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Abstract Numerical weather prediction (NWP) is in a

period of transition. As resolutions increase, global models

are moving towards fully nonhydrostatic dynamical cores,

with the local and global models using the same governing

equations; therefore we have reached a point where it will

be necessary to use a single model for both applications.

The new dynamical cores at the heart of these unified

models are designed to scale efficiently on clusters with

hundreds of thousands or even millions of CPU cores and

GPUs. Operational and research NWP codes currently use

a wide range of numerical methods: finite differences,

spectral transform, finite volumes and, increasingly, finite/

spectral elements and discontinuous Galerkin, which con-

stitute element-based Galerkin (EBG) methods. Due to

their important role in this transition, will EBGs be the

dominant power behind NWP in the next 10 years, or will

they just be one of many methods to choose from? One

decade after the review of numerical methods for atmo-

spheric modeling by Steppeler et al. (Meteorol Atmos Phys

82:287–301, 2003), this review discusses EBG methods as

a viable numerical approach for the next-generation NWP

models. One well-known weakness of EBG methods is the

generation of unphysical oscillations in advection-

dominated flows; special attention is hence devoted to

dissipation-based stabilization methods. Since EBGs are

geometrically flexible and allow both conforming and non-

conforming meshes, as well as grid adaptivity, this review

is concluded with a short overview of how mesh generation

and dynamic mesh refinement are becoming as important

for atmospheric modeling as they have been for engineer-

ing applications for many years.

1 Introduction

Numerical weather prediction (NWP), which began with

the work of Richardson during World War I [250], remains

one of the most challenging problems in the computational

sciences. The two main challenges to producing an accu-

rate forecast are (1) mathematically modeling atmospheric

phenomena over a wide range of physical and temporal

scales (e.g., turbulence, radiation, cloud formation), and (2)

harnessing the available computational resources to eval-

uate these models in an accurate and efficient manner.

While the goal of the first challenge is probably static (that

is, a comprehensive mathematical description of the at-

mosphere at a given time), the second challenge represents

a moving target. Computational resources not only expand;

they change in character. Richardson’s original idea of a

‘‘forecasting factory’’ consisting of thousands of human

computers assembled in an amphitheater was never real-

ized; the first NWP codes were implemented on mainframe

computers. Mainframes gave way to minicomputers and

later vector supercomputers such as the Cray 1, 2, X-MP,

and Y-MP. By the mid-1990s, vector supercomputers were

replaced by massively parallel distributed systems. Now, in

2015, we are seeing the proliferation of many-core archi-

tectures (e.g. GPUs) and hybrid distributed/shared memory
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architectures (e.g. clusters of many-core processors,

heterogeneous clusters). Moreover, as models increase

their accuracy by resolving more phenomena (e.g. resolv-

ing non-hydrostatic effects, incorporating more complex

moisture parameterizations), their appetite for high per-

formance computing (HPC) resources grow.

The modeling challenge and computational challenge

meet in the choice of the numerical method used to dis-

cretize the underlying continuum model(s), which are

generally expressed as systems of both partial and ordinary

differential equations. The numerical model, as this

figurative middle-man, must both (1) accurately represent

the continuum model, and (2) efficiently utilize the hard-

ware used to implement the numerical method. Hence, the

numerical method mediates these two grand challenges by

adapting to the hardware; moreover, since NWP models

may take on the order of 100 man-years to develop, test,

and deploy, the designers of the numerical method should

target their model to future HPC resources. Just as biolo-

gical organisms must constantly adapt to their physical

environment, numerical methods must adapt to their

computational environment, competing for available re-

sources. A natural question arises: which numerical

methods will survive and flourish, and which will stagnate,

decline, and perhaps go extinct?

This question was partially addressed in the review of

the numerical methods for non-hydrostatic atmospheric

modeling reported by Steppeler et al. [282]. Based on some

of the questions posed in [282], we concentrate on a class

of numerical methods that may emerge victorious in next

generation atmospheric (and climate) models: element-

based Galerkin methods (EBGs). Among other questions,

Steppeler and co-workers asked whether the numerical

error caused by terrain-following coordinates could be

avoided by means of z-coordinate based methods [281,

282]; element-based Galerkin methods are a natural choice

to fulfill this recommendation. Furthermore, they ques-

tioned the ability of low order methods to resolve certain

phenomena at high resolution without affecting accuracy:

‘‘Experience from current models suggests that ap-

proximations of overall third order will be adequate.’’ It is

shown in this review how things have indeed evolved to-

wards the high order approach that Steppeler et al. were

discussing 10 years ago and how those schemes that in

2003 had not been used in operational mode (because

considered ‘‘advanced’’ [281]), are currently the driving

force behind the next generation NWP models.

As discussed above, element-based Galerkin schemes

today are tied to their relationship with the evolution of

computer hardware. We will see this in the sections that

follow, after giving a short overview of the current trends

in HPC and how atmospheric models are developing

around this paradigm.

1.1 Trends in High Performance Computing

Twenty-five years ago (1990), state-of-the-art HPC were

the Cray supercomputers (e.g. Cray Y-MP). These machi-

nes had a small number (2–8) of expensive custom vector

processors, which perform a single instruction on multiple

data (SIMD); all the processors fetched data from a bank of

shared memory. This trend changed in the 1990s as com-

modity processors and memory became relatively inex-

pensive; suddenly, large clusters of commodity processors

that utilized distributed memory architectures became

available. Unlike the vector machines, distributed memory

systems require communication between independent pro-

cesses. At the present time (2015) another shift is occurring

as many-core architectures, with a relatively small amount

of shared memory, are being coupled with massively par-

allel systems. These distributed memory systems eclipsed

the older vectorized machines by the late 1990s, and vec-

torized machines are no longer used in HPC.

Today, HPC is in the Petascale era, with core counts

exceeding Oð106Þ [226] while exascale technologies are

rapidly approaching. For instance, the largest cluster as of

November 2014 (Top5001) is Tianhe-2 with 3.12 million

cores and a maximum LINPACK [80] performance of 33.8

PetaFLOPS. The next largest machine is Titan, a Cray XK7

with 560,640 cores and a maximum LINPACK perfor-

mance of 17.59 PetaFLOPS. To take full advantage of the

performance of these architectures, the need for specific

characteristics in new models drove scientists from dif-

ferent fields to go back to the design board and start from

scratch in the construction of their numerical algorithms

[118]. This is required by the need for very specific features

that the numerical method must have to reach very high

levels of scalability on the new machines. The next section

reports on most operational and research atmospheric

models developed until today with special emphasis on

how atmospheric modelers are moving towards numerical

methods that have proved more scalable on current and

future computers.

1.2 Existing Atmospheric Models and NWP Systems

Table 1 shows a non-exhaustive list of atmospheric models

developed until today. Most of the listed codes are based

on the finite difference method. Except for ENDGame (UK

Met Office), the Nonhydrostatic Multiscale Model core of

the NCEP NAM, and EULerian LAGrangian (EULAG), all

FD-based codes are limited area models (LAM). Spectral

transform and finite volumes represent the second major

trend. Codes based on the spectral transform are common

1 www.top500.org.
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for General Circulation Models (GCM) only. High-order

element-based methods (spectral element method, SEM,

and discontinuous Galerkin, DG) follow, while the finite

element method (FEM), only used by a handful of models,

is the least common of all. For reasons that will become

clearer in later sections, the temporal integration schemes

that are mostly used are the split-explicit and the semi-

implicit methods (Table 2).

1.3 Traditional Approaches: Finite Difference (FD)

and Spectral Transform (ST) Methods

As noticeable from the tables above, most operational

NWP codes in use are based on either the finite difference

(FD) method, or, in the case of global models, the spectral

transform (ST) method. It is difficult to find models using

these methods that scale optimally on massively parallel

computers (ST methods due to their all-to-all communi-

cation requirements and FD due to non-compact stencils

especially at high-order). This is also true of non-compact

(high-order) finite volume methods. In order to understand

the strengths and weaknesses of these traditional ap-

proaches and how EBGs address some of their shortcom-

ings, we briefly review the FD and ST methods in this

subsection.

Limited area models (LAMs) consider atmospheric

flows over a subsection of the earth’s surface. Examples

include mesoscale models, which typically span hundreds

of kilometers in the horizontal, and cloud resolving models

Table 1 Non-exhaustive compilation of NWP systems

Model Country Institution NH/HS Type Equations Space Time

ARPEGE [68] France Meteo France NH/HS LAM/GCM HPE ST ? FD (z) SI

ALADIN-NH [192] France Meteo France NH/HS LAM CEE ST ? FD (z) SISL

ETA [165] USA NCEP NH/HS LAM HPE FD FB-EX

MC2 [21] Canada Res. Ctr. NWP NH LAM CEE FD SISL

COAMPS [135] USA NRL NH LAM CEE FD SpEx

GEM [64] Canada CMC & MRB HS ? NH LAM/GCM HPE FEM SISL

HIRLAM [256] France Meteo France NH LAM HPE FD SISL

GFS USA NOAA HS GCM HPE ST ? FD (z) SI

GME [206] Germany DWD HS GCM HPE FV SI

COSMO/LM [77, 281] Germany et al. DWD NH LAM CEE FD SpEx

IFS [305] UK ECMWF HS GCM CEE ST ? FEM (z) SISL

ICON [107, 311] Germany MPIfM/DWD HS/NH GCM CEE/HPE FV SI

CAM EUL [230] USA NCAR HS GCM HPE ST ? FD (z) SI

CAM FV [230] USA NCAR HS GCM HPE FV Explicit

CAM SE [74] USA NCAR/SNL HS GCM HPE SE ? FD (z) EX

NAVGEM [136] USA NRL HS GCM HPE ST ? FD (z) SISL

ENDGame [322] UK Met Office NH/HS LAM/GCM CEE FD SISL

KIAPS-GMa Korea KIAPS HS GCM HPE SEM ? FD (z) EX

NEPTUNE [117, 176] USA NRL NH LAM/GCM CEE SE IMEX/SpEx

HIRAM [330] USA GFDL NH GCM CEE FV SISL

ECHAM6 [283] Germany MPIfM HS GCM HPE ST ? FD SI

SLAVb Russia RAS HS/(NH) GCM HPE FD SISL

JMA [261] Japan JMA NH LAM/GCM CEE FD HEVI

VCAM/CCAM [218] Australia CSIRO HS GCM HPE FV/FD SISL

GRAPES [325] China CMA NH LAM/GCM CEE FD SLSI

NAM [166] USA NCEP NH/HS LAM/GCM HPE FD/FV SI

The acronyms used in this table, some of which have not been defined before, are the following: FD finite differences, FV finite volumes, FE

finite elements, SE spectral elements, DG discontinuous Galerkin, ST spectral transform, NH non-hydrostatic, HS hydrostatic, HPE primitive

equations, CEE compressible Euler equations; SISL semi-implicit ? semi-Lagrangian, EX explicit, IMEX implicit–explicit or semi-implicit, SpEx

split-explicit, FB-EX forward–backward explicit, LF leap-frog, NFT non-oscillatory forward in time, FDGC FD on generalized coordinates, LES

large eddy simulation, HEVI horizontally explicit–vertically implicit
a www.kiaps.org
b www.meteoinfo.ru
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(CRMs), which span approximately up to tens of kilome-

ters in the horizontal. See an example of a simulated single

cloud in Fig. 1.

The finite difference method (FD) is the method of

choice for LAMs for several reasons. First, it is simple to

implement on a Cartesian grid, especially if the curvature

of the earth is neglected. Unlike EBG methods, or the finite

volume method, grid generation is trivial and very few

ancillary data structures are needed. Second, it is very ef-

ficient on a single processor, or on a small number of

processors within a shared memory architecture (e.g. vec-

tor machines). Third, constructing both upwinded and

higher order discretizations is relatively straightforward,

although increasing the order of accuracy may hurt its

scalability due to the larger halo required.

Global models (or general circulation models, GCMs)

solve the governing equations on the whole planet, which is

usually approximated as a sphere. The reader is referred to

the 2007 paper by Williamson [321] for a review of GCMs.

Many operational GCMs utilize ST, where spherical har-

monics are used to represent both diagnostic and prog-

nostic variables on the sphere. Spherical harmonics are the

natural basis functions to solve PDEs on a sphere since

they are the eigenfunctions of the negative Laplacian.

Table 2 Non-exhaustive compilation of atmospheric research models

Model Country Institution NH/HS Type Equations Space Time

TASS [243] USA NASA NH LAM, LES CEE FD/FV SI

RAMS [238] USA Col. State U. NH/HS LAM HPE FD LF

MM5 [83] USA NCAR NH LAM HPE FD LF

ARPS [323] USA U. Oklah. NH LAM CEE FD SI

OMEGA [8] USA Centr. Atmo. Phys. NH GCM CEE FV SI

OLAM [310] USA U. of Miami NH GCM CEE FV SpEx

NSEAM [119] USA NRL HS GCM HPE SE SISL

PUMA [99] Germany U. of Hamburg HS GCM HPE ST SI

HOMME [296] USA NCAR HS GCM HPE SE EX ? other

WRF-ARW [271] USA NCAR NH LAM CEE FD SpEx

AROMEa Europe Consortium NH LAM ALADIN ST SI

EULAG [244] USA NCAR NH LAM/GCM CEE/Incompr. FDGC NFT

NICAM [262] Japan JAMSTEC NH LAM/GCM CEE FV SpEx

FIM [195] USA NOAA HS GCM HPE FV Expl

NIM [196] USA NOAA NH GCM CEE FV SpEx

UZIM [3] USA Co. State U. NH GCM Anel. FD SI

DALES [134] Netherlands R. Nether. Meteor. I. NH LAM CEE LES FD IMEX

CM1b USA NCAR NH LAM CEE FD IMEX

ExnerFOAM [313] UK Reading U. NH GCM CEE FV IMEX

DUNE [34] Germany Freiburg U. NH LAM CEE DG EX

MPAS [273] USA NCAR/LANL NH LAM/GCM CEE FV SpEx

MCore [304] USA U. Mich. NH GCM CEE FV IMEX

NUMA [117, 176] USA NPS NH LAM/GCM CEE SE/DG IMEX

Alya [212, 213] Spain BSC-CNS NH LAM CEE/Incomp./Bouss. FE EX/Impl.

DYNAMICOc France IPSL HS GCM HPE FD

Gung-Ho [301] UK Met Office NH/HS LAM/GCM CEE FE SI/HEVI

ASAM [162] Germany TROPOS NH LAM CEE FD/FV Impl.

GEOS [255] USA NASA HS GCM HPE FD SISL

The acronyms, some of which were not previously introduced, are the following: NH non-hydrostatic, HS hydrostatic, HPE primitive equations,

CEE compressible Euler equations, SISL semi-implicit ? semi-Lagrangian, EX explicit, IMEX implicit–explicit or semi-implicit, SpEx split-

explicit, FB-EX forward–backward explicit, LF leap-frog, NFT non-oscillatory forward in time; FDGC FD on generalized coordinates, LES large

eddy simulation, HEVI horizontally explicit–vertically implicit
a www.cnrm.meteo.fr/arome/
b www2.mmm.ucar.edu/people/bryan/cm1/
c www.lmd.polytechnique.fr/dubos/DYNAMICO/
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Hence, great accuracy is achieved with a minimal number

of grid points on the sphere. In order to advance the dy-

namical equations in time using ST, it is necessary to

transform between physical and spectral space; this spec-

tral transform is evaluated using a combination of Fourier

and Legendre transforms. We perform an elementary

complexity analysis of the ST method to illustrate a fun-

damental bottleneck as the resolution of NWP models

increases.

Letting n be the number of grid points, Fourier trans-

forms are evaluated along the longitudinal (zonal) direction

with an FFT with a cost Oðn log nÞ; along the latitudinal

(meridional) direction, a Legendre transform is required

with a cost of Oðn3Þ. Although fast Legendre methods

exist, they are not widely used in NWP since they have

high cross-over points. Therefore the cost of the ST method

is Oðn log nþ n3Þ, which scales adversely as n increases

(e.g. horizontal resolution is increased). For a grid spacing

greater than 10 km, the hydrostatic, rather than non-hy-

drostatic equations are the governing equations in GCMs

(we will touch more on the equation sets in Sect. 2). These

equations are solved via a vertical mode decomposition

[119] which results in a constant-coefficient Helmholtz

operator. Since spherical harmonics are exact solutions to

this Helmholtz operator, no matrix inversion is required.

Furthermore, ST have a very small dispersion error. ST

models were developed during the era of smaller, shared-

memory machines which did not require communicating

data across processors. As the architectures transitioned

from shared to distributed memory, the communication

overhead became more important; the all-to-all communi-

cation required by both the FFT and Legendre transform

poses a barrier to scalability (not all distributed-memory

hardware can do this operation effectively). For instance,

the ST-based model NOGAPS, used by the U. S. Navy,

could not scale beyond 150 processes at typical resolutions

[119]. Hence, ST methods, while both highly accurate and

efficient at small processor counts, cannot compete in the

era of hundreds of thousands (or millions) of processors.

To overcome the limitations of FD and ST in the current

era of massively parallel computers, EBG methods are

becoming the new trend in atmospheric modeling for the

same reason they have always been popular in other fields

of computational mechanics. This alternative is justified by

the proven high parallel efficiency of local methods [73,

176, 226, 320]. The efficiency of EBGs on large to very

large machines is facilitated by their small parallel com-

munication footprint. To understand this small footprint,

consider Fig. 2, where the grids needed by a (a) finite

element and by a (b) finite difference method are com-

pared. In Fig. 2a, the grid consists of nine finite elements

Xel
h . With EBG the solution is sought on an element-wise

basis and each element communicates information to the

others only through its shared boundaries (nodes in the case

of CG; faces in the case of DG). When the finite element

grid is partitioned into smaller portions of the global do-

main, the only information that needs to be exchanged

among the subdomains of the partition is that on the

boundary that each subdomain shares with its neighbors. In

contrast, in Fig. 2b the grid is a classical structured, rect-

angular finite difference grid that here is plotted to be a

direct analogue (in terms of node count) of the finite ele-

ment mesh. Because a finite difference stencil is such that

differentiation on each node in the domain requires infor-

mation from a set of adjacent nodes that varies with the

order of differentiation, when the domain is partitioned,

some nodes will belong to two overlapping subdomains.

Because of this, additional communication is necessary. In

Fig. 1 Large Eddy Simulation

of the evolution of a single

cloud with the Nonhydrostatic

Unified Model of the

Atmosphere (NUMA). From

[214]. The Maya� computer

graphics software was used for

the photo-realistic rendering of

the simulation (for more details

see http://anmr.de/

cloudwithmaya)
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the case of element-based schemes communication is

naturally low by construction. The details of EBG and

which models are based on them are reviewed in Sect. 3.

1.4 A Roadmap for Element-Based Galerkin

Methods and This Review

Historically, finite element, spectral transform, and dis-

continuous Galerkin methods have been developed in

relative isolation. In the past several decades, especially

with the advent of spectral elements, common threads were

identified. The two most important ideas are: (1) decom-

posing a continuous domain X into a finite number Ne of

non-overlapping elements Xe and (2) expanding the state

variables in N basis functions wi within each sub-domain

(or element) Ne. In the first operation, we express the ge-

ometry in an element-wise fashion; in the second operation,

we perform a Galerkin expansion of the state variables.

