’s

modulus and Poisson’s ratio of the solid material are set to

1 and 0.3, respectively. In the case of iterative design

approach, the homogenized stiffness tensor of the micro-

scale material serves as the constitutive law for the mac-

roscale computation. In the case of FE2-based design

approach, the macroscale constitutive behavior is governed

by the effective stress-strain relations.

The volume fraction of solid for the microscale material

model is set to 60 %, i.e., a micro-porosity of 40 % is

assumed. The required material volume fraction for mac-

roscale design is also set to 60 %. The sensitivity filter radii

rmin are set to 3le and 6le for macro- and microscale designs,

respectively. Here, le is the length of the element. Similar to

the previous Sect. 4, due to the applied periodic boundary

conditions, four soft elements at the center are assigned for

the microscale model to trigger topological changes.

The iterative design approach (Algorithm 1) is not

applicable here for reasons of the discrete nature of the

BESO method. Please refer to [22, 95, 138] for the per-

formance of this design approach on continuously defined

models. In the following, tests on the performances of the

simplified iterative design approach (Algorithm 2) and the

FE2-based design approach (Algorithm 3) are given in

Sects. 5.5.1 and 5.5.2, respectively.

5.5.1 Simplified Concurrent Design Approach

For simplicity, we assume firstly one universal material

microstructure of topology gl at the microscopic scale for

the considered beam structure. By fixing the macroscale

topology unchanged (q ¼ 1), Algorithm 2 recovers the

design of an optimal material microstructure that maxi-

mizes the macroscopic structural stiffness [64]. Fig-

ure 16b–e gives the optimized material topologies for

different dimensions of the beam structure. The topological

transition from Fig. 16b–e due to the increase of the beam

length can be clearly observed. The increased beam length

requires more bending resistance and results a shift of

material distribution along vertical direction to horizontal

direction.

fext

u(1) u(2) u(3) usol

Kopt(u(2))

K0 Kopt(usol)

Kopt(u(1))

K0 K0

Fig. 15 Initial stiffness Newton–Raphson solution scheme [114]
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In the following the dimensions of beam is fixed to 40�
16 mm2, both scale topologies q and gl are optimized

following Algorithm 2. By our tests, when the evolution

rate is set to cer ¼ 2%, the optimization process diverges.

As discussed, this algorithm updates both scale topologies

iteratively and neglects the scale-interface equilibrium,

resulting in mismatch between the two scales. For this

reason, a smaller the evolution rate cer ¼ 1% is applied for

both scales for stabilization consideration. The evolution of

both scale topologies is captured in Fig. 17. By this

approach, homogenization analysis needs to be carried out

for the current optimized material topology. The homoge-

nized stiffness tensor is then used for the macroscale

assessment. Both scale topologies are updated iteratively

and adaptively until the required material volume fractions

are achieved.

Figure 18a gives the optimized topology for linear

elasticity using the same BESO parameters setting. There

is an obvious difference between the two topologies of

Fig. 18a, b. According to [7], the effective Young’s

modulus and Poisson’s ratio for the isotropic porous

material with 40 % porosity obtained by inverse homog-

enization corresponding to the Hashin–Shtrikman (HS)

upper bound equal to 0.34 MPa and 0.3, respectively.

Assuming the linear design result (Fig. 18a) for this

microstructure with 40 % porosity, its compliance value is

322.37 J. With the same amount of material usage at both

scales, the iterative design approach results in a more rigid

design with a concurrently optimized material

microstructure as shown Fig. 17c with a compliance value

297.64 J.

To validate the necessity of performing concurrent

design, an additional comparison is given assuming

Fig. 18b with the material microstructure of Fig. 17c, a

microcrostructure with the same porosity 40 % but

Element

fext = 1

Macroscale structure Microscale material

Mesh size
40 x 40 

Mesh size
L x H 

L 

H 

(a)

(b) (c) (d) (e)

Fig. 16 A two-scale half-MBB beam and the optimized microstructures for different macroscale structure dimensions. (a). A two-scale half-

MBB beam. (b). L ¼ 8;H ¼ 16. (c). L ¼ 24;H ¼ 16. (d). L ¼ 40;H ¼ 16. (e). L ¼ 56;H ¼ 16

(a)

(b)

(c)

Fig. 17 Design of the two-scale half-MBB beam using the concurrent

design approach. a Iteration 9, Vq ¼ 0:922;Vg ¼ 0:924; fc ¼ 95:99J.
b Iteration 24, Vq ¼ 0:792;Vg ¼ 0:795; fc ¼ 144:29J. c Iteration 56,

Vq ¼ 0:600;Vg ¼ 0:600; fc ¼ 297:67J
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optimized for the full solid half-MBB beam. As expected,

the result compliance value is 308.91 J, though still better

than the compliance of the case Fig. 18a, is worse than the

compliance of the case Fig. 17c.

