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Abstract Predictive models are an important element in

dam safety analysis. They provide an estimate of the dam

response faced with a given load combination, which can

be compared with the actual measurements to draw con-

clusions about dam safety. In addition to numerical finite

element models, statistical models based on monitoring

data have been used for decades for this purpose. In par-

ticular, the hydrostatic-season-time method is fully imple-

mented in engineering practice, although some limitations

have been pointed out. In other fields of science, powerful

tools such as neural networks and support vector machines

have been developed, which make use of observed data for

interpreting complex systems. This paper contains a review

of statistical and machine-learning data-based predictive

models, which have been applied to dam safety analysis.

Some aspects to take into account when developing anal-

ysis of this kind, such as the selection of the input vari-

ables, its division into training and validation sets, and the

error analysis, are discussed. Most of the papers reviewed

deal with one specific output variable of a given dam

typology and the majority also lack enough validation data.

As a consequence, although results are promising, there is a

need for further validation and assessment of generalisation

capability. Future research should also focus on the

development of criteria for data pre-processing and model

application.

1 Introduction

Behaviour models are a fundamental component of dam

safety systems, both for the daily operation and for long-

term behaviour evaluation. They are built to calculate the

dam response under safe conditions for a given load

combination, which is compared to actual measurements of

dam performance [71]. The result is an essential ingredient

for dam safety assessment, together with visual inspection

and engineering judgement [27].

Numerical models based on the finite element method

(FEM) are widely used to predict dam response, in terms of

displacements, strains and stresses. They are based on the

physical laws governing the involved phenomena, which

gives them some interesting features: (a) they are useful for

the design and, more importantly, for dam safety assess-

ment during the first filling, and (b) they can be conve-

niently interpreted, provided that their parameters have

physical meaning.

On the contrary, some relevant indicators of dam safety,

such as uplift pressure and leakage flow in concrete dams,

cannot be predicted accurately enough with numerical

models [38, 39]. In addition, the knowledge of the stress-

strain properties of the dam and foundation materials is

always limited [75], and so is the prediction accuracy of

FEM models [27].
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These limitations, together with the availability of

monitoring data, have fostered the application of statistical

models to predict dam response. They have been used in

dam safety analysis for decades as a complement to visual

inspection and numerical models, to support decision

making.

In recent years, there is a tendency towards automatising

dam monitoring devices [27], which allows for increasing

the reading frequency and results in a greater amount of

data available. Although it encourages extraction of as

much information as possible in relation with dam safety

conditions [57], it has revealed certain limitations of tra-

ditional statistical tools to manage dam monitoring data

[58].

On another note, advanced tools have been developed in

the machine learning (ML) community to build data-based

predictive models. They have been applied in various fields

of science and engineering, where similar problems have

emerged more dramatically, provided that the amount of

data is much larger or the underlying phenomena is much

less understood. This is the case, for example, of medicine,

e-commerce, smartphone applications, econometrics or

business intelligence, among others. Most of these tools

exclusively rely on data to build predictive models, i.e., no

prior assumptions on the physics of the phenomenon have

to be made beforehand [25].

The limitations of traditional statistical tools and the

availability of these advanced learning algorithms have

motivated dam engineers to search the possibilities of the

latter for building dam behaviour models, as well as for

analysing dam behaviour.

This paper reports a review on dam behaviour models

based on monitoring data. The work focuses on prediction

accuracy, although it also refers to model suitability for

interpreting dam performance. The most popular tech-

niques are dealt with in Sect. 2, whereas some common

issues in building data-based models and evaluating their

results are analysed in Sect. 3. The analysis is performed

on the basis of the review of 41 papers on the field.

2 Statistical and Machine Learning Techniques
Used in Dam Monitoring Analysis

The aim of these models is to predict the value of a given

variable Y 2 R (e.g. displacement, leakage flow, crack

opening, etc.), in terms of a set of inputs1 X 2 R
d:

Y ¼ Ŷ þ e ¼ FðXÞ þ e ð1Þ

e is an error term, which encompasses the measurement

error, the model error, and the deviation of the dam

response from the expected behaviour [71]. This term is

important, given that it is frequently used to define safety

margins and warning thresholds [27].

The models are fitted on the basis of a set of observed

input data xi, and the correspondent registered outputs yi,

where i ¼ 1; . . .;N and N is the number of observations.

Note that each xi is a vector of d components, being d the

number of inputs.

The inputs may be of different nature, depending on the

method:

• Raw data recorded by the monitoring system, which in

turn can be:

• External variables: reservoir level (h), air temper-

ature (T), etc.

• Internal variables: temperature in the dam body,

stresses, displacements, etc.

• Variables derived from observed data. For example:

• Polynomials

• Moving averages

• Derivatives

2.1 Hydrostatic-Seasonal-Time (HST) Model

The most popular data-based approach for dam monitoring

analysis is the hydrostatic-seasonal-time (HST) model. It

was first proposed by Willm and Beaujoint [76] to predict

displacements in concrete dams, and has been widely

applied ever since. It is based on the assumption that the

dam response is a linear combination of three effects:

Ŷ ¼ F1 hð Þ þ F2 sð Þ þ F3 tð Þ ð2Þ

• A reversible effect of the hydrostatic load which is

commonly considered in the form of a fourth-order

polynomial of the reservoir level (h) [4, 67, 71]:

F1 hð Þ ¼ a0 þ a1hþ a2h
2 þ a3h

3 þ a4h
4 ð3Þ

• A reversible influence of the air temperature, which is

assumed to follow an annual cycle. Its effect is

approximated by the first terms of the Fourier

transform:
1 Traditionally, the statistical models applied in dam monitoring

analysis were based on causal variables, e.g. hydrostatic load and

temperature, which are often termed ‘‘independent variables’’. On the

contrary, other algorithms make use of transformed variables (such as

gradients or moving averages), and non-causal observations (e.g. the

previous value of the output). This has led to the use of various terms

Footnote 1 continued

to refer to the model inputs, such as ‘‘predictors’’, ‘‘covariates’’, and

‘‘features’’. In this paper they are used indistinctly.
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F2 sð Þ ¼a5cosðsÞ þ a6senðsÞ þ a7sen
2ðsÞ

þ a8senðsÞcosðsÞ
ð4Þ

where s ¼ 2pd=365:25 and d is the number of days

since 1 January.

• An irreversible term due to the evolution of the dam

response over time. A combination of monotonic time-

dependant functions is frequently considered. The

original form is [76]:

F3 tð Þ ¼ a9logðtÞ þ a10e
t ð5Þ

The model parameters a1; . . .; a10 are adjusted by the least

squares method: the final model is based on the values

which minimise the sum of the squared deviations between

the model predictions and the observations.

Some authors used variations of the original HST model,

by using some heuristics or after a trial-and-error process.

Mata [40] considered the irreversible effect by means of

F3 tð Þ ¼ a9t þ a10e
�t. Chouinard and Roy [12] used a linear

term in t and a third-order polynomial of h. Simon et al.

[67] chose F3 tð Þ ¼ a9e
�t þ a10t þ a11t

2 þ a12t
3 þ a13t

4,

whereas Yu et al. [80] used F3 tð Þ ¼ a9t þ a10t
2 þ a11t

3.

Carrère applied a variation of HST in which the possibility

of a sudden change in the dam response at a certain time is

considered by adding a step function to the irreversible

term [9].

The method makes use of strong assumptions on the

response of the dam, which might not be fulfilled in gen-

eral. In particular, the three effects are considered as

independent, although it is well known that certain

collinearity exists. The reservoir level affects the thermal

response of the dam, provided that the air and water tem-

peratures differ [73]. In some cases, the reservoir operation

follows an annual cycle due to the evolution of the water

demand, so there is a strong correlation between h and the

air temperature [13, 33, 38, 66]. Collinearity may lead to

poor prediction accuracy and, more importantly, to misin-

terpretation of the results [1].

Another limitation of the original form of HST model is

that the actual air temperature is not considered. On one

hand, this makes it more flexible, because it can be applied

in dams where air temperature measurements are not

available. On the other hand, it reduces its prediction

accuracy for particularly warm or cold years [66, 73].

Several alternatives have been proposed to overcome

this shortcoming. Penot et al. [50] introduced the HSTT

method, in which the thermal periodic effect is corrected

according to the actual air temperature. This procedure

has been applied at Electricité de France (EDF) [20, 73]

with higher accuracy than HST, especially during the

2003 European heat wave. Although the proposal of this

method has been frequently attributed to Penot et al.,

Breitenstein et al. [8] applied a similar scheme 20 years

earlier.