Hence, the moniker Element-based Galerkin method. As

discussed, EBG methods are classified as either continuous

(CG) or discontinuous (DG). Each of these methods may

be characterized by the number of elements Ne (or

equivalently, the element diameter hÞ and the order of the

basis function p. Resolution may be increased by increas-

ing either Ne or p independently, allowing a wide range of

combinations. In the limit of Ne ¼ 1, the spectral transform

(ST) can be seen as an EBG method; however, being ST a

degenerate EBG, in the rest of the paper it won’t be con-

sidered among the EBG methods. This h� p parameter

space is mapped in Fig. 3. In the left panel (CG), three

numerical methods are displayed: finite elements, spectral

elements, and the spectral transform method. Since conti-

nuity is required between elements, the lowest possible

order p is one. The finite element method (FEM) is the

special case when p ¼ 1; 2; 3 basis functions are employed,

while the spectral transform method is recovered if a single

element is used with a very large order p � 1. In the right

panel, we see three numerical methods: finite volumes, DG,

and the spectral transform method. Since continuity is not

required between elements, we may use constant-valued

basis functions, which is equivalent to cell-averaging;

hence, we recover the classical finite volume (FV) method

if p ¼ 0. For 1� p\1 and Ne [ 1 we have DG, while for

large p and Ne ¼ 1, we again recover the ST method.

Gabersek et. al. [103] systematically mapped out the h� p

space for SEM. They concluded that polynomial order p

between 5 and 10 with an effective resolution of �Dx ¼ h=p

between 0.5 and 2.0 km is optimal for mesoscale simula-

tions in terms of both accuracy and efficiency. To our

knowledge, the h� p space for global non-hydrostatic

simulations has not been explored yet.

1.5 Scalability of EBG Methods

In the following we report on some recent scalability re-

sults of EBG on different systems and for different nu-

merical configurations. For a more theoretical discussion

on Galerkin scalability, we refer to [142, 176].

1.5.1 Scalability for (Horizontally) Explicit Time

Integration

In global atmospheric simulations the vertical resolution is

usually much finer than the horizontal. This leads to a

much smaller time scale for vertical processes than for

horizontal motion. For this reason, it is often more efficient

to solve the fast processes in the vertical direction

Fig. 2 Examples of the adjacency pattern for a finite element Xel
h (a),

and for a node that belongs to a finite difference grid (b). In (a) and
(b) information is exchanged, respectively, element- and node-wise.

In (a), the only nodes that allow information to be shared between

elements are the shared nodes on the boundary of neighboring

elements (blue dots on the boundary of Xel
h ). In (b), the cross made of

blue circular nodes and a central red node is the stencil of a 4th-order

differentiation performed on the central node. How these plots relate

to parallelization is described in the text
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implicitly while using explicit time integration in the

horizontal direction, or horizontally-explicit, vertically-

implicit (HEVI). If a 2D domain decomposition strategy is

adopted where all the elements in a vertical column are

maintained on a single processor, HEVI does not incur any

additional communication. A recent result for this strategy

with the Nonhydrostatic Unified Model of the Atmosphere

(NUMA) [117, 176] is shown in Fig. 4. This figure shows

that NUMA achieves weak scaling up to 777,600 cores and

strong scaling to about 40,000 cores; moreover, the last

blue data point in this figure indicates that NUMA scales in

this fashion to the limit of one horizontal element per core.

Fig. 3 EBGs are divided into two classes: continuous Galerkin (CG)

methods, whose solutions are continuous with bounded weak

derivative ðH1Þ, and discontinuous Galerkin (DG) methods, whose

solutions are square integrable ðL2Þ, but not necessarily continuous.

The resolution of both CG and DG methods may be characterized by

the polynomial order p of their basis functions and the number of

elements Ne utilized, or, equivalently, by the diameter h / 1=Ne of

each element. CG: If low order basis functions ðp ¼ 1; 2; 3Þ are

utilized with a large number of elements, we recover the classical

Finite Element Method. For p� 3 and a smaller number of elements

used, we have the spectral element method (SEM). As p is increased,

Ne may be decreased. In the extreme case of a single element (on the

sphere) and p � 1, the ST method is recovered. If we are considering

problems in Cartesian geometry, this extreme case is generally termed

‘‘spectral’’ or ‘‘pseudo-spectral’’. DG: Since DG admits discontinuous

solutions, a constant basis function p ¼ 0 is admissible, yielding the

classical finite volume (FV) method. As p is increased and Ne

decreases, we enter the arena of DG methods. As with CG, if a single

element is utilized, the ST method is recovered. In this extreme case,

the solution becomes continuous

Fig. 4 Scalability study with

the atmospheric model NUMA

for the baroclinic instability test

case [160] for three different

horizontal resolutions of 25.0,

12.5 and 2.78 km (given in the

legend). This scalability study

was performed on the Blue

Gene Mira of the Argonne

National Lab. The number next

to each data point shows the

average number of elements per

core. These simulations use a

cubed sphere mesh generated by

the function library p4est [42].

All simulations use six elements

in the vertical direction with

HEVI time integration and a

fifth-order CG method
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One important factor that contributed to the excellent

speedup shown in Fig. 4 is that the amount of work on each

core needs significantly more runtime than the time spent

in communicating the data among neighboring cores. This

becomes more difficult when fully explicit time integration

is used and when the spatial discretization order is reduced

(Fig. 5).

1.5.2 Scalability for Fully Implicit Time Integration

Scalability studies with the model Alya [142, 308] and

fully implicit time integration on different machines are

shown in Fig. 6.

Alya is an unstructured finite element code. The mesh

partitioning therefore relies on the element graph, whose

complexity depends on the geometry considered. Libraries

such as ZOLTAN [28], SCOTCH [49], or METIS [174],

which are based on graph partitioning algorithms, may be

used to decompose an EBG mesh. Just like NUMA, Alya

does not require halos and the information exchange be-

tween neighbors is carried out on the interface nodes, that

is, the nodes shared by different subdomains. From the

parallelization point of view, the load balance and the

communication scheduling for these two codes depend on

the quality of the partition.

Several iterative solvers are available, and the selection

depends on the physical problem considered. The

incompressible Navier–Stokes equations require the solution

of the momentum equation and the pressure equation [140].

For the first algebraic system, the GMRES method with a

simple diagonal preconditioning is efficient in most of the

cases, and few iterations are required to obtain convergence.

For the pressure equation, a deflated conjugate gradient

method [203] is used together with linelet preconditioning

[277], which is very efficient in the presence of boundary

layers. The four scalabilities presented in Fig. 6 were obtained

for the Navier–Stokes equations. The last one represents the

combustion in a kiln, which consists in solving the low Mach

Navier–Stokes equations together with a temperature equation

and chemical reactions.

1.6 Plan of the Paper

The rest of the review is organized as follows: in Sect. 2 we

give an overview of the different equation sets used in the

dynamical cores of atmospheric models. Element-based

Galerkin methods within the context of NWP are introduced

in Sect. 3. Since EBG methods may produces unphysical

extrema (especially high-order EBGs), stabilization/filtering

is often required: a review of some stabilization methods

follows in Sect. 4. Section 5 explores accurate grid gen-

eration within high resolution simulations (e.g. well resolved

topography), along with static and dynamic grid adaptivity.

A summary is reported in Sect. 6.

Fig. 5 Scalability study with

NUMA using a 1D semi-

implicit (HEVI) simulation of a

3D rising thermal bubble in a

1 km3 cubed domain for

polynomial degrees 4 and 8 (see

legend), using 323 elements.

The average number of

elements per core is given by

the numbers next to each data

point. This scalability study was

performed on the Blue Gene

Vesta of the Argonne National

Lab
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2 Equation Sets for Atmospheric Modeling

For typical atmospheric scales (1 m to 1000? km), the

earth’s atmosphere can be treated as a continuum governed

by the compressible Navier–Stokes equations with body

forces to model the effects of gravity and the Earth’s ro-

tation (i.e. Coriolis force). Although the gravitational force

varies with both altitude and latitude, these minor pertur-

bations are generally neglected. In this section, we neglect

the effects of moisture, solar radiation, and heat flux from

the ground and consider the dry dynamics of the atmo-

sphere. Let X be a three-dimensional domain in a rotating

reference system x and let t� 0 be time. The state of dry,

stratified air can be described by density, q, pressure, p,
absolute temperature, T , and velocity field, u,

oqu

ot
þr � qu � uð Þ þ rp�r � r ¼ �2q x� uð Þ � qg;

ð1aÞ
oq
ot

þr � quð Þ ¼ 0; ð1bÞ

oE

ot
þr � ðE þ pÞuð Þ � r � lcp

Pr
rT þ u � r

� �
¼ 0; ð1cÞ

where x is the rotational velocity of the Earth, r is the

viscous stress tensor, g is the sum of true gravity and the

centrifugal force, and the total energy, E, is given by

E ¼ qcvT þ 1

2
qu � u þ qgr; ð2Þ

where r is the radial distance from a fixed reference point at

the center of the earth. Equation (2) consists of three

components: internal energy, kinetic energy, and gravita-

tional potential energy. For a Newtonian fluid with dy-

namic viscosity l, the viscous stress tensor is given by

r ¼ l ru þ ðruÞtð Þ � 2

3
ðr � uÞI

� �
; ð3Þ

where 2=3 is a constant derived from the Stokes hypothesis

and t is the vector transpose [232]. The system (1) of five

conservation laws in six unknowns is closed by the equa-

tion of state (ideal gas law) for pressure:

p ¼ R

cv
E � 1

2
qu � u � qgr

� �
: ð4Þ

We note that Eq. (3) does not incorporate any effects of

turbulent dissipation. Since the Kolmogorov length scale of

a typical atmospheric problem is on the order of 0.1 mm,

direct numerical simulation (DNS) of atmospheric motion

is not possible with the current computational resources. To

properly account for unresolved turbulent motion (e.g.

turbulent dissipation), a sub grid scale model or turbulence

closure scheme should be included. To simplify the treat-

ment of the most commonly used sets of equations and of

the numerical methods discussed below, we will neglect

viscosity and restrict our analysis to the Euler equations

ðl ¼ 0Þ and various approximations utilized in atmo-

spheric modeling; however, we will revisit viscous effects

in the context of stabilization in Sect. 4.

Atmospheric models can be broadly classified into three

groups: (1) non-hydrostatic models based on the com-

pressible Euler equations, (2) hydrostatic models, which

assume a vertical momentum balance between gravity and

Fig. 6 Scalability study for a fully implicit simulation using Alya [142, 308] on four different HPC architectures
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the vertical pressure gradient but include the vertical

stratification of the atmosphere, and (3) sound-proof

models. We also mention the shallow water model, which

neglects all vertical motion by assuming each column of air

moves as a rigid body, as shallow water models are often

developed to test the horizontal propagation of features by

numerical methods before they are applied to the solution

of the equations for a full atmosphere.

The set of governing equations constitutes the dy-

namical core of the model. In the following sections, we

broadly survey the equation sets commonly used in ex-

isting operational and research atmospheric models, be-

ginning with non-hydrostatic models and ending with

shallow water models. For a discussion of the interplay

between the choice of equation set and numerical chal-

lenges encountered, consult [299]. For an analysis of the

differences between non-hydrostatic, hydrostatic, shallow

atmosphere (note, not to be confused with the shallow

water model) and deep atmosphere approximations, see

[317].

2.1 Non-hydrostatic Models

The fully compressible Euler and Navier–Stokes equations

model all the scales and motions of the atmosphere. In

NWP the equations expressed in the form of (1) are very

often algebraically manipulated via the introduction of

derived physical variables to help the physical interpreta-

tion of the atmosphere. For example, let us introduce po-

tential temperature, h, which is the temperature that an air

parcel would have if it were expanded or compressed

adiabatically to a standard pressure p0 ¼ 1000 hPa [138].

Potential temperature is related to p and T via the ex-

pression h ¼ T=p, where

p ¼ p=p0ð ÞR=cp ð5Þ

is a normalized pressure (known as Exner pressure) with

respect to a reference pressure p0. Given h, the following

conservation laws for ðq; u; hÞT are obtained by trans-

forming Eq. (1c):

oqu

ot
þr � qu � uð Þ þ rp ¼ �qg � 2q x� uð Þ; ð6aÞ

oq
ot

þr � quð Þ ¼ 0; ð6bÞ

oqh
ot

þr � qhuð Þ ¼ 0: ð6cÞ

The equation of state for pressure (4)

p ¼ p0
qRh
p0

� �cp=cv

ð7Þ

completes the system. Numerical methods for the solution

of this system can be easily constructed to conserve mass

and momentum. It is, however, much more difficult to

formulate numerical schemes that also conserve energy.

However, for an adiabatic and reversible system, entropy is

conserved. Entropy s may be related to potential tem-

perature h via the relation

s ¼ cp ln hþ constant;

thereby justifying the use of h rather than E.

The ARW-WRF model [271] is based on this set, and so

are the finite volume model described in [2], the Met Office

ENDGame [322], and the German LM model [62]. The

Nonhydrostatic Unified Model of the Atmosphere

(NUMA) [117, 176] developed at the Naval Postgraduate

School is designed around two different sets, including (6).

NUMA is the underlying dynamical core of the next gen-

eration NWP model of the U.S. Navy, NEPTUNE.

Constructing the divergence of flux in Eq. (6) requires

some additional computational overhead; this overhead

may be reduced by converting Eqs. (6) to their advection

form:

ou

ot
þ u � ru þ 1

q
rp ¼ �g � 2x� u; ð8aÞ

oq
ot

þr � qu ¼ 0; ð8bÞ

oh
ot

þ u � rh ¼ 0; ð8cÞ

again, completed by an equation of state given by Eq. (7).

Numerical approximations to this set of equations can be

constructed to conserve mass, although conservation of

momentum and energy is more difficult to obtain. NUMA

is designed to be able to handle this set as well, although

the flux form (6) is the required formulation when NUMA

is executed in the discontinuous Galerkin mode.

By combining the definition of the Exner pressure

[Eq. (5)] with the continuity equation in Eqs. (8), we

obtain:

ou

ot
þ u � ru þ cphrp ¼ �g � 2x� u; ð9aÞ

op
ot

þ u � rp� R

cv
pr � u ¼ 0; ð9bÞ

oh
ot

þ u � rh ¼ 0; ð9cÞ

where ðp; u; hÞT is the vector of the solution variables [71,

85]. The practitioners who use this set justify it by saying

that it is self-contained because there is no need for a state

equation. For as much as it is evident that no equation of

state is directly necessary, we still need to point out that the
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algebraic computation of p from an equation of state

similar to (4) is here simply substituted by the diagnosis of

p and q from p or h; an operation that is still necessary

when it comes to the analysis of the forecast. This still

contributes to the net operation count to Eq. (4). Equa-

tions (9) do not conserve mass, momentum, and energy;

yet, they are widely used in operational NWP models such

as MM5 developed at Penn State and NCAR [83], NMM

based on the work by Janjic [166] at NCEP, COAMPS

[135] from the U.S. Naval Research Laboratory (NRL),

and HIRLAM [256, 257] by a consortium of European

numerical weather services.

2.1.1 Sound Waves: Anelastic Models and Implicit Time

Integration

All of the non-hydrostatic equation sets described in the

previous section are compressible; therefore, they all con-

tain sound waves which propagate at a very high speed

(approximately 300 m/s) relative to meteorologically

relevant phenomena. If these equations are discretized

explicitly, a small time-step must be utilized in order to

satisfy the stability criterion based on the Courant–Frie-

drichs–Lewy (CFL) condition [67], thereby increasing the

computational cost of the model. Since the vertical grid-

spacing is typically much smaller than the horizontal grid

spacing, the vertically propagating sound waves are the

most problematic aspect in these equation sets. To bypass

the small time-step requirement of the models that support

sound-waves, yet preserve the remaining dynamics, the

anelastic model was introduced in 1953 by Batchelor [15]

and later analyzed in [10, 202, 233], where the continuity

equation in Eqs. (6) and (8) is replaced by

r � ðqðzÞuÞ ¼ 0: ð10Þ

In (10), density q is only a function of height. An improved

soundproof approximation is the pseudo-incompressible

model proposed by Durran [84, 86], where the time de-

pendence of density is accounted for, although density is a

function of a time-invariant reference state pressure and

time-dependent potential temperature. All these models are

able to filter sound from the original compressible Euler/

Navier–Stokes equations, but still account for the most

important waves (e.g. Rossby) in the solution of the at-

mospheric motion. The interested reader may consult the

review [179] for more on the validity of these ap-

proximations. A step towards the blending of soundproof

and compressible Euler equations was recently investigated

in [20].

The soundproof approximation of the governing equa-

tions is one option to the necessary filtering of sound

waves. The fully compressible, non-hydrostatic equations

can, on the other hand, be approximated in time via a semi-

implicit scheme as done in [71, 291, 292]. Because the fast

waves are treated implicitly in a semi-implicit ap-

proximation, the time step is only limited by the non-linear

advective part of the equation; hence, the time-step is

limited by the advective CFL condition Dt�CDx=jjujj,
which is far less stringent than the CFL condition

Dt�CDx=ðjjujj þ csÞ, where C is a constant of order one

and cs is the speed of sound.

Semi-implicit methods are closely related to implicit–

explicit (IMEX) methods [189]. Semi-implicit is, for the

most cases, tied to the combination explicit leap-frog ?

implicit Crank–Nicholson, whereas IMEX can be viewed

as a generalization that allows for different time-differ-

encing schemes, as first proposed in 2009 by Restelli and

Giraldo [249] to solve the fully compressible Navier–S-

tokes of nonhydrostatic stratified flows approximated in

space by DG. Moreover, the IMEX ? DG by Restelli and

Giraldo is a general method applicable to different Mach

regimes for viscous and inviscid flows. In 2004, Dolejši

and Feistauer [76] coupled DG with an implicit–explicit

time discretization scheme to solve the Euler equations of

fully compressible flows. In that paper, the numerical flux

term was first discretized in a fully implicit manner; then,

the implicit numerical flux was linearized via a Taylor

expansion, resulting in a linear system of equations which

is solved via a sparse iterative solver, as opposed to a

more expensive non-linear solver (e.g. Newton–Krylov)

as required by a fully implicit discretization. More recent

work on IMEX methods includes [87], which utilizes

Adams and backward difference methods, and [314],

which takes a horizontally-explicit vertically-implicit

(HEVI) approach.

In 2013, an IMEX version of the Nonhydrostatic Unified

Model of the Atmosphere NUMA was introduced in [117].

Both a 3D IMEX scheme which discretized the horizontal

and vertical (linear) operators implicitly, and a 1D IMEX

which only discretized the vertical operators implicitly

(HEVI), were derived and compared using both second-

order backward difference formulas and higher-order (up to

order 4) implicit Runge–Kutta methods.

