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Abstract The aim of the present work is to present an
overview of some numerical procedures for the simulation
of free surface flows within a porous structure. A particu-
lar algorithm developed by the authors for solving this type
of problems is presented. A modified form of the classical
Navier–Stokes equations is proposed, with the principal aim
of simulating in a unifiedway the seepageflow inside rockfill-
like porousmaterial and the free surface flow in the clear fluid
region. The problem is solved using a semi-explicit stabilized
fractional step algorithm where velocity is calculated using a
4th order Runge–Kutta scheme. The numerical formulation
is developed in an Eulerian framework using a level set tech-
nique to track the evolution of the free surface.An edge-based
data structure is employed to allow an easy OpenMP paral-
lelization of the resulting finite element code. The numerical
model is validated against laboratory experiments on small
scale rockfill dams and is comparedwith other existingmeth-
ods for solving similar problems.

1 Introduction

In traditional geotechnical problems water is considered in
slow motion or as a stationary load [54,62]. Many authors
during the last decades have proposed numerical models to
analyze the effects of seepage flows in deformable or unde-
formable soils and low permeability porous materials in gen-
eral. Among others we can mention the work of [1,23,42,
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50,51,58]. Unfortunately these classical approaches are not
applicable for the analysis of the water motion within rockfill
or rockfill-like materials (such as concrete tetrapods, cubes
or similar coastal structure). This is the consequence of the
extremely high permeability of the medium and of the pecu-
liar characteristics of the pores. Pores in fact are extremely
large and can be considered interconnected leading to a fully
drained fast flow problem [56]. Therefore, the possibility to
follow the rapid transition of the water level is of paramount
importance to correctly reproduce the physics of the prob-
lem. The significant time scale of the seepage evolution in
rockfill material is of the order of the minutes, not days of
months like in soils.

As an example, rockfill is commonly used as exterior layer
of embankment dams or of coastal structures. While in the
latter the variation of the seepage line is induced by seawaves
and its rapid transition is analyzed to quantify the dissipation
of wave energy to correctly design protection structures, in
the former the interest lies in the study of the effect of an
overtopping flooding that may trigger the failure of the entire
dam with catastrophic consequences.

According to traditional studies of flow in rockfill [55], at a
micro level the flux between the rocks is assimilated to flow in
pipes. This analogy is used for the derivation of the resistance
law used for the calculation of the hydraulic gradient1 at a
macro scale due to seepage. The well known Darcy’s law is
not applicable to the analyzed problem where a non linear
resistance law should be adopted to accurately evaluate the
resistance forces made by the porous structure considering
the local turbulent flow in the pores [61]. In the following
section the traditional mathematical models to evaluate the
hydraulic gradient in rockfill are reviewed and discussed.

1 The hydraulic gradient is the measure of the variation of the hydraulic
head for unit length [20].
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It should be pointed out that a key point for the com-
plete simulation of the hydrodynamic effect of an over-
topping flow in a dam is the capability of simulating at
once, not only the seepage, but also the fluid flow upstream,
downstream and over the dam. The same need holds for
coastal structures subjected to waves. Several authors pre-
sented steady-state models to evaluate the hydraulic gradi-
ent due to seepage in rockfill [4,31] without considering the
flow of water in the clear fluid region or any transient phase.
Others approaches are based on three dimensional (3D)
Navier–Stokes equations without solving the porous media
flow and considering the porous structure as impervious
[33,36,59]. Nevertheless, some Reynolds-Averaged Navier–
Stokes (RANS) models have been recently conceived to
simulate the wave-structure interaction in coastal structures
[13,14,22]. The need for simulating turbulence in the clear
fluid region together with the large dimension of the analysis
domain are the main reasons behind the choice of a RANS
model.

After the initial review sections, in the paper we present
an efficient numerical model to evaluate, using a unified set
of balance equations, both the flow through a porous struc-
ture and in the clear flow region. The governing equations
are derived considering the non-Darcy flow inside a porous
material. The formulation is such that the classical Navier–
Stokes equations are recovered when the porosity is equal
to one, that is, outside of the porous media. The resistance
law is taken into account in writing the linear momentum
equation. Its contribution goes to zero out of the granular
material. A similar approach was first presented in [63] and
has later been used by Nithiarasu and coworkers [43–45] to
study the natural and forced convective flux in a cavity filled
by a variable porosity medium.

The ease in the definition of a control domain with the rel-
evant spatial variables (like for instance the porosity, defining
the presence of a granular material), leads to the choice of
an Eulerian fixed mesh approach. Moreover this kinematical
framework is also more efficient allowing an easier openMP
parallelization of the resulting finite elements code. A level
set technique is developed for tracking the evolution of the
free surface.

The paper is organized as follows. In the first section a
review of the models available in the literature to describe
the seepage in rockfill material is presented and the need for
a non-linear resistance law is justified. The governing equa-
tions are then derived in their strong form. The weak form
of the problem is obtained and the finite elements solution
strategy is explained. Since a fixed mesh approach is used, a
level set technique is employed to track the evolution of the
free surface.

Finally a set of examples is presented to validate the pro-
posed model against experimental results and other numeri-
cal techniques developed for the same purpose.

2 Seepage into Rockfill

The flow in porous media is traditionally studied using the
empirical relation obtained byDarcy in 1856.While studying
the flow of water through a sand-filled column he discovered
that the pressure drop (i) and the velocity of water inside
a porous material (u) are linearly related. This observation
leads to the formulation of the well known Darcy law

i = μ

k
u. (1)

where μ is the water dynamic viscosity and k is the perme-
ability of the porous media [3].

Velocity u in Eq. (1) is by definition the Darcy velocity,
i.e. the fluid velocity averaged over the total control volume
Ω (often calledmacroscopic velocity or unit discharge being
the discharge per unit volume), whereas the fluid velocity u is
averaged over the empty part ofΩ (calledΩE ). Their relation
is stated by the Dupuit–Forchheimer equation [41]:

u = nu (2)

where n is the porosity that, by definition2 is

n := ΩE

Ω
. (3)

See Fig. 1 for a graphical view of the fluid and the Darcy
definition of velocity.

