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Abstract This paper presents a review of structural

dynamic model updating techniques. Starting with a tu-

torial introduction of basic concepts of model updating,

the paper reviews direct and iterative techniques of model

updating along with their applications to real life systems.

The main objective of this paper is to review the most

widely applied model updating techniques so that begin-

ners as well as practising engineers can appreciate, choose

and then utilize the most suitable model updating tech-

nique for their customized application. Another objective

is to highlight the current issues, applications and obser-

vations for further advancements in the field of model

updating.

1 Introduction

Use of thin and light-weight products in modern day

machines and structures is increasing day by day.

Therefore better dynamic testing and analysis tools are

becoming the urgent need of hour. In the automotive,

aircraft and spaceship engines, there is an ever existing

demand of attaining better fuel economy; which can be

met to a good extent by using thin products as well as

with the use of light weight materials such as aluminium

and plastics composites instead of the conventionally used

heavy weight materials such as steels. Particularly in the

case of satellites, some parts are so thin that they can get

collapsed just due to their own weight if tested under the

effect of gravity. Thin and light weight products have lot

more tendencies to vibrate than their thick and heavy

weight counterparts. Excessive vibrations can even result

in pre-mature failure of products, for example, whether it

is the suspension of an automobile, wing of an aircraft,

the printed-circuit-board installed in a spaceship, blades

of an air-cooler, or the compact-disc of a computer etc.

On the other hand, consumers of today’s world desire for

non-vibrating and silent functioning of such products.

Thus it becomes very important for engineers to under-

stand the vibration behavior of structures through their

dynamic analysis. Dynamic analysis aims at understand-

ing, evaluating, analyzing and modifying (if required) the

structural dynamic behavior which can be represented by

many terms such as natural frequencies, eigenvalues,

eigenvectors, damping ratios, Frequency Response Func-

tions (FRFs) etc. The dynamic analysis of structures can

be done through either experimental route or by using

theoretical approach [77, 33].

The theoretical route involves the formation of an ana-

lytical model of the system either using a classical method

[46] or through Finite Element (FE) method [91]. The

application of classical method is generally limited to

simple systems only, while FE method is preferred for real

life complex systems. However FE method is not able to

predict the dynamic responses of structures with complete

accuracy due to the presence of certain errors in the FE

model. Such errors are inherent in an FE model due to

following reasons:

1. Faulty boundary conditions

2. Incorrect values of material properties

3. Discretization of continuum or a poor quality mesh

4. Difficulty in modeling complex real life shapes
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5. Assumptions for simplification purpose such as con-

sidering damping on a linear basis instead of non-linear

6. Incorrect modeling of joints

7. Use of rounding off methods in computations

Thus there is a need to correct an FE model so that its

vibration behavior matches with the actual dynamic re-

sponse obtained experimentally as shown in Fig. 1. The

procedure used to update the model is called FE model

updating (FEMU) [39]. In FEMU techniques, the ex-

perimental and FE responses are first compared and cor-

related so as to ensure that the FE model under

consideration qualifies for further updating procedure and a

conceptually new FE model is not required. A number of

graphical as well as numerical comparison and correlation

techniques are used for this purpose. Further to avoid the

incompatibility in the sizes of experimental and FE data

sets the use of size compatibility techniques is required. In

FEMU, experimental results are considered as targets and

the inputs of FE model are adjusted in such a way that the

outputs of FE model have a better match with their ex-

perimental counterparts.

A number of researchers have proposed the various

structural model updating techniques both by classical ap-

proach and FE route. While going through the available lit-

erature on this area, a need is felt to summarize all the results

and conclusions made by different researchers. Therefore,

this paper is an attempt to provide a review of major research

activities carried out in the model updating field.

In this paper, first the basic theoretical issues related to

FEMU procedure have been discussed. After which, a state

of the art review of direct and iterative techniques of

FEMU has been presented. Application areas of FEMU

have also been discussed. The final part of the paper dis-

cusses the current problems and future directions for

FEMU related research.

2 Finite Element Model Updating (FEMU)
Procedure

2.1 Finite Element Method

In FE method, a complex continuous region of a structure

is discretized into simple geometric shapes called finite

elements. Figure 2 shows a cantilever beam of length

910 mm, width 50 mm and thickness 5 mm. The cantilever

beam is divided into 60 finite elements. Each element has

two nodes. At each node, two degrees of freedom are

measured, out of which one is the displacement in y-di-

rection and the other is the rotation about z-axis. Both the

degrees of freedom of node number ‘1’ are fully

constrained.

The finite elements can be axial elements, torque ele-

ments, beam bending elements, thin plate bending ele-

ments, thick plate bending elements, etc. Approximate

results of displacement shapes and stress fields can be

obtained for such finite elements using shape functions.

Continuity across element boundaries can be maintained

using either displacement or energy approaches. The dis-

placement approach makes use of equilibrium, com-

patibility and the constitutive laws; while the energy

approach is based on the principal of virtual work. In en-

ergy approach, the internal work is equated to external

work. For dynamic analysis purpose, each element needs to

be expressed in form of elemental mass, stiffness and

damping matrices. Equations (1) and (2) represent the

elemental mass and stiffness matrices for a beam element.
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where me, q, A, a, ke, E and I are respectively the element

mass matrix, density, area of cross-section of element, half-

length of element, element stiffness matrix, Young’s

modulus of elasticity and moment of inertia of cross-sec-

tion of beam element. Subsequently, the individual ele-

ments are assembled to form their global counterparts,

which are also jointly known as system matrices. These

system matrices along with certain boundary conditions are

used to formulate a set of governing equations, which are

then processed on a computer to evaluate dynamic char-

acteristics of the system.

From above discussion it can be concluded that the

dynamic response of the structure depends upon a number
Fig. 1 Comparison of experimental, initial analytical and updated

analytical results

516 S. Sehgal, H. Kumar

123



of parameters. These parameters are called input pa-

rameters which affect the dynamic response parameters.

These input parameters may be belonging to material,

structural, finite element or computational categories. The

various input parameters are assembled in the form of

cause and effect diagram and are shown in Fig. 3.

Dynamic response is generally measured in terms of

eigenvalues, eigenvectors, and FRFs. The frequency at

which a structure naturally vibrates once it is set into

motion is called its natural frequency. Square of the natural

frequency is known as eigenvalue. Eigenvector or mode

shape of a particular mode defines the displacement con-

figuration of structure at corresponding natural frequency.