As mentioned earlier, 3D-IMEX methods require the

solution of a linear system of equations. This linear solve

may be poorly conditioned (especially for large Courant

numbers) and hence computationally expensive. An alter-

native method that does not require a linear solve is the

split-explicit method [293]. The split-explicit approach

relies on sub-time stepping to treat the terms that represent

sound and gravity waves within one larger explicit time-

step for the remaining terms. This method is common in

atmospheric simulations, in spite of its low accuracy [318,

319] and potential instabilities.
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2.1.2 Nearly-Hydrostatic Flows

Dynamics in the atmosphere are characterized by small

variations of thermodynamic quantities with respect to

some background state [178, 207]:

qðx; tÞ ¼ q0ðx; tÞ þ �qðzÞ ð11aÞ

pðx; tÞ ¼ p0ðx; tÞ þ �pðzÞ ð11bÞ

Hðx; tÞ ¼ H0ðx; tÞ þ �HðzÞ ð11cÞ

where the primed and barred quantities represent, respec-

tively, the perturbation and the background state of q, p,
and H. In Eq. (11c), H ¼ qh. In typical atmospheric

simulations, q0 	 �q, p0 	 �p and H0 	 �H. If the vertical

acceleration is zero, the vertical component of the mo-

mentum equation reduces to the hydrostatic balance given

by the following equation:

op

oz
¼ �gq: ð12Þ

Given these considerations and the analysis of nearly-hy-

drostatic flows for well-balanced methods [30], the system

(6) is transformed in terms of perturbation variables where

the Coriolis term is neglected. Substituting Eq. (11) into

Eq. (6) and applying Eq. (12) to the z-component yields

oqu

ot
þr � qu � uð Þ þ rp0 ¼ �q0g; ð13aÞ

oq0

ot
þr � quð Þ ¼ 0; ð13bÞ

oðqhÞ0

ot
þr � qhuð Þ ¼ 0: ð13cÞ

Throughout this review, the primes will be mostly omitted

to simplify notation.

2.2 Hydrostatic Versus Non-hydrostatic Models

Atmospheric models can be distinguished as hydrostatic

and non-hydrostatic. If we assume the vertical acceleration

to be negligible, the vertical momentum equation of the

hydrostatic system reduces to the diagnostic equilibrium

equation (12). At every time-step, this time-independent

equation is solved instead of the full equation for vertical

momentum. Sound waves are eliminated in the vertical

direction [85] but not in the horizontal direction. Because

the size of the domain in the horizontal direction is

typically much larger than the vertical depth of the atmo-

sphere and the grid size along x and y may be orders of

magnitude larger than the grid spacing along z, a much

larger time-step may be utilized.

The hydrostatic approximation has been a central ap-

proximation of NWP for the past four decades and is used

in the hydrostatic primitive equations (HPE) discussed in

the next section. This approximation is valid for horizontal

grid spacing larger than 10 km [165, 299]. The hydrostatic

approximation is still appropriate to simulate synoptic scale

phenomena where the vertical acceleration can be ne-

glected, but is no longer considered in any mesoscale

simulation. With the availability of more powerful com-

puters, the non-hydrostatic formulations described above

are standard for mesoscale NWP. The reader should refer

to [21, 29, 106, 118, 124, 135, 166, 167, 271, 323] for more

on the evolution of non-hydrostatic models.

2.2.1 Hydrostatic Primitive Equations

The hydrostatic primitive equations (HPE) govern the dy-

namics in synoptic scale (e.g. global-scale) meteorology

and are valid for horizontal resolution coarser than 10 km.

The HPE are expressed in so-called r coordinates which

allow the boundary condition on the ground to be easily

applied, even in the presence of complex orography. The

HPE are derived by first expressing the compressible Euler

equations in terms of pressure, velocity, and potential

temperature. A hydrostatic balance is applied in the vertical

direction, which removes vertical acceleration from the

momentum equation. Since the HPE rarely appear outside

of atmospheric and climate studies, we present a brief

derivation from the compressible Euler equations. A more

comprehensive treatment is found in [138].

We first apply a Coriolis term to the right hand side of

the momentum equation [Eq. (8a)]. Decomposing the ve-

locity u into a horizontal uH and vertical w components,

the horizontal momentum balance is given by

DuH

Dt
¼ � 1

q
rHp� fk � uH ð14Þ

where f ¼ 2x sin a is the Coriolis constant at the latitude a
for angular rotation x. Next, we transform Eq. (14) into

isobaric coordinates ðx; y; pÞ, where pressure is the vertical
component; this is a useful intermediate step on the path to

r coordinates. Introducing a velocity potential Uðx; y; p; tÞ,
it can be shown that rPU ¼ rp=q, where the gradient is

taken with respect to isobaric coordinates, yielding

DPuH

DPt
¼ �rPU� fk � uH ; ð15Þ

where the total derivative in Eq. (15) is defined as

DP

DPt
¼ o

ot
þ uH � rH þ x̂

o

op
ð16Þ

and x̂ ¼ Dp=Dt. Next, we transform Eq. (15) into r co-

ordinates via r ¼ p=ps, where ps ¼ psðx; y; tÞ is the surface
pressure. Note that in this coordinate system, the boundary
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condition on the ground is always r ¼ 1. Application of the

chain rule to the gradient of the velocity potential yields

rPU ¼ rrU� rr ln ps
oU
or

ð17Þ

while the total derivative is given by

Dr

Drt
¼ o

ot
þ uH � rH þ _r

o

or
ð18Þ

Combining Eqs. (17) and (18) in Eq. (15) yields

ouH

ot
þuH �rHuH þ _r

ouH

or
¼rrU�rr lnps

oU
or

� fk�uH

ð19Þ

In a similar manner, an equation of continuity for the

surface pressure ps is derived from (6a)

ops

ot
þrH � psuHð Þ þ ps

or
or

¼ 0 ð20Þ

along with a transport equation for potential temperature h
from (6c)

oh
ot

þr � uH � rHhþ _r
oh
or

¼ 0 ð21Þ

In each r level, we solve for the prognostic variables

q ¼ ps; uH ; hð ÞT, while the diagnostic variables are the

vertical velocity _r, pressure p, and geopotential /. Because
these equations are in exact hydrostatic balance, there are

no vertically propagating acoustic or gravity waves. By

computing the eigenvalues of the HPE, it is shown that the

fastest moving waves are horizontally propagating gravity

waves [114]. Hence, even with an explicit time integrator,

a much larger time-step may be used with the HPE than

with the compressible Euler equations. For this reason, the

HPE form the basis of most global atmospheric and climate

models.

2.3 Shallow Water Equations (SWE)

The hydrostatic primitive equations require a solution at N

model levels (independent r or pressure levels). This re-

quires significant computational effort. The HPE may be

simplified even further to remove all vertical dependence.

One approach is to expand each prognostic variable in

Eq. (20) in a 1D Fourier series with height r as the argu-

ment and only retaining the zeroth-term in this series,

commonly called the barotropic mode. Another approach

is to start with the full compressible Euler equations and

apply both the hydrostatic approximation given by Eq. (12)

and the shallow water approximation where the deviation

of the geopotential height U from a given reference

geopotential U0 is small. From an ocean modeling point of

view, this assumption is equivalent to assuming the water

depth is small compared to the wavelength of the waves of

interest (gravity waves and Coriolis induced Rossby

waves). In flux form, the SWE of a viscous atmosphere of

depth h on a rotating sphere of radius r are:

oUu

ot
þr � Uu � uð Þ ¼ �UrU� f x � Uuð Þ þ lx

þ mr2ðUuÞ; ð22aÞ

oU
ot

þr � Uuð Þ ¼ 0: ð22bÞ

Equation (22) may be expressed in Cartesian coordinates

instead of spherical coordinates by applying a fictitious

force lx, where l is the Lagrange multiplier; this approach,

which facilitates an arbitrary spherical grid, was first pro-

posed by Coté [63] for the semi-Lagrangian solution of the

problem and later used in [110, 112] for the solution of the

full nonlinear equations. The numerical solution of SWE

on spherical geometries is reported by many authors such

as [242] (FEM), [112, 158, 204, 294] (SEM), [116, 227,

303] (DG), [211] (unified CG/DG on different unstructured

grids with static and dynamic adaptivity), [191, 196, 309,

316] (FV), [278] (comparison between SEM and FV),

[245] (comparison using different numerical methods).

2.4 Transport in the Atmosphere

In a typical atmospheric model, there are multiple forms of

water (e.g. vapor, rain, ice); in a climate model, there are

also hundreds of chemical species. These quantities are

transported and diffused by atmospheric dynamics and are

classified as tracers. In turn, these tracers actively feedback

to dynamics (e.g. latent heat release). To model these

tracers, the governing equations of a dry flow must be

coupled to a set of transport–diffusion equations for such

tracers. For simplicity, we describe how tracers are treated

in atmospheric models by looking at the transport of three

water quantities only; however, this approach applies to an

arbitrary number of tracers.

Let us define the mixing ratios of water vapor, cloud

water, and rain as qv ¼ qv=q; qc ¼ qc=q and qr ¼ qr=q,
where qv;c;r are the densities of water vapor, cloud, and

rain. Let us also choose one of the nonhydrostatic equation

sets described previously and write the coupled system of

equations that model a moist atmosphere; we consider

system (8) and write the following:

ou

ot
þ u � ru þ 1

q
rp ¼ �gð1þ eqv � qc � qrÞ

� 2x� u þ Sturb; ð23aÞ

oq
ot

þr � quð Þ ¼ 0; ð23bÞ
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oh
ot

þ u � rh ¼ r � jhrhð Þ þ Shðq; h; qv; qc; qrÞ; ð23cÞ

oqi

ot
þ u � rqi ¼ r � kqirqi

� 	
þ Sqiðq; h; qv; qc; qrÞ;

for i ¼ v; c; r; ð23dÞ

where e ¼ R=Rv is the ratio of the gas constants of dry air,

R, and of water vapor, Rv. Moist air contributes to the

buoyancy of the flow, so that the right hand side of the

momentum equation must be corrected by the total buoy-

ancy B ¼ �ggð1þ eqv � qc � qrÞ. The diffusion coeffi-

cients khi and kqi are typically modeled via an algebraic

turbulence closure via

kh ¼m=Pr0 þ mt=Prt ð24aÞ

kqi ¼m=Sc0 þ mt=Sct ð24bÞ

while the closure term Sturb depends on the turbulence

model employed. In Eq. (24), m is molecular viscosity, mt is
eddy viscosity, Sc0 is the molecular Schmidt number and

Sct is the turbulent Schmidt number. Typical values are

Sc0 ¼ Sct ¼ 0:7. The microphysical processes that involve

phase change in the water content are modeled by the

source/sink terms, Sh;qi , in the equations. For example, in

the case of water vapor, Si is driven by evaporation and

condensation. These terms can be modeled and computed

by some properly designed microphysics scheme, such as

the Kessler [177] scheme for warm clouds (no ice

involved).

The appropriate numerical discretization of Eq. (23d) is

still an active topic of research, especially since moisture

possesses large gradients that can cause instabilities. In

addition, since the mass fractions qi are a priori non-

negative, the numerical discretization should be monotonic

or, at the very least, positivity-preserving. If, for example,

our system produced negative moisture, the physical pa-

rameterization would have to resolve this issue in some

way (e.g. clipping the negative values); in addition, the

resulting incorrect feedback may pollute the overall solu-

tion and cause artificial rain to be produced by the model.

The words of John P. Boyd are an amusing conclusion to

this paragraph: ‘‘[...] Clever adaptive algorithms that work

for smooth, straight shocks disintegrate into computational

anarchy when flayed by gravity waves, assaulted by moist

convective instability, battered by highly temperature-

sensitive photochemistry, and coupled to the vastly dif-

ferent time and space scales of the ocean[...]’’ (SIAM

News, Multiscale Numerical Algorithms for Weather

Forecasting and Climate Modeling: Challenges and Con-

troversies. Nov 2008, Vol. 41 issue 9). Monotonic solu-

tions are certainly more difficult to achieve with high order

numerical methods. The problem is particularly challeng-

ing when the transport equation is solved by high order

methods such as spectral elements or DG. High order

methods produce Gibbs oscillations near sharp gradients;

these oscillations are unphysical and are exacerbated by

increasing the order. Hence, limiters [187] or adaptive fil-

tering is necessary. We will address this problem in Sect. 4,

along with some issues involved with unstable Galerkin

solutions.

2.4.1 Cloud Microphysics: Kessler Parameterization

Cloud microphysics include all thermo-physical processes

at the scales of the particles that form the cloud. Examples

are the phase change of water quantities or the agglom-

eration of particles into larger ones. Most physical pro-

cesses typical of storm dynamics (e.g., precipitation,

freezing, deposition, or sublimation) have physics across a

large range of spatial and temporal scales that makes direct

numerical simulation unfeasible (see [88], Ch. 10). For this

reason, parameterization is commonly used within nu-

merical models. Microphysical parameterization relies on

the physical knowledge of certain processes without the

need for fully resolving all the microscale processes that

are involved. The clear limitation is that certain phenomena

cannot be represented with high accuracy if they lie outside

of the conditions required by the parameterization. Dif-

ferentiation A simple representation of cloud microphysics

was designed by Kessler and reported in his monograph

[177].

Kessler’s is a bulk model, meaning that water species

are categorized only with respect to the particles’ type. In

other words, if we speak about cloud water, we would

model it through one equation that represents the transport

of cloud water concentration with water droplets of one

single size. Bulk models are contrasted by explicit models,

where, within each category (e.g., cloud, rain) the size of

the water particles is considered as well. Explicit models

are certainly more physically accurate, but they are more

costly due to the greater number of quantities that must be

accounted for. For more information on the topic refer to

Houze’s book [139] and to more recent literature (e.g.

[39]).

Kessler’s is a simple scheme based on the main as-

sumption that ice is not contemplated (warm rain). The

main limitation of the warm condition is that only moist

convection at the tropics or at mid-latitudes in the warm

season can be represented. The three forms of water that

are considered are: (1) water vapor; (2) cloud water (liquid

water whose size is so small that its terminal fall speed is

negligible); and (3) precipitating water that only includes

rain (namely, drops whose diameter is[0.5 mm). Drizzle

is excluded (rain of drop diameter between 0.2 and

0.5 mm).
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The main processes resolved by a warm cloud micro-

physics scheme are briefly described below. These pro-

cesses dictate how the source terms of the previous

equations are defined and how they affect the dynamics of

the simulation. The reader is referred to, e.g., [139] and

references therein for a more thorough analysis.

Given the approximated Teten’s formula [27] for the

saturation vapor pressure,

e
 ¼ 611:2 exp
17:67T

T þ 243:5

� �
;

the saturation mixing ratio is given by

qvs ¼
ee


p� e

: ð25Þ

From [181], the source terms in (23) are

Sh ¼� Lv

cpT
_qvs þ Erð Þ; ð26aÞ

Sqv ¼ _qvs þ Er; ð26bÞ

Sqc ¼� _qvs � Ar � Cr; ð26cÞ

Sqr ¼
1

q
o

oz
ðqVrqrÞ � Er þ Ar þ Cr; ð26dÞ

where cpl and cpv are the heat coefficients at constant

pressure of liquid water and water vapor, respectively,

Lv ¼ Lv0 � ðcpl � cpvÞðT � T0Þ is the latent heat of vapor-

ization with reference value Lv0 ¼ 2:5eþ 6 J kg�1, T0 is a

reference temperature, Vr is the terminal fall speed of

raindrops (taken positive in the downward direction), and

_qvs is the rate of condensation or evaporation (the dot

symbol indicates differentiation with respect to time).

Ar;Cr, and Er are the rates of autoconversion, collection,

and evaporation of rain. They are computed using the

formulas:

Ar ¼ MAX 0; k1ðqc � aTÞð Þ; ð27aÞ

Cr ¼ k2q
0:375 qc q

0:875
r ; ð27bÞ

Er ¼ � 1

q
ðqv=qvs � 1Þkðq qrÞ0:525

5:4� 105 þ 2:55� 106ðp qvsÞ
; ð27cÞ

where k1 ¼ 0:001 s�1, k2 ¼ 2:2 s�1, aT ¼ 0:001 kg�1 are

Kessler’s parameters and k is the ventilation factor that is a

function of the terminal fall speed. Equation (27a) was

derived by Kessler considering that a cloud is converted

into rainwater whenever qc exceeds a threshold aT . Auto-

conversion is the rate at which the rain water content in-

creases at the expense of cloud water due to the

coalescence of smaller particles. Yet, this process is not

fully understood. Nor is it fully understood how collection

occurs. As the name suggests, collection can be explained

as cloud water particles being collected by the falling

larger rainwater droplets that go through the cloud layers

during their fall. Evaporation occurs when the sensible heat

flux from the environment into the water droplet is bal-

anced by the latent heat of evaporation of the water par-

ticle. As in [276], the cloud droplets move at the same

speed of the flow because they are considered having

negligible terminal velocity.

The values of the constants in (27) are, to a certain extent,

arbitrary [139]; however, by the observations, it is of common

agreement that k1; k2 and aT are non-linear terms with respect

to qc itself. They are also a function of temperature and of the

distribution of the condensation nuclei. As it is pointed out in

Emanuel’s book [88], the lack of understanding of the un-

derlying physics is such that different results are being ob-

tained bydifferent andmore sophisticated schemes.However,

this topic is beyond the scope of the present article. Never-

theless, it is important to emphasize that microphysical pa-

rameterization has a major role in forecasting clouds and

precipitation, but is still an activefield of investigation (see the

2008 paper by Morrison and Grabowski [223]).

2.4.2 Method of Solution Via Saturation Adjustment

Regardless of the type of space approximation, phase

changes are classically treated via the saturation adjust-

ment technique explained in detail in the appendix of [276].

Saturation adjustment—or fractional step method—is not

the only option; however, due to its simplicity, it is con-

venient to describe it here to give a sense of how phase

change is accounted for in these models.

The saturation adjustment technique consists of solving

the problem in two steps. First, the prognostic equations are

solved by neglecting all the terms that involve phase

changes (all the S-terms are set to zero). This means that

the dynamics and transport equations are advanced forward

to an intermediate time-step n
 so that the intermediate

values of the prognostic variables, ðq; p; hq; qvs; qv; qc; qrÞ
,
are obtained. These values are plugged into the Kessler

module to compute the S-quantities defined above. Once

the computation of S has completed, thermodynamic

variables are updated and returned to the Euler/transport

solver as the initial values for the next time step nþ 1.

3 Element-Based Galerkin Methods: Finite
Elements, Spectral Elements, and Nodal
Discontinuous Galerkin

As discussed in the EBG roadmap, the finite element

(FEM), spectral element (SEM), and discontinuous

Galerkin (DG) methods, are specific types of Galerkin
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approximation techniques. In this section, we introduce the

ideas behind Galerkin schemes in general and then distin-

guish between FEM, SEM, and DG in particular. We then

trace the history of EBG methods in NWP and climate

modeling over the past 20 years.