In the most general case n is a function of space and time:

n = n(X, t); (4)

whereX is thematerial coordinate vector, In the presentwork,
according to experimental analysis [40,57] the variation of
porosity in time can be neglected, considering only its vari-
ation in space, i.e.

n = n(X); (5)

This corresponds to assuming that the volumetric character-
istics of the porous materials do not vary sensibly as a conse-
quence of its deformation. Moreover, since the experiments
reproduced in this paper do not present any relevant defor-
mation of the rockfill material, then n is taken as a constant
value.

2 Eq. (3) is by definition the volumetric porosity nv whereas in Fig. 1 a
cross section of the control volume is considered and a sectional porosity
na := AE/A should be defined as the ratio between the area of pores
and the total cross section area. Consequently, a lineal porosity can also
be defined as the ratio between the length of pores over the total length
(nl := lE/ l). Fortunately Bears in [3] demonstrated that in a porous
medium this distinction is unnecessary being

nv = na = nl .
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Fig. 1 Graphical description of fluid velocity u (averaged over the
empty volumeΩE ) andDarcy velocity u (averaged over the total control
volume Ω)

Eq. (1) was derived studying the unidirectional flux in
sand at low Reynolds numbers3 and it has been proved to be
valid under a limited range of low velocity fields [61].

In fact in the case of flux through rockfill, the relation
between velocity and pressure drop was observed to be non-
linear and it was experimentally demonstrated that over cer-
tain average dimension of the particles, Eq. (1) is not anymore
valid.

Many authors have deeply studied this aspect with essen-
tially two objectives: to discover the range of validity of
Darcy’s law (Eq. (1)) and to define an alternative resistance
law4 in case Eq. (1) cannot be used.

2.1 Analogy Between Flow in Rockfill and Pipes Flow

It is generally accepted to consider the flow in the pores of
rock particles essentially similar to flow in a pipe network
but with a more complicated configuration [55,56]. Based
on this assumption all the empirical formulae to evaluate the
pressure drop due to friction in pipes have been used and
adapted to get similar empirical relationships in the case of
porous material [15,30].

Usually the regime of the flow in pipes is defined as lam-
inar or turbulent as a function of the Reynolds number Re.
If the regime is laminar the pressure drop is linearly related
to the average velocity of the flow, whereas for a turbulent
flow the relation is non-linear. Similar to what happens in
pipes, the definition of Re in the porous flow is used to define
whether a laminar or a turbulent regime occurs. Nevertheless,
the limit of validity of Darcy law (i.e. laminar regime) is still

3 The Reynolds number is the dimensionless coefficient that, being the
ratio between inertia and viscous forces, quantifies the relative impor-
tance of each one for a given flow [20]. It is defined as ρu l

μ
where ρ

is the fluid density and l is a characteristic length (in pipes it coincide
with the diameter).
4 Eq. (1) and all the alternative non linear formulations that are pre-
sented in the next sections are commonly called resistance laws because
they measure the resistance made by the porous matrix to the fluid flow.

an open issue and many authors have been working on this
topic since the pioneering work of Chilton and Colburn at
the beginning of the XXI century ([1,2,5,17,19]) The main
issue is related to the definition of Re that in a porous mater-
ial is not univocally defined. The Reynolds number depends
on whether the Darcy or the fluid velocity is chosen for its
calculation and on how the characteristic length is defined
[30,56,61]. Nevertheless it is commonly accepted that the
beginning of appearance of turbulence is for values of Re in
the range 60–150 (not 2,000 like in pipes) while the starting
point of non-linear behavior appears for Re ∈ [1–10]. This
means that the transition between the laminar and turbulent
regime is gradual (differently from the flux pipes). Another
important aspect is that turbulence appears at lower Re values
in particles with larger average diameter. Scheidegger justi-
fies both aspects with the co-presence of a laminar regime
in the thinner “porous channels” and a turbulent one in the
thicker cases [49].

All the examples presented in the present work have Re
values in the range [40–40,000] and is therefore mandatory
to consider a non linear resistance law to correctly capture
the dissipation induced by the presence of the porous matrix.

2.2 Resistance Laws

Forchheimer was one of the first authors in proposing in 1901
[21] a quadratic resistance law defining the pressure drop (i)
as

i = αu + βu2; (6)

where constants α and β depend only on the characteristics
of the rockfill material. Alternatively Prony and Jeager [32]
proposed an exponential law of the type

i = γ uη; (7)

where γ and η depend on the flow condition, the character-
istics of the porous medium and the fluid.

Both the quadratic and the power relationships are based
on experimental results although some theoretical basis have
been provided for their justification [30]. In recent years
almost all efforts have been addressed in determining the
values of the α and β or γ and η constants. Some authors
define these coefficients as dependent on physical parameters
of the rockfill material only, such as the size of the particles,
porosity and the particle shape (following [56] this is the case
of Ergun [18], Wilkins [60], McCorquodale [38], Stephen-
son [53] and Martins [37]. In other cases, the coefficients
depend on the experimental value of the hydraulic conduc-
tivity. Since the experimental set up needed for estimating
these parameters can be very expensive, it is often easier and
cheaper to choose one of the first group of formulae. A com-
prehensive overview of the different models can be found in
[30,56].
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Nowadays both Eqs. (6) and (7) are accepted and widely
used. In the present work a quadratic resistance law has been
implemented. The user can define the α and β parameters
depending on the type of material studied and on the flow
conditions. This aspect will be discussed later in the sections
devoted to the validation examples.

3 Mathematical Model: The Modified Form of the
Navier–Stokes Equations

Water is treated as a Newtonian incompressible fluid gov-
erned by the following constitutive law

σ = −pI + τ (8)

where the Cauchy stress tensor σ is split in the sum of the
volumetric part (that is the pressure pmultiplied by the iden-
tity matrix I) plus the deviatoric, non-isotropic part τ . The
deviatoric part is linearly related to the strain rate tensor∇su,
being u the velocity, through the kinematic viscosity ν which
is assumed to be constant.