First six modeshapes of a cantilever beam structure are as

drawn in Fig. 4. Extreme and intermediate positions of

different points of a cantilever beam are drawn in Fig. 5.

FRF (i, j) is defined as ratio of harmonic response at lo-

cation ‘i’ and the harmonic excitation force at location ‘j’. If

the measured response is in the form displacement, then

corresponding FRF is called as receptance (or admittance or

dynamic compliance or dynamic flexibility) FRF. Other-

wise, velocity or acceleration response signals can be used to

produce mobility or accelerance FRF respectively. Accel-

erance FRF is also sometimes written as inertance FRF.

Further any FRF is called as a point or transient FRF de-

pending uponwhether the response and force aremeasured at

same or different locations respectively. Point and transient

Receptance FRF have been drawn in Fig. 6a, b respectively.

2.2 Experimental Method

In FEMU, the experimental results can be obtained by two

ways: simulated experimental results and real life

experimental results. Former type of results are generated

by varying some parameters of the FE model thereby

producing a perturbed FE model, whose simulation results

are assumed as experimental results and are surely different

from the dynamic results of original FE model. Real life

experimental results can be generated through modal

testing.

A representative experimental set-up for finite element

model updating of a structure is shown in Fig. 7. One end

of the test structure can be fixed to a non-vibrating base

through welding, bolting or riveting etc. thereby resulting

in grounded support condition. Test structure can also be

supported on very soft springs or light elastic bands, which

leads to a free support condition. In such situation, it is

important to attach the suspension as close as possible to

nodal points of the particular mode. Another method of

supporting the structure is in situ type, where the test

structure is connected to some other component which

presents a non-rigid attachment. Input to the test set-up

generally includes a short impulse or, a sine wave excita-

tion over a frequency range of interest, or a white noise.

This force input is provided by either a shaker, or an im-

pulse hammer thereby resulting in forced vibration and free

vibration cases respectively. Structure can also be excited

by suddenly releasing it from a deformed position. Selec-

tion of any particular type of shaker depends upon its

frequency range, acceleration, rms (root-mean-square) ve-

locity, rms displacement, maximum load, operating tem-

perature range, power supply, overall dimensions and

mass. Impulse hammer is selected based upon its force

range, frequency range, sensitivity, time constant, operat-

ing temperature range, power supply, mass, diameter and

length of head. Output of the experimental set-up is

Fig. 2 FE model of a cantilever

beam structure

Fig. 3 Cause and effect diagram

Fig. 4 Modeshapes of cantilever beam structure. a First, second and

third modeshapes, b Fourth, fifth and sixth modeshapes
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generally in the form of a function of acceleration, which is

measured at a number of points using sensors like ac-

celerometers etc. Selection of such sensors is generally

based upon their characteristics such as mass, acceleration

range, threshold acceleration, sensitivity, frequency range,

and temperature sensitivity, operating temperature range

and power supply. Signal from accelerometer is then

conditioned using a signal conditioner, which is selected

depending upon its sensor excitation current, sensor exci-

tation voltage, frequency range, output voltage, gain,

power supply, operating temperature range, overall di-

mensions and mass. Conditioned signal is then passed on to

Fast Fourier Transform analyzers so that the time domain

signal can be converted to frequency domain. Such fre-

quency domain data is then analyzed on a computer to

identify the experimental dynamic response of the test

structure. Experimental dynamic response is then com-

pared with its FE counterpart to examine any errors and

also to ascertain sufficient degree of correlation between

the two as discussed in next section.

2.3 Comparison and Correlation Techniques

Before applying any FEMU technique, the experimental

and FE data sets need to be compared so as to ensure

Fig. 5 Extreme and intermediate positions drawn using solid and

dashed lines respectively. a First mode, b second mode, c third mode,

d fourth mode, e fifth mode, f sixth mode

Fig. 6 Receptance FRF. a Point
FRF, b transient FRF

Accelerometer 

Impact HammerForce Signal 

Acceleration 
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Acquisition 

System 

FRF Data 

Modal Data Updated 
FE Model 
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System 

FEMU System 

Fig. 7 Representative experimental set-up for FEMU
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existence of some correlation between experimental and

FE responses and also to determine that whether it is worth

to update the proposed FE model or a completely new

model is required. These techniques include comparison of

FRFs, natural frequencies and mode shapes (Modal Scale

Factor (MSF), Modal Assurance Criterion (MAC), Nor-

malised MAC and Coordinate MAC (COMAC) etc.).

These techniques are discussed as:-

2.3.1 Comparison of FRFs

A simple method of comparing experimental and FE re-

sults is to plot experimental and FE FRFs on a single graph

as shown in Fig. 8. A visual comparison of FRFs is done to

find out presence of any correlation between the ex-

perimental and FE results. For example, Fig. 8a shows a

clear correlation between the experimental and FE results.

This is the case where FE model updating is required to

increase the correlation further, while Fig. 8b shows the

case of total mismatch between the measured and predicted

results. Under such conditions, instead of FE model up-

dating, a conceptually new FE model is required.

2.3.2 Comparison of Natural Frequencies

It is important to compare the natural frequencies obtained

from FE analysis of the structure with the ones acquired

through modal testing as shown in Table 1. If the per-

centage errors are small, one can update the FE model of

the structure in order to minimize such errors. But if the

errors are very large, say, more than 200 %, then it is not

advised to update the model rather a new formulation of the

FE model is required.

2.3.3 Comparison of Modeshapes

Mode shape portrays the pattern or configuration in which

the structure vibrates at any particular natural frequency.

Mode shapes are inherent properties of a structure. These

do not depend on the forces or loads acting on the structure.

These will change if the material properties (mass, stiff-

ness, damping properties), or boundary conditions (sup-

ports) of the structure change. A simple method for

comparing mode shapes is through overlaying technique as

shown in Fig. 8. By this method, the difference between

experimental and FE mode shape is drawn on a graph. In

this method the difference between two corresponding

mode shapes should approach zero. Main limitation of such

graphical methods is that they are not so supportive if the

correlation process is to be automated. For automatic cor-

relation of modes, we need some quantitative (numerical)

measure of correlation, which can be easily implemented

through a computer program. One such measure is MSF,

which is slope of the best straight line through the modes

plotted on an x–y graph with experimental mode on one

axis and analytical on other [2]. Desired value of MSF is

unity for good correlation. MSF between experimental and

analytical mode shapes can be obtained using Eqs. (3) and

(4); where {[X}i and {[A}j represent the ith experimental

and jth analytical mode shape respectively; while super-

script ‘T’ denotes the transpose of the corresponding

vector.