3.1 Element-Based Continuous Galerkin Methods

The birth of Galerkin methods dates back to Boris

Grigoryevic Galerkin and his work on the numerical so-

lution of the equations of the elastic equilibrium of rods

and plates [105], and to the original ideas of Walter Ritz

[253] 6 years earlier. Popularized by Courant in the early

1940s for the study of vibration and equilibrium [66] and

extensively developed only in the late 1950s and 1960s by

structural dynamicists in the aircraft industry [4], finite

element methods in particular are among the most common

numerical methods based on a Galerkin approach and that

are used today in a wide range of applications. They are

used in industry and for research purposes in, e.g., struc-

tural analysis [324], fluid dynamics [333], and electro-

magnetism [14]. Galerkin based methods are a robust tool

for the solution of any differential problem [79] and are

accepted by scientists and engineers in theoretical studies

and applications for a series of reasons such as the ease in

modeling complex geometries, the flexible and general

purpose programming format that they imply, and the in-

trinsic treatment of differential-type boundary conditions.

In the following, we will describe the idea behind the

method of weighted residuals, of which the Galerkin finite

element, spectral element, and discontinuous Galerkin

methods represent special cases. For a simple but quasi-

rigorous analysis of the method we use a problem of real

engineering interest and that is a fundamental problem in

numerical weather prediction: the advection–diffusion

equation. The reader is referred to the books by Fletcher

[95] or by Karniadakis and Sherwin [173] as a reference for

the more mathematical aspects of Galerkin methods, and to

the lecture notes by Giraldo [115] for a unified treatment of

high-order continuous and discontinuous Galerkin

methods.

Let us take a general differential problem

LðqÞ ¼ S; ð28Þ

where L is the combination of both linear and non-linear

differential operators in space x and time t, and S is a

source function. Let d indicate the space dimension and let

X � R
d be the domain with the boundary oX where (28) is

defined within the time interval ð0; tf Þ, and tf 2 R
þ. For the

problem to be well-posed, suitable boundary and initial

conditions must be added to (28). Unless otherwise stated,

given a known function g, Dirichlet boundary conditions

qðxÞ ¼ g for x 2 oX will be applied to the problems de-

scribed throughout this section.

As previously stated, Galerkin methods are a particular

case of the method of weighted residuals. The idea behind

this method is the numerical representation of the solution

variable q by a finite dimensional approximation qh ob-

tained by the expansion

qhðxÞ ¼
XN
k¼0

wkðxÞ q̂k; ð29Þ

where N is the number of nodes pk of a possible partition of

the domain X. On its discrete counterpart, Xh, a set of

k ¼ 0; . . .;N known analytic test functions wk are defined

(The two terms test and basis will be used interchangeably.

The unknown coefficients q̂k correspond to the physical

values of q at node pk. The finite difference method is

conceptually different in that what is approximated in the

differential problem are the differential operators and not

the solution variable. Substitution of (29) into (28) is such

that LðqhÞ � S 6¼ 0. The method is called method of

weighted residuals because a linear system of algebraic

equations in the unknowns q̂ is built by imposing that
Z

X
wRdX ¼ 0; ð30Þ

where R ¼ L� S is the (non-zero) residual of (28) and w

is the weight function that has certain properties. Different

methods arise from the selection of different w. The Bub-

nov–Galerkin method is found when w ¼ wk. We can then

write the following:
Z

X
w L� S½ � dX ¼ 0: ð31Þ

This is the weak form of the original equation to be solved.

Remark 3.1 So far, no distinction between the finite and

spectral element methods has been made. The difference

stems from the definition of the interpolation points used to

construct wk.

3.1.1 Suitable Function Spaces

The choice of basis and test functions depend on the op-

erator L under consideration. In the specific cases of the

advection–diffusion equation and the Navier–Stokes

equations of compressible flows, the highest order of the

derivatives is 2, and the choice of the basis functions and

the space to which they belong must depend on this reg-

ularity condition.

We show that the weak solutions to a linear elliptic

operator must resides in the Sobolev space H1ðXÞ. Con-
sider an operator L defined on a global domain X with
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boundary C acting on a state vector q; specifically, consider

the elliptic operator

L qð Þ ¼ r � mrqð Þ ð32Þ

where m[ 0 is the kinematic viscosity. We consider the

boundary-value problem

L qð Þ ¼ 0 ð33Þ

with a Dirichlet boundary condition qðxÞ ¼ q0ðxÞ for all

x 2 C and q0ðxÞ 2 C1 Cð Þ. Consider a test function w 2
L2 Xð Þ and also assume q 2 L2 Xð Þ. The following calcula-

tion demonstrates that q;w 2 H1 � L2.

Integrating Eq. (32) by parts yieldsZ

X
mrw � rq dX ¼

Z

C
wr � mrqð Þ dC: ð34Þ

Since q0 2 C1 and w 2 L2, the right hand side of Eq. (34) is

bounded, implying that the left hand side is bounded as

well. We then write that:
Z

X
mrw � rq dX










�

Z

X
mrw � rqj j dX

� mkrwkL2krqkL2
ð35Þ

where the second line follows from the Cauchy–Schwartz

inequality. Hence, both the norms krwkL2 and krqkL2 are
bounded, implying that rw and rq are square-integrable

over the global domain X. In other words, w; q 2 H1 Xð Þ.
With regards to CG methods, this elementary calcula-

tion illustrates two key points:

1. The space of test functions must be a subset of H1.

2. Since H1 � C0, the state vector q is necessarily

continuous.

We hence define the space W of test functions w and trial

solutions q as a subset of H1 such that

W¼: fw; q 2 H1ðXÞ s.t. w ¼ 0 and q ¼ g on oXg:
ð36Þ

3.2 Finite and Spectral Elements: Discretization

and Basis Functions

To discretize the problem in a finite and spectral element

sense, the domain tX is first decomposed into a finite ele-

ment partition Ph ¼ fKigi¼1;...;nel
of nel conforming ele-

ments Ki such that

X ¼
[nel
i¼1

Ki; and
\nel
i¼1

Ki ¼ 0; ð37Þ

where every element Ki is the image of the reference ele-

ment I by a non-singular bijective mapping x ¼ HiðnÞ

from physical space x to computational space n. J ¼ dx=dn

is the transformation Jacobian matrix. A two-dimensional

example of the map is represented in Fig. 7.

The need for mapping is purely practical and forms the

foundations of the finite element computation. For details

see [157].

3.2.1 Basis Functions: Finite Elements

Lagrange basis functions are a common choice in finite

elements since they interpolate a continuous function ex-

actly at the nodes xl. These functions, defined by hk from

now on, have the property of being piecewise continuous

and are such that

hkðxlÞ ¼ dkl k; l ¼ 0; . . .;N;

where dkl is the Kronecker delta.

For linear, quadratic, and cubic finite elements, the roots

of the basis function along the reference element I are the

N ? 1 equi-spaced nodes within the element. Using the

definition of the Lagrange polynomials

hkðnÞ ¼
YN

l¼0;l 6¼k

n� nl
nk � nl

; ð38Þ

in Fig. 8 we plot hk along a reference element up to 2nd-

order. A 4th-order finite element and corresponding basis

function are plotted in Fig. 9 (left).

3.2.2 Basis Functions: Spectral Elements

Unlike the case of high-order finite elements, the polyno-

mials used with spectral elements are associated with zeros

that are not equi-spaced. A convenient set is represented by

the Legendre–Gauss–Lobatto (LGL) points. LGL nodes ni
are the roots of

ð1� n2ÞP0
NðnÞ ¼ 0; ð39Þ

where PNðnÞ are the Nth-order Legendre polynomial whose

construction by recursive formulas can be found in [173].

Fig. 7 Mapping from reference, ðn; gÞ, to physical space, ðx; zÞ.
8Ki 2 Ph : Ki ¼ HiðIÞ
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The polynomials that are used have the same d-property of

the Lagrange polynomials defined above. Their analytic

expression is given by

hkðnÞ ¼
ðn2 � 1ÞP0

NðnÞ
NðN þ 1Þðn� nkÞPNðnÞ

; k ¼ 0; . . .;N; ð40Þ

where P0 indicates differentiation with respect to x.2 The

4th-order k-polynomials along I ¼ ½�1; 1� are plotted on

the right panel of Fig. 9. The comparative plot (finite ele-

ment on the left and spectral element on the right) is used

to show that, if high-order is required, equi-spaced nodes

produce unsatisfactory types of basis functions in the

proximity of the edge points of the element. In other words,

we lose control on the maximum and minimum values of

hk at the extrema of the element. When this happens, in-

terpolation of any function is likely to suffer from such a

condition. To show how this feature translates into the

interpolation of a known analytic function, we use the

following example from [115]. We define the Witch of

Agnesi of unitary height as

zðxÞ ¼ 1

1:0þ 50 x2
;

-1.0

-0.5

0.0

0.5

1.0

-1 -0.5  0  0.5  1

 h
(x

)

x

1st order Lagrange Basis Functions

-1.0

-0.5

0.0

0.5

1.0

-1 -0.5  0  0.5  1

 h
(x

)

x

2nd order Lagrange Basis FunctionsFig. 8 Lagrange polynomials of

order 1 (left) and 2 (right) along

the 1D reference element

I ¼ ½�1; 1�. Clearly, they are

equivalent for FE and SE
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4th order Lagrange Basis FunctionsFig. 9 Basis functions of order

4 along the 1D reference

element I ¼ ½�1; 1�. Left the
nodes within the element are

equi-spaced as for classical

high-order FE. Right Lagrange–

Legendre polynomials of order

4 whose roots are the non-equi-

spaced Legendre–Gauss–

Lobatto (LGL) quadrature

points. Nodal SE and DG may

employ LGL or LG quadrature.

However, to obtain a diagonal

mass matrix then LGL is the

only choice for SE, while LG

can still be used for DG

2 Alternatively, the basis functions can be constructed using Eq. (38).
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where zðxÞ is smooth and continuous, and interpolate it

using the basis functions wðxÞ ¼ hkðxÞ defined above. The

test is performed by 4th-order interpolation. Equi-spaced

and non equi-spaced points are used along the unitary

domain. Figure 10 shows that the more the polynomial

order is increased, the better the result is when LGL nodes

are employed. This is tied to the definition of the Lagrange

polynomials and their interpolation strength given by the

Lebesgue constant. The reader is referred to [115] for more

details on this issue. Roughly speaking, this analysis serves

as a practical way of showing one reason for the use of

LGL points in high-order simulations rather than high-

order elements with evenly distributed nodes. Figure 11 is

a schematic representation of two 4th-order elements in

two dimensions.

3.3 Discontinuous Galerkin

The discontinuous Galerkin method allows the numerical

solution and, therefore, the basis functions to be discon-

tinuous at the interface between neighboring elements. For

this reason, the basis function is no longer required to live

in H1 but, rather, in L2. Assume ni is the number of ele-

ments that share grid point i. Then we will have ni different

values of the solution at that grid point; one coming from

the computation on the left element and one on the right

element, where left and right are defined with respect to the

shared edge (or face in 3D). The basis functions for ele-

ment Xe vanish everywhere outside the element. Hence Eq.

(31) becomes a set of nel independent equations for each

element Xe:

Z

Xe

w LðqÞ � SðqÞ½ � dXe ¼ 0: ð41Þ

The equations for the different elements are coupled by

means of the fluxes between neighboring elements. For this

purpose we write our equations in flux form:

LðqÞ ¼ oq

ot
þr � FðqÞ ð42Þ

where F is the flux tensor. Equation (41) becomes

Z

Xe

oq

ot
þr � F � S

� �
w xð Þ dXe ¼ 0: ð43Þ

with F ¼ FðqÞ and S ¼ SðqÞ. Integration by parts leads to

Z

Xe

oq

ot
� F � r � S

� �
w xð ÞdXe ¼ �

Z

Ce

w xð Þn � F dCe;

ð44Þ

where Ce is the boundary of Xe and n is the outward

pointing unit normal vector on Ce. To compute the nu-

merical solution, qh, we replace the flux in the boundary

integral by a so called numerical flux Fh
:
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Fig. 10 Interpolation of a

known function (Witch of

Agnesi) using high-order

interpolating functions with

equi-spaced and LGL points.

Left 4th-order interpolation.

Right 10th-order interpolation

Fig. 11 Nodes disposition for a two-dimensional 4th-order finite

element (left), and spectral element (right)
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Z

Xe

oqh

ot
� Fh � r � Sh

� �
w xð ÞdXe ¼ �

Z

Ce

w xð Þn � Fh
dCe;

ð45Þ

with Fh ¼ F qh
� 	

and Sh ¼ S qh
� 	

. The numerical flux Fh


describes the flux through the discontinuous interface be-

tween neighboring elements in the same way of the finite

volume (FV) method; therefore, we can choose any of the

fluxes that are used with FV. For an introduction to dif-

ferent choices of fluxes we refer to [302]. Unlike FV, DG is

relatively insensitive to the choice of the numerical flux

due to the high order ðp� 3Þ basis functions that are used

within the element. Therefore a common choice for the

numerical flux is the simple Rusanov flux:

Fh
 ¼ 1

2
F qhL
� 	

þ F qhR
� 	

� k n qhR � qhL
� 	� �

; ð46Þ

where k ¼ uj jj j2þc is the maximum wave speed,

uj jj j2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2

p
, and c is the speed of sound. The

subscript L denotes the index of the element Xe whereas the

subscript R denotes the index of the neighboring element.

There are recent approaches to incorporate fluxes that are not

perpendicular to the interface between elements [327].

The integration by parts of Eq. (45) leads to
Z

Xe

oqh

ot
þr � Fh � Sh

� �
w xð ÞdXe

¼
Z

Ce

w xð Þn � Fh � Fh
� 	
dCe: ð47Þ

Using the expansion (29) of the numerical solution gives us

oq̂k
ot

¼ �
Z

Xe

ŵk xð Þ r � Fh � Sh
� 	

dXe

þ
Z

Ce

ŵk xð Þn � Fh � Fh
� 	
dCe; ð48Þ

with the definition ŵi xð Þ ¼
PMh

k¼1 M
�1
ik wk xð Þ where Mik ¼R

Xe
wi xð Þwk xð ÞdXe are the components of the mass matrix

M.

Second order derivatives in the differential operator L

can be discretized with DG by transforming the problem

into a coupled set of equations containing only first order

derivatives as done in [54]. This approach is called the

local DG (LDG) method. Other choices for discretizing

second order operators are given in [266].

3.4 EBG Methods in Atmospheric and Climate

Modeling

3.4.1 Continuous Galerkin

The use of continuous Galerkin methods in atmospheric

simulations began five decades ago with the work on finite

elements by Holmstrom [137] and Simons [269] in the

1960s. This continued in the 1970s (e.g. [69, 70, 101]) and

was followed by an extensive production of articles in the

1980s and 1990s with, e.g., Staniforth [279], Beland et al.

[19], or Burridge et al. [41], who set the foundations of the

operational Global Environmental Multiscale (GEM)

model [65, 326] of the Canadian Meteorological Center &

Meteorological Research Branch (CMC-MRB). In the UK,

Untch and Hortal [305] used finite elements for the vertical

discretization of a semi-Lagrangian transport scheme and

introduced it in the operational version of the European

Centre for Medium-Range Weather Forecasts (ECMWF)

global spectral model (IFS), with great improvement with

respect to the FD version of the code. In the domain of

Geophysical Fluid Dynamics, more Galerkin-type models

have appeared since the beginning of the new millennium.

In, e.g., [34, 193, 228] or [119], different variational for-

mulations mostly based on spectral elements are employed

to solve the shallow water equation or the Navier–Stokes

and Euler equations for non-hydrostatic atmospheres. More

examples of element-based models are the SE-Core [296],

CAM-SEM by [74], the SE/DG Nonhydrostatic Unified

Model for the Atmosphere (NUMA) [117, 176], the SEM

Community Earth System Model (CESM) [73], the finite

element multi physics model ALYA in atmospheric-mode

[212, 213].

Possibly, the spectral element method is the most

common EBG method used today to develop the next

generation research NWP models. Spectral elements were

first introduced in geophysical fluid dynamics by Ma [204].

Ma built on the pioneering work of Patera [235], who de-

veloped the spectral element method for incompressible

CFD and developed an ocean model based on the shallow

water equations. In particular Ma stressed the ability of

SEM to (1) accurately simulate flows with high Rossby

numbers and (2) simulate phenomena with long time du-

rations due to SEM’s low dissipation and dispersion error.

Although Ma’s primary application was coastal ocean

modeling, he was explicitly aware of the intimate con-

nection between ocean models and atmospheric/climate

models and predicted that his work would serve as a basis

for atmosphere and climate studies. Iskandarani [158] built

on Ma’s ocean model, showing that the accuracy of spec-

tral elements successfully suppressed spurious pressure

modes in ocean flows. Both Ma’s and Iskandarani’s work

utilized Cartesian grids suitable for oceanographic prob-

lems. Two years later, Taylor et al. [294] developed the

first SWE spectral element model using spherical ge-

ometry. In particular, this work used a cubed sphere with

quadrilateral elements which built on the geometrical

flexibility of spectral elements. The cubed sphere grid

circumvented the well-known pole problem that is present

for traditional latitude–longitude grids (we will get back to
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this point shortly). At the same time, a spectral element

shallow water code was developed by Haidvogel et al.

[131]. As a result, this methodology was extended to

solving the hydrostatic primitive equations on the sphere in

the Spectral Element Atmospheric Model (SEAM) [98]. By

this time, massively distributed memory clusters had be-

come available, thus motivating the development of highly

scalable numerical methods; Fournier and coworkers noted

the high parallel efficiency of spectral elements, thus

making SEM a suitable numerical method for the dy-

namical core of climate models, which are computationally

expensive. Taylor’s SEM solver later became the basis for

the NCAR’s high-order method modeling environment

(HOMME), which facilitated the rapid development of

next generation atmospheric global circulation models

(AGCM).

Taylor’s SEM model utilized spherical coordinates to

solve atmospheric problems on the sphere; however, since

the sphere is a sub-manifold of three-dimensional space,

Cartesian coordinates can also be used to solve problems

on spheres provided that the fluid is constrained to lie on

the sphere using a Lagrange multiplier [63]. Although

computationally more expensive because there is an extra

degree of freedom, this approach has two advantages over

spherical coordinates: (1) analytical Jacobian transforma-

tions for the grid do not need to be derived and (2) any

spherical grid (including the cubed sphere grid) may be

utilized, thereby liberating the solver from the grid. Giraldo

utilized this Cartesian SEM approach to solve the SWE

using an Icosahedral grid in [113]. Collaborating with the

Naval Research Lab, he applied this framework to solve

the hydrostatic primitive equations in [119] and develop

the U.S. Navy’s spectral element atmospheric model

(NSEAM) including a semi-implicit solver [114]. As we

shall see in the next section, Giraldo and coworkers de-

veloped DG concurrently with SEM solvers, thereby ex-

posing the common themes and machinery shared by the

two methods. To prove how arbitrary grids can be used to

solve the SWE on the sphere, a unified continuous/dis-

continuous Galerkin model has been recently presented in

[211]. Using this model, the equations were solved in

Cartesian coordinates using static and dynamic adaptivity

using both, continuous and discontinuous Galerkin ap-

proximations on the grids illustrated in Fig. 12.