Eq. (8) can therefore be rewritten as

σ = −pI + 2ν∇su. (9)

In order to take into account the eventual presence of a
porous medium, some modifications should be introduced in
the traditional form of the Navier–Stokes equations. In the
following sections the modified system of governing equa-
tions is obtained by imposing conservation ofmass and linear
momentum in an infinitesimal fixed control volume.

3.1 Mass Conservation Equation

Let us consider a 2D square finite control volume dxdy as
the one plotted in Fig. 2, and let us define dxdy = n dxdy
as the empty part of it, that is the portion of this volume that
can be occupied by the fluid (see the definition of porosity
in Eq. (3)). Imposing the continuity of the fluid field velocity
u = [u, v] over the fluid control domain dxdy, yields

ρ

(
u + ∂u

∂x
dx

)
dy − ρudy + ρ

(
v + ∂v

∂y
d y

)
dx

−ρvdx + dρ

dt
dxd y = 0; (10)

Considering that the fluid is incompressible, Eq. (10) can
be rewritten as

∂u

∂x
dxd y + ∂v

∂y
dxd y =

∂u

∂x
dxdy + ∂v

∂y
dxdy = 0.

(11)

Fig. 2 Balance of conservation of mass in a discrete volume dx dy.
dxdy = n dx dy is the empty volume where the fluid can circulate

where the definition of the Darcy velocity u = [u, v]
(Eq. (2)) has been used. Therefore the mass conservation
equation is

∂u

∂x
+ ∂v

∂y
= 0; (12)

that can be rewritten as

∇ · u = 0. (13)

3.2 Momentum Conservation Equation

The balance of linear momentum in the i − th direction
(where i = 1, 2 refers to the cartesian coordinate x and y,
respectively) is

dui
dt

dxd y − ∂σi j

∂x j
dxd y − f exti dxd y = 0; (14)

where f ext are the volumetric forces and the sum over j
spatial index is supposed.

Observing Fig. 3 and recalling the constitutive Eq. (9), the
balance equation in x-direction can be written as

∂u

∂t
dxd y + u

∂u

∂x
dxd y + +v

∂u

∂y
dxd y − ∂σx

∂x
dxd y

+ ∂τxy

∂y
dxd y − bxdxd y + D̂xdxd y = 0; (15)

wherebx is the component of the body force in the x-direction
and D̂x represents the component of the hydraulic gradient
due to seepage, e.g. the resistance law, in the x-direction.
Its matrix form will be detailed at the end of this section. In
Eq. (15) the definition of material time derivative has been

implicitly taken into account
(
dui
dt = ∂u

∂t + u ∂u
∂x + v ∂u

∂y

)
.
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Fig. 3 Balance of conservation of linearmomentum in an infinitesimal
volume dx dy. dxdy = n dx dy is the empty volume where the fluid
can circulate

Substituting dxdy = n dxdy into Eq. (15) and inserting
the definition of Darcy velocity gives

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ n

∂p

∂x
− 2ν

∂2u

∂x2

− ν

(
∂2u

∂x∂y
+ ∂2v

∂x2

)
n − bxn + nD̂x = 0; (16)

This expression holds for any infinitesimal domain dxdy.
Finally, naming Dy = nD̂y , and using the same proce-

dure in the other spatial dimension leads to analogous results.
In summary the equation of balance of linear momentum is
written as

∂tu + u · ∇u + n∇ p − 2∇ · ν∇su − bn + D = 0; (17)

where ∂tu = ∂u
∂t

. D is the matrix form of the resistance law

and it represents the dissipative effects in the fluid flow due
by the presence of the solid matrix. The matrix form of the
non-linear Darcy law is

D = αu + βu · u. (18)

where α and β are constant coefficients.

Remark 1 A more general form of the constitutive equation
of water can be now formulated as

σ := −npI + 2ν∇su. (19)

This equation automatically reduces to Eq. (9) if the porosity
is equal to one (i.e. the free surface flow problem is consid-
ered).

4 The Weak Form of the Problem

Eqs. (13) and (17) represent themodified form of the Navier–
Stokes equations. These equations take into account the pres-
ence of a porous medium and reduce to the classical Navier–
Stokes equations when the porosity is equal to one (n = 1)
(free fluid flow). The equations to be solved are, therefore

∂tu + u · ∇u + n∇ p − 2∇ · ν∇su

− bn + αu + βu · u = 0 in Ω, t ∈ (0, T );
∇ · u = 0 in Ω, t ∈ (0, T ). (20)

where Ω ⊂ R
d (where d is the space dimension, d = 2 in

2D problems) is the fluid domain in a time interval (0, T ).
The boundary and initial condition of the problem are:

u(x, 0) = u0(x) in Ω;
u(x, t) = g(x, t) on ∂ΩD, t ∈ (0, T ); (21)

n · σ (x, t) = t(x, t) on ∂ΩN , t ∈ (0, T );
where σ is defined by Eq. (19) and ΩD and ΩN are the
Dirichlet and Neumann boundary respectively. Note that n
indicates the outer unit normal vector whereas n (defined in
Eq. (3)) is the porosity.

The weak form of Eqs. (20) is derived next using a
Galerkin formulation. A mixed finite element method is
obtained, for which the approximation of both the velocity
components and the pressure (and their respective weighting
functions) is introduced.