Tatin et al. [73, 74] proposed further corrections of

HSTT. The HST-Grad model takes into account both the

mean and the gradient of the temperature in the dam body,

considered as a one-dimensional domain. They are esti-

mated from the air temperature in the downstream face,

and from a weighted average of the air and water tem-

peratures in the upstream one. A similar and more detailed

approach was applied by the same authors, called the

SLICE model [73]. It considers different thermal condi-

tions for the portion of the dam body located below the

pool level to that situated above, which is not affected by

the water temperature.

Other common choice is to replace the periodic function

of the thermal component by the actual temperature in the

dam body, resulting in the hydrostatic-thermal-time (HTT)

method. One difficulty of this approach is how to select the

appropriate thermometers among those available. In arch

dams, some authors only consider the thermometers in the

central cantilever, assuming that it represents the thermal

equilibrium between cantilevers in the right and left mar-

gins [66]. Mata et al. [42] solved this issue by applying

principal component analysis (PCA), while other authors

[33] considered all the available instruments. Li et al. [34]

proposed an error correction model (ECM), featuring a

term which depends on the error in the estimation of pre-

vious output values.

AlthoughHSTwas originally devised for the prediction of

displacements in concrete dams, it has also been applied to

predict other variables. Simon et al. [67] estimated uplifts

and leakagewithHST, although they obtainedmore accurate

results with neural networks (NN). Guedes and Coelho [24]

built amodel for the prediction of leakage in Itaipú Damwith

the form a1h
2
6;11 þ a2t þ a3t

2 þ a4log 1þ tð Þ, where h6;11 is
the average reservoir level between 6 and 11 days before

the measurement. Breitenstein et al. [8] also studied

leakage, although they discarded both the seasonal and

the temporal terms. Yu et al. [80] combined HST with

PCA to predict the opening of a longitudinal crack in

Chencun Dam.

A common feature to HST and its variations is that the

output is computed as a linear combination of the inputs.

Hence, they are all multi-lineal regression models (MLR),

so their coefficients can be fitted by least squares. Other

approaches based on MLR have been applied in dam

safety, considering a larger set of inputs (e.g. [19, 69]).

2.2 Models to Account for Delayed Effects

It is well known that dams respond to certain loads with

some delay [39]. The most typical examples are:
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• The change in pore pressure in an earth-fill dam due to

reservoir level variation [6].

• The influence of the air temperature in the thermal field

in a concrete dam body [67].

Other phenomena have been identified which are governed

by similar processes. For example, Lombardi [38] noticed

that the structural response of an arch dam to hydrostatic

load comprised both elastic and viscous components.

Hence, the displacements not only depended on the

instantaneous reservoir level, but also on the past values.

Simon et al. [67] reported that leakage flow at Bissorte

Dam responded to rainfall and snow melt with certain

delay.

Several approaches have been proposed to account for

these effects. The most popular consists of including

moving averages or gradients of some explanatory vari-

ables in the set of predictors. In the above mentioned study,

Guedes and Coelho [24] predicted the leakage flow on the

basis of the mean reservoir level over the course of a five-

days period. Sánchez Caro [62] included the 30 and

60 days moving average of the reservoir level in the con-

ventional HST formulation to predict the radial displace-

ments of El Atazar Dam. Popovici et al. [53] used moving

averages of 3, 10 and 30 days of the air temperature,

together with the pool level in the previous 3 days to the

measurement in order to predict displacements in a buttress

dam with neural networks (NN). Crépon and Lino [15]

reported significant improvement in the prediction of

piezometric levels and leakage flows by considering the

accumulated rainfall and the derivative of the hydrostatic

load as predictors.

This approach requires a criterion to determine which

moving averages and gradients should be considered for

each particular case. Demirkaya and Balcilar [19] per-

formed a sensitivity analysis to select the number of past

values to include both in an MLR and in a NN model. They

used the same period for the external and internal tem-

peratures, as well as for the reservoir level, and found that

the most accurate results were obtained with an MLR

model considering data from 30 previous days. Although

their results compared well to those proposed by the par-

ticipants in the 6th ICOLD Benchmark Workshop2 [81],

they lacked physical meaning: they would imply that the

dam responded with the same delay to the water level, the

air temperature, and the internal temperature field.

Santillán et al. [64] proposed a methodology to select

the optimal set of predictors among various gradients of air

temperature and reservoir level. They used the gradients

instead of the moving averages to ensure independence

among predictors (moving averages are correlated with the

original correspondent variables). They combined it with

NN to predict leakage flow in an arch dam.

A more formal alternative to conventional HST to

account for delayed effects was proposed by Bonelli and

Royet [7]. It is based on the hypothesis that the delayed

effect depends on the convolution integral of the impulse

response function (IRF) and the loadings:

Ŷ ¼ a
1

t0

Z t

0

e
� t�t0

t0

� �
h t0ð Þot0 ð6Þ

where a is a damping coefficient, t0 is the characteristic

time, which depends on the phenomenon, and h t0ð Þ is the

reservoir level at time t0. Although the analytical integra-

tion of this function is cumbersome, it can be solved by

means of numerical approximation. The advantage of this

approach is that the coefficients have physical meaning: the

characteristic time provides insight into the lag with which

the dam reacts to a variation in the input variable, whereas

the damping reflects the relation between the amplitude of

the reservoir level variation and that of the pore pressure in

the location considered within the dam body.

A similar approach was followed by the same author in

the frame of the above mentioned 6th ICOLD Benchmark

Workshop [4]. In this case, it was intended to account for

the delayed response of the dam in terms of the temperature

field, with the final aim of predicting radial displacements.

Lombardi [38] suggested an equivalent formulation, also

to compute the thermal response of the dam to changes in

air temperature. Although the development was slightly

different, the numerical approximation to the integral is

equivalent. Lombardi arrived at the following expression

[39]:

Ŷ tð Þ ¼a � Y t � Dtð Þ þ 1þ a
b
� 1

b

� �
X tð Þ

þ 1

b
� a
b
� a

� �
X t � Dtð Þ

ð7Þ

where a ¼ e
�Dt
t0 ; b ¼ Dt

t0
, and Dt is the measurement interval.

It should be noted that the numerical integration of (6) by

means of (7) leads to a predictive model which is a linear

combination of:

• the value of the predictors at t and t � Dt
• the value of the output variable at t � Dt

This is the conventional form of a first order auto-regres-

sive exogenous (ARX) model. In general, these models

require specific algorithms to determine the appropriate

2 In the 6th ICOLD Benchmark Workshop, the participants were

asked to provide a data-based model for predicting the radial

displacement of Schlegeiss arch dam for the period 1999–2000. Time

histories of water level, air temperature and concrete temperatures at

various locations were provided for the period 1992–2000, as well as

the observed values of the target variable for the period 1992–1998.

4 F. Salazar et al.
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order of the model for a given case, i.e., the amount of past

values to consider for the output and each of the input

variables. The next section is devoted to this aspect and to

auto-regressive models.

In practice, an input transformed by Eq. (6) is similar to

a weighted moving average (WMA) [39]. Figure 1 shows

the comparison between both transformations of 4 inputs:

(a) a sinusoidal, (b) a random variable, (c) a cyclic variable

with random noise and (d) an isolated pulse. It can be seen

that the transformed sinusoidal can be accurately modelled

with an appropriate moving average. The difference

between IRF and WMA is greater for random inputs, and

the discrepancy increases as the signal-to-noise ratio

decreases.

IRF has the advantage of its physical meaning, and has

offered accurate results for determined outputs. Nonethe-

less, given that it makes a strong assumption on the char-

acteristics of the phenomenon, it is restricted to specific

processes. Even when applied to a similar phenomenon,

such as the effect of precipitation on the pore pressure on

an earth-fill dam, the accuracy decreases [7]. Moreover, the

coefficients lose their physical meaning in this case.

2.3 Auto-Regressive (AR) Models

The use of the previous (lagged) value of the output to

calculate a prediction for current record may induce to

question (a) whether the observed previous value or the

precedent prediction should be used, and (b) whether the

model parameters should be readjusted at every time

step.

In general, using the actual previous value and refitting

the model should provide better prediction accuracy, but

such a model would not be able to detect gradual anomalies

[79]: it would learn the abnormal behaviour and treat it as

ordinary [38]. Riquelme et al. [59] improved the accuracy

of a NN model by several orders of magnitude by applying

this approach.

The opposite alternative is to fit the model to data

gathered for a given time period, and make long-term

predictions on a step-by-step basis [48], i.e., predict the

output at t þ 1, and use it (the prediction; not the obser-

vation) to estimate the value at t þ 2. This procedure may

fail in error propagation [10], but in principle should be

appropriate to unveil gradual anomalies.