3.4.2 Discontinuous Galerkin

This subsection presents a short overview of the important

steps in the historical development of DG towards atmo-

spheric applications. A more general overview of the his-

tory of DG until the year 2000 can be found in [52]. Some

information can also be found in the textbook by Hestha-

ven and Warburton [133].

The discontinuous Galerkin method was first introduced

by Reed and Hill [248]. Reed and Hill were working on the

solution of the stationary linear transport equation of neu-

trons with a constant velocity v in two dimensions:

l
ow
ox

þ g
ow
oy

þ rw x; y; l; gð Þ ¼ S x; y; l; gð Þ; ð49Þ

where w is the angular neutron flux in the direction

ðl; gÞT ¼ v=jjvjj2, the total macroscopic cross-section for

neutron–nucleus interaction r and the source term S. The

source term describes scattering, fission and inhomoge-

neous sources. This transport equation was solved by Reed

and Hill on a triangular mesh. They compared a method

allowing discontinuities at the interfaces between different

triangles with a continuous method and found that DG was

computationally more expensive but slightly more accu-

rate and much more robust. One of the main advantages of

the discontinuous method was that it showed fewer

oscillations at the boundary between areas with two dif-

ferent values of the cross-section r. This allowed Reed

and Hill to reduce the resolution of the method while still

obtaining a less oscillatory result than the continuous

method allowed.

The discontinuous method introduced in [248] was

analyzed theoretically by Lesaint and Raviart [198]. In this

early work the discontinuous Galerkin method was applied

to linear equations. The first application of DG to nonlinear

conservation equations is attributed to Chavent and Sal-

zano [48]. Chavent and Salzano used first order polyno-

mials for spatial discretization and a simple explicit Euler

method for time discretization. A von Neumann analysis

showed that this approach is unstable if the time step Dt is
proportional to the grid spacing Dx. This approach becomes

stable only for Dt / Dx3=2. This severe restriction for the

time step with explicit time integration was solved by the

development of Runge–Kutta discontinuous Galerkin

methods (RKDG) by Cockburn and Shu [53].

Discontinuous Galerkin methods were applied to

parabolic equations by Jamet [163], displacement of oil by

water in a porous slab by Chavent and Salzano [48], vis-

coelastic flows by Fortin and Fortin [97] and to the solution

of the Maxwell equations by Warburton and Karniadakis

[312].

The first numerical experiment using DG for the Euler

equations of gas dynamics is reported in the 1991 work by

Bey and Oden [26] and by Bassi and Rebay [12, 13]. The

first application of DG to geophysical problems started

with the work on shallow water equations by Schwanen-

berg et al. [264], followed by Giraldo et al. [116] who

introduced inexact integration for DG and extended this to

the sphere. In 2008, DG was finally used to solve the

Navier–Stokes equations of non-hydrostatic atmospheric

flows by Giraldo and Restelli [118]. Discontinuous
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Galerkin methods have not been used in operational global

circulation models (GCM) yet. However, a hydrostatic

GCM was presented by Nair et al. [225], followed in 2011

by the German DG model DUNE [34], and, in 2012, by the

scalable non-hydrostatic model by Kelly and Giraldo [176].

The linear scalability properties of DG was shown by

Wilcox et al. [320] and Kelly and Giraldo [176].

As mentioned earlier, the geometrical flexibility of

EBG, including the potential for adaptivity, is a major

strength of EBG methods–in particular, DG. An adaptive

DG model based on non-conforming quads was introduced

in [184]. This paper introduced a tree-based adaptive mesh

refinement (AMR) strategy, demonstrated the potential for

DG to achieve order-of-magnitude efficiency gains, which

are difficult, if not impossible, with traditional finite dif-

ference or spectral transform methods. Dynamic adaptivity,

using conforming triangular elements, was also explored in

[224]. These two papers are not the first ones that report on

grid adaptivity using EBG; however, they seem to be the

first publications on this topic in the framework of non-

hydrostatic atmospheric simulations using DG.

4 Stabilization of EBG for Advection-Dominated
Problems

The straight numerical approximation of problems with

dominating advection may result in unphysical oscilla-

tions in the solution. Finite and spectral element methods

are no exceptions [170] and an error estimate of the

standard Galerkin approximation of the problem proves it

(see, e.g., [247]). Here, we show it by deriving the 1D

finite element solution of the advection–diffusion problem

with Dirichlet boundary conditions. The problem consists

in solving

oq

ot
þLðqÞ ¼ S; ð50Þ

where

LðqÞ ¼ u � rq�r � mrqð Þ; ð51Þ

by linear ðp ¼ 1Þ finite elements. In (65), m is a positive,

uniform, constant diffusivity coefficient, u ¼ ðu; 0; 0Þ is the
velocity vector, and S is a source function. The domain of

interest is the unit interval X ¼ ½0; 1�. A uniform partition

Ph of X with N þ 1 nodes pk, k ¼ 0; . . .;N, and nel ¼ N

elements K of length h ¼ kpk � pk�1k2 is assumed. For

uniqueness of the solution, qð0Þ ¼ 0 and qð1Þ ¼ 1 are the

assigned boundary conditions. Let Wh  H1 be the space

of piece-wise linear Lagrange polynomials of class C0

(Fig. 8, left) The projection of Eq. (50) onto Wh by the L2

scalar product and integration by parts of the diffusion term

yields the equation
Z

Xh

whu�rqh dXh þ
Z

Xh

mrwh � rqh dXh

¼
Z

Xh

whS dXh 8 wh 2 Wh; ð52Þ

qh is expanded by (29). When S ¼ 0, the 1D finite element

discretization of (52) yields the discrete equation

u

2
� m
h

� �
q̂kþ1þ

2m
h
q̂k�

u

2
þ m
h

� �
q̂k�1¼ 0; k¼ 1; . . .;N�1:

ð53Þ

Equation (53) is equivalent to the 1D discretization of the

same problem by second-order finite differences. After

algebraic manipulation and given the definition of the

element Péclet number

Pe ¼ jjujj h
2m

; ð54Þ

Fig. 12 Examples of spherical grids for the solution of the SWE.

From left to right, classical cubed-sphere, a reduced longitude–

latitude, and icosahedral grid. These are high order grids with curved

elements on the spherical shell. Figures adapted from [211] with

permission of John Wiley & Sons
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Equation (53) is written as a function of (54):

Pe� 1ð Þ q̂kþ1 þ 2 q̂k � Peþ 1ð Þ q̂k�1 ¼ 0;

k ¼ 1; . . .;N � 1: ð55Þ

It represents a tridiagonal linear system in the unknowns

qk; k ¼ 1;N � 1, whose solution is the function (see

[246])

q̂k ¼
1þPe
1�Pe

� 	k�1

1þPe
1�Pe

� 	N�1
; k ¼ 1;N � 1: ð56Þ

The power of ð1þ PeÞ=ð1� PeÞ at the numerator produces

an oscillatory behavior of the solution whenever Pe[ 1, as

it is shown in Fig. 13. Pe is a linear function of h so that the

grid, in principle, could be always constructed in such a

way that, for a given value of u and m, Pe� 1. However,

this is not viable for most real problems because of the

extremely high number of grid points that may be neces-

sary to achieve such a condition. The only way to solve the

problem of numerical instabilities in the Galerkin solution

of transport problems with dominant advection remains

that of stabilization by proper means. A certain category of

stabilization methods applied to the multi-dimensional

advection–diffusion equation will be described in the next

section.

4.1 Viscosity-Based Stabilization Techniques

Regardless of the numerical method that an atmospheric

model is built on, dissipation of some sort is added for

various reasons; stabilization is one of them. As is pointed

out in [161], the most common mean of dissipation that is

found in current research and operational weather forecast

models is artificial diffusion (or hyper-diffusion, HV from

now on) in the form of

HV ¼
Z

Xh

ð�1Þaþ1whra � ðm2araqhÞ dXh ð57Þ

where a is a positive integer and m2a is the matrix of the

diffusivity coefficients that may vary along different grid

directions [125]. When a ¼ 1, HV reduces to second-

order Artificial Viscosity [169]. HV is easy to implement

and is robust. These are features that make it attractive for

models that are not allowed to break during a forecast

simulation. HV is found in other fields of computational

fluid dynamics as well; the work by [11] is an example

where HV is used to stabilize the simulation of high

speed flows. One justification that practitioners in NWP

give to HV for a[ 1 is its scale selectiveness; it damps

higher order frequencies that are usually the result of

numerical error and dispersion, but tends to leave the

important and physical modes untouched. However, even

if HV is indeed scale-selective, it is not physical. Since

the artificial term given by Eq. (57) is a perturbation to

the original equation, if this perturbation does not go to

zero as h ! 0, the exact solutions of the original and of

the perturbed problems are not equivalent. As is evident

in Fig. 14, these methods add an uncontrolled and non-

localized diffusion that yields a certain deterioration of

the solution. For a stabilizing scheme to preserve the

shape of the tracer, dissipation should be avoided in the

direction normal to the flow and only act in the direction

parallel to the flow [55, 146, 152].

To preserve the correct physical dimensions of the hy-

per-viscous term, the value of m2a must scale with respect to

a and the grid spacing. Its selection not only is non-trivial,

but has a great impact on the solution of the problem.

Jablonowski and Williamson [161] clearly state that ‘‘[...]

the choice of ther2;r4 coefficient is most often motivated

by empirical arguments and chosen in a somewhat arbitrary

manner [...].’’ More advanced, and by now classical, sta-

bilizing schemes for finite elements, spectral elements, and

discontinuous Galerkin are described in the following

subsections.
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Fig. 13 Finite element solution of the advection diffusion problem

(50) using uniform, linear elements. u ¼ 10, m ¼ 0:1, in a domain of

unitary total length. With these values, the global Péclet is Peg ¼ 50.

The plot shows the approximate solutions obtained for different grid

spacing ðPe ¼ 2:5 and Pe ¼ 0:625Þ with and without stabilization. It

is shown how the computed solution can approach the exact solution

by either increasing the number of grid points ðPe ¼ 0:625Þ, or by
maintaining the grid sufficiently coarse but with the addition of a

stabilizing term (How this term is built has not been shown yet, but

the result gives a hint on what to expect from it)
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4.2 Filtering of (High-Order) EBG Methods

Both CG and DG, like all higher-order methods, are limited

by Godunov’s Theorem: all linear numerical methods for

solving PDEs that do not generate additional extrema (so-

called monotone schemes), are all first-order accurate. As

an immediate consequence, high-order CG and DG are not

monotonicity preserving, especially so near sharp gradi-

ents. In NWP, this problem is especially problematic for

tracer transport, where mass fractions may become nega-

tive due to these artificial extrema. Finally, spectral ele-

ments and discontinuous Galerkin methods on quadrilateral

and hexahedral elements typically use inexact integration

to diagonalize the mass matrix; this approximate integra-

tion introduces errors which must be stabilized by a filter or

a more sophisticated scheme such as the VMS method

discussed later.

To circumvent these problems, filters were introduced in

the development of both spectral methods [96] and, later,

spectral elements in [32, 94]. They were also applied to

discontinuous Galerkin methods in [116, 118]. Filters re-

duce the aliasing that occurs in the higher-order modes of

the solution that are largely responsible for Gibbs oscilla-

tions; hence, filters act upon the modal representation of

the solution. Once the offending high modes are

eliminated, the modal solution is inverse transformed to

physical, or nodal space. Hence, the spectral filtering op-

eration consists of a three-step process: (1) transform the

nodal solution to a modal solution, (2) apply a low-pass

filter to eliminate the largest spatial frequencies, and (3)

inverse transform the filtered modal solution to nodal

space. For SE and DG that utilize LGL basis functions, a

modified Legendre transform may be utilized for steps 1

and 3; in addition, it is possible to perform these operations

on an element by element basis, thereby eliminating the

need for a global assembly operation.

Ideally, the spectral filter applied during step 2 should

eliminate all non-physical oscillations while faithfully

preserving the physics of the solution. In practice, satis-

fying both of these requirements is not possible. An

effective filter was developed by Boyd [31, 32], based on

previous theoretical work by Vandeven [307], resulting in

an erfc-log filter for polynomials of order p. Letting
�h ¼ k=p� 1=2, the filter rðk; pÞ is equal to unity if �h� 0

and

rðk; pÞ ¼ 1

2
erfc 2

ffiffiffi
p

p �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log 1� 4�h2

� 	

4�h2

s2
4

3
5: ð58Þ

Equation (58) rapidly eliminates all higher-order modes,

and completely eliminates the highest order node.

Most DG methods utilize exact integration and therefore

may not require filter-based stabilization. It should be kept

in mind that filtering may not be sufficient to stabilize the

solution; for this reason, the dissipation schemes described

so far and later in this section are often considered as a

possible option for high order methods as well [44, 45].

Finally, it is difficult to derive idempotent filters; when the

filter is not idempotent [172], the solution may vary based

on how many times the filter is applied along the

simulation.

4.3 Towards Consistent Stabilization Methods

Streamline Upwinding (SU) [146], Streamline Upwind

Petrov–Galerkin (SUPG) [38], Galerkin/Least-Squares

(GLS) [150], Galerkin methods with bubble functions [9,

35, 37], or sub-grid projection methods [126] are some of

the most used stabilization techniques for finite elements.

To bypass some drawbacks of streamline-type schemes

such as these, much work was done in the same years on

shock capturing, as found in [132, 170, 171]. The Taylor–

Galerkin method [78], the Characteristic-Galerkin formu-

lation [241], and the Characteristic-Based Split (CBS)

method [331, 332] are more ways for FE stabilization that,

however, rely on a reasoning that has no relationship with

the methods we are interested in reviewing in this article.

We mention them here but we will not delve into their

description.

Fig. 14 Pure transport of a square wave in a 2D doubly-periodic

channel. The velocity is directed along the x-axis (the bottom-right

edge of the squared domain in the three plots). From left to right

stabilization achieved by r2, r4, and using a variational multiscale

scheme [143]. Adapted from Fig. 21 of [210], with permission by

Elsevier
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4.3.1 Streamline-Upwind (SU)

The problem of isotropic smearing of the solution men-

tioned above was partially solved by [146] with the con-

struction of the Streamline-upwind method, although the

idea of finite element upwinding can already be found

1 year earlier with the work by [287] and then continued in

[288, 289]. With SU, stabilization is projected in the di-

rection of the flow only, as visible from

bSU ¼
Z

Xh

su � rwhu � rqh dXh: ð59Þ

However, like HV, SU is not numerically consistent either

in the sense that no residual information is used to con-

struct this perturbation term. The Streamline-upwind/Pet-

rov–Galerkin (SUPG) method described below is the

consistent evolution of SU and will be among the most

common methods of stabilization of finite elements used

since its introduction.

4.3.2 Streamline-Upwind/Petrov–Galerkin (SUPG)

The SUPG method was designed by [38] and was later

generalized for multidimensional problems by [151]. It is a

consistent alternative to the HV approach or to the overly

diffusive SU. Its use has been ubiquitous in the solution of

transport problems by the finite element method (e.g., [35,

100, 156, 295]). The application of this strategy to higher-

order schemes was first tested for spectral methods by Canuto

et al. [43], [44, 46], [45], and later by Hughes et al. [148]

using non-uniform rational B-splines (NURBS). SUPG is a

Petrov–Galerkin method in that it does not assume that the

basis and test functions live in the same space. We introduce

the additional space Wh of test functions wh defined by

Wh¼: wh : wh ¼ wh þ su � rwh : wh 2 Wh
� �

:

We have the problem of finding the function qh 2 Wh

such that
Z

Xh

whu�rqh dXh �
Z

Xh

whr � ðmrqhÞ dXh

¼
Z

Xh

wh Sh dXh 8 wh 2 Wh: ð60Þ

Some algebra and rearrangement of (60) yields the problem

of finding qh 2 Wh such that
Z

Xh

whu � rqh dXh þ
Z

Xh

mrwh � rqh dXh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Galerkin

þ bSUPG

¼
Z

Xh

wh Sh dXh

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Galerkin

8 wh 2 Wh; ð61Þ

where

bSUPG ¼
Z

X
u � rwh
� 	

s u � rqh �r � mrqh
� 	

� S
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LðqhÞ�S

dXh

ð62Þ

is the consistent SUPG stabilizing term. In (62), u � rqh �
r � mrqh
� 	

� S is the residual of (50) and s is the stabi-

lization parameter. The definition of s that yields a nodally
exact SUPG solution with continuous piecewise linear

finite elements is derived in [50] from 1D analysis. Its

generalization to multi-dimensional problems is given by

the simple substitution of u with jjujj, although, in multi-

dimensions this does not necessarily imply nodal exact-

ness. With respect to higher order elements, a thorough

analysis of s for quadratic elements is given by [59]. In the

context of VMS, different definitions exist for parameter s,
some of them are discussed in 4.4. For a brief review on

SUPG, the reader is also referred to [145] and the report

[102].

4.3.3 Galerkin/Least-Square (GLS)

A generalization of SUPG was obtained by [150] as

bGLS ¼
Z

X
u � rwh �r � mrwh

� 	� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LðwhÞ

s

� u � rqh �r � mrqh
� 	

� S
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LðqhÞ�S

dXh: ð63Þ

In analogy with the findings of [82] to stabilize the Stokes

equation, a sign change in the Laplace term of the stabi-

lizing term in the perturbed equation proved to yield better

stabilization characteristics (more accurate results) than the

original generalized SUPG (or GLS) method [100]. In (63),

for better properties, instead of using the differential op-

erator L, the method should use the negative part of the

adjoint L
 of the original operator L. We have that the

last perturbation term of the original AD equation should

be

b ¼ �
Z

X
L
ðwhÞs u � rqh �r � mrqh

� 	
� S

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LðqhÞ�S

dXh;

ð64Þ

where

L
 ¼ �u � r � r � ðmrÞ ð65Þ

is the adjoint of L.

Based on what was learned on stabilization of the scalar

advection–diffusion equation, researchers in fluid
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dynamics applied these methods and their evolution to the

stabilization of fluid problems. Thanks to the work of [143,

149], the methods that we have just described have been

recognized to belong to the same family known as the

family of Variational Multiscale Stabilization, or VMS.

The VMS approach is summarized below for scalar ad-

vection problems, and will be derived and discussed for the

Euler equations in Sect. 4.7.

4.4 Variational Multiscale Stabilization (VMS)

In 1995 and 1996, groups of researchers lead by Hughes

[143] and Brezzi [36] proposed a theory to explain the

reasons of instabilities and a new way to attack the prob-

lem. They concluded that the unresolved scales (the scales

that cannot be captured by the computational grid) are

responsible for the numerical instabilities of the Galerkin

solution of the differential problem. The analysis, that

continues with [155] and [149], forms the unifying theory

of all stabilized finite element methods. According to this

theory, stabilized methods are subgrid scale models where

the unresolved scales are intimately related to the insta-

bilities at the level of the resolved scales, and thus should

be used in the construction of the stabilization term. More

specifically, in the formulation of the discrete problem, the

effects of the unresolved scales must be introduced by

modeling them on the grid. These schemes are known as

Variational Multiscale Stabilization (VMS) method. Gen-

erally speaking, the stabilization term of VMS corresponds

to b defined in (64).