MSF ;Xf gi; ;Af gj
� �

¼
;Xf gTi ;Af gj
;Af gTj ;Af gj

ð3Þ

MSF ;Af gj; ;Xf gi
� �

¼
;Af gTj ;Xf gi
;Xf gTi ;Xf gi

ð4Þ

Main drawback of MSF is that it does not provide any

information regarding the scatter of the x–y plots. To avoid

this problem, it is recommended to use MAC. This crite-

rion is also known as mode shape correlation coefficient

[72]. It can be calculated using Eq. (5).

MAC ;Xf gi; ;Af gj
� �

¼
;Xf gTi ;Af gj

���
���
2

;Xf gTi ;Xf gi
� �

;Af gTj ;Af gj
� � ð5Þ

MAC is a measure of scatter of points from the straight line

correlation. MAC value equal to unity means perfect
Fig. 8 Comparison of FRF plots. a Good correlation, b poor

correlation
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correlation, while a MAC value equal to zero means no

correlation between two modes. Figure 9a shows a typical

MAC plot between perfectly correlated experimental and

FE modes. It is seen that all the diagonal elements are equal

to unity and off-diagonal elements are nil, which means

perfect correlation between experimental and FE modes. A

poor correlation case is shown in Fig. 9b, where none of

the diagonal element is unity; and off-diagonal elements

are also not zero.

One major limitation of MAC is that it cannot identify

the systematic deviations, which can be overcome to some

extent by combining MAC with the best fit straight line

plots described earlier. Another limitation of MAC is that it

is not a true orthogonality check because of absence of

mass or stiffness matrix in the formula of MAC. This

limitation can also be avoided by using normalized MAC

(NMAC) [72]. The NMAC is also called as normalized

cross orthogonality as represented by Eq. (6).

NMAC ;Xf gi; ;Af gj
� �

¼
;Xf gTi W½ � ;Af gj

���
���
2

;Xf gTi W½ � ;Xf gi
� �

;Af gTj W½ � ;Af gj
� �

ð6Þ

NMAC includes a weighting matrix W½ �, which can be

replaced by either mass matrix or stiffness matrix. NMAC

has a limitation of not describing the spatial distribution of

correlation, for which purpose, one can use Coordinate

MAC (COMAC) as given in Eq. (7) [70] as:-

COMAC kð Þ ¼
PL

l¼1 ;Xð Þkl ;Að Þkl
�� ��2

PL
l¼1 ;Xð Þ2kl

PL
l¼1 ;Að Þ2kl

ð7Þ

COMAC should be calculated only after finding ‘L’ num-

ber of the correlated mode pairs through MAC or NMAC.

COMAC value close to ‘1’ indicates good correlation at a

particular coordinate say ‘k’. The COMAC plots showing

good and poor correlation are drawn in Fig. 10a, b

respectively.

MAC or its variants consider mode shape matching at

only discrete coordinates. If one wants to consider the

mode shape correlation on a continuous basis, then image

processing and pattern recognition based Zernike moment

descriptor can be used [107]. Further, a scanning laser vi-

brometer can also be used for 3D digital image correlation

[48].

After comparison and correlating the experimental and

FE data sets, next step is to make these compatible with

each other so that FEMU can be performed. Compatibility

techniques have been explained in next sub section.

2.4 Size Compatibility Techniques

Measured degrees of freedom are generally far lesser than

their FE counterparts due to limited number of sensors used

in experimental set-up. Moreover some degrees of free-

doms are very difficult to be measured (e.g. rotational de-

grees of freedom or those corresponding to the points

which are physically inaccessible). Thus the size of FE

Fig. 9 Modes correlation using

MAC. a Good correlation,

b poor correlation

Table 1 Comparison of natural

frequencies
Mode no. Experimental (Hz) FE (Hz) Difference in frequencies (%)

1 24.1 24.3 0.8

2 76.1 73.1 3.9

3 119.3 116.1 2.7

4 158.0 153.9 2.6

5 184.1 180.7 1.8

6 211.6 200.5 5.2
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modal matrices is generally not compatible with their ex-

perimental counterparts, while in FEMU one-to-one cor-

respondence between the two results sets is required; which

can be achieved by either expanding the experimental re-

sults or by reducing the FE model as explained in following

sections.

2.4.1 Coordinate Expansion

Measured data sets can be expanded so that they are of the

same size as their FE counterparts. Such a process is called

as coordinate expansion. A simple method of coordinate

expansion is to substitute the unmeasured coordinates by

their FE counterparts. This method is computationally very

efficient. Main disadvantage of this method is that some-

times it leads to erroneous solutions during FEMU. To

avoid this problem, some transformation matrix based co-

ordinate expansion should be done as used in Eq. (8);

where ‘N’ and ‘n’ are the sizes of expanded and measured

eigen-vectors respectively.

;expanded
� �

N�1
¼ T½ �N�n ;measuredf gn�1 ð8Þ

For an undamped system, the transformation matrix T½ � can
be obtained by writing the governing equations of the sys-

tem in partitioned matrices form using Kidder’s method

[60]. In Kidder’s method, sub-matrices are related to mea-

sured and unmeasured eigenvectors. For a damped system,

partitioned matrices based method can be extended to deal

with complex measured modes [47]. Another method of

coordinate expansion is based on the concept that unmea-

sured eigenvectors can be expressed as a linear combination

of measured eigenvectors [90]. System equivalent reduction

and expansion processes (SEREP) [89], Curve fitting [110]

and FE eigenvectors in conjunction with MACmatrix based

methods are also used in coordinate expansion [71].

2.4.2 Model Reduction

Model reduction process is basically the inverse of the

expansion process. This process is generally applied to an

analytical model so that the size of the FE model matrices

can be reduced and brought closer to their experimental

counterparts. A simple method of model reduction is to

eliminate those degrees of freedom (DOF) which are not

available in experimental data. Model thus obtained is

known as reduced model. Main drawback of this method is

that mass and stiffness terms related to the eliminated DOF

are completely lost and nowhere compensated [33].

Another method of model reduction is to produce a

condensed model which will represent the entire structure

completely but approximately. In this method a condensed

model is obtained by transforming the original model as

given in Eq. (9); where ‘n’ and ‘N’ are the sizes of reduced

and finite element model based eigen-vectors respectively.