20

10

0

10

20

0.0 0.3 0.6 0.9

0

10

20

30

0

10

20

30

40

50

0

10

20

30

40

IRF
WMA

INPUT(a)

(b)

(c)

(d)

time (years)

0.0 0.3 0.6 0.90.0 0.3 0.6 0.9

IRF
WMA

INPUT

IRF
WMA

INPUT

IRF
WMA

INPUT

0.0 0.3 0.6 0.9
time (years)

time (years) time (years)

Fig. 1 Comparison between impulse response function (IRF) and weighted moving average (WMA) for various inputs: a sinusoidal, b random,

c sinusoidal with random noise and d impulse
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An intermediate choice is to use the actual measurement

of the output variable, without readjusting the model

parameters. In this case, the coefficients obtained on the

basis of a period of normal behaviour are applied to future

observations, hence the model could detect changes in the

relation between current and next values of the output.

Although several authors built predictive models based

on lagged output values, most of them did not mention

which of the described approaches applied. Palumbo et al.

[48], should have used the previous prediction, given that

they presented a solution to the 6th ICOLD Benchmark

Workshop, and the observed values of the output were not

provided to the participants beforehand.

If the possibility of including past values of the variables

is considered, a criterion to select some of the available

shall be defined. Otherwise, the amount of predictors is

quite high. For example, Piroddi and Spinelli [52] con-

sidered the most general form of a non-linear autoregres-

sive exogenous model (NARX), which depended on

current and previous values of the input variables, on

precedent values of the output, as well as on linear and

non-linear combinations of them. They applied a specific

algorithm for selecting 11 predictors in the final model.

In general, these models prioritise prediction accuracy

over explanatory capability. The greater the number of vari-

ables in themodel, the harder it is to interpret and to isolate the

effect of each component. Nonetheless, some procedures

have been proposed to interpret models whose parameters do

not have physical meaning, as described in Sect. 3.2.

2.4 Neural Networks (NN)

Linear models are not well suited to reproduce non-linear

behaviour, even though some actions are considered in the

form of high order polynomials [12]. On the contrary, NN

models are flexible, and allow modelling complex and

highly non-linear phenomena. Although there are various

types of NN models [3], the vast majority of applications

for dam monitoring data analysis are based on the multi-

layer perceptron (MLP). Such models, as their name sug-

gests, are comprised by a number of perceptrons (also

called ‘‘units’’, or ‘‘neurons’’) organised in different layers:

input, hidden, and output (Fig. 2). In principle, several

hidden layers can be used (see Sect. 2.6), but one is mostly

adopted in practice [3].

The input of each unit Ul is a linear combination of the

predictors X j:

cl ¼
Xd
j¼1

X j � wj
l þ bl ð8Þ

which is later transformed by an activation function g to

compute the neuron’s output:

zl ¼ gðclÞ ð9Þ

Several forms of g can be chosen (non-linear in general),

although sigmoid functions are often employed, such as the

logistic (10) and the hyperbolic tangent (11) (Fig. 3). As an

exception, Su et al. [70] selected Mexico-hat wavelet

functions (12) to obtain a wavelet neural network (WNN)

model, otherwise similar to conventional NN models

described in this section.

gðclÞ ¼
1

1þ e�cl
ð10Þ

gðclÞ ¼
ecl � e�cl

ecl þ e�cl
ð11Þ

g clð Þ ¼ 1� cl
2

� �
� e 1�cl

2

2

� �
ð12Þ

The output layer may be composed of one of the described

neurons, although a linear transform is frequently chosen,

so that the overall model output is computed as:

Ŷ ¼
XL
l¼1

wl
out � g

Xd
j¼1

X jw
j
l þ bl

 !
þ bout ð13Þ

NN models can be thought of as an extension of MLR,

which output cl is expanded by the perceptron through a

non-linear transformation g [25]. It should be noted (Fig. 3)

that the sigmoid functions have a linear interval, thus an

unit with small weights performs a linear transformation.

On the contrary, they have horizontal asymptotes, which

may cause numerical problems. While it is widely

acknowledged that the variables shall be normalised before

fitting an NN model, some authors restrict them to the

range [0.1, 0.9] to avoid the above mentioned problems

[23, 56, 75].

The most common learning algorithm is called back-

propagation: NN model parameters fwj
l ; bl;w

l
out; boutg are

randomly initialised, and iteratively updated to minimise a

cost function (typically the sum of the squared errors), by

means of the gradient descent method [25].

The issues to be considered for building an NN model

are the following:

1. The best network architecture, i.e., number of layers

and perceptrons in each layer, is not known before-

hand. Some authors focus on the definition of an

efficient algorithm for determining an appropriate

network architecture [64], whereas others use conven-

tional cross-validation [40] or a simple trial and error

procedure [75].

2. The training process may reach a local minimum of the

error function. The probability of occurrence of this

event can be reduced by introducing a learning rate

parameter [75].

6 F. Salazar et al.
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3. The NN models are prone to over-fitting. Various

alternatives are suitable for solving this issue, such as

early stopping and regularisation [25].

The fitting procedures greatly differ among authors. While

Simon et al. [67] trained an MLP with three perceptrons in

one hidden layer for 200,000 iterations, Tayfur et al. [75]

used regularisation with 5 hidden neurons and 10,000

iterations. Neither of them followed any specific criterion

to set the number of neurons. For his part, Mata [40] tested

NN architectures with one hidden layer having 3–30 neu-

rons on an independent test data set. He repeated the

training of each NN model 5 times with different initiali-

sation of the weights.

Kao andLoh [30] proposed a two-step procedure: first, the

number of neurons was fixed whereas the optimal amount of

iterations was computed. Second, NN models with different

numbers of hidden nodes were trained with the selected

amount of iterations, and the final architecture was chosen as

the one which provided the lowest error in a validation set.

The results of the different studies are not comparable,

due to the specific features of each case. Nonetheless, the

lack of agreement on the training process suggests that

similar results can be obtained with different criteria,

provided enough care is taken to avoid over-fitting. This is

in accordance with Hastie et al. [25], who stated that in

general it is enough to set the architecture and compute the

appropriate regularisation parameter, or vice versa.

NN models have been used regularly in dam monitoring

in recent years. There is an increasing number of published

studies, both in academic and professional journals. The

most recent ICOLD bulletin on dam surveillance [27]

mentions NN as an alternative to HST and deterministic

models, although it terms the tool as a ‘‘possible future

alternative’’ to be developed, which suggests that it is far

from being implemented in the daily practice.

2.5 Adaptive Neuro-Fuzzy Systems (ANFIS)

Fuzzy logic allows inclusion of prior knowledge of the

phenomenon, as opposed to the NN, who ‘‘learn’’ from the

data. ANFIS models bring together the flexibility and

ability to learn of the NN with the feasibility of

Fig. 2 Left schematic model of a perceptron Ul. Right Multilayer Perceptron formed by L units, U1; . . .;UL

1.5

0

-1.5
0 5-5

3.0

1.5

0

-1.5
0 5-5

3.0

1.5

0

-1.5
0 5-5

3.0
logistic hyperbolic

tangent Mexico-hat

Fig. 3 Common activation functions in NN models
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interpretation of fuzzy logic. In fact, ANFIS can be con-

sidered a class of NN [60]. They are meant for highly non-

linear, complex phenomena which vary with time [28].

Among the different types of ANFIS schemes, most

previous references in dam monitoring used Takagi–

Sukeno (T–S) type, whose singularity is that its output is a

combination of linear functions [72]. As an exception,

Opyrchal [47] used fuzzy logic to qualitatively locate

seepage paths in Tresna and Dobczyce dams.

Fuzzy logic is based on the concept of membership

functions (MF). Each continuous variable X j is decom-

posed into K j classes (for example, the reservoir level,

which is continuous, can be transformed into ‘‘low’’,

‘‘medium’’ and ‘‘high’’; see Fig. 4). The particularity of

fuzzy logic is that these classes have certain overlapping.

Thus, a given reservoir level will generally have a different

degree of membership (DOM), between zero and one, for

more than one class. For Gaussian MF:

DOMjk X j
� �

¼ 1

1þ X j�mjk
kjk

� �2� 	ljk

j ¼ 1; . . .; d; k ¼ 1; . . .;K j

ð14Þ

The number of classes for each input (K j, which can be

different among inputs X j) are prescribed by the modeller,

whereas the shape and position of their MF are determined

by the premise parameters m; k and l (Eq. 14), to be

determined during training.

The other essential component in an ANFIS model is a

set of rules, which take the form:

R1 : if X1 2 MF11 ^ X2 2 MF21 ^ � � � ^ Xd 2 MFd1 )
f1 ¼ p10 þ p11X

1 þ p12X
2 þ � � � þ p1dX

d

R2 : if X1 2 MF11 ^ X2 2 MF21 ^ � � � ^ Xd 2 MFd2 )
fr ¼ p20 þ p21X

1 þ p22X
2 þ � � � þ p2dX

d

� � �
RR : if X1 2 MF1K1 ^ X2 2 MF2K2 ^ � � �
� � � ^ Xd 2 MFdKd )
fR ¼ pR0 þ pR1X

1 þ pR2X
2 þ � � � þ pRdX

d ð15Þ

where p10; . . .; pRd are the consequent parameters, to be

adjusted during model training. It should be noted that

there can be up to
Qd

j¼1 K
j rules.

