
Arch Computat Methods Eng (2016) 23:171–190
DOI 10.1007/s11831-014-9139-3

ORIGINAL PAPER

Practical Application of the Stochastic Finite Element Method

José David Arregui-Mena · Lee Margetts ·
Paul M. Mummery

Received: 3 November 2014 / Accepted: 12 November 2014 / Published online: 6 December 2014
© CIMNE, Barcelona, Spain 2014

Abstract The stochastic finite element method is an exten-
sion of the FEM that considers the uncertainty of a system
that arises through variations in initial conditions, materi-
als or geometry. Systems which display a measurable degree
of disorder can be studied efficiently using a probabilistic
approach. Different scenarios can be randomly generated
with the SFEM to study the behaviour of systems that take
into account prior knowledge of the differing variations in
properties. This review paper introduces the most commonly
used techniques: directMonteCarlo simulation, the perturba-
tionmethod and the spectral stochastic finite elementmethod.
It then looks at the currently available software for the SFEM
and provides examples from the disciplines of materials sci-
ence, biomechanics and engineering to illustrate different
procedures by which the SFEM is practically used. The aim
of the paper is to help scientists and engineers quickly assess
how they might apply SFEM to their own research and guide
them towards key publications.

1 Introduction

The finite element method (FEM) is a widely accepted
numerical method for solving problems in science and engi-
neering. The adaptive virtue of this method offers a simple
way to solve complex problems in structural analysis, heat
transfer, fluid mechanics and electromagnetic fields among
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other applications. The advantages of the FEM are well
known: it can be applied to complex geometries with mixed
material and boundary conditions. It is also suitable for time
dependent problems and nonlinear material behaviour. How-
ever, the FEM is deterministic by nature and is therefore lim-
ited to describe the general characteristics of a system. In
particular, it cannot directly study a system reliably where
there exists some degree of uncertainty.

Different sources of uncertainty arise in the study of com-
plex phenomena. These include human error [1], dynamic
loading [2], inherent randomness of the material [3] or lack
of data [4]. In a system with large disorder several problems
exist in enabling the sources of uncertainty to be quantified
within a deterministic framework. In practice a researcher
that uses deterministic FEM is typically restricted to the
average values of loads and material properties applied to
a model with an idealized geometry, thus reducing the phys-
ical significance of the model. For significant variations and
randomness the average values of the properties of a physical
system are only a rough representation of the system.

A common practice in engineering to overcome the effects
of uncertainty with a deterministic approach is to use safety
factors [5,6]. Several types of safety factor are used to take
into account the uncertainty of a systemand are valuable tools
used to assess the reliability of a structure. However, safety
factors cannot quantify or predict the influence and sources of
randomness in a system [4]. Nuclear reactors, dams, bridges
and other complex structures require the engineer to have a
deeper understanding of the physical phenomena to under-
stand and assess reliability.

The classic FEM has been combined with other method-
ologies to create a new type of analysis to study systems with
random variations and/or uncertainty in parameters. It has
been given the names the stochastic finite element method
(SFEM) [7,8]; the random finite element method (RFEM)
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[9,10] and the probabilistic finite element method (PFEM)
[11,12]. To represent the stochastic nature of the system,
random fields are introduced to the classic FEM to capture
and create different stochastic scenarios. The influence of
the random fluctuations is evaluated by calculating the sta-
tistical information of the response variables and evaluating
the probability of an outcome of the system, such as failure.
The SFEMhas grown in importance over time.Many articles
have been written that cover the mathematical background
and extensions of this technique. Several disciplines such as
geotechnical engineering, mechanical engineering and civil
engineering have started to adopt theSFEMas a tool to ensure
the reliability of foundations and structures.

Extensive general reviews of themathematical framework
of the SFEM have been presented elsewhere [2,13–16]. A
useful reference that covers the topic is a state-of-art report
on computational stochastic mechanics [17]. Software that
has implemented the SFEM has also been reviewed [18]. An
overview of the types and modelling of uncertainties in com-
putation structural dynamics is given bySoize [19].However,
there are no review articles that focus on recent applications
and engineering procedures. The main aim of this article is
to bridge that gap, complementing the aforementioned arti-
cles with a different perspective; applications of the SFEM
in engineering and science.