The weak form of Eqs. (20) is
∫

Ω

w∂tudΩ +
∫

Ω

wu · ∇udΩ +
∫

Ω

wn∇ pdΩ

−
∫

Ω

w∇ · 2ν∇sudΩ +
∫

Ω

w(αu + βu · u)dΩ

−
∫

Ω

wnbdΩ = 0 ∀w ∈ V; (22a)
∫

Ω

q∇ · u = 0 ∀q ∈ Q; (22b)

where, for a fixed t ∈ (0, T ), u is assumed to belong to
the velocity space V ∈ [H1(Ω)]d of vector functions whose
components and their first derivatives are square-integrable,
and p belongs to the pressure space Q ∈ [H1(Ω)]d . w and
q are velocity and pressure weighting functions belonging to
the velocity space and to the space of square-integrable func-
tions (L2), respectively. Integrating by parts the convective
term, and identifying the domain boundary � as ∂Ω gives
∫

Ω

w∇ · 2ν∇sudΩ = −2
∫

Ω

∇w : ν∇sudΩ

+
∫

∂Ω

w · (2νn · ∇su)d�; (23)
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Remark 2 The pressure term is not integrated by parts. The
reason behind this choice and its consequences are largely
explained and justified in [47] where the same formulation
was presented for free surface flows only. This is not repeated
here for reason of simplicity. Let us just mention that, con-
cerning the boundary conditions, this implies that there is no
need of imposing explicitly the pressure boundary condition
at the price of giving up the possibility of applying viscous
tractions on the free surface. The normal force is applied
point-wise on the Neumann boundary, which is acceptable
for low viscosity flows like the ones analyzed in this work.
Finally, this also implies that the pressure space should be in
[H1(Ω)]d which is an additional requirement to the smooth-
ness of the function.

Substituting Eq. (23) into Eqs. (22a) , the system to be
solved becomes∫

Ω

w∂tudΩ +
∫

Ω

wu · ∇udΩ −
∫

Ω

wn∇ pdΩ

+ 2
∫

Ω

∇w : ν∇sudΩ +
∫

Ω

w(αu + βu · u)dΩ

−
∫

Ω

wnbdΩ = 0 ∀w ∈ V; (24a)
∫

Ω

q∇ · udΩ = 0 ∀q ∈ Q; (24b)

Let Vh be a finite element space to approximate V , and
Qh a finite element approximation toQ. The problem is now
finding uh ∈ Vh and ph ∈ Qh such that

∫
Ω

wh∂tuhdΩ +
∫

Ω

whuh · ∇uhdΩ −
∫

Ω

wh n∇ phdΩ

+ 2
∫

Ω

∇wh : ν∇suhdΩ +
∫

Ω

wh(αuh + βuh · uh)dΩ

−
∫

Ω

whnbdΩ = 0 ∀wh ∈ Vh; (25a)
∫

Ω

qh∇ · uhdΩ = 0 ∀qh ∈ Qh; (25b)

4.1 Stabilized Formulation

In this work low-order simplicial elements will be used with
the same linear interpolation for the velocity and pressure
values. Hence, as usual for this type of finite element approx-
imation, a stabilization technique is needed for both the
convective term and the incompressibility constraint. In the
present work the Orthogonal sub-grid scale OSS method
introduced by Codina [6,10] is used. In this case the space
for the sub-grid scale is taken orthogonal to the finite element
one.

Following strictly the operations outlined in [11,52], the
problem already presented in Eq. (25), with the insertion of

the convection and incompressibility stabilization terms, is:
find (uh, ph,πh, ξ h) in Vh × Qh × Vh × Vh such that

∫
Ω

wh∂tuhdΩ +
∫

Ω

whuh · ∇uhdΩ−
∫

Ω

nph(∇ · wh)dΩ

+ 2
∫

Ω

∇wh : ν∇uhdΩ +
∫

Ω

wh(αuh + βuh · uh)dΩ

−
∫

Ω

whnbdΩ −
∫

Ω

τ(uh · ∇wh)Ph
⊥

× (uh · ∇uh + βuh · uh)dΩ =0 ∀wh ∈ Vh;∫
Ω

qh∇ · uhdΩ+
∫

Ω

τ∇qhPh
⊥(n∇ ph)dΩ =0 ∀qh ∈ Qh;

(26)

where Ph
⊥ is the space of orthogonal projections Ph

⊥ =
I − Ph and Ph is the L2 − projection onto Vh . That is

Ph
⊥(uh · ∇uh + βuh · uh) = uh · ∇uh + βuh · uh − πh;

(27a)

Ph
⊥(∇ ph) = n∇ ph − ξh; (27b)

with πh and ξ h defined as

∫
Ω

whπhdΩ =
∫

Ω

wh(uh · ∇uh+βuh · uh)dΩ; ∀wh ∈Vh

(28a)∫
Ω

whξhdΩ =
∫

Ω

whn∇ phdΩ; ∀wh ∈ Vh (28b)

ξ andπ are not additional unknowns since these can be easily
expressed in terms of the velocity and pressure DOF through
Eqs. 28a and 28b.

Remark 3 A split-OSS method has been implemented.
Instead of taking thewhole residuumof themomentum equa-
tion as in the algebraig SubGrid Scale method (ASGS) [25],
only its orthogonal projection (the projection onto Ph

⊥) is
taken into account. Two considerations should be made:

– The inertia term, the body force term and the linear part
of the Darcy term belong to the finite element space Vh

(i.e. their projection onto Ph
⊥ is zero);

– The viscous term vanishes using linear elements;

Therefore Rm(uh) takes the form

Rm(uh) = Ph
⊥(uh · ∇uh + βuh · uh + ∇ ph); (29)

and the stabilization term should be∫
Ω

τ(uh · ∇wh + ∇qh)Rm(uh)dΩ; (30)
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which is different from the one used in the current work,
which is∫

Ω

τ(uh · ∇wh)Ph
⊥(uh · ∇uh + βuh · uh)dΩ

+
∫

Ω

τ∇qhPh
⊥(∇ ph)dΩ. (31)

In practice this second form has been seen to be very effective
[52] and is the one implemented in this work.

An error analysis leads to the definition of τi in function
of the parameters of the differential equation (like advec-
tive velocity u or kinematic viscosity ν) [16]. Following the
analysis of Codina [7,9], τ is defined as

τi =
(

δ

�t
+ 4νi

h2i
+ 2|ui |

hi
+ (α + β|ui|)

)−1

(32)

where hi is a characteristic mesh size taken equal to the min-
imum edge length (li j ) of the edges i j surrounding node i .
δ is a parameter that controls the importance of the dynamic
term in the stabilization (δ ∈ [0, 1]).