As discussed in Sect. 5.4.2, the simplified iterative

design approach (Algorithm 2) is not applicable when

multiple or pointwise materials are assumed at the micro-

scopic scale. Here, we show only the optimal material

topologies for the full solid half-MBB beam structure in

Fig. 19a. Microscale material models are defined in

pointwise manner at Gauss integration points. The beam

structure is discretized by 40� 16 elements and 4 Gauss

points for each element, that means in total there are 40�
16� 4 ¼ 2560 microscale material models defined. Since

the macroscale topology is not optimized, the evolution

rate is set to cer ¼ 2% for all microscale models. It takes in

total 35 design iterations and 12 h computing time. It

requires solving the microscale problem for 3 times in the

2D case for the evaluation of the elastic stiffness tensor
�Chom, and this evaluation needs to be carried out for all

2560 microscale models for all 35 design iterations. In

addition, the macroscale global stiffness matrix needs to be

assembled for each design iteration so as to serve macro-

scale structural assessment. Note that, in Fig. 19a the

optimized material topologies are enlarged for the purpose

of illustration. By the separation of scales assumption, the

optimized materials only represent the optimal solution at

the microscopic scale for the associated integration points.

Therefore, they are not necessarily continuous and repre-

sent only the tendency of the topological variations.

5.5.2 FE2-Based Design Approach

The same twoscale half-MBB beam structure has been

investigated by FE2-based design approach in our recent

work [114]. The nonlinear scale-interface equilibrium is

particularly addressed by FE2 method with the proposed

initial stiffness Newton–Raphson solution

scheme (Fig. 15). Unlike the iterative design approach with

the microscale topologies updated iteratively along the

design iteration, the microscale 2560 micro-optimizations

are solved completely for each NR iteration of each design

iteration. With the adopted convergence criterion on rela-

tive displacement variation, it takes in average 6 NR iter-

ations to reach the equilibrium.

The same design problem of Fig. 19a is resolved by FE2-

based design approach and the design result is shown in

Fig. 19b. By the proposed initial stiffness Newton–Raph-

son solution scheme (Fig. 15), it takes 6 NR iterations to

reach the equilibrium. The two topology results shown in

Fig. 19a, b have quasi-identical topology layout. When the

result of Fig. 19a is taken as a reference design, then the

similarity between Fig. 19a, b validates the feasibility of

proposed initial stiffness Newton–Raphson solution

scheme.

Note that though 2560 complete micro-optimizations

have been solved at each of the 6 NR iterations, the total

computing time to obtain the result of Fig. 19b is 1.5 h,

which is much less than the 12 h required by the simplified

iterative design approach to obtain Fig. 19a. This is

because FE2-based design approach uses the stress and

strain relations instead of the stiffness tensors, which saves

significantly the computing effort in regard to homoge-

nization analyzes. Moreover, by the proposed initial stiff-

ness Newton–Raphson scheme, K0 is assembled once and

no additional assemblage of global stiffness matrix is

required. One more interesting observation is that the result

end-compliance of Fig. 19b is lower than that of Fig. 19a.

Though rigorous reasons for this observation is not yet

clear to our acknowledge, the low end-compliance value of

Fig. 19b indicates potentially another advantage of FE2-

based design approach against the iterative design

approach.

Once the equilibrium is achieved, the macroscale

topology is then optimized based on the converged solution

response. The converged macroscale topology design result

together with several typical microscale material topolo-

gies are shown in Fig. 20. Uniaxial materials may be suf-

ficient at the main branches of the structure, while in order

to have a higher structural performance, anisotropic

materials have to be used at the joints of the main branches

due to the more complex loading status. Concurrent

topology optimization of the structure and of pointwisely

defined materials would result in an end-compliance value

(a)

(b)

Fig. 18 Comparison on the performances of two topology solutions.

aMonoscale design result using isotropic material with 40 % porosity

(HS upper bound), fc ¼ 322:37 J. b Iterative design result, fc ¼
297:67 J with the material of Fig. 17c, fc ¼ 308:91 J with the material

of Fig. 16d
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almost 40 % lower (40 % stiffer in terms of structural

stiffness) than those of Fig. 19a, b.

6 Model Reduction

As has been discussed in the Introduction, the implemen-

tation of FE2-type solution schemes results in an extremely

high computational burden in terms of both computing

time and storage requirements. For instance, the realization

of the test example of Fig. 12c requires approximately two

weeks’ computing time because the time-comsuming

multiscale nonlinear structure analysis need to be carried

out for each of all design iterations.

One straightforward solution to alleviate the computa-

tional requirements is parallel computing (e.g., [85]),

because the microscale problems are independent, embar-

rassingly parallel. Note that, the implementation of parallel

computing contributes significantly in terms of limiting the

computing time, but not necessarily reduces the computing

cost. In the contrary, parallelization eventually results in

higher computing cost due to additional interchanges

between the two scales. For this reason, one needs to turn

to alternative strategies by means of model reduction or

simplification.

Reduced-Order Model (ROM) has been systematically

researched and widely used in the fields of computational

mechanics in order to reduce computing cost, data storage

requirements as well as computing time (e.g., [33, 93]).