;reducedf gn�1¼ T½ �n�N ;FEf gN�1 ð9Þ

One method of obtaining condensed model is through static

reduction [45], in which size of systemmatrices is reduced by

neglecting inertia and stiffness terms associated with un-

measured DOFs. This method is generally known as Guyan

reduction method. Main drawback of static reduction method

is that it does not reproduce any of the eigenvalues or eigen-

vectors of the original full FE model. Another method of

model reduction is improved reduced system (IRS) method

which can closely reproduce the eigenvalues and eigenvectors

of the original FEmodel [88, 40]. If reducedmodel is required

to have eigenvalues and eigenvectors exactly same as that of

original FE model then SEREP should be used [89, 97].

3 Review of FEMU Techniques

The FEMU techniques can be broadly classified into two

categories:-

• direct (non-iterative) techniques and

• iterative techniques

Direct techniques can provide the solution to model

updating problem in just a single step; hence these are

computationally very efficient, and divergence related

Fig. 10 Modes correlation

using COMAC. a Good

correlation, b poor correlation
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problems do not occur. Another important feature of direct

techniques is that they reproduce the measured data ex-

actly. Therefore measurement noise and spurious modes

are also reproduced by such techniques. Thereby, these

techniques required very good quality modal testing and

analysis procedures. Direct techniques compute a closed-

form solution for system matrices using the structural

equations of motion and orthogonality properties of modes.

These techniques are also called matrix techniques, be-

cause such techniques found the solution in the form of

updated system matrices by solving a set of matrix equa-

tions. The main drawback of direct techniques is that up-

dated mass and stiffness matrices may not be symmetric

and positive definite. It becomes very difficult to under-

stand such kind of system matrices on a physical basis.

Dynamic response of FE model of any structure is a

function of a number of parameters, as explained in

Sect. 2.1. The iterative techniques compute updated values

of material and structural parameters of FE model in such a

way that during each iteration mismatch between ex-

perimental and FE response is reduced. These techniques

are also called as gradient based techniques. Iterations are

stopped when the values of updating parameters stop

converging or the error function is reduced to tolerable

level. Error function is generally a non-linear function of

experimental and FE responses such as eigenvalues,

eigenvectors or FRFs. Iterative techniques result in only

symmetric and positive definite updated system matrices,

which can be easily understood on a physical basis. But

these techniques require a number of iterations before ar-

riving at the final result. Thus iterative techniques are

computationally less efficient and divergence related

problems can also arise during iterations. The technology

and research developments reported for both direct and

iterative techniques are discussed in following sub-

sections.

3.1 Direct Techniques of FEMU

Some researchers have developed direct techniques which

consider adjustment of elements of system matrices on a

mathematical basis rather than a physical basis. A few

researchers have also worked for development of such di-

rect techniques, which can consider adjustment of physical

properties of system matrices. The direct techniques are

further classified into two categories, viz. matrix elements

adjustment based direct techniques and physical property

adjustment based direct techniques.

Foremost, in 1978, Baruch and Bar-Itzhack developed a

direct method of FEMU by assuming FE mass matrix to be

correct [11]. They updated the FE eigenvectors and FE

stiffness matrix by minimizing the weighted norm of dif-

ference between measured and FE eigenvectors subject to

orthogonality constraints. During same time, Baruch also

developed a direct method in which the FE stiffness matrix

and FE eigenvectors are updated in such a manner that

some weighted norm of the difference between the updated

and analytical stiffness matrices is minimized using La-

grange multipliers [10]. In this method, the FE mass matrix

is assumed correct and hence not updated. Later in 1979,

Berman adopted the mathematical approach of Baruch [10]

and proposed a direct method for updating the mass matrix

[14]. This method also included an additional constraint to

preserve the symmetry of updated matrices. These tech-

niques [11, 10, 14] are also called as techniques of refer-

ence because one of the three quantities (eigenvectors,

mass and stiffness matrices) is assumed to be reference and

the other two are updated.

In 1983, Berman and Nagy proposed another method in

which the basic approach of the method of Baruch [10] and

the method of Berman [14] were combined to update both

mass and stiffness matrices of the system in a sequential

manner [15]. Method of Berman and Nagy has been used

by various researchers in a number of applications. Ap-

plication of this method was also studied by Modak et al.

[83] for dynamic design of a fixed–fixed beam and an

F-structure. Bais et al. [9] applied the direct techniques of

Baruch [10] and also of Berman and Nagy [15] for dy-

namic design of a drilling machine. Dhandole and Modak

[30] performed the FE model updating of vibro-acoustic

cavities using the direct method of Berman and Nagy [15].

They investigated a simulated example of a two dimen-

sional rectangular cavity with a flexible surface having

structural modeling errors related to the material property,

geometry and boundary conditions; under incomplete and

noisy simulated experimental data. Effectiveness of the

method was compared with an iterative method on the

basis of accuracy of prediction of vibro-acoustic natural

frequencies and the frequency responses both inside as well

as outside the frequency range taken during updating. It

was concluded in the study that the direct technique re-

sulted in an accurate prediction of the vibro-acoustic nat-

ural frequencies and the response inside the frequency

range considered during model updating. However, beyond

the updating frequency range, the predictions based on the

direct updated vibro-acoustic models are not as accurate as

given by the iterative technique. Further the direct tech-

nique seems to be quite versatile compared to its iterative

counterpart for dealing with complex cavities. This is due

to the reason that for complex cavities, complete knowl-

edge of modeling inaccuracies and selection of updating

parameters becomes very difficult. Recently, Modak [81]

also developed a direct vibro-acoustic model updating

technique using modal test data. This technique can be

used for updating the vibro-acoustic FE model of such

systems that involve an elastic structure enclosing a
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medium, like air. By using this technique, mass and stiff-

ness matrix of both the structural as well as the acoustic

parts of the model can be updated by preserving their

symmetry.

The method of Berman and Nagy [15] was further ex-

tended by Ceasar [19] by including additional constraints

related to preservation of the total mass of system and the

interface forces. Matrix perturbation concept was used by

Chen et al. [26] to simultaneously update mass and stiff-

ness matrices of the system. Based upon first order ap-

proximation Sidhu and Ewins [99] developed a direct

method using error matrix approach. This method was

useful for only small modeling errors. Kabe [57] suggested

a direct method which could retain the bandwidth of sys-

tem matrices by identifying the null elements of original

system matrices and constraining them to remain zero

during FEMU.