4.2 Discretization Procedure

The system of Eqs. (26) can be rewritten in a semi discrete
form as

M∂tu + KC (u) u + ∇p + Kμu

+ KD (u) u + Suu − Sππ − F = 0; (33a)

Du + Spp − Sξ ξ = 0; (33b)

Mπ − KC (u)u = 0; (33c)

Mξ − ∇p = 0; (33d)

where u is the vector of nodal velocities and p the vector
of nodal pressures. The operators take the form presented
in Table 1 and the stabilization operators Si are defined as
shown in Table 2.

In order to simplify the problem, Eqs. (33c) and (33d) can
be substituted in Eqs. (33a) and (33b) respectively, giving

M∂tu + KC (u) u + ∇p + Kμu

+ KD (u) u + Suu − Sπ M−1KC (u)u − F = 0; (34a)

Du + Spp − Sξ M−1∇p = 0; (34b)

The residual of the momentum equations without the
dynamic term is defined as

r (u, p) := KC (u) u + ∇p + Kμu

+ KD (u) u + Suu − Sπ M−1KC (u)u − F;
(35)

Table 1 Matrices and vectors of the semi discrete form of Eqs. (34)

Matrix term Continuum term

Mi j

∑
j

∫
Ω

Ni N j dΩ;

KC
i j (u)

∫
Ω

Ni
(
ug · ∇N j

)
dΩ;

Ki j Kμ
i j

∫
Ω

νi∇Ni · ∇N jdΩ;

KD
i j (u)

∑
j

∫
Ω

NiugN j dΩ

Gi j

∫
Ω

ni∇Ni N j dΩ;

∇i j

∫
Ω

ni Ni∇N jdΩ;

Di j

∫
Ω

Ni∇NT
j dΩ;

Fi

∫
Ω

ni Ni dΩ

Table 2 Stabilization matrices and vectors of system of Eqs. (34)

Matrix term Continuum term

Su
i j

∫
Ω

τi (ug · ∇Ni )(ug · ∇N j + β|ug|N j )dΩ

Sπ
i j

∫
Ω

τi Ni (ug · ∇N j + β|ug|N j )dΩ

Sp
i j

∫
Ω

τi∇Ni · ∇N jdΩ

Sξ
i j

∫
Ω

τi Ni∇N jdΩ

4.3 Solution Strategy and Time Discretization Scheme

The modified form of the Navier–Stokes equations is solved
using a fractional step (FS) algorithm. Pressure-splitting
approaches of the fractional-step type are very convenient
due to their high computational efficiency for flows at high
Re. The fundamental idea is to split the momentum equation
in two, decoupling the degrees of freedom of the problem.
This allows to solve the momentum equation keeping the
pressure fixed and later to correct the pressure so as to guar-
antee the satisfaction of the mass balance constraint [8].

Traditionally FS methods are used in an implicit con-
text and the momentum equation is discretized in time using
schemes like for instance the Backward Differentiation For-
mula (BDF). However it should be noticed that in dealing
with free surface flows, the fluid domain and, therefore,
its boundaries, are subjected to frequent and radical shape
changes. These lead, in the practice, to a restriction of the
Courant Friedrichs Lewy (CFL) number to values in the order
of the unity. In this context the use of a semi-explicit scheme
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like the one presented in this paper, can be competitive since
the time steps are of the same order of magnitude.

These considerations together with the lower computa-
tional cost and the highly parallelizablility of an explicit
method, lead us to choose this approach for the time inte-
gration of the system.

4.3.1 Runge Kutta Time Integration Scheme

Among the m-Runge Kutta schemes, it is known that the
order of the time integration can be arbitrarily chosen,
although they give m − th order of accuracy up to m = 4,
whenever for m > 4 the order is lower than m. On the
other hand, it is demonstrated that the 4th order Runge Kutta
scheme (RK4) is the optimal compromise between the num-
ber of intermediate steps and the permissible time step size
in spite of its conditional stability [16].

RK4 makes use of the solution at time tn to evaluate the
solution at time tn+1 by calculating the residual of the equa-
tions at a certain number of intermediate steps.

This means that for a general Cauchy problem

∂y

∂t
= f (y(t), t); (36)

a one step explicit approach leads to a time integration
scheme with the following general format

yn+1 − yn

�t
= f (yn, tn); (37)

whereas for the 4th order Runge Kutta method

yn+1 − yn

�t
= 1

6
(r1 + 2 r2 + 2 r3 + r4); (38)

where ri with i = 1, 2, 3, 4 are the residuals of the stationary
form of Eq. 36 evaluated at

r1 = f
(
tn, yn

) ;
r2 = f

(
tn + �t

2
, yn + �t

2
· r1

)
;

r3 = f

(
tn + �t

2
, yn + +�t

2
· r2

)
;

r4 = f
(
tn + �t, yn + �t · r3

)
. (39)

In order to fully explain every stage of the integration
scheme applied to the momentum equation let us use the
definition of the stabilized residual obtained in Eq. (35).

The semi-discrete form of the momentum equations in
terms of the residuals at the intermediate stages is then

M
un+1−un

�t
= 1

6
[r1 + 2 r2 + 2 r3 + r4];

= 1

6

[
r(un, pn)+2 r(uθ1, pθ1)+2 r(uθ2, pθ2)

+ r(uθ3, pθ3)
]
; (40)

where r(uθi , pθi ) are the residuals of the momentum equa-
tions defined by Eq. (35) evaluated at θi intermediate stages.

To correctly evaluate the residual at each intermediate
time step, the solution of the continuity equation would have
been required. This would have considerably reduced the
efficiency requiring a huge computational effort. In order to
overcome this issue and according to [48], a linear varia-
tion of pressure is assumed within the time step. It should be
remarked that this assumption leads the velocity field to be
divergence-free only at the end of the step.