The model output is computed by means of 5 steps:

1. Compute the DOM of every input to each fuzzy

category (14).

2. Compute the product of the correspondent DOMjk, in

accordance with the rules. In ANFIS terminology,

these terms are referred to as the firing strengths

(wr; r ¼ 1; . . .;R) for each rule:

w1 ¼ DOM11 � DOM21 � . . . � DOMd1

w2 ¼ DOM11 � DOM21 � . . . � DOMd2

. . .

wR ¼ DOM1K1 � DOM2K2 � . . . � DOMdKd

ð16Þ

3. Normalise the firing strengths:

wr ¼
wrP
wr

ð17Þ

4. Compute the output of each rule, as a linear function of

the consequent parameters:

Or ¼ wrfr ¼ wr pr0 þ pr1X
1 þ pr2X

2 þ � � � þ prdX
d

� �
r ¼ 1; . . .;R

ð18Þ

5. Combine the outputs of each rule to compute the

overall output of the ANFIS model:

Ŷ ¼
XR
r¼1

Or ð19Þ

The final result is a combination of linear functions of the

input variables. The non-linearity is modelled in the MF,

which are typically Gaussian, as shown in the example of

Fig. 4. Each MF is determined on the basis of 3 premise

parameters, fitted with a hybrid method, in which the fol-

lowing steps are alternated:

1. The MF are fixed, and the consequent parameters are

adjusted by least squares.

2. The premise parameters are modified by means of the

gradient descent method.

The criterion of the user is more important for building

ANFIS than for other kinds of models. Both the prediction

accuracy and the possibility of interpreting the results may

vary greatly according to the number of inputs (d), MF (K j)

and rules (R). It should be noted that the number of

parameters in a first order T–S ANFIS model can be up to:
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Fig. 4 Possible transformation of the normalised reservoir level into

three fuzzy sets with Gaussian form: ‘‘low’’, ‘‘medium’’ and ‘‘high’’
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3 �
Xd
j¼1

K j þ ðd þ 1Þ �
Yd
j¼1

K j ð20Þ

Ranković et al. [54] prioritised prediction accuracy over

model interpretation, by considering lagged values of both

the input and output variables as predictors, resulting in an

ANFIS model with d ¼ 5;K j ¼ 2; 8j and R ¼ 32. They

used a zero-order T–S model, in which fr ¼ pr0; 8r 2 ½1;R�,
and two-sided Gaussian MF, defined by 4 parameters each.

No attempt was made to interpret the 32 rules.

On the contrary, Xu and Li [78] considered only 9 rules

and could identify the worst environmental conditions for

crack opening in the Chencun Dam.

For his part, Demirkaya [18] chose d ¼ 5 and K ¼ 4.

Although he limited the number of rules to 4, the final

model had 84 parameters.

ANFIS models can be as flexible and accurate as NN,

while allowing for introducing engineering knowledge to

some extent. If the amount of rules and MF is low, the

resultant model can be interpreted. Furthermore, an ANFIS

model can be used for qualitatively describing dam beha-

viour, especially if the output is ‘‘fuzzyfied’’ into linguistic

variables [78].

On the contrary, they may comprise a high number of

parameters, even with a few rules, which results in a high

risk of over-fitting and low interpretability.

2.6 Principal Component Analysis (PCA)

and Dimensionality Reduction

PCA is a well known technique in statistics. It was devised

to transform a set of partially dependent variables into

independent features called principal components (PCs),

which are linear combination of the original variables. It is

acknowledged that the first PCs contain the relevant

information, whereas the less influential correspond to the

signal noise. It has been used in dam monitoring for various

purposes.

Mata et al. [42] used PCA to select the most useful

thermometers to predict radial displacements in an arch

dam. They pointed out the potentiality of this tool to

select a group of sensors to be automatised in a given

dam.

Yu et al. [80] applied PCA to a group of sensors to

measure the opening of a longitudinal crack in an arch

dam. They reported that PCA was useful for reducing the

dimensionality of the problem, as well as to separate the

signal from the noise. They also defined alarm thresholds

as a function of the first PCs. Cheng and Zheng [11] fol-

lowed a similar procedure: they analysed the covariance

matrix of the outputs to separate the effect of the envi-

ronmental variables from the signal noise.

Similar applications were due to Chouinard et al. [13],

and Chouinard and Roy [12], who extracted PCs from a set

of outputs (radial displacements at pendulums) to better

understand the behaviour of the structure. They focused on

the model interpretation, rather than on the prediction

accuracy. In this line, Nedushan [44] extracted PCs from a

group of sensors to analyse them jointly, as well as to

identify the correlations by means of stepwise linear

regression. He defined a set of predictors (reservoir level,

temperature and time), and built linear regression models

by adding the most relevant one by one.

A limitation of PCA is that only linear relations between

variables are considered. If the dependency is non-linear, it

may lead to misinterpretation of the results. Non-linear

principal component analysis (NPCA) can be an alterna-

tive, as showed by Loh et al. [37] and Kao and Loh [30],

who applied it by means of auto-associative neural net-

works (AANN) to predict radial displacements in an arch

dam.

AANN are a special kind of NN models, formed by 5

layers (Fig. 5), which can be viewed as two NN models put

in series. The intermediate (bottleneck) layer has fewer

neurons than the number of model inputs, and the target

outputs equal the inputs. Thus, the first part of the model

reduces its dimensionality, computing some sort of non-

linear PCA. The right-hand-side of the AANN is a con-

ventional NN whose inputs are the non-linear PCs.

Jung et al. [29] developed a methodology to identify

anomalies in piezometric readings in an earth-fill dam by

means of moving PCA (MPCA), which is conventional

PCA applied to different time periods. The goal was to

detect significant variations in the PCs over time, which

would reveal a change in dam behaviour.

PCA is mostly applied to input or output variable

selection. The first option may increase the prediction

accuracy, whereas the second can be useful for managing

very large dams with a large amount of devices. For

example, more than 8,000 instruments were installed to

control the behaviour of the Three Gorges Dam [80].

2.7 Other ML Techniques

There is a wide variety of ML algorithms which can be

useful for dam monitoring data analysis. Their accuracy

depends on the specific features of every prediction task.

Given that research on ML is a highly active field, the

algorithms are constantly improved and new practical

applications are reported each year. Some of them have

been applied to dam monitoring analysis. They are con-

sidered in this section more briefly than others, in accor-

dance with their lower popularity in dam engineering so

far. This does not mean that they can not offer advantages

over the methods described previously.
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Support vector machines (SVM) stand among the most

popular ML algorithms nowadays. They combine a non-

linear transformation of the predictor variables to a higher

dimensional space, a linear regression on the transformed

variables, and an e-insensitive error function that neglects

errors below a given threshold [68]. Cheng and Zheng [11]

used SVM in combination with PCA for short-term predic-

tion of the response of theMinhuatan gravity dam. Although

the results were highly accurate, the computational time was

high. Rankovic et al. [55] built a behaviour model based on

SVM for predicting tangential displacements.

K-nearest neighbours (KNN) is a non-parametric

method which requires no assumptions to be made about

the physics of the problem; it is solely based on the

observed data. The KNN method basically consists on

estimating the value of the target variable as the weighted

average of observed outputs in similar conditions within

the training set. The similarity between observed values is

measured as the Euclidean distance in the d-dimensional

space defined by the input variables.

A clear disadvantage of this type of model is that if the

Euclidean distance is used as a measure of similarity, all the

predictors are given the same relevance. Hence, including a

low relevant variable may result in a model with poor

generalisation capability. As a consequence, variable selec-

tion is a critical aspect for fitting a KNN model.

Saouma et al. [65] presented a solution to the 6th ICOLD

Benchmark Workshop based on KNN. To determine the

similarity of observations, they used only two significant

predictors (the reservoir level and a thermometer in the dam

body) among the eight available. This selection of variables

was performed by trial and error, although other criteria

exist, as described in the next section.

Stojanovic et al. [69] combined greedy MLR with

variable selection by means of genetic algorithms (GA).

Unlike HST, they considered all the observed variables in

various forms (e.g. h; h2; h3;
ffiffiffi
h

p
, etc.). They defined a

methodology to select the best set of predictors which

could be useful to update the predictive model in case of

missing variables. A similar approach was followed by Xu

et al. [77], though with a smaller set of potential inputs.