VMS has been extensively applied to the solution of the

advection–diffusion/advection–diffusion–reaction equa-

tions (e.g. [58, 61, 141, 143, 149]), and to the solution of

the Navier–Stokes equations for incompressible flows (e.g.

[6, 17, 56, 57, 123, 153]). Recently, it was applied to

spectral elements in the context of atmospheric flows in

[209, 210]. In Sect. 4.7 a review of VMS for the com-

pressible Euler equations is found.

The multiscale description of the stabilization scheme

relies on the splitting of the solution into a resolved, qh, and

a sub-grid, unresolved component, ~q, to give q ¼ qh þ ~q.

Let W ¼ Wh � ~W be the space decomposition such that ~W

completes Wh in W . This translates into the decomposition

of the solution variables q ¼ qh þ ~q, and of the basis

functions w ¼ wh þ ~w. Substituting the decomposition into

the general weak form of Eq. (50),

w;
oq

ot

� �
þ aðw; qÞ ¼ ðw; SÞ 8 w 2 W ; ð66Þ

where ð�; �Þ is the L2 inner product and að�; �Þ is a bilinear

form that satisfies

aðw; qÞ ¼ ðw; urqÞ þ m ðrw;rqÞ;

and anticipating that we will consider the quasi-static ap-

proximation ot~q ¼ 0 [57], we obtain:

wh þ ~w;
oqh

ot

� �
þ aðwh þ ~w; qh þ ~qÞ ¼ ðwh þ ~w; SÞ

8 wh 2 Wh; ~w 2 ~W : ð67Þ

By virtue of the linear independence of wh and ~w we can

first take ~w ¼ 0 and then wh ¼ 0 and find the split problem:

wh;
oqh

ot

� �
þ aðwh; qhÞ þ aðwh; ~qÞ ¼ ðwh; SÞ 8 wh 2 Wh

ð68aÞ

~w;
oqh

ot

� �
þ að ~w; qhÞ þ að ~w; ~qÞ ¼ ð ~w; SÞ 8 ~w 2 ~W :

ð68bÞ

In the subgrid Eq. (68b) we come back to the original

differential operator L from Eq. (50). We assume that
~wðoKÞ ¼ 0 and ~qðoKÞ ¼ 0, for each element K of the grid

and, following [143], in (68a) we integrate by parts the

bilinear forms that depend on the subgrid scale and find:

wh;
oqh

ot

� �
þ aðwh;qhÞ þ ðL
wh; ~qÞ ¼ ðwh;SÞ 8 wh 2 Wh

ð69aÞ

~w;
oqh

ot

� �
þ ð ~w;LqhÞ þ ð ~w;L~qÞ ¼ ð ~w; SÞ 8 ~w 2 ~W ;

ð69bÞ

where L
 [in Eq. (65)] is the adjoint operator of L.

4.5 Approximation of the Sub-grid Scales

The unresolved quantity ~q has not been defined yet.

Equation (69b) is used as the starting point to approximate

~q. By re-arranging the terms in (69b), the equation for the

subgrid scales is found,

ð ~w;Lð~qÞÞ ¼ ð ~w;RðqhÞÞ 8 ~w 2 ~W ; ð70Þ

where

RðqhÞ ¼ S� oqh

ot
�LðqhÞ ð71Þ

is the residual of the original equation. The strong form of

(70) is considered on each element K

Lð~qÞ ¼ RðqhÞ; ð72Þ

and s � L�1, an algebraic approximation of the inverse of
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the differential operator L is defined. Then the sub-scale

has the form

~q ¼ sRðqhÞ: ð73Þ

Expression (73) is plugged into equation (69a), to find the

expression for the VMS stabilized Galerkin method as

follows: Find qh 2 Wh such that

wh;
oqh

ot

� �
þ aðwh; qhÞ þ ðL
ðwhÞ; sRðqhÞÞ ¼ ðwh; SÞ

8 wh 2 Wh: ð74Þ

Equation (74) differs from Eq. (66) by the additional term

that models the subgrid scales. The extra term is the vis-

cous-like contribution that stabilizes the equation.

Different formulations for ~q are found in the literature,

some of them are reviewed in 4.5.1–4.5.3. All of them

depend on the definition of the stabilization parameter s.
The parameter s is a topic of active research still today,

since a general definition is not known [168]. This state-

ment is true for all the residual-based stabilization methods

described so far. The quantity s is an intrinsic time that is

built as a function of the local Pèclet number of the flow

which, for stability, should respect the condition Pe\1.

Many problems in atmospheric CFD are advection

dominated, implying Pe � 1, so that stabilization is indeed

necessary for all the problems that are of any interest for

atmospheric modelers.

4.5.1 Approximation Via Green’s Functions

This approach is used by Hughes and collaborators [143,

144, 149] to derive s. In brief, they consider Eq. (72) with

~q ¼ 0 on oK, and the associated Green’s function problem

for the adjoint operator

L
gðx; yÞ ¼ dðx; yÞ 8 x 2 K

g ¼ 0 on oK:

�
ð75Þ

Then a uniform element-wise definition of s is obtained as

the average value of the exact element Green’s function

s ¼ 1

jKj2
Z

K

Z

K

gðx; yÞ dKx dKy; ð76Þ

where jKj is the measure (volume/area/length) of the do-

main. For the one-dimensional linear scalar advection–d-

iffusion equation there is an analytical expression for the

Green’s function and the stabilization parameter is com-

puted from (76) to give

s ¼ 1

2

h

jjujj cothðPeÞ � 1

Pe

� �
; ð77Þ

for the Péclet number (54). In [38, 147] the same expres-

sion (77) is obtained in the context of SUPG stabilization

by following an error minimization criterion. For the purely

advective case ðm ¼ 0 and Pe ! 1Þ, we find

s ¼ 1

2

h

jjujj : ð78Þ

Instead of (76), Corsini et al. [61] propose a non-uniform s
on each element:

sðxÞ ¼ 1

jKj

Z

K

gðx; yÞ dKy: ð79Þ

4.5.2 Approximation Via Fourier Analysis

The strategy of Codina et al. [58] is explained here for the

multidimensional advection–diffusion Eq. (50). The start-

ing point is to transform Eq. (72) into the Fourier space.

Which is interesting because the differential operator

transform, cL, is easy to invert. Let’s call T its inverse,

T ¼ ðcLÞ
�1
, thus the Fourier transform of the sub-scale is

approximated on each element K as

~̂qðxÞ ¼ TðxÞ R̂ðxÞ; ð80Þ

where x is the wave number and

TðxÞ � i
u � x
h

þ m
jjxjj2

h2

 !�1

:

Considering expressions (80) and (73), the Plancherel’s

formula and the mean value theorem are applied to obtain

an approximated value for the stabilization parameter on

each element K as

s ¼ 1

2

h

jjujj
Pe

Peþ 1
¼ 2jjujj

h
þ 4m

h2

� ��1

: ð81Þ

For pure advection problems ðm ¼ 0 and Pe ! 1Þ, the

stabilization parameter becomes as in Eq. (78).

4.5.3 Approximation Via Bubble Functions

More options to build the stabilization parameter s are

found in [141] for linear, quadratic, and cubic elements. The

space ~W is made of bubble functions (see [9, 37]), that are

vanishing functions on the boundaries of each element. The

unresolved scales, ~q, are defined as a function of the bubbles

bðxÞ that are derived as described in the referenced lit-

erature. Omitting the details, s is a function of the bubble as:

s ¼ 1

h

Z h

0

bðxÞ dx; ð82Þ
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that, once evaluated, yields the expression (77) for the

parameter s; the same expression encountered with the

Green’s function approach.

On the steps of [141], s for spectral elements of arbitrary

order and with unequally spaced element nodes was

derived in [210]. The stabilization parameter s is built in-

side the element as a function of the bubbles on every

segment delimited by two consecutive LGL points. The

uneven spacing of the element nodes is the major differ-

ence with respect to the definitions derived in previous

studies. In this case, the intrinsic time is non-uniform along

the element.

4.6 Preserving Positivity

SUPG, GLS, and VMS are not monotonicity preserving.

This issue is particularly important for the simulation of

tracer dynamics in the atmosphere. If over- and under-

shoots affect the solution in the proximity of strong gra-

dients, the net mass balance of the advected tracers, will be

negatively affected. To overcome this issue, a controlled

crosswind discontinuity capturing can be added to the

principal stabilization scheme. For example, the method

introduced in [55] was successfully adapted to high-order

spectral elements in [210] for standard 2D test cases and,

more recently, by [209] to support positivity in the solution

of fully 3D cloud simulations. For comparison, we repro-

duce Fig. 29 of [210] in Fig. 15. In the case of high-order

SEM, in [210] the First Order Subcell (FOS) method was

introduced. FOS consists in lowering the high-order

method to first order in the spectral elements that contain

the discontinuity only. The FOS results are encouraging,

although there is some overhead coming from looping over

the linear sub-elements within the high-order elements that

contain the localized over- and under-shoots.

Other positivity preserving schemes such as high-order

limiters for both CG and DG are often used as well, as is

shown in, e.g., the report by [328].

4.7 VMS Stabilization for the Euler Equations

VMS for compressible flows appears in [222, 251, 252]. A

review of residual-based stabilization methods for com-

pressible flows can be found in [145]. Recently, VMS was

used to stabilize the FEM solution of the Euler equations of

atmospheric non-hydrostatic flows in [212, 213]. VMS was

derived for discontinuous Galerkin as well [154] although

it has not been applied to atmospheric modeling. In the

following, we then limit the analysis to continuous

Galerkin (without distinguishing between FEM and SEM

in its derivation). For the treatment that follows, it is

convenient to express the Euler equations [i.e., the inviscid

counterpart of system (1)] in compact form as

oq

ot
þ oFiðqÞ

oxi
¼ 0; i ¼ 1; 2; 3; ð83Þ

where the Einstein summation on the repeated indices is

assumed, where q is the vector of the unknowns, and F is

the vector of the flux quantities. Without compromising the

generality of the stabilization method, gravity and Coriolis

are here omitted. As usual, the problem consists in finding

qðx; tÞ that verifies Eq. (83) for all ðx; tÞ 2 X� R
þ. To

proceed and derive VMS applied to this set, we write the

three-dimensional Euler equations in flux form for the

conservative variables q and define the advective system:

oq

ot
þ AiðqÞ oq

oxi
¼ 0; ð84Þ

where

AiðqÞ ¼ oFi

oq
ð85Þ

are the Jacobian matrices. As already done in Sect. 3 for

scalar problems, the variational form of Eq. (84) can then

be written as

Z

Xh

wh � oqh

ot
dXh þ

Z

Xh

wh � AiðqhÞ oqh

oxi
dXh ¼ 0

8 wh 2 Wh: ð86Þ

As it is done in page 40, the decompositions q ¼ qh þ ~q

and w ¼ wh þ ~w are plugged into the variational problem

(86), which hence can be split into the two equations

Z

Xh

wh � oqh

ot
dXh þ

Z

Xh

wh �AiðqÞ oqh

oxi
dXh

þ
Xnel
m¼1

Z

Km

wh � o~q
ot

dKm þ
Z

Km

wh �AiðqÞ o~q

oxi
dKm

� �
¼ 0

8 wh 2 Wh ð87aÞ
Xnel
m¼1

Z

Km

~w � o~q

ot
þ AiðqÞ o~q

oxi

� �
dKm

¼
Xnel
m¼1

Z

Km

~w � RðqhÞ dKm 8 ~w 2 eW ð87bÞ

where

R ¼ � o

ot
þ AiðqÞ o

oxi

� �
ð88Þ

is the residual operator of the governing Eq. (84). Equation

(87a) is solved numerically on the computational grid,

whereas (87b) is the subgrid scale equation from which an

700 S. Marras et al.

123



expression for ~q is obtained and hence plugged back into

(87a). Concerning Eq. (87a) for the large scales, some as-

sumptions should be made. For details, see the referenced

literature. In the case of non-viscous problems (i.e. Euler

equations), SUPG [194], GLS [267] and VMS end up

having the same structure, unless the approximation of the

subgrid scales, ~q, is such that VMS differentiates itself

from the other two schemes.

4.7.1 VMS as Implicit Large Eddy Simulation (LES)

Without entering much into this discussion, it is important

to underline the fact that VMS is also used as an Implicit

Large Eddy Simulation (ILES) scheme that relies on the

variational projection of the original equations rather than

the traditional filtering. This was first applied to incom-

pressible turbulent flow in [17, 153]. In [91, 183, 234], a

turbulent compressible flow is modeled using the VMS

framework although the fine scales are modeled by a

Smagorinsky model. Similarly, this is done in [60, 199]. In

[306], a VMS formulation obtained by extension of the

Favre averaging to general projection operators is pro-

posed, where no explicit subgrid modeling is presented.

Using SEM, VMS was used in [120] to solve turbulent

incompressible flows.

4.7.2 Approximation of the Sub-grid Scales

For the Navier–Stokes equations, analogously to the ad-

vection–diffusion equation, the subgrid scale ~q is computed

from the subscale Eq. (87b) and has the general form of

~q ¼ s RðqhÞ; ð89Þ

where s is a diagonal matrix. Shakib et al. [267] and

Hughes and Mallet [151] compute the parameter s for GLS
to solve the compressible Euler and Navier–Stokes equa-

tions. For the same equations, Hughes and Tezduyar [156]

and Le Beau and Tezduyar [194] compute s for SUPG. Just

like for the scalar case, the parameter s has been derived in

different ways by different authors, although the final ex-

pressions seldom differ greatly. In, e.g., [222], s is derived

from a Fourier analysis. Another approach involves the use

of Green’s functions as done in [61]. Regardless of the

definition of s, let us notice the local nature of the subscales

that only exist where the residuals of the large scales are

important. This, with non-constant values, marks the major

difference with respect to artificial diffusion. The structure

of ~q for the problem of a rising thermal is shown in the top

two plots of Fig. 16. By comparison with the pattern of

potential temperature (bottom left plot) and horizontal

velocity (bottom right plot), the structure of the sub-grid

scale is clearly tied to the residual.
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Fig. 15 Stable SEM solutions

of the transport equations for a

sharp cylinder that is

transported by a rising thermal

flow (i.e. the tracer is driven by

the thermal flow that is modeled

by the Euler equations of

stratified flows). Top left filtered

solution using the filter of

Sect. 4.2. Top right 2nd-order

artificial diffusion without

discontinuity capturing. Bottom

left VMS. Bottom right VMS

with discontinuity capturing.

Adapted from [210], with

permission by Elsevier
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An example of simulation where VMS was used to

stabilized both the dynamics (Euler equations) and the

advection–diffusion equations of water tracers is shown in

Fig. 17, and is compared against the solution obtained in

[103] with a filtered high-order spectral element at an

equivalent resolution.

Fig. 16 2D Rising thermal

bubble. Top row sub-grid scales:
~h=hmax (top-left) and ~U=Umax

(top-right). Bottom row

potential temperature h0 (K)
(left), and horizontal velocity, u

(m/s). This vertically displacing

flow is triggered by the thermal

perturbation h0 of a neutrally

stratified flow (i.e. uniform and

constant h0Þ. The characteristic

shape of the perturbation field h0

is shown in the right panel. The

plots are adapted from [212]

Fig. 17 2D squall line simulation. The cloud content is delimited by

the thick black contour line in both plots. The color/grey shading in

the left/right plots is the equivalent potential temperature. Both

horizontal domains extend along 240 km. The left figure is adapted

from [213] where a VMS stabilized FEM solution was computed with

linear elements (with permission by Elsevier). The right figure is

adapted from [103] (with permission of the American Meteorological

Society) and the solution was computed with 8th-order SEM

stabilized with a constant coefficient diffusion ðm ¼ 200m2=sÞ and

a filter
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4.8 Alternative Consistent Schemes: Spectral

Vanishing Viscosity and Entropy Viscosity

Method

Also based on a second order operator, the spectral van-

ishing viscosity (SVV) of [290] is a stabilizing method

used by practitioners of high order spectral element and

spectral Fourier methods. The idea of SVV comes from an

entropy analysis of the problem at hand and is such that the

added dissipation satisfies the entropy condition. For more

on this, please, see [130, 173, 290] and references therein.

Also tied to the entropy equation, the entropy viscosity

method was first introduced by [128]. The fundamental

difference between this method and SVV is in the way the

entropy equation is used. The entropy viscosity method

builds the local and dynamic viscosity of the equations

based on the residual of the associated entropy equation

[127, 129]. In [334] we find how this regularization of the

governing equations is applied to the discontinuous

Galerkin method as well.

We finally comment on the use of adaptive viscosity

methods for both CG [125] and DG [236]. These two

methods are not consistent, but are element-based and

dynamic. An adaptive artificial viscosity for non-hydro-

static modeling using DG has been recently proposed in

[328].

4.9 Physics-Based Stabilization

A computationally inexpensive and numerically stable sub-

grid scale model for compressible large-eddy simulation

was introduced in [229] for adaptive finite elements. Due to

its stabilizing properties, this method was easily adapted to

the solution of low Mach number atmospheric flows via

high order spectral elements in [215] and [216]. Like VMS,

this method is a residual-based alternative to the more

classical artificial diffusion in a way that not only is nu-

merically consistent, but could also serve as a turbulence

model. Unlike VMS, however, stabilization is attacked

starting from the governing equations rather than from their

numerical approximation. More specifically, the Euler

equations are first filtered to separate the resolved from the

un-resolved scales [108, 260]. The filtering operation leads

to a new set of equations containing additional terms that

are dissipative in nature and that are then modeled in some

way. The steps described below (following the treatment of

[216]) show how stabilization is then achieved. In LES,

given a quantity q (e.g., density, velocity, potential tem-

perature), its large scale (grid resolved) component q is

obtained via the application of the filter

qðxÞ ¼
Z

X
GDðx � vÞqðvÞdv: ð90Þ

Equation (90) is a spatial convolution of the filtering

function GDwith q, where D is the filter width. The filter

functions can vary; the most commonly used in LES are the

Gaussian, the top hat in real space, and the sharp Fourier

cutoff functions [197, 240].

Remark 4.1 The barred quantities introduced in

Sect. 2.1.2 have no relation with q defined in Eq. (90) for

Large Eddy Simulation (LES). LES implies a separation

between the resolved and unresolved scales, whereas the

splitting given in Sect. 2.1.2 was introduced for numerical

convenience in the simulation of atmospheric problems and

does not affect the way LES is constructed or derived.

For compressible flows, the Favre filter eq ¼ qq=q [92],

although not necessary, is classically introduced. The ap-

plication of these filters to equations (6)—excluding the

Coriolis terms for simplicity—yield the filtered system

oqeu
ot

þr � qeu � euð Þ þ rp ¼ r � s� qg; ð91aÞ

oq
ot

þr � qeuð Þ ¼ 0; ð91bÞ

oqeh
ot

þr � qeheu
� �

¼ r � Q; ð91cÞ

where the two derivatives on the right-hand sides of (91a)

and (91c) represent the contributions of the unresolved

scales. If Favre filtering were not applied, an additional flux

term would also appear on the right-hand side of Eq. (91b).