This article is structured as follows: Sect. 2 contains a brief
description of the SFEM, techniques to represent the random-
ness of amodel and a summary of themain approaches of this
technique (important references that serve as a guideline for
each method are included); Sect. 3 covers the available soft-
ware of SFEM and Stochastic Mechanics; Sect. 4 presents a
selection of recent applications of the SFEM in science and
engineering. The final section provides a summary of the
SFEM and the advantages and disadvantages of each of the
branches covered.

2 A Brief Review of the Stochastic Finite Element
Method (SFEM)

The stochastic finite element method (SFEM) is an exten-
sion of the FEM that incorporates random parameters. The
SFEM can represent randomness in one or more of the main
components of the classic FEM, namely geometry, external
forces and material properties. To study the uncertainty and
inherent randomness of a system the SFEM adopts different
approaches. Each uses the mean, variance and correlation
coefficients of the response variables to assess a quantity of
interest, such as the probability of failure of a system. Several
variants of the SFEMhave been developed. Three of these are
the most used and accepted: Monte Carlo simulation (MCS)
[20], Perturbation Method [11], and the spectral stochastic
finite element method (SSFEM) [21]. Each method adopts a

different approach to represent, solve and study the random-
ness of a system.

The inclusion and construction of the random parameters
leads to an increase in the computational power required to
construct and to solve a single “realization” with the SFEM.
Furthermore, usually many realizations are required to char-
acterize a physical model. Each branch of the SFEM has
different approaches to manipulate the random parameters
and solve the equilibrium equations. The main methodology
of each variant will be shown in the following subsections
and the general structure of each method will be covered. For
a concise evaluation of the advantages and disadvantages of
each method, the reader is referred to the report by Sudret
and Der Kiureghian [13].

2.1 Random Fields

The three variants of the SFEM share a common component
that describes the inherent randomness of a system, namely
random fields. An ideal random field should capture themain
attributes of the random system by taking into account the
minimum number of meaningful and measurable parameters
of a system. A random field can be described as a set of
indexed random variables that depict the random nature of a
system. The index represents the position of the random vari-
able in space or time or in both [22]. Random fields are char-
acterized by themain statistical information of the variable of
interest such as the mean, variance, probability distribution,
autocorrelation function, among other statistical parameters.
Several random field representation methods that determine
the properties of amaterial can be found in literature, namely:
the local average method [23], turning-bands method (TBM)
[24], Fourier Transform Method (FTM) [25] and the Local
Average Subdivision (LAS) method [26]. There are a num-
ber of useful guides available in the literature that focus on
random fields and their usage [10,13]. An overview of dis-
cretization methods and comparison of methods.

A review paper by Srimula and Chryssanthopoulus [27]
provides an overview on how to treat uncertainty and cali-
brate random fields for fibre reinforced polymer-matrix com-
posites. The content of this article contains useful informa-
tion on how to characterize and identify different types of
uncertainties at different length scales. Moreover, Represen-
tative Volume Element (RVE), homogenization and digital
image-based characterization techniques are described with
several examples in order to aid researchers to integrate these
methodologies to model the uncertainty of composites. A
detailed compilation of experimental data and characteris-
tics of several model parameters is provided. The correla-
tion length of several composites and references to studies
that show the influence of this parameter in stochastic mod-
elling is provided. Additional material regarding the criteria
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adopted in stochastic failure models and reliability assess-
ment are also included.

Despite the tremendous development and variety of ran-
dom field generators, the connection between experimental
research and random fields is poor in several areas of study
and has been an ongoing concern since the early stages of the
SFEM (Vanmarcke et al. [15]). Several assumptions are used
to calibrate the parameters of the random fields to overcome
the lack of experimental data (Stefanou [16]). Moreover,
experimental techniques for the acquisition of meaningful
data for the calibration of random fields have not been fully
developed. This issue has been noted by several researchers.
A sensibility study of the parameters that characterize a ran-
dom field and useful references describing how to calibrate
random fields is covered by Charmpis et al. [28].

In geotechnical engineering the influence of the type of
statistical distributions used to represent random parameters
for a random field in the analysis of foundation settlements
has been covered elsewhere [29]. Section 4 gives some exam-
ples of calibrated random fields.