Salazar et al. [61] performed a comparative study among

various statistical and ML methods, including HST, NN,

and others which had never been used before in dam

monitoring, such as random forests (RF) or boosted

regression trees (BRT). It was reported that innovative ML

algorithms offered the most accurate results, although no

one performed better for all 14 outputs analysed, which

corresponded to radial and tangential displacements and

leakage flow in an arch dam.

3 Methodological Considerations for Building
Behaviour Models

While each model has specific issues to take into account,

there are also common aspects to consider when develop-

ing a prediction model, regardless of the technique. They

are discussed in this section, in relation with a selection of

59 studies corresponding to 41 papers presented at con-

ferences and in scientific journals. It is not an exhaustive

review: the studies were selected on the basis of their rel-

evance and interest, following the authors’ criterion.

The Tables 1 and 2 summarise the main characteristics

of the studies reviewed. It was found that most of them (38/

59) considered radial displacements, especially in arch

dams (31/59). This reflects the greater concern of dam

engineers for this variable and dam typology, although

other indicators such as leakage or uplift are acknowledged

as equally relevant for dam safety [39]. The lower fre-

quency with which the latter are chosen as target variables

may be partly due to their more complex behaviour, which

makes them harder to reproduce and interpret [39]. The

HST and MLR methods, which have been the only ones

Fig. 5 Architecture of an auto-

associative neural network.

There are 3 hidden layers

between the inputs and the

output. The central one is called

‘‘bottleneck’’ layer, and shall

have fewer nodes than model

inputs, so that each one can be

considered a non-linear

principal component of the

inputs
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Table 1 Review summary: case studies

Id Author Year Dam(s) Country Typology Output # Outputs

1 Breitenstein [8] 1985 Limberg, Mooser, Drossen Switzerland ARC, GRA, ARC RAD 7

2 Breitenstein [8] 1985 Limberg, Mooser, Drossen Switzerland ARC, GRA, ARC LEAK 6

3 Guedes [24] 1985 São Simão Brazil EF?GRA RAD 1

4 Guedes [24] 1985 Água Vermelha Brazil EF?GRA RAD 1

5 Guedes [24] 1985 Funil Brazil ARC PIEZ 1

6 Guedes [24] 1985 Sobradinho Brazil EF?GRA JOINT 1

7 Guedes [24] 1985 Itaipú Brazil GRA LEAK 1

8 Bonelli [7] 2001 Alzitone, Chamboux, La Verne France EF PIEZ 9,6,4

9 Bonelli [4] 2001 Schelegeis Austria ARC RAD 1

10 Carrere [9] 2001 Schelegeis Austria ARC RAD 1

11 Saouma [65] 2001 Schelegeis Austria ARC RAD 1

12 Palumbo [48] 2001 Shclegeis Austria ARC RAD 1

13 Nedushan [44] 2002 Chute-à-Caron Canada GRA RAD, TAN, VERT 1,1,1

14 Piroddi [52] 2003 Schelegeis Austria ARC RAD 1

15 Tayfur [75] 2005 Jeziorsko Poland CFRD PIEZ 4

16 De Sortis [17] 2006 Ancipa Italy BUT RAD 5

17 De Sortis [17] 2006 Sabbione Italy BUT RAD 3

18 De Sortis [17] 2006 Malga Bissina Italy BUT RAD 5

19 S. Caro [62] 2007 El Atazar Spain ARC RAD 46

20 Léger [33] 2007 Schelegeis Austria ARC RAD 1

21 Su [70] 2007 ? China AG VERT 1

22 Panizzo [49] 2007 Pieve di Cadore Italy AG RAD 1

23 Lombardi [39] 2008 ? ? ARC RAD 1

24 Lombardi [39] 2008 ? ? ARC LEAK 1

25 Bonelli [5] 2007 ? ? EF PIEZ 14

26 Bonelli [6] 2008 ? ? EF PIEZ 16

27 Yu [80] 2010 Chencun China AG CRACK 5

28 Perner [51] 2010 Zillergruendl Austria ARC RAD 2

29 Demirkaya [18] 2010 Schelegeis Austria ARC RAD 1

30 Riquelme [59] 2011 La Baells Spain ARC RAD 1

31 Mata [40] 2011 Alto Rabagão Portugal ARC RAD 1

32 Rankoviĉ [54] 2012 Bocac Bosnia Herzegovina ARC RAD 2

33 Xu [77] 2012 Chencun China AG CRACK 1

34 Demirkaya [19] 2012 Schelegeis Austria ARC RAD 1

35 Demirkaya [19] 2012 Schelegeis Austria ARC RAD 1

36 Cheng [11] 2013 Mianhuatan China GRA RAD 12

37 Cheng [11] 2013 Mianhuatan China GRA UP 16

38 Popovici [53] 2013 Gura Râului Romania BUT RAD, TAN, ROCK 2, 2, 3

39 Tatin [73] 2013 Castelnau France GRA RAD 1

40 Tatin [73] 2013 Castelnau France GRA RAD 1

41 Li [34] 2013 Wanfu China ARC RAD 4

42 Li [34] 2013 Wanfu China ARC RAD 4

43 Simon [67] 2013 Pareloup France ARC PIEZ 1

44 Simon [67] 2013 Bissorte France GRA LEAK 4

45 Simon [67] 2013 Monteynard France ARC RAD 1

46 Simon [67] 2013 Monteynard France ARC RAD 1

47 Nourani [45] 2013 Sahand Iran EF PIEZ 4

48 Kao [30] 2013 Fei-Tsui Taiwan ARC RAD 13

Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological… 11

123



available for a long time, are not suitable to model them

[67], although some references exist [8, 24].

3.1 Input Selection

In previous sections, it was pointed out that the model

performance depended on the predictor variables consid-

ered. The range of options for variable selection is wide. In

most of the papers reviewed, no specific method was

applied for variable selection, apart from user criterion

(e.g. [49]) or ‘‘a priori knowledge’’ (e.g. [54]).

This issue has arisen in combination with the use of NN

[19, 30, 37, 49, 56], NARX [37, 52], MLR [69] and ANFIS

models [54].

First, the selection is limited by the available data.

While the reservoir level and the air temperature are usu-

ally measured at the dam site, other potentially influential

variables, such as precipitation, are frequently not avail-

able. One of the advantages of the HST method is that only

the reservoir level is required.

Second, it must be decided whether or not to use the

lagged values of the target variable for prediction. The

consequences of making predictions from the output itself

have already been mentioned in sect. 2.3, regardless whe-

ther the observed or the estimated previous value is used. It

can be concluded that the AR models prioritise prediction

accuracy over model interpretation.

Third, the possibility of adding derived variables (and

which ones), such as moving averages and gradients, can

be considered. They can be set beforehand, on the basis of

engineering judgement, or selected by means of some

performance criterion from a wide set of variables.

Finally, consideration should be given to include non-

causal variables in the model. For example, is it appropriate

to base the prediction of radial displacements at a given

location on the displacement recorded at another point of

the dam? Will it improve the model accuracy? What con-

sequences would it have in the interpretation of the results?

Some models like the HST are often used with a set of

specific predictors, and therefore variable selection is

restricted to the order of the polynomial of the reservoir

level, and the shape of the time dependent functions. The

opposite case is the NARX method, which can be used with

a high amount of predictor variables.

Hence, the criterion to be used depends on the type of

data available, the main objective of the study (prediction

or interpretation), and the characteristics of the phe-

nomenon to be modelled. Again, engineering judgement is

essential to make these decisions.

The selection of predictors may be useful to reduce the

dimensionality of the problem (essential for NARX models),

as well as to facilitate the interpretation of the results. PCA

can be used for this purpose [42], as well as AANN [37].

Some specific methods for variable selection in dam moni-

toring analysis have been proposed, by means of backward

elimination [64] genetic algorithms (GA) [69], and singular

spectrum analysis (SSA) [37], although the vast majority of

authors applied trial and error or engineering judgement.