With Favre, the filtered density q is conserved and no

modeling is required for the continuity equation. In (91a), s

is the turbulent stress tensor,

s ¼ q gu � u � eu � eu� 	
;

approximated by

s ¼ 2DðeuÞ; ð92Þ

where

DðeuÞ ¼ ln
2

reu þreutð Þ

is the velocity deformation tensor multiplied by a dynamic

coefficient ln that will be defined shortly. Similarly, in

(91c) Q is the kinematic heat flux defined as

Q ¼ q fhu � eheu
� �

; ð93Þ

and is modeled via

Q ¼ jnreh ð94Þ

Like ln, the definition of jn determines the method pro-

posed in [229]. The coefficients ln and jn are calculated
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element-wise on every high order element Xe for a

Galerkin approximation of Equations (91). More

specifically, for the sensible temperature T ¼ hðp=p0ÞR=cp
and one finite/spectral element of characteristic length hXe

,

we start by defining the dynamic viscosities

lmaxjXe
¼ 0:5hXe

kjeuj þ
ffiffiffiffiffiffiffiffiffiffi
ccpeT

q
k1;Xe

; ð95Þ

and

lresjXe
¼h2Xe

max
kRðqÞk1;Xe

kq�bqk1;X
;
kRðqeuÞk1;Xe

kqeu�qbuk1;X
;
kRðfqhÞk1;Xe

kqeh�qbhk1;X

 !
:

ð96Þ

In (96) b� indicates the space average of the quantity at hand

over X and the norms k�k1;X at the denominator are used

for normalization to preserve the correct dimension of the

resulting equation. Having lmax and lres constructed, the

dynamic coefficients of the viscosity terms can be com-

puted as

lnjXe
¼ min kqk1;Xe

lmaxjXe
; lresjXe

� 	
ð97Þ

and

jnjXe
¼ Pr

c� 1
lnjXe

; ð98Þ

where Pr is an artificial Prandtl number. The residuals in

(96) are simply:

RðeuÞ ¼ oqeu
ot

þr � qeu � euð Þ þ rpþ qg; ð99aÞ

RðqÞ ¼ oq
ot

þr � qeuð Þ; ð99bÞ

RðqehÞ ¼ oqeh
ot

þr � qeheu
� �

: ð99cÞ

The time derivatives are to be included or the consistency

of the method would be lost. An example of the stabilized

spectral element solutions reported in [216] is plotted in

Fig. 18, where also the results obtained using a constant

coefficient Lilly–Smagorinsky model [201, 274] are given

for comparison. Putting together the moist problem briefly

described in Sect. 2.4 and the current LES-based stabi-

lization, the simulation of a fully three-dimensional deep

convection problem is reported in [215]; in Fig. 19, we

reproduce Fig. 3 contained therein.

The multi-scale properties of this scheme have been

verified via the simulation of a turbulent flow on the sphere

whose radius is that of the earth. As an example, a turbulent

flow in a geostrophically balanced atmosphere is shown in

Fig. 20, after [216].

5 Vertical Discretization, Computational Grids,
and Adaptive Mesh Refinement in NWP

We briefly discuss the issue of vertical discretization in

atmospheric models since it is characterized by some

constraints that do not apply to more traditional and general

CFD models. Because of the classical use of finite differ-

ences with Cartesian rectangular grids, the accurate ap-

proximation of topography has always been a major

concern both in atmospheric and ocean models. The ver-

tical coordinate systems can be separated into two main

branches: r terrain-following [104, 237] and height-coor-

dinates. Terrain-following coordinates have the advantage

of the accurate representation of topography and ease of

application of boundary conditions as the grid cells follow

the shape of the varying bottom of the domain. However,

the large truncation errors that increase with increasing

topography slope [164, 286] require vertical coordinates

that are more suitable for steep topographies. The height-

coordinate system was first proposed as the g-system by

[219]. It consists of the use of a rectangular grid that in-

tersects the topography and defines the orographic height at

Fig. 18 Stabilized solution of the density current problem [284].

Reproduced from [216]

Fig. 19 Deep convection: 3D view of qc (grey surface), surface

velocity (vectors), and the instantaneous distribution of qr on the

ground (contours). Reproduced from Fig. 3 of [215]
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the cells edges. Modification of both approaches have been

later defined. Examples are the hybrid terrain-following

coordinates [268] as an improvement of r, or the shaved-

cell method in z-coordinates introduced by [1] for ocean

models. Figure 21 shows a schematic of these grids.

The r grid mentioned above is simple, but on steep

topography the regularity of the grid in the inner domain is

compromised. To overcome this drawback, [263] intro-

duced the smooth level vertical (SLEVE) mapping that

helps maintain a sufficient degree of regularity of the node

distribution away from the bottom boundary. Given a

mountain ridge, a SLEVE grid is obtained from the de-

composition of a large and small scale variation of to-

pography (e.g. a Gaussian terrain perturbed by a wave-like

function). Through this solution the grid distortion is con-

trolled from bottom to top by means of two free pa-

rameters. Somewhere between r and SLEVE stands the

hybrid grid of [268]. The hybrid grid uses the same vertical

coordinate r and combines the topography and the height

of the domain through two functions aðrÞ and bðrÞ whose
values are properly tabulated.

Finite elements and Galerkin methods in general (finite

volumes included) are free of all the drawbacks of methods

that are not flexible with regard to the grid. Finite elements

depend on computational grids of quadrilateral and

triangular elements (in 2D) or hexahedra, tetrahedra, and

prisms (in 3D) that adjust to the physical geometry to be

discretized without affecting the formulation of the gov-

erning equations. The grid shape is inherently defined in

the numerical formulation of the method. Generally

speaking, they are z-coordinate based methods with full

control of the shape of the topography. The grid itself looks

like a r-grid, but the fundamental difference is that finite

difference methods with r grids require re-expressing the

equations using a coordinate transformation.

Due to the geometrical flexibility of Element-Based

Galerkin (EBG) methods, no coordinate transformation is

needed to apply the ground boundary condition. Complex

orography can be modeled with ease using finer or, per-

haps, adaptive grids (see Sect. 5.2), as long as certain cri-

teria on regularity and smoothness of the element shape are

respected. Furthermore, in a time when high resolution is

the rule, complex orography can be modeled with ease and

better grids. High resolution terrain-following coordinates

induce grids to lose the property of orthogonality at the

boundaries. The internal elements as well would suffer

from great stretching up to a point that the grid is no longer

sufficiently smooth for the numerical method to perform

correctly. For example, if the Jacobian of the transforma-

tion from physical to computational space is singular, large

Fig. 20 Turbulent flow on the sphere after 12, 20, and 25 days. Top-view looking down onto the northern hemisphere. The radial component of

vorticity is plotted and colored by intensity. Plot adapted from [216]

Fig. 21 Representation of a smooth mountain using: a height coordinate system with step topography, b r-terrain following coordinates, and

c height coordinate system with shaved cells
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numerical errors and instability in the solution would occur

[300]. The application of CFD grid generation techniques

for use in atmospheric problems is being considered more

and more. Simple and fast structured grid generation with

boundary layer grids or elliptic smoothing has been de-

scribed in, e.g., [208]. Unstructured grids are also becom-

ing of interest, as shown a few years ago by [5] and, more

recently, by [275]. However, the inertia from the atmo-

spheric community towards grids that do not have a char-

acteristic column-wise structure is still large. This is

because all of the packages that involve the computation of

atmospheric parameterizations (e.g., precipitation, ra-

diation) are designed to work on such grids and would have

to be adapted (i.e. re-written) to work on different grids.

The reasoning behind this inertia is understandable,

although steps ahead in this direction must be made now

that high-resolution atmospheric modeling is approaching

fast.

5.1 3D Grid Generation for Domains With

Orography and Bathymetry

Volume grid generation in atmospheric models is com-

monly performed by a one directional simplification of

Transfinite interpolation (TFI) [89, 122]. TFI is robust,

simple, and arguably the fastest grid generation technique

in use in many fields of computational mechanics, of which

geophysical fluid dynamics represents a particular case.

Nevertheless, generally the quality of TFI grids degener-

ates when the geometric features of the domain boundaries

present sharp corners, quasi-vertical boundary walls, or

similar characteristics. This has a direct effect on the

quality of the numerical solution of the problem [217]. The

problem exists regardless of the underlying numerical

method of solution. In NWP, sharp mountain ridges and

canyons are an example. With the ever increasing trend

towards high spatial resolution that we are experiencing in

numerical weather prediction today, sharp topographies are

certainly an issue. In the following sections, we describe

the current way of generating structured grids in topo-

graphical domains and present a few examples to underline

the possible limitations. At that point, we introduce the idea

behind elliptic grid generation and how grids may be im-

proved in terms of smoothness and orthogonality properties

by this simple technique. Most of the ideas presented in

this appendix are found in the books by [182] and [298],

and in the recent paper by [175].

5.1.1 Algebraic Grid Generation

As we have mentioned above, transfinite interpolation has a

major drawback that comes from the constraint on the

regularity of the boundaries. If the boundaries of the

simply-connected domain are not sufficiently smooth, TFI

fails to generate good grids. The sharpness of internal

corners given by a possible discontinuity in the space

derivative of the boundary functions, reflects into folding

grids with unacceptable node overlapping. The problem of

folding grids with difficult geometries is usually solved by

subdividing the domain into smaller subdomains with more

regular boundaries. This technique is robust but difficult to

automate. In Fig. 23, although the edges do not cross, the

vertical wall on the left-hand side of the hill is a challenge

for the grid generator, as it can be noted by the extremely

stretched elements in the region of the hill’s front.

Nonetheless, because topography is usually smooth in

current operational models (at horizontal resolution of

1 km or coarser, all mountain peaks are likely to be

smoothed out), TFI is still the perfect and quick solution

that can be properly modified for different types of vertical

node distributions.

These improved methods are sufficiently good as long as

the boundaries are never vertical. This is because the

transformations are performed along z only. For full control

of the nodes’ distribution in all directions, these schemes

should be incorporated into a full TFI interpolation.

5.1.2 Elliptic Grid Generation

One simple, yet efficient solution to the generation of

smooth grids with sufficiently good properties is given by

the solution of the Thompson–Thames–Mastin (TTM)

problem [297], an elliptic system of partial differential

equations. Two-dimensional elliptic grid generation was

introduced for ocean circulation modeling in [259]. The

penalty of elliptic equation methods is the higher cost with

respect to algebraic methods. To control the point distri-

bution with TTM some parameters must be selected by the

user. To overcome the need for parameter selection, in

[175] an automatic elliptic grid generation method is pro-

posed. A similar approach is described in [180] for grids

around topography. In this recent paper, the author also

uses an iterative method to smooth the grid on a layer-by-

layer basis, with a check on the grid spacing to avoid the

overlapping of grid cells. This check is necessary because

the method of [180], unlike the elliptic scheme, is not de-

signed to respect the maximum principle.

5.1.3 Orthogonality

When it comes to high resolution simulations, with very

fine LES grids, the boundary layer may be solved explic-

itly. In this case, boundary layer grids may be necessary for

atmospheric models like they are for, e.g., industrial flows

at much smaller scales. For how the atmospheric commu-

nity is responding to the introduction of new grids,
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orthogonal boundary grids may still be seen as futuristic.

However, their use is already common in the simulation of

atmospheric flows in the micro-scale (i.e. 20–500 m do-

mains) (see, e.g., the Bolund experiment starting from [22])

so that it seems appropriate to mention them here.

Orthogonality in three-dimensional structured grid

generation systems is still an active field of work (see [175,

298]). The elliptic grid generation system herein described

and implemented in [221] is able to reach reasonable

orthogonality properties at the lower boundary by either

using Neumann boundary conditions to move the nodes, or

by a proper definition of the control functions as done in

[175]. Currently, a quasi-orthogonal system is the best that

we can achieve with the available algorithms from the

literature. Figure 22 shows how a non-orthogonal grid is

transformed to a quasi-orthogonal mesh in the proximity of

the boundary. This grid was deliberately relaxed to the

point where the boundary layer is completely lost. This was

done to clearly show orthogonality at the boundary.

However, maintaining a proper stretching ratio in the

proximity of the boundary without affecting orthogonality

remains an open problem. A compromise is needed in

building the grid, and experimentation on different to-

pographies may be necessary.

We report a few two- and three-dimensional examples

of grids generated using both algebraic and elliptic meth-

ods. Figure 22 shows the computational grid around a

cosine function obtained by TFI interpolation, TFI with an

orthogonal multi-surface method, and with an elliptic grid

generator. The geometry is straightforward to mesh. The

three methods give similar results; however, using the el-

liptic method together with a multi-surface technique to

achieve orthogonality clearly produces a better boundary

layer grid. The problem is taken a little further with the

fully three-dimensional mesh of the Bolund hill in Den-

mark. The improvement in terms of regularity of the grid in

the internal volume and in terms of quasi-orthogonality, is

evident from panel (b) in Fig. 23, where the elliptic solver

was applied with a few iterations to improve the algebraic

grid of panel (a).

5.2 Adaptive Mesh Refinement

The term adaptive mesh refinement (AMR) describes mesh

generation techniques in which the spatial resolution is

adjusted depending on certain properties of the specific

application. Within AMR one distinguishes between static

and dynamic AMR. In static AMR the mesh is adjusted

Fig. 22 a TFI, b orthogonal, c elliptic (not orthogonal)

Fig. 23 a TFI and b elliptic volume grids. In this plot there is no grid control in the proximity of the boundary surface. The elliptic grid is

computed with 50 iterations
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once at the beginning of the simulation whereas dynamic

AMR adapts the resolution for the whole duration of the

simulation as a function of the structure of the solution

based on some pre-defined criterion.

The idea to increase the resolution in part of the domain

has a long history in scientific computing and also in me-

teorology. Usually this adjustment of the resolution is done

by coupling two numerical models with different resolu-

tions (so called nesting). The easiest way to implement

nesting is to first run a full coarse simulation and then use

the result of this coarse simulation as boundary conditions

for a higher resolved simulation in a smaller domain. In

this approach the result of the higher resolution simulation

cannot affect the coarse simulation. For this reason this

approach is called one-way nesting. An example for one-

way nesting can be found in the 1976 work by Davies [72]

and the work of Miyakoda and Rosati [220]. More difficult

but also more accurate is two-way nesting in which both

numerical models are allowed to interact which each other.

This means that the result on the coarse mesh is not only

used as an initial and boundary condition of the finer mesh

but the result on the finer mesh is also used to improve the

accuracy of the simulation using the coarse mesh. An ex-

ample of two-way nesting is the work by Zhang et al.

[329]. Nesting does not need to be static. The domain of the

higher resolution simulation can move within the domain

of the coarse resolution simulation like Ley and Elsberry

did in 1976 [200]. Nesting is not restricted to combining

two different simulations. More than two different resolu-

tions can be combined, as in Ginis et al. [109].

An alternative to increasing the spatial resolution via

nesting is to use variable mesh spacing in the different

directions like in Staniforth and Mitchell [280], or to adjust

the mesh with the help of a coordinate transformation, as in

Dietachmeyer and Droegemeier [75].

Dynamic AMR in which the mesh is repeatedly adjusted

according to the current intermediate result of the simula-

tion has been used in engineering applications for a long

time [23, 24]. The first application of this kind of dynamic

AMR in atmospheric sciences was done by Skamarock

et al. [272] and Skamarock and Klemp [270]. A first ap-

proach to use dynamic adaptive mesh refinement op-

erationally was given by the OMEGA model (OMEGA

stands for Operational Multiscale Environment Model with

Grid Adaptivity). The OMEGA model was presented in the

work of Bacon et al. [8]. Simulations of hurricane tracks by

Gopalakrishnan et al. [121] demonstrate that the accuracy

of the hurricane simulation can be improved significantly

by using dynamic AMR while at the same time reducing

the runtime of the simulation. There are however still many

open questions that need to be resolved for a broader ap-

plication of dynamic AMR in atmospheric sciences [315].

More details about the historical evolution of AMR can be

found in [18] and [159].

Within dynamic mesh refinement there are three possi-

ble approaches to adjust the accuracy of the simulation

according to the current flow:

• h-adaptive mesh refinement: the spatial resolution is

adjusted by adding or removing grid points in the mesh.

In an element-based method this is done by subdividing

elements into smaller elements or merging elements into

larger elements. The total number of elements and grid

points is allowed to change in this approach. This makes

it necessary to redistribute elements sometimes when

multiple computing nodes are used for the computation.

We discuss this approach more in detail below.

• r-adaptive mesh refinement (or moving mesh): the grid

points and therefore elements are moved and deformed

in such a way that the spatial resolution gets finer in

those parts of the domain where the accuracy of the

simulation needs to be increased. This reduces auto-

matically the density of grid points in other parts of the

domain and therefore reduces accuracy in those parts.

The total number of grid points and elements is

constant in this approach. An example of this approach

can be found in the work of Kühnlein et al. [188], Budd

and Williams [40], and Bauer et al. [16].

• p-adaptive mesh refinement: the accuracy of the

simulation is adjusted by changing the polynomial

order of the spatial discretization. The size and location

of the elements remains unchanged in this approach.

One of the first descriptions of this approach can be

found in the work of Babuska et al. [7]. Application of

this approach to geophysical modeling can be found

recently in [303] and, earlier on in [90].

These three approaches for dynamic AMR can be com-

bined with each other like in the work by Lang et al. [190],

Pigott et al. [239], and [111] and references therein.

We concentrate in the following on h-adaptive mesh

refinement more in detail. Within this approach we can

distinguish between conforming AMR and non-conforming

AMR. A rising warm air bubble simulation using con-

forming and non-conforming AMR is shown in Fig. 24.

5.3 Non-conforming Mesh Refinement

As explained in the section above, mesh refinement tech-

niques create either conforming or non-conforming mesh-

es. In conforming meshes each element has only one

neighbor per element face (h-conforming), so a situation

where more than two elements share the same face is not

allowed. Also, the elements have to be p-conforming, that

is the approximating polynomials in both neighboring
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elements are of the same order and the nodal points on both

sides of the face coincide. An example of a hp-conforming

element interface is shown in Fig. 25, where elements A

and B exclusively share the same face (side) and have the

same polynomial expansion order. In such a situation there

are no additional requirements for the numerical method.

The burden of creating a conforming mesh after the re-

finement falls entirely on the AMR algorithm.

In non-conforming meshes, however, one needs to ac-

count for faces that are shared by more than two elements

(h-non-conforming, see interface between elements C, D,

and E in Fig. 25) or with different polynomial ap-

proximation on both sides (p-non-conforming interface

between elements B and C in Fig. 25). Mind that Fig. 25

does not illustrate all the possibilities of non-conforming

configurations. One other possibility is a hp-non-con-

forming interface, where an edge (or face) is shared by

more than two elements of different polynomial orders. To

complete the discussion of meshes and element-based

Galerkin methods, in this section we provide an overview

of methods used to reconcile non-conforming elements.

Note that conforming AMR grids do not require any spe-

cial handling by the numerical method and so we will

discuss conforming AMR no further, but rather, shall

concentrate on non-conforming AMR.