2.2 Random Media

This section focuses on techniques used to study two phase
randommedia (porousmaterials) using random texture mod-
els by Jeulin [30] and Torquato [31]. Heterogeneous media
with complex geometries and patterns can bemodelled prob-
abilistically using information derived from 2D and 3D
images. Several types of algorithm have been developed that
generate porous media. One of the most general approaches
was proposed by Yeong and Torquato [32]. Their method
allows the addition of asmany correlation functions (descrip-
tors of the morphology of the material) as required. It uses a
modified version of simulated annealing and can be used to
describe multiphase anisotropic media. In their paper, they
give an example where they use digitization to reconstruct
a sample of Fontainebleau sandstone. The general proce-
dure is as follows: (1) 2D images or micrographs are used to
obtain the volume fraction of material and voids by counting
the pixels of the image; (2) An initial guess or configura-
tion with the given volume fractions is created; (3) After
this the initial configuration is manipulated to create a new
reconstruction. The new reconstructions are then tested to
see if the new reconstruction minimizes the “energy” of the
system. The energy of the system is given by the squared
difference of the reference and simulated correlation func-
tions. These correlation functions represent the morphology
and macroscopic properties of the material, such as: pore
size, volume fraction of the voids and material, degree of
connectedness between the voids, permeability and other
properties.

Different algorithms have been suggested for other mate-
rials such as Gilsocarbon nuclear graphite [33], and isotropic

silica [34]. Amonograph byOstoja-Starzewski [35] provides
the theory and background of both randommediamodels and
random fields.

2.3 Monte Carlo Simulation

Monte Carlo simulation (MCS) is themost general and direct
approach for the SFEM [3,36]. This methodology merges
the Monte Carlo simulation technique with the deterministic
FEM. This methodology proceeds as follows: (1) Determine
the set of random and deterministic variables; (2) Charac-
terize the density function and correlation parameters of the
random variables; (3) Use a random field generator to pro-
duce a set of random fields; (4) Calculate the solution of
each realization with the deterministic FEM; (5) Gather and
analyse the information of the simulations and (6) Verify the
accuracy of the procedure (Fig. 1) [37].

General formulae to calculate the averageμri (Eq. 1), stan-
dard deviation σri (Eq. 2) of the response variables, and one
estimator of the probability of failure pf (Eq. 3) for the MCS
approach are given by:

μri ≈ 1

N

N∑

j=1

r ( j)
i (1)

σ 2
ri ≈ 1

N − 1

N∑

j=1

(
r ( j)
i − μri

)2
(2)

p f ≈ p̂ f = 1

N

N∑

i=1

1 f

(
θ(i)

)
(3)

where N is the sample size, the index j = 1, 2, 3 … N, r(j)i
is the response variable of interest, θ

(i) is used to denote
each realization, i is the number of samples and the symbol
1f(θ(i)) is a binary parameter that gives the value of 1 if the
value r(j)i is above a given threshold or condition and 0 if not
[2]. Like any other method that uses the MCS, the estimators
of the response variables are dependent on the number of
realizations that are used to calculate them. Equations (1),
(2) and (3) confirm the idea that the accuracy of this method
is dependent on the number of realizations (N).

The MCS is the most simple and direct approach. In gen-
eral, of all the methods, this one requires the most com-
putational power, especially with systems that have great
variability and involve complex models that include sev-
eral random variables. Even with this disadvantage, MCS
is widely accepted and is often used to validate the Per-
turbation Method and the SSFEM. In several cases the last
two approaches are complemented or merged with the MCS.
Furthermore, alternative procedures have been proposed to
reduce the computational effort to calculate the response vari-
ables and the probability of failure of a system by reducing
the population of the required samples [3].An extensive com-
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Fig. 1 Schematic of the general procedure of the Monte Carlo simulation method

parison of procedures used to decrease the number of realiza-
tions required by the MCS can be found in a benchmarking
exercise [38]. In addition to these techniques, the paralleliza-
tion of the solution methods of the MCS has been explored
by some authors [39–41].

2.4 Perturbation Method

The Perturbation Method is another popular branch of the
SFEM [42–44]. This method uses Taylor series expansions
to introduce randomness into the system. When the spatial
variation of material properties are selected as a random vari-
able, the stiffness matrix takes the form of Eq. (4).

K = K0 +
N∑

i=1

KI
iαi + 1

2

N∑

i=1

N∑

j=1

KII
i jαiα j + · · · (4)

where αi (i = 1, 2, …, N) are the random variables that rep-
resent the spatial variation of the material properties. These
values are assumed to have zero-mean and be relatively small
in comparison to the mean value of the input parameter
(αi << 1). Furthermore, K0 is the mean value of the input
parameter, KI

i andK
II
ij are calculated from the first and second

derivatives evaluated at α = 0, as in (Eqs. 5, 6).