3.2 Model Interpretation

The main interest of this work focuses on model accuracy:

a more accurate predictive model allows defining narrower

thresholds, and therefore reducing the number of false

anomalies. Nonetheless, once a value above (or below, if

Table 1 continued

Id Author Year Dam(s) Country Typology Output # Outputs

49 Kao [30] 2013 Fei-Tsui Taiwan ARC RAD 13

50 Kao [30] 2013 Fei-Tsui Taiwan ARC RAD 13

51 Mata [42] 2013 Alto Lindoso Portugal ARC RAD 5

52 Jung [29] 2013 ? USA EF PIEZ 1

53 Stojanovic [69] 2013 Bocac Bosnia Herzegovina ARC RAD 1

54 Rankoviĉ [56] 2014 Iron Gate 2 Serbia/Romania EF?GRA PIEZ 2

55 Rankoviĉ [56] 2014 Iron Gate 2 Serbia/Romania EF?GRA PIEZ 2

56 Santillán [64] 2014 La Baells Spain ARC LEAK 1

57 Salazar [61] 2014 La Baells Spain ARC RAD, TAN, LEAK 5, 5, 4

58 Rankoviĉ [55] 2014 Iron Gate 2 Serbia/Romania EF?GRA TAN 2

59 Tatin [74] 2015 Eguzon, Izourt, Roselend,

Tignes, Vouglans,

Bissorte, Gittaz, Sarrans

France GRA,ARC, BUT RAD 1

Typology: ARC = arch; GRA = gravity; EF = earth-fill; AG = arch-gravity; BUT = buttress; CFRD = concrete-faced rockfill dam; ? = Not

specified. Outputs: RAD= radial displacements; LEAK = leakage flow; PIEZ = pore pressure; JOINT = joint opening; TAN = tangential

displacements; VERT = vertical displacements; UP = uplift pressure; ROCK = rockmeter displacements; CRACK = crack opening
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Table 2 Review summary. Methods

Id Model Inputs Training set

(years/# samples)

Validation set

(years/# samples)

Validation

data (%)

Error metric

(see Table 3)

1 MLR h; S; t;Tair; oðTairÞ; oðhÞ 10/14600 0.0/ 0 R2

2 MLR h 10/14600 0.0/ 0 R2

3 MLR h;mavðTairÞ 1/103 0.0/ 0 r

4 MLR h;mavðTairÞ 0.5/63 0.0/ 0 r

5 MLR t, mav(h) 2/230 0.0/ 0 r

6 MLR t;mavðTcÞ 2.5/66 0.0/ 0 r

7 MLR t, mav(h) 0.5/86 0.0/ 0 r

8 IRF h, lag(h), P, lag(P), t Var/Var 0.0/ 0 –

9 IRF h; Tair 7/2557 2.0/730 22 –

10 HST h; Tair 7/2557 2.0/730 22 r;R2;r�
11 KNN h; Tc 7/2557 2.0/730 22 r;R2;r�
12 NARX h; Tair; Tc; lagðhÞ; lagðTcÞ; lagðTairÞ 7/2555 2.0/730 22 RMSE

13 NN Tc; t 1.5/548 1.5/548 50 R2

14 NARX h; Tair; Tc; lagðhÞ; lagðTcÞ; lagðTairÞ 7/2555 2.0/730 22 MSE

15 NN h 1/26 2.0/52 67 RMSE;MAE;R2

16 HST h, S, t 2 to 15/730 to 5475 0.0/ 0 r; re,
re
D=2

17 HST h, S, t 5/1825 0.0/ 0 r; re,
re
D=2

18 HST h, S, t 9/3285 0.0/ 0 r; re,
re
D=2

19 MLR h;mavðhÞ; S;Tair;mavðTairÞ 24.5/8943 0.0/ 0 re;MSE

20 HTT h; Tc; t 5/1825 0.0/ 0 r

21 WNN h, S, t 11/44 2.0/8 15 MAE

22 NN h; lagðradÞ;Tair;Tc 7/2555 0.0/ 0 R2; pdf ðeÞ;MSE

23 IRF h; lagðhÞ; lagðradÞ;Tair 4/? 0.0/ 0 re
24 IRF h, lag(h), lag(out) 5/? 0.0/ 0 –

25 IRF h, lag(P) 3/167 0.0/ 0 R2

26 IRF h, hd, lag(P) var/var 0.0/ 0 R2

27 HST h, S, t 10/1200 0.0/ 0 r

28 HYB h; Tc; t 22/8030 0.0/ 0 –

29 ANFIS h; Tair; Tc 6/2044 1.0/365 15 r, RMSE, MAE

30 NN h, T, mav(T), lag(out) 18/706 12.0/470 40 MAPE

31 NN h, S 23/914 1.8/69 7 MAE, MaxAE, r

32 ANFIS lag(h), lag(S), lag(out) 9/657 2.0/140 18 r, MAE, RMSE

33 ANFIS Tair; h 15/400 ?/? 0 RMSE

34 MLR h; Tair; Tc; lagðhÞ; lagðTairÞ; lagðTcÞ 7/2555 2.0/730 22 ME;r�;R2

35 NN h; Tair; Tc; lagðhÞ; lagðTairÞ; lagðTcÞ 7/2555 2.0/730 22 ME;re;R2

37 PCA, SVM h; Tair;P 3/900 0.2/56 6 –

38 NN t; h;Tair; lagðhÞ;mavðTairÞ 14/? 2.0/? 13 r;R2;re
39 GRAD h; S; t; IRF;Tair;Tw 12/? 0.0/ 0 re
40 SLICE h; S; t; IRF;Tair;Tw 12/? 0.0/ 0 re
41 HTT h; S;Tc 3.2/169 0.4/20 11 R2

adj;r�; pdf ðeÞ
42 ECM h; S;Tc; eðt � 1Þ 3.2/169 0.4/20 11 R2

adj;r�; pdf ðeÞ
43 NN h, S, t ?/429 0.0/ 0 re;MSE

44 IRF?NN h; S; t;Tair; IRFðPÞ; IRFðMÞ ?/? 0.0/ 0 R2

45 NN h; S; t; IRFðTairÞ ?/? 0.0/ 0 re
46 HSTT h; S; t; IRFðTairÞ ?/? 0.0/ 0 re
47 NN h; hd; lagðPÞ 1.1/58 0.4/18 24 R2
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appropriate) the warning threshold is registered, an engi-

neering analysis of the situation is needed to assess its

seriousness. The ability of the model to interpret dam

behaviour may be useful for this purpose.

TheHSTmethod has been traditionally used to identify the

effect on the response of the dam of each considered action:

hydrostatic load, temperature and time (e.g. [40]). However, it

is clear that this analysis is only valid if the predictor variables

are independent, which is not generally true [38, 66].

On the contrary, the ability of NN and similar models

for interpreting dam behaviour is often neglected. They are

frequently termed ‘‘black box’’ models, in reference to its

lack of interpretability.

It turns out that NN models are well suited to capture

complex interactions among inputs, as well as non-linear

input-output relations. If an NN model offers a much better

accuracy than the HST for a given phenomenon, it is

probable that it does not fulfil the hypothesis of HST (input

independence, linearity). Hence, it would be more appro-

priate to extract information on the dam behaviour from the

interpretation of the NN model.

The effect of each predictor can be analysed by means of

ceteris paribus analysis [40]: the output is computed for the

range of variation of the variable under consideration, while

keeping the rest at constant values. They can be set either to

the correspondent mean or to several other values, in order to

gain more detailed information on the dam response. Anal-

yses of this kind can be found in the pertinent literature: Mata

[40] calculated the effect of the reservoir level on the radial

displacements of an arch dam for each season of the year, and

the effect of temperature when setting the pool level at several

constant values. Similar studies are due to Santillán et al. [63],

Simon et al. [67] and Popovici et al. [53].

More complex algorithms have been proposed in related

fields to unveil the relevance of each input in NN models

(see for example [14, 22] and [46]), which may be helpful

in dam monitoring.

Therefore, even though NN and similar models must be

interpreted with great care, their ability to extract informa-

tion on the dam behaviour should not be underestimated.

3.3 Training and Validation Sets

It is common and convenient to divide the available data

into two subsets: the training set is used to adjust the model

parameters, whereas the validation set is solely used to

measure the prediction accuracy3. In statistics, this need is

Table 2 continued

Id Model Inputs Training set

(years/# samples)

Validation set

(years/# samples)

Validation

data (%)

Error metric

(see Table 3)

48 NN h;Tc 22/8120 0.3/62 1 R2; pdf ðeÞ;MSE

49 NARXNN h, lag(h), lag(out) 22/8120 0.3/62 1 R2; pdf ðeÞ;MSE

50 AANN lag(rad) 22/8120 0.3/62 1 R2; pdf ðeÞ;MSE

51 HTT h;Tc 5/95 0.0/ 0 R2
adj;re; emax; emin; SSE

52 MPCA h 6/4380 0.0/ 0 –

53 MLR h;Tc;Tair;P; t 6/2550 1.0/365 13 R2
adj;RMSE

54 NN hd; lagðhdÞ 8/163 1.0/20 11 r; r2;MSE;MAE

55 MLR hd; lagðhdÞ 8/163 1.0/20 11 r, MSE, MAE

56 NN h;Tair; oðhÞ; oðTairÞ 25.5/918 3.0/103 10 RMSE

57 NN, MARS,

RF, BRT, SVM

h;Tair; S; t;mavðhÞ;
mavðTairÞ;P; oðhÞ

18/600 10.0/400 40 MAE, ARV

58 SVM h; hd; lagðhÞ; lagðhdÞ; lagðoutÞ 11/573 3.0/156 21 r, MAE, MSE

59 GRAD h; S; t; IRF;Tair;Tw 8/? 2/? 20 re

Models: MLR = multilineal regression; IRF = impulse response function; HST = hydrostatic seasonal time; KNN = k-nearest neighbours; NN =

neural networks; WNN = wavelet neural networks; NARX = non-linear autoregressive exogenous; HTT = hydrostatic thermal time; HYB =

hybrid; ANFIS = adaptive neuro-fuzzy system; PCA = principal component analysis; MPCA = moving PCA; SVM = support vector machine;