Further, a range of direct updating techniques were

formulated by Caesar [20] considering different objective

functions, constraints and whether mass matrix or stiffness

matrix is updated first. Later, Lim [73] proposed a FEMU

method in which sub-matrix-scaling factors are used as

updating parameters. Due to the use of sub-matrix-scaling

factors number of unknowns is reduced appreciably. Smith

and Beattie suggested a quasi-Newton method for stiffness

updating which preserve structural connectivity and can

also handle noisy modal data [101, 13]. Application of this

method was studied later by Ramamurti and Rao [95] by

using different finite elements. They updated the FE

models of a rectangular plate with holes using 3-D plate

elements; a crane using 3-D beam elements and a rectan-

gular plate using brick elements. Bucher and Barun [17]

developed modal data based direct method having the ca-

pability to deal with partially known experimental eigen-

solutions. The method was verified by applying it to nu-

merical examples of a clamped beam and a serial spring-

mass system. Farhat and Hemez [37] proposed a FEMU

method using an element-by-element sensitivity method-

ology and demonstrated the potential of the method by

using several simulation examples. Later, Friswell et al.

[41] developed a method for simultaneous updating of

damping and stiffness matrices assuming the mass matrix

to be correct. Singular value decomposition and matrix

approximation technique based method was proposed by

Xiamin [111]. This method is particularly useful if the

mismatch between experimental and FE responses is very

large. Recently, Carvalho et al. [21] developed a method

which can identify and prevent the reproduction of spuri-

ous modes into updated results. The direct techniques

discussed so far mainly aim at removing the mismatch

between experimental and FE responses, without bothering

for any adjustment of physical properties of system ma-

trices. Presently research is also oriented towards

development of direct techniques which aim at reducing

the mismatch between experimental and FE responses by

adjusting the physical properties of the FE model.

In 2007, Hu et al.[49] proposed the cross-model-cross-

mode method (CMCM) in which adjustment of physical

properties of the system matrices is carried out to update

the mass and stiffness matrices simultaneously. Satisfac-

tory performance of the method was demonstrated by ap-

plying it for simulated examples of a shear building model

and a three-dimensional frame structural model. During the

demonstration, some preset error coefficients were intro-

duced into the FE model of the structures. Then the CMCM

method was used to estimate the correction factors of

FEMU. Main disadvantage of the method is that it requires

the measurement of spatially complete modal data, which

is generally not possible for large-scale real life structures.

Further, in 2011, substructure energy approach (SEA)

based physical property adjustment type direct method was

developed by Fang et al. [34]. Main benefit of this method

is that it can handle spatially incomplete experimental

modal data also as opposed to the CMCM method. In this

method the complete system is divided into several sub

systems. Instead of updating the complete system, only the

critical sub systems are identified and updated using a set

of linear simultaneous equations deduced from the energy

functional of substructure models and substructure modes.

For validation purpose, they applied the method for up-

dating the models of a mass-spring system, a two-dimen-

sional and a three-dimensional lattice structure using

simulated experimental data. Results obtained by Fang

et al., for numerical example of a three-dimensional lattice

structure showed that the method worked satisfactorily for

FEMU purpose. Jacquelin et al. [53] developed a direct

probabilistic model updating technique that takes into ac-

count the uncertainties related to experimental results by

using the random matrix approach. Recently, Jiang et al.

[56] reduced the model updating process to the problem of

the best approximation type. This technique is successfully

used for numerical examples of undamped systems. How-

ever the technique needs to be tested further for damped

simulated systems as well as for actual experimental

results.

Major contributions related to direct techniques of

FEMU have been presented in a brief chronological format

in Table 2.

3.2 Iterative Techniques of FEMU

Algorithm for iterative techniques of FEMU is drawn in

Fig. 11. In such techniques an error function is minimized

iteratively to find the updating parameters or correction

factors. These techniques originated in 1974, when Collins

et al. proposed the eigendata sensitivity based iterative
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method also known as inverse eigensensitivity method

(IESM) [27]. Later, Chen and Garba [25] used matrix

perturbation technique for iteratively computing the

eigensolution and eigendata sensitivities. This method was

further improved by Kim et al. [62] by including second

order sensitivities. Further the convergence of this method

was improved by Lin et al. [75] by employing both the FE

and the experimental modal data for evaluating sensitivity

coefficients. This also helped in application of the method

for cases of large errors.

In IESM, modal data such as eigenvalues, eigenvectors

and damping ratios are used to form an error function.

Modal data is obtained through modal analysis of measured

FRFs. If modal analysis is not done carefully then the ex-

tracted modal data may contain certain errors, which is

further transmitted to the results of FEMU. To avoid this

problem one can use the measured FRFs directly for model

updating using Response Function Method (RFM) as pro-

posed by Lin and Ewins [76]. RFM does not require any

modal extraction to be performed on measured data thereby

eliminating the chances of errors due to modal analysis

being transmitted to updated results. Application of RFM

for dynamic design of a fixed–fixed beam and an F-struc-

ture was discussed by Modak et al. [83]. Effectiveness of

IESM and RFM has been compared by Imregun et al. [52],

Modak et al. [84]. For incomplete experimental data case

(where experimental eigenvector is not completely known)

with no noise, RFM works better than IESM, while latter

performs better in the presence of noise particularly when

the updating range covers a greater number of modes.

Moreover, in RFM, if the number and location of testing

frequencies are not selected properly then the method may

not be able to converge as reported by Modak et al. [84]

based upon their comparative study using simulated ex-

perimental data.

While formulating the basic RFM, Lin and Ewins [76]

had not taken into account damping. Later, Arora et al. [3,

4] proposed two techniques of extending the basic RFM in

Table 2 Major contributions in direct techniques of FEMU

References Major Contribution

Baruch and Bar-Itzhack [11] Updating of stiffness matrix

Berman [14] Updating of mass matrix

Berman and Nagy [15] Updating stiffness, mass matrices in sequential manner

Ceasar [19] Improvement of Berman and Nagy method by preservation of total mass and interface forces

Chen et al. [26] Use of matrix perturbation concept for simultaneous updating of mass and stiffness matrices

Sidhu and Ewins [99] Error matrix approach based direct updating technique to handle small modeling errors

Kabe [57] Constraint on retaining bandwidth of system matrices

Caesar [20] Formulation of a number of direct techniques

Lim [73] Sub-matrix scaling factors based updating technique

Smith and Beattie [101] Updating stiffness matrix with fix structural connectivity

Bucher and Braun [17] Updating for incomplete experimental modal data

Farhat and Hemez [37] Element-by-element sensitivity methodology based updating technique