Some other applications can also be found for the repre-

sentation of material mircrostructure (e.g., [39, 118]) and

structural optimization design (e.g., [94, 121]). In terms of

reducing the computing effort for the evaluation of non-

linear RVEs at the microscopic scale, numerous ROMs can

be found in literature for the representation or approxi-

mation of the effective constitutive behavior of nonlinear

heterogeneous materials, using reduction strategies such as

Proper Orthogonal Decomposition (POD, e.g., [135]),

Proper Generalized Decomposition (PGD, e.g., [24, 29,

71]), hyper-reduction (e.g., [56, 84]), material map model

(e.g., [108]), eigendeformation-based reduction (e.g., [91,

132]), Nonuniform Transformation Field Analysis (NTFA,

e.g., [79, 80]), and Numerical EXplicit Potentials (NEXP,

[136]). Note that, by simultaneous use of parallel com-

puting and ROM (e.g., [36]), a further reduction in com-

putational time can be achieved in multiscale analysis (e.g.,

[37]).

In the case of elasticity, the database-type methods such

as material map model [107, 108] and NEXP [136] have

shown promising performances in terms of both modeling

accuracy and computing efficiency. The general idea of

this type of methods is to compute off-line a certain number

of RVE problems as a database, then the effective RVE

behavior is approximated using the precomputed database

(a)

(b) 

Fig. 19 Comparison on the

microscale topology results by

two different design approaches.

a Simplified iterative design

approach, fc ¼ 150:86 J. b FE2-

based design approach, fc ¼
137:59 J [114]
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by means of interpolation schemes. The on-line macroscale

computation uses then directly the cheaper approximated

constitutive behavior of the RVE without demanding

solving full-scale RVE problems. By this reduction strat-

egy, one in fact decomposes the two-scale modeling into

the off-line RVE approximation construction phase and the

on-line macroscale evaluation phase. This type of methods

applies for viscoelastic materials (e.g., [110]) and nonlinear

hyperelastic materials (e.g., [107, 108, 137]) and has also

been extended for stochastic nonlinear elastic materials

(e.g., [20, 21]). Recently the NEXP approximation has also

been constructed using Neural Networks [72].

The development ROMs for the representation of RVE

involving path-dependent constitutive laws, such as plas-

ticity, is still a challenging subject under development.

Here, we simply refer to methods of NTFA (e.g., [34, 35,

79, 80]) and adaptive POD approach for instance as

implemented in [84] and [56].

Generally speaking, all these established ROMs apply

straightforwardly to topology optimization of multiscale

nonlinear structures as long as the macroscale equilibrium

solution is provided. In [136], it has already been shown

that the NEXP method can accurately approximate the

nonlinear effective nonlinear behavior of the same short-

fiber reinforced composite considered in Sect. 3.4. The

implementation of the NEXP method to the design

framework is therefore rather straightforward. The NEXP

method has also been extended recently by the authors in

[116] to represent the generalized nonlinear elastic

behavior of microscale material optimizations with satis-

factory performance. Figure 21 shows a twoscale topology

design result for a finer discretized half-MBB beam prob-

lem with the use of an NEXP approximate constitutive

behavior.

Most of the existing ROMs require a set of a priori

sampling experiments so as to build reduced bases or

approximations. The choice of the experiment space and the

sampling scheme are usually of great importance on the

accuracy of the ROM. These difficulties can be alleviated

when dealing with iterative structural optimization designs.

The design domain can be easily localized using the solu-

tions of the initial optimization design iterations. In addi-

tion, the involved reduced bases or the database can be

adaptively updated or enriched, respectively in the follow-

ing optimization design iterations. As we have presented in

[115], a first attempt towards topology optimization of

multiscale nonlinear structures, the bi-level reduced ROM

[31, 32] for the considered nonlinear RVE is initially built

using all microscale solutions at the first design iteration,

then applied and adapted in the following design iterations.

7 Conclusions and Perspectives

This paper has reviewed recent advances on topology

optimization of multiscale nonlinear structures. Key

ingredients of two main sub-topics, namely design of

multiscale structures and concurrent design of material and

structure, are reviewed and their performances have been

illustrated by numerical examples and comparisons.

As can be told from the present review, the realization of

such type of designs is not challenging from technical

perspective of view. The main difficultly lies on the

unbearable computational burden and data storage

requirement due to multiple realizations of FE2 computing,

for which reason we have discussed the existing and

potential applications of model reduction techniques for

multiscale structure designs.

Fig. 20 Concurrent material

and structure topology design

result by FE2-based design

approach, fc ¼ 190:16 J [114]

Recent Advances on Topology Optimization of Multiscale Nonlinear Structures 245

123



To the best knowledge of the authors, this is a relatively

new field that there has been very limited research, espe-

cially for the design of multiscale nonlinear structures.

Many potential developments can be carried out with

respect to the models for either optimization, multscale

modeling, or model reduction.
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