Redefining Eq. (35) as

r(u, p) = ru(u) + rp(p); (41)

being ru(u) the part of the residual related to velocity and
rp(p) the part related to the pressure gradients. The residuals
become

r1 := r(un, pn) = ru(un) + ∇pn;
r2 := r(uθ1, pθ1) = ru(uθ1) + 1

2

(
∇pn + ∇pn+1

)
;

r3 := r(uθ2, pθ2) = ru(uθ2) + 1

2

(
∇pn + ∇pn+1

)
;

r4 := r(uθ3, pθ3) = ru(uθ3) + ∇pn+1; (42)

The global momentum eqation (Eq. (40)) can be symbol-
ically rewritten as

M
un+1−un

�t
= 1

6

[
ru(un)+2 ru(uθ1)+2 ru(uθ2)+ru(uθ3)

]

+ 1

2

[
∇pn + ∇pn+1

]
(43)

4.3.2 Final System Using a Fractional Step Approach and a
RK4 Scheme

In order to decouple the solution for the velocity and pressure,
the traditional pressure splitting procedure is performed and
the fractional step velocity ũ is inserted. This gives

M
ũ−un

�t
= 1

6

[
ru(un)+2 ru(ũθ1)+2 ru(ũθ2)+ru(ũθ3)

]

+ 1

2
∇pn; (44a)

M
un+1 − ũ

�t
+ 1

2
∇(pn+1 − pn) = 0; (44b)

Dun+1 + Sppn+1 − Sξ M−1Gpn+1 = 0; (44c)

where it has to be remarked that Eq. (44a) only depends on
the pressure at the previous time step and on the intermediate
fractional step velocities, leading to a slightly different RK4
steps as explained later on.

From Eq. (44b)

un+1 = ũ − �t

2
M−1∇(pn+1 − pn); (45)
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that substituted in Eq. (44c) gives

Dũ − �t

2
DM−1∇(pn+1 − pn) + Sppn+1

− Sξ M−1Gpn+1 = 0. (46)

Finally, substituting the discrete Laplacian (DM−1∇) by
the continuous one (L) according to [8], the final system to
be solved is:

M
ũ − un

�t
= 1

6

[
ru(ũn) + 2 ru(ũθ1)

+ 2 ru(ũθ2) + ru(ũθ3)
]

+ 1

2
∇pn; (47a)

�t

2
L

(
pn+1 − pn

)
= Dũ + Sppn+1 − Sξ M−1Gpn+1;

(47b)

un+1 = ũ − �t

2
M−1∇

(
pn+1 − pn

)
; (47c)

where the residuals of Eq. (47a) are evaluated according to
the following steps

ru(un); (48a)

ũθ1 = un + M−1�t

2

[
ru(un) + ∇pn] ; (48b)

ru(ũθ1); (48c)

ũθ2 = un + M−1�t

2

[
ru(ũθ1) + 1

2
∇pn

]
; (48d)

ru(ũθ2) (48e)

ũθ3 = un + M−1�t

[
ru(ũθ2) + 1

2
∇pn

]
; (48f)

ru(ũθ3); (48g)

4.4 The Edge-based Approach

Having made the choice of an explicit scheme for the time
integration of the momentum equation, a suitable data struc-
ture for the fast calculation of the residuals should be devised.
The idea to be exploited is that many of the integrals involved
in the computation of the residual can be written in terms of
constant operators which can be directly applied to the nodal
values. Different techniques were developed over the years
to reach such goal. In this work the nodal-based approach
described in [6] is blended with the edge-based proposed in
[52] and [35].

The starting point is the systematic usage of the partition-
of-unity property of the FE shape functions, which provides
the relations
∑
i

Ni = 1 �⇒ Ni = 1 −
∑
j 	=i

N j ; (49)

and, as a consequence,
∑
i

∇Ni = 0 �⇒ ∇Ni = −
∑
j 	=i

∇N j . (50)

The edge-based approach is obtained by applying sys-
tematically such relations for the computation of the discrete
operators of interest. The detailed procedure to obtain all
the needed operators is presented by the authors in [47] by
expressing the contributions to the entry corresponding to a
given node i . The j index indicates one of the neighbor nodes
of i which shares an edge with it.

The common features of all of the terms described is that
they can be evaluated for each node i independently of all of
the others. This implies that the calculation of the residuals
can be performed in parallel for each node of the mesh.

5 Free Surface Tracking: The Level Set Method

The problem is solved in an Eulerian fixed mesh approach.
Hence a technique to accurately track the evolution of the
free surface should be adopted.

In the present work the level set technique presented by
the authors in [47] is used. In what follows a brief overview
of the relevant aspects of the level set strategy are pointed
out, nevertheless the consultation of [47] and [25] is recom-
mended for a comprehensive analysis of the algorithm.

In the level set technique the free surface is represented by
a signed distance function, the level set function (ϕ(x, t)) that
takes the value 0 on the free surface, takes negative values in
the fluid domain and positive values outside the fluid domain
[46].

The fluid domain Ω(t) is evolving during the process and
can move in the global domain of analysis Ω0 according to
the solution of the Navier–Stokes problem presented in the
previous sections.

The level set function, for a given time instant t , is defined
as

ϕ(x) = d(x) if x /∈ Ω, t ∈ (0, T );
ϕ(x) = d(x) = 0 if x ∈ ∂Ω, t ∈ (0, T );
ϕ(x) = −d(x) if x ∈ Ω, t ∈ (0, T );

(51)

where d(x) = min|x − xi| being xi is any point on the free
surface boundary ∂Ω .

The problem is thus transferred to the solution of the fol-
lowing transport problem

∂tϕ + u · ∇ϕ = 0 in Ω0, t ∈ (0, T ),

ϕ = ϕ on ∂Ωin, t ∈ (0, T ),

ϕ(x, 0) = ϕ0(x) in Ω0,

(52)

where ∂Ωin := {x ∈ ∂Ω0 | u · n < 0} is the inflow part of
∂Ωm .
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Eqs. (52) are solved using a RK4 scheme and an Orthog-
onal Sub-grid scale stabilization technique [47].

The coupling between the level set and the Navier–Stokes
solver is accurately described in [47] and is not repeated
here since no difference is introduced by the extension of the
model to the treatment of porous zones.

6 The Algorithm

The steps of the global algorithm for modeling a free surface
flow in a porous medium are summarized in Box 1.

1. Given the level set function ϕn , extrapolate veloc-
ity, pressure and pressure gradient so to obtain un

ext ,
pnext and ∇ pnext defined as the velocity, pressure and
pressure gradient over the extrapolated domain.