Friswell et al. [41] Simultaneous updating of damping and stiffness matrices

Ramamurti and Rao [95] FEMU using different finite elements

Xiamin [111] Matrix approximation technique based FEMU method

Modak et al. [83] Dynamic design of fixed–fixed beam and F-structure using the method of

Berman and Nagy

Bais et al. [9] Dynamic design of drilling machine using method of Baruch and also Berman and Nagy

Carvalho [21] FEMU method which can identify and prevent the reproduction of spurious

modes into updated results

Hu et al. [49] Physical property adjustment based cross-model-cross-mode method

Dhandole and Modak [30] FEMU of vibro-acoustic cavities using the method of Berman and Nagy

Dhandole and Modak [31] Application of method of Berman and Nagy in vibro-acustics field

Fang et al. [34] Substructure energy approach based physical property adjustment type direct method

Jacquelin et al. [53] Development of probabilistic model updating

Jiang et al. [56] Development of direct updating technique using best approximation method

Modak [81] Updating of vibroacoustic finite element models using modal test data
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order to widen the applicability of the method by consid-

ering damping. First proposed technique was to combine

RFM with damping identification method of Pilkey [92].

This technique involved a two step procedure in which first

step involved updating of only mass and stiffness matrices

while damping matrix was obtained in second step by using

the mass and stiffness matrices found in first step.

Second proposed technique by Arora et al. [4] was to

consider the model parameters and system matrices in a

complex form so as to deal with complex modes of damped

structures. Later they compared these two techniques and

found that complex parameter based FEMU technique

gives better results than the one with damping

identification [5]. Arora et al. [6] also worked on the use of

complex parameters based RFM of FEMU for dynamic

design purposes. Arora [7] also compared the accuracy of

basic RFM [76] against the direct method Bernam and

Nagy [15] and found that the performance of basic RFM

was superior to the direct method in terms of the accuracy

in prediction of FRFs. Recently, in 2012, the basic RFM

[76] was further extended by Pradhan and Modak [93] to

develop a normal RFM that was based on the estimates of

normal FRFs computed by using only stiffness and mass

matrices. Normal RFM was later used by Pradhan and

Modak [94] for damping matrix identification using FRF

experimental data.

Fig. 11 Algorithm for iterative

techniques of FEMU
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In 2000, Modak et al. [82] developed a constrained

optimization based FEMU technique. They evaluated the

performance of the said technique by applying it to a fixed–

fixed beam structure. This technique was computationally

more intensive than IESM but was able to address the

difficulty that might arise due to large difference between

the sensitivities of natural frequencies and mode shapes.

Later, they also used the constrained optimization based

FEMU for dynamic design of fixed–fixed beam and

F-structure [85]. Use of this technique for better FE for-

mulation of acoustic cavities was done by Dhandole and

Modak [32].

Neural network (NN) method has also been applied for

FEMU by Atalla and Inman [8] for FE model updating of a

flexible frame. In this method, a NN is trained and

validated using FE responses. Thereafter this NN can be

employed to obtain updated physical parameters by taking

experimental responses as inputs. Once the NN model is

properly trained, the NN based calculations are relatively

fast compared to conventional optimization techniques

regardless of the complexity of the real life structure. NN

based model updating method is also robust to the noise

present there [67]. Main limitation of this method is that it

requires a large number of training data ‘qp’ (where ‘p’ is

the number of updating parameters and ‘q’ is the number of

levels or values which any updating parameter can take).

However this problem can be circumvented by using an

orthogonal array method in which the number of training

data sets are reduced to p(q - 1) ? 1 only [23, 16].

Because of the experimental limitations, if only natural

frequencies (or eigenvalues) are measured then FEMU can

also be performed by using reduced order characteristic

polynomial (ROCP) based method as proposed by Li [69].

Li applied the ROCP based method for FE model updating

of a beam structure elastically constrained at one end. In

this method a polynomial is defined in terms of the mea-

sured eigenvalues, FE eigenvalues, FE eigenvectors and

updating parameters. Assuming the measured natural fre-

quencies to be the roots of the polynomial, a set of non-

linear equations are derived. This set of non-linear equa-

tions is further solved for calculating the values of the

updating parameters.

Sometimes, it becomes difficult to measure FRFs ac-

curately due to small size or delicate nature of test structure

[like a hard disk drive (HDD)]. Under such conditions

Model Updating using Base Excitation (MUBE) method

can be applied as proposed by Lin and Zhu [74]. They used

MUBE method for FEMU of a cantilever beam and a truss

structure, and showed that the method works satisfactorily.

In this method, base of the structure is excited with an

unknown force input using an electric shaker and the dis-

placement output measured from the test set-up is used for

model updating. This method is of great use when

excitation force is not known or difficult to measure.

Jamshidi and Ashory [55] compared and found that MUBE

gives better updating results than RFM for incomplete

experimental data with measurement noise.

Further the problem of model updating for a real life

structure is quite complex due to presence of non-linearity,

damping, measurement errors and large number of updat-

ing parameters. Under such conditions, the traditional

model updating techniques may fail to converge or may get

stuck in local minima rather than finding a global minimum

of the error function. In that kind of situations, it is ad-

visable to use such optimization techniques which are ca-

pable of finding the global optimum results even for a

complicated optimization problem. Few such promising

techniques are Simulated Annealing (SA), Genetic Algo-

rithms (GA) and Particle Swarm Optimization (PSO).

Levin and Lieven [68] used and compared SA and GA for

FEMU and observed that SA based FEMU method per-

forms better than its GA based counterpart. Success of both

SA and GA based FEMU techniques depends upon ap-

propriate choice of updating parameters. If updating pa-

rameters are not selected properly, then both these

techniques give unsatisfactory results. Marwala [79] ap-

plied the PSO method in the field of FEMU. PSO is a

population based stochastic search algorithm derived from

social-psychological behavior of biological entities (birds,

fish, ants, etc.) when they are foraging for resources (food).

It is particularly useful if the number of updating pa-

rameters is very large. Further, Mthembu et al. [87] used

PSO for selecting the best model from amongst a number

of updated structural models.

Kwon and Lin [64] suggested a robust FEMU technique

using the concept of Taguchi method and were able to

obtain good FEMU results. They used both frequency as

well as modal data for formulation of the objective func-

tion. This technique was reported to be robust against

various noises because the parameters were updated in

such a way that signal to noise ratio is maximized.