5.3.1 Mortar Element Method

The first to introduce a non-conforming formulation for

spectral element methods were Maday et al. [205], who

presented the mortar element method (MEM), where the

domain is split into blocks of conforming elements, and a

new trace space, namely mortars, is introduced to couple

the non-conforming blocks. The MEM was an extension of

classical non-conforming methods in the finite element

community [51, 81, 285] with the difference that, besides

being applied to the spectral element method, it did not rely

on Lagrange multipliers or master-slave relations of non-

conforming edges of the elements.

In MEM, the mortars are one-dimensional constructs (in

2D; they are two-dimensional in 3D) with a polynomial

space defined on them. The task of the mortar is to rec-

oncile the C0 continuity condition between the non-con-

forming elements that the mortar is connecting. In other

words, the mortar is an interface between the non-con-

forming element faces (see Fig. 26). The polynomial order

s28 s31

Fig. 24 Conforming (left) and

non-conforming (right) AMR

simulations of a rising thermal

bubble. The left figure is

adapted from [224]. The right

one is adapted from [184]

Fig. 25 Different element interfaces, where A–B is conforming, B–

C p-non-conforming, and C–D–E h-non-conforming. Dashed lines

symbolize the higher order mesh within the elements

Fig. 26 Schematic of mortar element method. The mortars are

binding non-conforming elements that sum the contribution from

element edges and apply an L2 projection of the mortar data back to

the element edges. A single arrow represents direct assignment of the

vertex value, while double arrow represents L2 projection
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on the mortar is typically chosen to match the highest order

expansion among the elements contributing to the mortar.

The end-point values of the mortar solutions are con-

strained to match the values at corresponding vertices of

the original elements (represented by single arrows in

Fig. 26). The integral projection operation ðL2 projection)

is defined to project the solution from the mortar to the

interior points of the non-conforming element edges

(double arrows in Fig. 26). If we write this operation in

matrix form as Qn�m, where n is the number of nodes on

the element edge, and m is the number of nodal points on

the mortar, then the operation QT will sum the contribu-

tions from the element edges to the mortar. To reconcile

the C0 continuity condition we first sum the contributions

from element edges on the mortar ðQTÞ, perform weighted

averaging, and project the result back to the element edges

ðQÞ. Mind that this method only minimizes the disconti-

nuity but does not enforce a strict C0 continuity. Even

though here we present only a limited spectrum of possible

non-conforming configurations, MEM is very general and

can be applied in more complicated situations [205].

5.3.2 Pointwise-Matching Method

Another method, stemming from the finite element com-

munity, is the pointwise matching method (PMM), or the

interpolation-based method [47, 93, 254]. In this approach

both h and p-non-conforming elements are allowed, how-

ever it is assumed that for h-non-conforming elements

there is one parent edge on one side of the interface, and

two children edges on the other side. In the case of the p-

non-conforming, the parent edge is the one with lower

polynomial order.

In Fig. 27 the parent edge belongs to element C and the

parent points are marked with filled circles. The values at

the child points are interpolated from the parent points.

Here Q denotes this interpolation. To ensure strict C0

continuity, the solution from the child points is first added

to the parent points via the operation QT . The solution is

averaged at the parent edge and interpolated onto the child

edge via Q. We mark the corner points of children elements

with a filled circle, as the interpolation between those

points and corresponding points at the parent edge is triv-

ial. Unlike MEM, the continuity here is strictly enforced.

It is possible to express PMM using mortars and hence

bring those two methods into one framework. This can be

achieved by using the mortar infrastructure and replacing

the L2 projection by interpolation. In such an approach, the

choice of Q (projection or interpolation) will define the

method. Traditionally, in MEM we choose the size of

mortars to correspond to short (children) edges, while in

PMM we use the parent edge as a mortar analogue. [265]

investigates how different choices of the size of mortars

affects the performance of both PMM and MEM.

5.3.3 Mortar Elements for DG and Application

to Atmospheric Simulations

The early work on MEM focused mainly on elliptic

problems and spectral element methods [25, 205]. Kopriva

[186] applied the MEM to compressible flows and the DG

method by imposing an additional condition on the global

conservation of the mortar approximation, as well as out-

flow conditions. The outflow condition required that the

solution from the ‘‘upwind side’’ of the mortar after pro-

jection onto the mortar and back to the face remains un-

changed. This work was used later for atmospheric

simulations in [33, 184]. Based on the two-dimensional

work reported in [184], Marras et al. [211] used MEM in a

unified CG/DG shallow water model on the sphere (with

static and dynamic adaptivity). An application of the

pointwise-matching scheme to geophysical simulations can

be found in [258]. In [185], Kopera and Giraldo presented a

unified framwework including both CG and DG methods,

as well as integral projection (for DG) and pointwise-

matching (for CG) schemes for non-conforming interfaces

and found that similar mass conservation properties can be

obtained for both configurations.

5.3.4 Unified CG/DG Non-conforming Method

The idea of a unified CG/DG method stems from the

similarity of both approaches. Much of the mathematical

operations, and therefore much of the code implementation

is the same, with an exception of communication between

elements. A time-step of a unified CG/DG method can be

described by the following algorithm.

1. Evaluate volume integrals for each element and store

as right-hand-side RHS.

2. Perform inter-element communication:

Fig. 27 Schematic of the pointwise-matching method. Parent points

are marked with filled circles. Values at children points depend on the

values of the parent points. Here operation Q marks the interpolation

from the parent element to children elements
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For CG, perform Direct Stiffness Summation on

RHS to ensure C0 continuity,

For DG, evaluate element-boundary integrals (flux-

es) and update RHS.

3. Divide by the mass matrix. Notice that the mass matrix

for CG corresponds to the assembled DG mass matrix.

4. Perform the time-step oq
ot
¼ RHS.

This recipe can be applied regardless of whether one

constructs a conforming or non-conforming method. The

non-conforming element treatment will affect only the in-

ter-element communication step. Even though this step is

different between the methods, it is desirable to construct

both non-conforming edge algorithms in a similar fashion.

As discussed in previous sections, using the mortar element

method one can incorporate the integral projection method

by [186] as well as the pointwise-matching method into the

same framework. The implementation of a unified CG/DG

method with non-conforming interfaces is described in

detail in [184, 185]. Here we outline the general approach

to both CG (using pointwise-matching method) and DG

(using integral projection method) treatment of non-con-

forming interfaces.

Figure 28 shows a schematic of the unified approach to

inter-element communication of CG and DG methods for

conforming and non-conforming interfaces. Panel

(a) shows the interpolation-based mortar point wise

matching method used for CG, while panel (b) presents the

integral projection method for DG. In both situations the

solution from non-conforming edges is first communicated

onto mortars, then an appropriate action is performed on

the conforming mortars and the result is communicated

back to the element edges. The first difference between the

two approaches is the choice of the mortar. For the CG

method we choose the mortar to be conforming with the

longer parent edge (so called long rule [265]), while for the

DG method we choose the shorter, children edges to define

the size of the mortar (short rule). Additionally, for the CG

method we need to define an additional, point mortar to

ensure the communication between vertex neighboring

elements.

The second difference between the two methods is the

choice of non-conforming communication matrices. For

CG we perform an interpolation with the matrix Jk:

Jk;ij ¼ hiðnkðzjÞÞ; k ¼ 1; 2;

where hi are the basis functions defined on the mortar, nk is
a map from the element edge coordinate z to the mortar

coordinate n, and zj is the coordinate of the jth nodal point

at the element edge. The interpolation matrices Jk will

Fig. 28 Schematic of the mortar based non-conforming methods for

both CG (a) and DG (b). Both methods follow the same algorithm of

communicating data to the mortar, performing operations on the

mortar and communicating the data back. The differences lie in the

choice of mortars (mortar conforming with the long edge plus an

additional point mortar to communicate between vertex neighbors for

CG, mortars conforming with short edges for DG) and matrices used

to communicate data to and from the non-conforming mortar. In the

case of CG, the data is interpolated using matrices JT1;2 and J1;2; for

DG we use projection matrices Ps
1;2 and P

g
1;2
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scatter the solution from the mortar to two children element

edges. The opposite action, gather, is performed by the

transpose matrices JTk . The matrices Jk correspond to the

operation Q showed in Fig. 27.

For the DG method the communication from parent

element (long edge) to mortars requires projection matri-

ces, defined in [186] by imposing the integral condition on

a non-conforming interface
Z 1

�1

ðqkMðnÞ � qðnkðzÞÞÞwðnÞdn ¼ 0; k ¼ 1; 2

where qkMðnÞ is the solution projected at the kth mortar,

qðnkðzÞÞ is the solution at the parent edge, n is the coor-

dinate defined on the mortar, z is the coordinate of the

parent edge and nkðzÞ is the map between the parent edge

and kth mortar coordinates. This integral condition can be

expressed in matrix form as:

MqkM � Skq ¼ 0;

where Mij ¼
R 1
�1

wiðnÞwjðnÞdn and Skij ¼
R 1
�1

wiðnÞwj

ðnkðzÞÞ. The projection operation is defined as follows

qkM ¼ M�1Skq ¼ Ps
kq:

Ps
k is the scatter projection matrix used to communicate the

solution from parent edge to a mortar. The communication

in the opposite direction is achieved by a gather projection

matrix

q ¼
X2
k¼1

P
g
kq

k
M ;

where P
g
k ¼ 1

2
M�1ðSkÞT . The details are presented in [184,

186].

Finally, the third difference between inter-element

communication of CG and DG methods lies in the action

performed on the mortar. Once the solutions from element

edges are interpolated/projected onto mortars, the CG

method averages the solution before scattering it back to

respective edges, while in the DG method we need to

compute a flux, which is then projected back to the ele-

ments. This action is identical between conforming and

non-conforming edges, as mortars are by design conform-

ing to each other. Note that whenever the mortar and ele-

ment edge spaces are conforming, the communication

matrix (regardless of whether it is interpolation or projec-

tion) is always the identity matrix. It is also important to

note that while Fig. 28 presents schematics for both

methods, the actual implementation in the code may differ.

Details of CG interpolation method implementation is

presented in [185], along with a unified implementation of

the CG/DG method.

5.3.5 Performance of the Non-conforming Adaptive Mesh

Refinement

Adaptive mesh refinement and element-based Galerkin

methods are a natural match due to the element-local nature

of most computationally intensive calculations. The edge-

based computations can also be implemented efficiently

even for non-conforming edges. Figure 29 presents the plot

of speed-up achieved by using the AMR algorithm against

the ratio of the element count in a reference simulation to

the average element count of an AMR simulation. If there

were no AMR overhead, the simulation with element ratio

of 10 would yield a speed-up of 10, which is represented by

the solid black line. The study was performed for three

different time integration methods, namely the explicit

Runge–Kutta 3rd order 5-stage method, and two implicit–

explicit second order methods BDF2 and ARK2. The ex-

plicit method virtually overlaps with the ideal speed-up line,

while the IMEX methods show more AMR overhead. The

sources of this decreased speed-up are studied in [184]. This

result shows, however, that the adaptive mesh algorithm can

be implemented with minimal overhead.

Table 3 shows the breakdown of time spent in different

parts of the code that was run on a single CPU with detailed

timings for different parts of the AMR algorithm. The

biggest share of time spent in adapting the mesh falls on the

criterion evaluation, even for the very simple threshold

criterion used in this study. The time spent on evaluating

fluxes on non-conforming interfaces is in the range of

2–3 % for all the methods, however this cannot be con-

sidered an overhead. A single non-conforming interface
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Fig. 29 Performance of the adaptive mesh algorithm with the DG

method. Speed-up is defined as the ratio of runtime of a reference

simulation with a fully refined mesh to the runtime of the adaptive

simulation. The element ratio measures the ratio of element count of

the fully refined simulation to the average element count of the AMR

simulation. Black solid line represents ideal speed-up. Results are

reported for an explicit Runge–Kutta time integration (RK35) and two

implicit–explicit schemes (BDF2 and ARK2). The simulation was

set-up as a standard density current test case. Source: [184]
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replaces two regular faces, therefore the time spent in

computing those fluxes should be comparedwith the time the

code would spent on computing the fluxes on the faces that

the non-conforming interface replaces. Additionally, due to

the non-conforming faces we are able to reduce the number

of elements in the domain and therefore reduce the time

spent on the volume integration. The important message is

that the computation of fluxes on non-conforming interfaces

has a minor cost compared to other parts of the code.

Finally, the element-based Galerkin methods preserve

their original mass conservation properties even when used

with non-conforming meshes. This is discussed in detail in

[185] and presented Fig. 30. Both CG and DG methods

conserve mass to machine precision even for very long

simulation times. In the density current case presented in

Fig. 30 the typical simulation time is 900 s, while the test

was performed until 10,000 s.

6 Summary

After briefly reviewing the different mathematical models

of the atmosphere (i.e. equation sets), in this article we

have concentrated on their numerical solution by means of

element-based Galerkin methods (EBG). The emphasis

was given to the finite and spectral element methods on the

one hand and nodal discontinuous Galerkin on the other.

Element-based Galerkin methods appear to be perfectly

suited for building next-generation climate and numerical

weather prediction (NWP) models because of their

geometric flexibility (unstructured and AMR) and high

parallel-scalability (on both CPU and GPU-based archi-

tectures; see, e.g. [231] and citations therein). There are

issues that remain essentially unsolved (e.g., stabilization)

but, as we have shown in this manuscript, there are nu-

merous options that appear to satisfy the requirements for

building robust, efficient, and positivity-preserving nu-

merical models. Finally, because atmospheric modeling is

aiming at higher and higher resolution simulations and,

hence, well resolved topography, we discussed the issue of

grid generation and gave some insight on its evolution in

NWP.
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Table 3 Timings (in seconds of

runtime) and percentage

breakdown of different AMR

components for the density

current case

RK35 BDF2 ARK2

Total 5292 (100 %) 643.6 (100 %) 967.8 (100 %)

Volume integrals 2876.1 (54.3 %) 274.46 (42.6 %) 362.9 (37.5 %)

Face integrals 507.67 (9.59 %) 66.59 (10.3 %) 80.1 (8.29 %)

Non-conforming faces 116.79 (2.21 %) 21.33 (3.31 %) 23.65 (2.44 %)

AMR: 6.030 (0.11 %) 6.291 (0.98 %) 6.025 (0.62 %)

Criterion evaluation 3.463 3.517 3.527

Mesh manipulation 0.051 0.05 0.051

Data projection 0.965 1.247 0.965

Other 1.412 1.450 1.454

Source: [184]

Fig. 30 Mass conservation as a function of simulation time for a

dynamically adaptive mesh. Triangular markers denote the CG

results and circular markers represent the DG results. Colors

represent different polynomial orders
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Wirth V (2014) Adaptive discontinuous evolution Galerkin

method for dry atmospheric flow. J Comput Phys 268:106–133

328. Yu M, Giraldo FX, Peng M, Wang ZJ (2014) Localized artificial

viscosity stabilization of discontinuous Galerkin m, ehods for

A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements... 721

123

http://arxiv.org/abs/1404.4881


nonhydrostatic mesoscale atmospheric modeling. Technical re-

port, Kansas University

329. Zhang DL, Chang HR, Seaman NL, Warner TT, Fritsch JM

(1986) A two-way interactive nesting procedure with variable

terrain resolution. Mon Weather Rev 114:1330–1339

330. Zhao M, Held I, Lin S, Vecchi G (2009) Simulations of global

hurricane climatology, interannual variability, and response to

global warming using a 50-km resolution GCM. J Clim

22:6653–6678

331. Zienkiewcz O, Nithiarasu P, Codina R, Vázquez M, Ortiz P

(1999) The characteristic-based split procedure: an efficient and

accurate algorithm for fluid problems. Int J Numer Methods

Fluids 31:359–392

332. Zienkiewicz O, Codina R (1995) A general algorithm for

compressible and incompressible flow—part i. The split, char-

acteristic-based scheme. Int J Numer Methods Fluids

20:869–885

333. Zienkiewicz O, Taylor R, Nithiarasu P (2005) The finite element

method for fluid dynamics, 6th edn. Elsevier, Amsterdam

334. Zingan V, Guermond JL, Morel J, Popov B (2013) Implemen-

tation of the entropy viscosity method with the discontinuous

Galerkin method. Comput Methods Appl Math Eng

253:479–490

722 S. Marras et al.

123


	A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin
	Abstract
	Introduction
	Trends in High Performance Computing
	Existing Atmospheric Models and NWP Systems
	Traditional Approaches: Finite Difference (FD) and Spectral Transform (ST) Methods
	A Roadmap for Element-Based Galerkin Methods and This Review
	Scalability of EBG Methods
	Scalability for (Horizontally) Explicit Time Integration
	Scalability for Fully Implicit Time Integration

	Plan of the Paper

	Equation Sets for Atmospheric Modeling
	Non-hydrostatic Models
	Sound Waves: Anelastic Models and Implicit Time Integration
	Nearly-Hydrostatic Flows

	Hydrostatic Versus Non-hydrostatic Models
	Hydrostatic Primitive Equations

	Shallow Water Equations (SWE)
	Transport in the Atmosphere
	Cloud Microphysics: Kessler Parameterization
	Method of Solution Via Saturation Adjustment


	Element-Based Galerkin Methods: Finite Elements, Spectral Elements, and Nodal Discontinuous Galerkin
	Element-Based Continuous Galerkin Methods
	Suitable Function Spaces

	Finite and Spectral Elements: Discretization and Basis Functions
	Basis Functions: Finite Elements
	Basis Functions: Spectral Elements

	Discontinuous Galerkin
	EBG Methods in Atmospheric and Climate Modeling
	Continuous Galerkin
	Discontinuous Galerkin


	Stabilization of EBG for Advection-Dominated Problems
	Viscosity-Based Stabilization Techniques
	Filtering of (High-Order) EBG Methods
	Towards Consistent Stabilization Methods
	Streamline-Upwind (SU)
	Streamline-Upwind/Petrov--Galerkin (SUPG)
	Galerkin/Least-Square (GLS)

	Variational Multiscale Stabilization (VMS)
	Approximation of the Sub-grid Scales
	Approximation Via Green’s Functions
	Approximation Via Fourier Analysis
	Approximation Via Bubble Functions

	Preserving Positivity
	VMS Stabilization for the Euler Equations
	VMS as Implicit Large Eddy Simulation (LES)
	Approximation of the Sub-grid Scales

	Alternative Consistent Schemes: Spectral Vanishing Viscosity and Entropy Viscosity Method
	Physics-Based Stabilization

	Vertical Discretization, Computational Grids, and Adaptive Mesh Refinement in NWP
	3D Grid Generation for Domains With Orography and Bathymetry
	Algebraic Grid Generation
	Elliptic Grid Generation
	Orthogonality

	Adaptive Mesh Refinement
	Non-conforming Mesh Refinement
	Mortar Element Method
	Pointwise-Matching Method
	Mortar Elements for DG and Application to Atmospheric Simulations
	Unified CG/DG Non-conforming Method
	Performance of the Non-conforming Adaptive Mesh Refinement


	Summary
	Acknowledgments
	References