2. Convect the level set function ϕ defining the new
free surface at tn+1 using un and un

ext . Note that the
extrapolated values are only required within a lim-
ited number of layers which are the ones on which
the convection will be actually performed.

3. Re-compute (if needed) the distance in the whole
domain starting from the zero of the level set func-
tion at tn+1 obtained at Step 2.

4. Solve the momentum Eq. (47a). Note that the solu-
tion is performed on the domain at the predicted free
surface position (ϕn+1).

5. Set the approximate pressure boundary condi-
tions on ∂Ωn+1 so to guarantee that the pressure
is (approximately) zero at the position indicated by
the zero of the level set function. In order to do that,
the geometric distance is evaluated on L1.

6. Solve for the pressure (Eq. (47b)).
7. Solve for the correction (Eq. (47c)).
8. Move to next time step.

Box 1. Algorithm.

The resulting code has been implemented in the Kratos
multiphysics open source C++ platform [12,24].

7 Numerical Examples

Aseries of numerical test is reported in the following sections
with the aim of validating the presented technique designed
to solve the fluid flow within a porous material and in the
clear fluid region with a unified formulation.

The results are compared to experimental data or to results
obtained with other numerical techniques.

First the flux throughout a homogeneous rockfill small
scale dam is simulated varying the coefficients of the resis-
tance law to analyze their effect on the fluid flow.

In the second example a small scale dam with different
materials is reproduced under different flow condition.

These numerical examples follow and complete the work
presented in [28] and [29] where the authors used an Ergun
resistance law to simulate the experiments on small scale
prototype dams carried out at the Technical University of
Madrid by Prof Miguel Angel Toledo and his group and at
the at the Center for Hydrographic Studies of CEDEX in
Madrid (Spain) [27].

Finally an example of a dambreak in presence of a porous
layer is reproduced and compared to the results obtained in
the University of Cantabria (Spain) using a VARANS model
[14].

7.1 Homogeneous Rockfill Dam: Sensitivity in the
Resistance Law Chosen

In this example the seepage line and pressure distribution
inside a dam made of homogeneous material is analyzed in
order to check the influence of the linear (α) and non linear
(β) part of the resistance law (Eq. (18)).

Among the different quadratic laws proposed in the liter-
ature to describe the seepage evolution inside rockfill slopes
(see Section 2.2) the Ergun coefficients is taken as a reference
in the current example, i.e.

αE = 150 · (1 − n)2

n3
· μ

D2
50

; (53)

and

βE = 1.75 · (1 − n)

n3
· ρ

D50
; (54)

The authors have already used this specific resistance law
in previousworks [26,29]with positive results. Nevertheless,
it was observed that the Ergun law under-estimates the pres-
sure loss inside the rockfill when the porosity is increased
for a constant diameter of the particle (D50); that is, when
a homogeneous material, instead of a well grained one, is
used.

The geometry of the example reproduces an experiment
carried out at the laboratories of the Center for Hydrographic
Studies of CEDEXand is detailed in Fig. 4. The physical dam
model is composed of homogeneous material with porosity
n = 0.4921 and D50 = 0.35 and the inlet discharge is Q =
14.85 l/s.

In this case, the corresponding Ergun coefficients are
αE = 264.87Pas/m2 and βE =212877Pas2/m3.

In order to verify the relation between the pressure drop
and the linear and non linear terms of the resistance equa-
tion a parametric study is performed. The linear coefficient is
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Fig. 4 Downstream slope 1:3. Geometry of the dam model used in the
experiments. The width of the flume is 1m

increased 5, 10, 20 and 30 times respectively, and the bottom
pressure distribution is registered at the stationary regime as
shown in Fig. 5. As expected, no relevant differences are
observed in the pressure curves, in fact the linear part of the
resistance law (Eq. (6)) (corresponding to the linear Darcy
law) is not dominating in turbulent regimes. On the contrary,
when the linear coefficient is kept constant and the non lin-
ear one is increased as described, the dissipation is varying
sensibly, as shown in Fig. 6.

The local turbulent effects are therefore much more evi-
dent for large porosities and the non linear term should be 30
times larger to correctly simulate the energy dissipation. The
suitable coefficients of the resistance law should be αE and
30βE . The same material properties have been used chang-
ing the geometrical configuration of the dam (see Fig. 7) and
increasing the inlet discharge to 19.14 l/s. Also in this case
the coefficients of the resistance law should be αE and 30βE

(see Fig. 8) to correctly reproduce the dissipation. This con-

Fig. 7 Downstream slope 1:2.2. Geometry of the dam model used in
the experiments. The width of the flume is 1m

firms that the resistance law is not influenced by the geom-
etry of the downstream shoulder, but only by the material
properties.

7.2 Dam with Layers of Different Materials

The second example simulates the flow of water through
porous material with different characteristics and variable
porosities. With this purpose, the experiments carried out at
the Technical University of Madrid (UPM) by Prof Miguel
Angel Toledo and Dr. Rafael Moran are reproduced (Figs. 9,
10). The objective of their research was the study of pro-
tection at the downstream toe of a rockfill dam to avoid the
collapse in overtopping scenarios [39] and [40].

In the chosen experiment, a small scale dam made of two
different rockfill materials is considered. The body of the
dam is made of incoherent rockfill (material 1) with porosity

Fig. 5 Downstream slope 1:3.
Sensitivity on the linear
coefficient of the resistance law
α

Fig. 6 Downstream slope 1:3.
Sensitivity on the non linear
coefficient of the resistance law
β
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Fig. 8 Downstream slope
1 : 2.2. Sensitivity on the non
linear coefficient of the
resistance law β

Fig. 9 Geometry of the experimental setting of UPM

n = 0.41 and D50 = 12.6mm. The protection layer at the
toe of the dam is made of coarser rockfill with n = 0.41 and
D50 = 35mm (material 2).