It is to be mentioned here that due to their iterative nature,

the iterative techniques seem to be computationally ineffi-

cient, particularly, if applied to FE models of large size

structures. Working on these directions Guo and Zhang [44]

suggested the use of response surface methodology (RSM)

based FEMU. In this technique, FE calculations are not re-

quired at each iteration step, thereby making it computa-

tionally efficient. In this method, n-dimensional response

surfaces are created by taking updating parameters as inputs

and dynamic FE responses as outputs. Updated values of

model parameters are found by using the response surfaces

and the measured responses by minimizing the error func-

tion. RSM based FEMU is reported to be as accurate as the

sensitivity basedmethod, and,moreover it ismore robust and

computationally efficient than the sensitivity based FEMU.
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Later, Ren and Chen [96] applied RSM as well as sensitivity

based FEMU techniques to a precast concrete bridge and

compared the convergence of objective function by both the

techniques. Their study showed that for a given number of

iterations, the objective function of FEMU is reduced to a

lower level by using the RSM based FEMU technique than

its sensitivity based counterpart. In traditional RSM based

FEMU technique, the experimentally measured signals were

first transformed to one or more response parameters such as

natural frequencies. This reduced the information in the

training data used for developing response surfacemodels. In

order to circumvent this problem, time domain based results

were used by Shahidi and Pakzad [98] for RSMbased FEMU

technique. Time domain based technique was helpful in

extracting more information from measured signals and

compensate for the error present in the meta-models. Effi-

ciency ofRSMbased FEMU techniquewas further increased

by Chakraborty and Sen [22] whilst developing an adaptive

RSM based FEMU technique by replacing the least square

method with the moving least square method.

It is important to mention that FE model of a real life

structure contains a large number of parameters. If all the

parameters are taken as updating parameters, then the

model updating problem becomes too complex and time

consuming. A large number of updating parameters also

result in ill-conditioning of the problem or trapping in

many local minima [61, 39]. To identify and select only a

few important updating parameters, Fissette et al. [38]

proposed a force balance method. This method can be used

for error location and then updating parameters are selected

from only the regions of modeling errors. Waters [108]

proposed a modified force balance method in which it is

assumed that the regions of response errors are not nec-

essarily an indication of modeling error. Recently, Kim and

Park [61] developed an automated parameter selection

procedure. This is a two phase method, wherein, during

first phase an updating parameter is assigned to each er-

roneous FE. Then two neighboring updating parameters are

merged if their sensitivity (of response w.r.t. parameters) is

of same sign thereby reducing the number of updating

parameters. This is repeated until all the neighboring up-

dating parameters have opposite sign of sensitivity. If the

number of updating parameters is acceptable then the

procedure can be stopped; otherwise one can move on to

the second phase. In second phase those two neighboring

parameters of opposite sign are found and grouped together

which will result in least reduction in total sensitivity. This

method was validated by applying it to the FE model of

cover of a HDD having 1115 FEs and 6732 dofs. Kim and

Park used the force balance method of Fissette and Ibrahim

for error localization purpose and found that out of a total

of 1115 FEs only 628 FEs contained the modeling errors.

After the application of first stage of automatic parameter

selection procedure, Kim and Park successfully reduced the

number of updating parameters to 150; which was further

drastically reduced to 20 using the second phase of their

suggested procedure.

Moreover the updating parameters are generally the

physical parameters such as thickness, density, modulus of

elasticity, damping, Poisson’s ratio etc. of structure. These

parameters do not have a single discrete value throughout

the body of a real life object. Spatial distribution of such

parameters was considered by Adhikari and Friswell [1] by

expressing the updating parameters as spatially correlated

random fields.

If a number of identical test structures are taken, all may

not have same value of a particular material parameter viz.

modulus of elasticity, density etc. This variability in

seemingly identical test pieces may arise due to many

sources such as geometric tolerances, manufacturing pro-

cesses etc. Thus each material parameter has a stochastic

nature with a mean value and a variance. Such stochastic

nature of material parameters was taken into account dur-

ing FEMU by Mares et al. [78] using a simulated example

and obtained quite satisfactory results. In this method, the

mean value was represented by the centre of the scatter

ellipse while the size and orientation of the ellipse was

determined by variance of test data. The updated analytical

scatter ellipse overlays quite closely the experimental

scatter ellipse. Same work was then extended by Motter-

shead et al. [86] by carrying out stochastic FEMU for a set

of physical structures.

The stochastic FEMU based approach is based on

probabilistic models, which require large number of tests to

be conducted and also the large volumes of test data; which

demands for high experimental as well as computational

efforts. In order to get rid of the large quantities of test

data, one can opt for the approach that was used by Kho-

daparast et al. [59] for performing interval FEMU in which

ranges or distributions of updating parameters are found

rather than just one ‘true’ value of any updating parameter.

Table 3 presents the major technological developments and

advancements in the field of iterative techniques of FEMU.

4 Applications of FEMU Techniques

FEMU is widely applicable in the field of better FE model

formulations, damage analysis of structures, non-destruc-

tive characterization of material properties and also for

dynamic design purposes. With the aim of better FE model

formulations, FEMU has been used in a number of appli-

cations such as aircrafts, satellites, automobiles, nuclear

power plants, rotor bearing systems, laser spot welds,

bridges, dams, multi-storey buildings, steel frames, truss

structures, acoustics, etc. It also finds applications in
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Table 3 Major contributions in iterative techniques of FEMU

References Contribution

Collins et al. [27] Development of inverse eigensensitivity method (IESM)

Chen and Garba [25] Use of matrix perturbation technique for improved computation of sensitivities of IESM

Kim et al. [62] Improvement of IESM by Including second order sensitivities

Fissette et al. [38] Selection of updating parameters using force balance method for FEMU

Lin and Ewins [76] Development of response function method (RFM)

Lammens et al. [65] Application of FEMU in structural optimization of a tennis racket

Imregun et al. [52] Comparison of IESM and RFM based FEMU techniques

Lin et al. [75] Improvement of convergence of IESM

Waters [108] Development of modified force balance method for error localization in FEMU

Levin and Lieven [68] Development and comparison of simulated annealing and genetic algorithm based FEMU techniques

Atalla and Inman [8] Development of neural networks based FEMU technique

Levin and Lieven [67] Robust FEMU technique using neural networks

Cunha and Piranda [28] Application of FEMU in identification of elastic constants of composite materials

Wahab et al. [106] Application of FEMU in damage analysis of reinforced concrete beams

Modak et al. [82] Development of constrained optimization based FEMU technique

Chang et al. [23] Improvement of neural network based FEMU technique using orthogonal array method