ECM = error correction model; HSTT = hydrostatic seasonal thermal time; NARXNN = non-linear autoregressive exogenous neural network;

AANN = auto-associative neural network; RR = robust regression; MARS = multivariate adaptive regression splines; RF = random forest; BRT =

boosted regression trees; WNN = wavelet neuran networks; ECM = error correction method. Inputs: h = upstream pool level; S = season; t = time;

oð�Þ = time derivative; Tc = concrete temperature; Tair = air temperature; Tw = water temperature; IRFð�Þ = impulse response function; lagð�Þ =
lagged variable; P = precipitation; out = output; mavð�Þ = moving average; hd = downstream pool level; M = snow melt; pdf ðeÞ = probability

density function of error

3 the terminology is not universal; the data which are not used to fit

the model is sometimes called test or prediction set.
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well known, since it has been proven that the prediction

accuracy of a predictive model, measured on the training

data, is an overestimation of its overall performance [2].

Any subsetting of the available data into training and val-

idation sets is acceptable, provided the data are indepen-

dent and identically distributed (i.i.d.). This is not the case

in dam monitoring series, which are time-dependant in

general.

The amount of available data is limited, what in turn

limits the size of the training and validation sets. Ideally,

both should cover all the range of variation of the most

influential variables. This is particularly relevant for the

training set of the more complex models, as they are typ-

ically unable to produce accurate results beyond the range

of the training data [21].

It is not infrequent that reservoir level follow a relatively

constant yearly cycle by which situations from the lowest

to the highest pool level are presented each year. Tem-

perature, which is the second most influential variable on

average, responds to a more defined annual cycle. As a

consequence, many authors measure the size of the training

and validation sets in years.

Moreover, dam behaviour models are used in practice to

calculate the future response, on the basis of the observed,

normal functioning, and draw conclusions about the safety

state. Therefore, it seems reasonable to estimate the model

accuracy with a similar scheme, i.e., to take the most recent

data as the validation set. This is the procedure used in the

vast majority of the reviewed papers (40/41), with the

unique exception of Santillán et al. [64], who made a

random division of the data.

Models based on the underlying physics of the phe-

nomenon and those with fewer parameters (HST, IRF and

MLR), are less prone to over-fitting. As a result, a higher

value can be given to the training error. This is probably

the reason why most studies do not consider a validation

set, but rather use all the data for the model fit e.g. [7, 42]

(Fig. 6a).

When a validation set is used, 10 % of the available data

is reserved for that purpose on average. The higher fre-

quency observed around 20 % corresponds to the papers

dealing with the data from the 6th ICOLD Benchmark

Workshop, where the splitting criterion was fixed by the

organisers.

Tayfur et al. [75] reserved only one year for training, but

explicitly mentioned that it contained all the range of

variation of the reservoir level. Some authors proposed to

set a minimum of 5 to 10 observations per model parameter

to estimate [71].

A fundamental premise for the successful implementa-

tion of any prediction model is that the training data cor-

respond to a period in which the dam has not undergone

significant changes in its behaviour. In practice, it is not

easy to ensure that this condition is fulfilled. While the

history of major repairs and events is usually available, it is

well known that the behaviour in the first years of operation

usually corresponds to a transient state, which may not be

representative of its response in normal operation after-

wards [38]. Therefore, the use of data corresponding to the

first period to adjust the model parameters may lead to an

increase in prediction error. Lombardi [38] estimated that

12 years from dam construction are required for a data-

based model to be effective.

This issue can be checked by analysing the training error:

ideally, errors shall be independent, with zero mean and

constant variance [71]. Some authors compute some of these

values for evaluating the goodness of fit (e.g. [30, 34, 67]).

On another note, a minimum amount of data is neces-

sary to build a predictive model with appropriate general-

isation ability. De Sortis and Paoliani [17] run a sensitivity

analysis of the prediction error as a function of the training

set size. They concluded that 10 years were necessary for

obtaining stable results. For their part, Chouinard and Roy

[12] performed a similar work on a dam set. Provided that

most of them were run-of-the-river small dams, which

remained full most of the time, the thermal effect was the

preponderant variable. As this is almost constant every

year, 5 years of data were enough for most cases to achieve

high accuracy.

According to the Swiss Comittee on Dams [71], a

minimum of ‘‘5 yearly cycles’’ should be available, which

suggests that they refer to filling-emptying cycles

throughout a year (to account for the thermal variation). On

the contrary, ICOLD [27] recommended to set thresholds

as a function of the prediction error along ‘‘2 or 3 years of

normal operation’’.

Salazar et al. performed a similar analysis for 14

instruments in an arch dam [61], and reported that the

prediction accuracy was higher in some cases for models

trained over the most recent 5 years of data (the maximum

training set length was 18 years).

The size of the validation set ranges from 1 to 25 years

(Fig. 6b), and depends on the amount of data available,

rather than on the type of model.

Such verifications regarding the training and testing data

sets are not performed in general in dam monitoring anal-

ysis, probably due to (a) the number of data available at a

given time cannot be arbitrarily increased, and (b) the val-

idation data shall be the most recent. In practice, there is not

agreement on the appropriate criterion to define training and

validation sets. Consequently, the comparison between

models which predict different variables has limited relia-

bility, although it was sometimes considered [56, 69].

Again, engineering judgement is essential to assess the

appropriateness of the train and validation sets, as well as

the model performance.
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3.4 Missing Values

There are several potential sources of data incompleteness,

such as insufficient measurement frequency [16, 42] or

fault in the data acquisition system [41, 69]. Although there

is a tendency towards increasing the quality of measure-

ments and the frequency of reading, there are many dams

in operation with long and low-quality monitoring data

series to be analysed. According to Lombardi [38], only a

small minority of the world population of dams feature

adequate, properly-interpreted monitoring records. Curt

and Gervais [16] showed the importance of controlling the

quality of the data on which the dam safety studies are

based, although they focused on proposing future correc-

tive measures rather than on how to improve imperfect

time series.

However, the vast majority of published articles over-

looked this issue. They limited to the selection of some

specific time period for which complete data series were

available. For example, Mata et al. [42] only considered the

period 1998–2002 for their analysis of the Alto Lindoso dam,

due to the absence of simultaneous readings of displacements

and temperatures in subsequent periods. In general, the need

for simultaneous data of both the external variables and the

dam response reduces the amount of data available for model

fitting and limits the prediction accuracy.

If the missing values correspond to one of the predictors,

these models are inapplicable, which limits their use in

practice. If lagged variables are considered, there is also a

need for equally time spaced readings. The above men-

tioned adaptive system proposed by Stojanovic et al. [69]

can be applied in the event of failure of one or several

devices.

Faults in the data acquisition process can also result in

erroneous readings [36] which should be identified and

eventually discarded or corrected. During model fitting,

this would improve the model accuracy and increase its

ability to interpret the dam response. Once a behaviour

model is built, it can be used for that purpose [11].

Numerous statistical techniques have been developed to

impute missing values. Their review is beyond the scope of

this work, as they were not employed in the papers anal-

ysed. Moreover, their application should be tailored to the

specific features of the problem, as well as to the nature of

the variable in question. For example, missing values of air

temperature can be reasonably filled from the average

historical temperature for the period, or interpolated from

available data [64]. By contrast, daily rainfall may change

largely between consecutive readings, so that one missing

value cannot be imputed with similar confidence.

3.5 Prediction Accuracy Measurement

It is important to appropriately estimate the prediction error

of a model, since (a) it provides insight into its accuracy,

(b) it allows comparison of different models, and (c) it is

used to define warning thresholds.

There are various error measures to assess how well a

model matches the observed data, among which the most

commonly used are included in Table 3.

The result of using any of these indexes is frequently

equivalent when referred to a given prediction task: the

more accurate model will have a smaller RMSE value, but

also the lowest MSE, and higher r and R2. However, they

also present differences which can be relevant, and are

often not considered.
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Provided that MSE ¼ RMSEð Þ2, they can be used indis-

tinctly for model comparison. The only difference is that

RMSE can be compared to the target variable, given that both

are measured in the same units. It should be noted that they

are computed on the basis of the squared residuals, therefore

they are sensitive to the presence of outliers, i.e., a few large

prediction errors. In this sense, MAE could be considered a

better choice, provided that it shares the advantage of RMSE

(it is measured in the same units as the output), and not its

drawback. Mindful of this fact, both can be used inter-

changeably, if the analysis is complemented with a graphical

exploration of the model fit, or other error measures.