Fig. 12 Geometrical configuration of the porous dam-breaking

Fig. 10 Mesh and boundary
conditions of the model of the
multi-layers dam

Fig. 11 Numerical and
experimental comparison of
pressure heads distribution at
the bottom of the multi layer
dam. Three different incoming
discharges have been
considered: 9.2 l/s (continuous
line), 11.2 l/s (dotted line),
15.9 l/s (pointed line)
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Fig. 13 Porous dam breaking
with h = 0.14cm. Current
results (red solid line) compared
to the experimental laboratory
data (circle) and the numerical
results presented in [14].
a t = 0.4s, b t = 0.8s,
c t = 1, 2 s, d t = 1.6s,
e t = 4.0 s. (Color figure online)

Fig. 14 Porous dam breaking
with h = 0.25cm. Current
results (blue solid line)
compared to the experimental
laboratory data (circle) and the
numerical results presented in
[14]. a t = 0.4s, b t = 0.8s,
c t = 1, 2 s, d t = 1.6s,
e t = 4.0 s. (Color figure online)

The experiment was carried out in a flume of height h =
1.4m, width w = 1.32m and length l = 13, 7m.

The resistance laws used in the simulation for the material
1 and 2 were experimentally derived in [39] and are respec-
tively:

i1 = 26 585.1u + 641 083.5u2; (55)

i2 = 8 044.2 u + 518 164.2 u2; (56)

where i1 and i2 are the pressure drop due to seepage in
material 1 and 2 respectively. For an incoming discharge up to
16 l/sm no failure was observed during the experiments and,
therefore, the dam can be considered undeformable during
the evaluation of the seepage.
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The simulation was run with three different incoming dis-
charges: Q1 = 9.2 l/s, Q2 = 11.2 l/s, Q3 = 15.9 l/s. The
pressure head is plotted in Fig. 11 and compared to the data
registered during the experiment. The experimental data have
an error of approximately 10% which is represented by the
error bar in the graphs. The numerical results correctly match
the experimental values.

7.3 Porous Dambreak

The third example reproduces a dambreak of a water column
in presence of a porous material covering part of the domain.

This example analyzes the capability of the model to sim-
ulate transient phenomena both in 2D and 3D. The results
are compared to the work of del Jesus [14]. In that case a
VARANS model was developed to simulate the effects of
waves on permeable coastal structures and a Forchheimer
resistance law was used to take into account the presence of
the porous media.

The geometry of the 2D model mimics the experiments
carried out by Lin [34] and is schematically shown in Fig. 12.
A water column of variable height is left falling in a tank
where a porous layer is set in the middle.

Thematerial used in the experiment to simulate the porous
layer are glass beads with porosity n = 0.39 and averaged
diameter D50 = 3mm. The resistance law is the one obtained
in [14].

Fig. 16 3D dambreak of a
water column in a tank partially
covered by porous material.
Comparison between the results
of the proposed method (right
column) and the results taken
from [14] (left column). From
above, time instances 0, 0.2,
0.25, 0.35 and 0.4 seconds.
a Results taken from [14].
b Current results
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Fig. 17 3D dambreak of a
water column in a tank partially
covered by porous material.
Comparison between the results
of the proposed method (right
column) and the results taken
from [14] (left column). From
above, time instances 0.6, 1.0,
1.13, 1.33 and 1.75 seconds.
a Results taken from [14].
b Current results

i = 1 628 460 u + 8 407 170 u2; (57)

The 2D analysis is carried outwith amesh of 49,000 linear
triangular elements and 24 800 nodes.

Two different water heights are simulated: h1 = 14cm
and h2 = 25cm. In both cases, the configuration of the free
surface at different instants is compared to the experimental
data and with the results obtained by del Jesus in Figs. 13
and 14.

The matching between the results obtained in the present
numerical technique and the VARANS model is evident.
Both techniques present a smoother behavior with respect to
experimental data in the region upstream the porousmedium.
Moreover, at the initial steps the numerical results present a

delay in the lower part of the fluid front (see Figs. 13a, b, 14a,
b). This might be the consequence of the initial condition of
free falling of the water column during the experiment. The
resistance given by the porousmatrix is correctly reproduced.

Del Jesus proposed some preliminary results of a 3D
porous dambreak [14]. In this case, the porous column cov-
ers only part of the width of the tank so to see the effect of
the percolation and of the flow in the clear fluid region at
the same time. The geometry proposed in [14] is presented
in Fig. 15. The 3D analysis is carried out with a mesh of
543,000 four-noded linear tetrahedral elements and 97 400
nodes.

Figures 16 and 17 present a qualitative comparison
between the results obtained by del Jesus with the VARANS
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Fig. 15 Geometrical configuration of the 3D porous dam-breaking

models (left column) and those obtained by the authors using
the current model (right column). The simulation lasts two
seconds and the comparison of the results is done at time
0 s, 0, 2 s, 0, 25s, 0, 35s, 0, 4s in Fig. 16 and at 0, 6s, 1, 0 s,
1, 13s, 1, 33s, 1, 75s in Fig. 17. The two models reproduce
the dambreak with a high level of similarity.

8 Conclusions

In the present work a model for the simulation of the seep-
age evolution in porous materials and free surface flow is
presented. A unified formulation of the Navier–Stokes equa-
tions has been derived to take into account the presence of a
porousmaterial. Themodel is conceived to represent seepage
problems that fall outside the range of validity of Darcy law,
like rockfill or other materials with extremely high perme-
ability (this is the case, for instance, of concrete tetrapods or
cubes used for coastal protections). For this purpose a Forch-
heimer resistance law has been added as dissipation term in
the linear momentum equations. The key aspect of the model
is that the governing equations reduce to the classicalNavier–
Stokes equations in the clear fluid region.

The governing equations are solved with a mixed finite
element method with equal oder interpolation of the veloc-
ity and pressure values. A fractional step procedure and a
semi explicit RK4 time integration scheme have been used
to improve efficiency. For the same reason the traditional ele-
ment based approach has been substituted by an edge based
one.

The problem is solved in an Eulerian framework, using a
fixed mesh approach. A level set technique is employed to
accurately track the evolution of the free surface both inside
and outside the porous material.

The model proposed has been validated by means of a
series of experiments on small scale prototype dams andother
laboratory tests confirming its validity and the accuracy of
the current approach both in transient and in steady regimes
in 2D and 3D.
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