Li [69] Reduced order characteristic polynomial (ROCP) method

Sinha et al. [100] Application of FEMU in dynamic design of spacer locations of tubes of nuclear power plants

Modak et al. [83] Application of RFM for dynamic design of a fixed–fixed beam and an F-structure

Modak et al. [84] Comparative study of RFM and IESM

Butkewitsch and Steffen

[18]

Application of FEMU in design synthesis of a heavy truck side guard

Bais et al. [9] Application of iterative method for dynamic design of a drilling machine

Guo and Zhang [44] Development of response surface method (RSM) based FEMU technique

Kwon and Lin [63] Development of frequency selection method for FRF based FEMU

Hwang and Kim [51] Improvement of computational aspect of FEMU based damage detection technique

Teughels and Roeck [103] Application of FEMU in damage identification of highway bridge

Modak et al. [85] Application of constrained optimization based FEMU technique for dynamic design of fixed–fixed beam and

F-structure

Marwala [79] Development of particle swarm optimization based FEMU technique

Kwon and Lin [64] Development of Taguchi based FEMU technique

Vepsa et al. [105] Application of FEMU to a feed water pipeline of a nuclear power plant

Zhou and Farquhar [113] Application of FEMU in finding the in vivo material property of wheat stem

Mottershead et al. [86] Application of stochastic FEMU technique to a set of physical structures

Decouvreur et al. [29] Study of effect of dispersion error on acoustic FEMU

Jaishi and Ren [54] Modal flexibility residual based FEMU technique

Lin and Zhu [74] Development of model updating using base excitation (MUBE) method

Gondhalekar et al. [43] Application of FEMU for dynamic design of a complex automobile structure

Kim and Park [61] Development of automated parameter selection procedure for FEMU

Zapico et al. [112] Application of neural networks based FEMU to a steel frame

Jamshidi and Ashory [55] Comparative study of MUBE and RFM based FEMU techniques

Arora et al. [3] Development of damped FEMU technique by combining RFM with a damping identification method

Arora et al. [4] Development of damped FEMU technique by implementing RFM using complex parameters technique

Arora et al. [5] Comparative study of RFM based damped FEMU techniques

Arora et al. [6] Dynamic design of F-structure using complex parameters technique based RFM

Husain et al. [50] Application of FEMU to laser spot welds

Fang and Perera [35] Application of RSM based FEMU in damage analysis of a bridge

Dhandole and Modak [30] Application of direct method of Berman and Nagy for vibro-acoustic FEMU

Weber et al. [109] Consistent regularization of nonlinear FEMU in damage identification
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damage analysis of rotor blades of helicopters, bridges,

multi-storey framed concrete buildings, reinforced concrete

frames, reinforced concrete beams, etc. It has also been

used successfully for non-destructive characterization of

elastic constants of composites, longitudinal moduli of

living wheat, structural damping, etc. FEMU has also been

used for dynamic design of automobiles, drilling machines,

spacers of nuclear power plants, F-structures, beams and

tennis racket etc. The flow chart shown in Fig. 12 also

represents the applications of FEMU in a number of

disciplines.

5 Research Issues in FEMU

There are conflicting opinions of various researchers re-

garding use of objective functions and test structure used in

FEMU. Future research needs to be directed towards

standardizing a benchmark objective function and test

structure, so that these can be used worldwide by different

researchers for comparing the effectiveness of different

FEMU techniques.

It is also a well known fact that damping is present in all

real life structures. But still there are many model updating

techniques in which damping effects of a real life structure

have been neglected [8],69, 68, 96, 104, 80, 102]. Such

techniques need to be investigated so as to increase their

ability to deal with damped real life systems.

Existing FEMU techniques aim towards mapping only

the dynamic behavior of the structure. More efforts are

required for developing such FEMU techniques which can

predict accurately the dynamic as well as static behavior of

structures.

More research is required in the development of realistic

updated mass matrices by combining the FEMU techniques

with digital image processing and x-ray/ultrasonic im-

ages. 3-D digital image processing has been used for

mode-correlation purpose, but its use for objective function

formulation still awaits more efforts.

Fuzzy logic, neural networks and their combination

have been used, for model formulation purpose, in many

such fields where system parameters are not understood

properly. FEMU is a similar problem where the elements of

large scale system matrices are not known exactly. Thus

research can also be directed towards the application of

such black-box based techniques in FEMU.

FEMU has been used to infer the in vivo material

properties of crops. Still, more research efforts are required

in the direction of application of FEMU for better modeling

and characterization of bones, flesh and plant leaves etc.

6 Conclusions

In this paper a review of a number of direct and iterative

techniques of FEMU has been presented. Direct techniques

find little applications in industry due to the fact that

Table 3 continued

References Contribution

Mthembu et al. [87] Application of particle swarm optimization in selection of updated FE models

Ren and Chen [96] Application of RSM based FEMU technique to a concrete bridge

Adhikari and Friswell [1] Development of spatially distributed FEMU technique using spatially correlated random fields

Dhandole and Modak ( [31] Comparative study of vibro-acoustic FEMU techniques

Chellini et al. [24] Application of FEMU in damage analysis of a steel–concrete composite frame

Arora [7] Comparative study of FEMU techniques

Lepoittevin and Kress [66] Use of FEMU for modal damping prediction

Khodaparast et al. [59] Development of interval FEMU technique using the Kriging predictor

Mottershead et al. [86] Application of sensitivity method for FEMU of helicopter airframe

Goller et al. [42] Application of stochastic FEMU for complex aerospace structures

Bayraktar et al. [12] Application of FEMU to arch dam systems

Khanmirza et al. [58] Application of FEMU to multi-storey shear buildings

Fang and Perera [36] Application of RSM based FEMU in damage identification of reinforced concrete frame

Dhandole and Modak [32] Acoustic FEMU using constrained optimization technique

Pradhan and Modak [93] Development of normal RFM

Pradhan and Modak [94] Application of RFM in damping matrix identification

Shahidi and Pakzad [98] Development of time domain results based model updating

Chakraborty and Sen [22] Development of moving least square method based model updating
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updated FE models of most of the direct techniques are

difficult to be understood on a physical basis. While a few

physical property adjustments based direct techniques are

also now available in literature; their application to real life

systems needs to be explored further. On the other hand,

iterative techniques have received considerable attention

from industrial application point of view and have been

applied successfully in a number of fields such as aircrafts,

automobiles, satellites, machine tools and civil structures

etc. Further a number of future research directions have

been highlighted which can be used for further advance-

ments in the field of model updating.
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