The drawback to both MSE and RMSE is that they are

not suitable for comparing models fitting different vari-

ables, provided that they do not consider neither the mean

nor the deviation of the output.

This limitation can be overcome by using the correlation

coefficient r, since r 2 �1; 1½ �. On the contrary, it is not

exactly an error rate, but rather an index of the strength of

the linear relationship between observations and predic-

tions. In other words, it indicates to what extent one vari-

able increases as the other does, and vice versa. It can be

checked that the value of r for a prediction calculated as

Ŷ ¼ AY þ B is equal to 1 for A 6¼ 0, while the error can be

very large and will generally be non-zero (unless A ¼ 1

and B ¼ 0) [32]. As an example, Rankovic et al. [56]

considered r and r2, as well as MAE and MSE. While the

results were similar for the training and validation sets in

terms of r and r2, bothMAE andMSE were much greater in

the validation set (as much as 7 times greater). These

results may reflect some degree of over-fitting.

If r is used as a measure of goodness of fit, its value

always increases with increasing number of model

parameters (except in the highly unlikely event that the

functions are completely independent of output). The Radj

coefficient can be used (e.g. [34, 69]) to account for the

number of parameters of each model.

As an alternative, R2, or its equivalent ARV can be

chosen. They have the advantage over the correlation

coefficient of being sensitive to differences in the means

and variances of observations and predictions, while

maintaining the ability to compare models fitted to differ-

ent data [61].

Finally, it should be noted that the reading error of the

devices (er) may be relevant when predictions of variables

of different nature are compared, although it is often

ignored. It cannot be expected to obtain a model with an

error below the measurement resolution [80]. Popovici

et al. [53] reported that the overall accuracy of NN models

was lower for tangential than for radial displacements, and

attributed it to the lower range of variation of the former. It

is possible that the reading error (which in principle should

be the same for tangential and radial displacements) were

relevant in the first case and negligible in the second.

Salazar et al. found that models with relatively high ARV

corresponded with very low MAE, close to er [61].
Reading error should always be considered for evalu-

ating model accuracy. One possibility would be to neglect

the errors below that value before computing the prediction

accuracy, by means of substituting yi � F xið Þð Þ by

jyi � F xið Þj � er, in the calculation of MSE, RMSE, r and

R2. Similarly, MAE could be computed as:

MAE� ¼ 1

N

XN
i¼1

yi � F xið Þj j � erð Þ ð21Þ

It is convenient to compute more than one error rate,

especially if the aim is to compare models predicting

variables of different kind. In addition, a graphical analysis

of the error is highly advisable.

3.6 Practical Application

Despite the increasing amount of literature on the use of

advanced data-based tools, very few examples described

their practical integration in dam safety analysis. The vast

majority were limited to the model accuracy assessment,

by quantifying the model error with respect to the actual

measured data. Only a few cases dealt with the interpre-

tation of dam behaviour, by identifying the effect of each

of the external variables on the dam response (e.g. [17, 35,

40]).

A detailed analysis of the results is always convenient

[26], especially when complex models are employed.

However, improvements in instrumentation and data

acquisition systems allow the implementation of automatic

warning generation schemes. The information provided by

reliable automated systems, based on highly accurate

models, can be a great support for decision making

regarding dam safety [27, 31].

To achieve that goal, the outcome of the predictive

model must be transformed into a set of rules that deter-

mine whether the system should issue a warning. In turn,

these rules should be based on an overall analysis of the

most representative instruments: a single value out of the

normal-operation range will probably correspond to a

reading error, if other instruments show no anomalies.

However, the coincidence of out-of-range values in several

devices may correspond to some abnormal behaviour. This

is the idea behind the method proposed by Cheng and

Zheng [11], which features a procedure for calculating

normal operating thresholds (‘‘control limits’’), and a

qualitative classification of potential anomalies: a) extreme

environmental variable values, b) global structure damage,

c) instrument malfunctions and d) local structure damage.
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A more accurate analysis could be based on the con-

sideration of the major potential modes of failure to obtain

the corresponding behaviour patterns and an estimate of

how they would be reflected on the monitoring data. Mata

et al. [43] employed this idea to develop a methodology

that includes the following steps:

• Identification of the most probable failure mode.

• Simulation of the structural response of the dam in

normal and accidental situations (failure) by means of

finite element models.

• Selection of the set of instruments that better identify

the dam response during failure.

• Construction of a classification rule based on linear

discriminant analysis (LDA) that labels a set of moni-

toring data as normal behaviour or incipient failure.

This scheme can be easily implemented in an automatic

system. By contrast, it requires a detailed analysis of the

possible failure modes, and their numerical simulation to

provide data with which to train the classifier. Moreover,

the finite element model must be able to accurately rep-

resent the actual behaviour of the dam, which is frequently

hard to achieve.

4 Conclusions

There is a growing interest in the application of innovative

tools in dam monitoring data analysis. Although only HST

is fully implemented in engineering practice, the number of

publications on the application of other methods has

increased considerably in recent years, specially NN.

It seems clear that the models based on ML algorithms

can offer more accurate estimates of the dam behaviour

than the HST method in many cases. In general, they are

more suitable to reproduce non-linear effects and complex

interactions between input variables and dam response.

However, most of the papers analysed referred to

specific case studies, certain dam typologies or determined

outputs. More than a half of them focused on radial dis-

placements in arch dams, although this typology represents

roughly 5 % of dams in operation worldwide.

Moreover, the vast majority of articles overlooked the

data pre-process. It is implicitly assumed that the moni-

toring data are free of reading errors and missing values,

whereas that is not the case in practice. The development of

criteria to fix imperfect data would allow to take advantage

of a large amount of stored dam monitoring data.

An useful data-based algorithm should be versatile to

face the variety of situations presented in dam safety: dif-

ferent typologies, outputs, quality and volume of data

available, etc. Data-based techniques should be capable of

dealing with missing values and robust to reading errors.

These tools must be employed rigorously, given their

relatively high number of parameters and flexibility, what

makes them susceptible to over-fit the training data. It is

thus essential to check their generalisation capability on an

adequate validation data set, not used for fitting the model

parameters.

Table 3 Measures of accuracy
Error metric Formula

Mean squared error
MSE ¼

PN

i¼1
yi�F xið Þð Þ2

N

Root mean squared error
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
yi�F xið Þð Þ2

N

r
¼

ffiffiffiffiffiffiffiffiffiffi
MSE

p

Mean absolute error MAE ¼ 1
N

PN
i¼1 yi � F xið Þj j

Correlation coefficient
r ¼

PN

i¼1
yi�yð Þ F xið Þ�F xið Þð ÞPN

i¼1
yi�yð Þ2

� �0:5 PN

i¼1
F xið Þ�F xið Þð Þ

� �0:5
Coefficient of determination

R2 ¼ 1�
PN

i¼1
yi�F xið Þð Þ2PN

i¼1
yi��yð Þ2

Standard error of estimate
re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi�f xið Þð Þ2

N

q

Mean absolute percentage error MAPE ¼ 100
N

PN
i¼1

yi�F xð Þ
yi

���
���

Maximum absolute error MaxAE ¼ ej jmax
Adjusted R2 R2

adj ¼ R2 � 1� R2
� �

p
N�p�1

Sum of squared error SSE ¼
PN

i¼1 yi � F xið Þð Þ2

Average relative variance
ARV ¼

PN

i¼1
yi�F xið Þð Þ2PN

i¼1
yi��yð Þ2

¼ 1� R2

Mean error ME ¼ 1
N

PN
i¼1 yi � F xið Þð Þ

p = number of parameters of the model. �� = mean
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In this sense, most of the studies reviewed did not

include an evaluation of the predictive model on an inde-

pendent data set, and there are very few examples that used

more than 20 % of the data for validation. This raises

doubts about the generalisation capability of these models,

in particular of those more strictly data-based, such as NN

or SVM. It should be reminded that the main limitation of

these methods is their inability to extrapolate, i.e., to

generate accurate predictions outside the range of variation

of the training data.

Before applying these models for predicting the dam

response in a given situation, it should be checked whether

the load combination under consideration lies within the

values of the input variables in the training data set. Ver-

ifications of this kind were not reported in the reviewed

papers, although they would provide insight into the reli-

ability of the predictions.

From a practical viewpoint, data-based models should

also be user-friendly and easily understood by civil engi-

neering practitioners, typically unfamiliar with computer

science, who have the responsibility for decision making.

Finally, two overall conclusions can be drawn from the

review:

• ML techniques can be highly valuable for dam safety

analysis, though some issues remain unsolved.

• Regardless of the technique used, engineering judge-

ment based on experience is critical for building the

model, for interpreting the results, and for decision

making with regard to dam safety.
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