KI
i = ∂K

∂αi

∣∣∣∣
α=0

(5)

K II
i j = ∂2K

∂αi∂α j

∣∣∣∣
α=0

(6)

When the external force, F, is considered as random, the force
vector is expanded as in Eq. (7), and the terms FIi and F

II
ij are

obtained from the partial derivatives calculated in Eqs. (8)
and (9). F0 is the mean value of the force vector.

F = F0 +
N∑

i=1

FIiαi + 1

2

N∑
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N∑
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F I
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F II
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(9)

If the force vector F, is chosen to be deterministic, the par-
tial derivatives of F become zero. Similarly the displacement
vector U is represented in the form of the equation below
(Eq. 10):

U = U0 +
N∑

i=1

UI
iαi + 1

2

N∑

i=1

N∑

j=1

UII
i jαiα j + · · · (10)

The terms U0, UI
i and UII

ij of Eq. (10) can be alternatively
represented by the following recursive equations:

U0 = (K0)
−1 F0 (11)

UI
i = (K0)

−1
(
FIi − KI

iU
0
)

(12)

UII
i j =

(
K0

)−1 (
FIIi j − KI

iU
I
j − KI

jU
I
i − KII

i jU
0
)

(13)

Equation (11) gives the deterministic nodal displacement,
Eq. (12) gives the first-order perturbation of the displace-
ment vector, and Eq. (13) provides the second-order pertur-
bation of the displacement vector. For a detailed explanation
of these equations and the calculation of stress and strain the
reader is referred to [11,42]. The accuracy of the Perturbation
Method increases with the number of terms that are used to
calculate the response variables. Higher order moments can
be obtained using a similar procedure to the one shown previ-
ously. The calculation of higher-order moments greater than
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two are rarely found in literature, this is because of the high
computational cost.

Using the previous expressions, the mean E and covari-
ance Cov matrices are given by Eqs. (14) and (15).

E [U] ≈ U 0 + 1

2

N∑

i=1

N∑

j=1

U II
i j Cov

[
αi , α j

]
(14)

Cov [U,U ] ≈
N∑

i=1

N∑

j=1

U I
i ·

(
U I

j

)T
Cov

[
αi , α j

]
(15)

In general, the Perturbation Method is limited to values of
random variables that are not large in comparison to their
mean values. The coefficient of variation is usually set around
10 to 15 per cent of the mean value of the variable of interest.
However, studies using higher coefficients of variation do
exist [43]. The Perturbation Method is a popular and simple
approach that can be useful to generate reasonable estimates
of the statistical moments of the response variables. The Per-
turbation Method offers a balance between complexity and
computational effort to estimate the influence of the mean,
standard deviation and covariance of response variables on
the behaviour of a structure.

2.5 The Spectral Stochastic Finite Element Method
(SSFEM)

The spectral stochastic finite element method (SSFEM) was
introduced by Roger G. Ghanem and Pol D. Spanos in their
text book [21]. Developments are described in a number of
key articles [45–47]. The SSFEM is mainly concerned with
representing the random material properties of a structure.
To introduce the random parameters, the method uses the
Karhunen-Loève expansion. The representation of the ran-
dom parameters in this form seeks to reduce the computa-
tional power used in other methodologies such as MCS. To
increase the efficiency of the SSFEM the solution space is
mapped with Fourier-type series in the form:

E (x, θ) = Ē (x) +
∞∑

i=1

√
λiξi (θ)ψi (x) (16)

where Ē(x) is the mean of the random process of interest,
ξi(θ) is a group of orthogonal random variables, x and y rep-
resent the spatial coordinates and θ denotes the randomnature
of each quantity. The other two terms of the equation are the
eigenvalues (λi) and eigenfunctions (ψi(x)) of a covariance
kernel. Both can be obtained by solving the integral Eq. (17):

∫

D

C (x, y) ψi (y)dy = λiψi (x) (17)

where D is the spatial domain of the process E(x, θ). In
the case that the process E(x, θ) is Gaussian, the random
variables {ξ i} will be part of an orthonormal Gaussian vec-
tor. The kernel of the covariance function that is defined in
Eq. (17) is bounded, symmetric and positive. The numer-
ical solution of the integral eigenvalue problem of Eq. 17
can be solved with recent approaches [48–50]. An alterna-
tive expression of Eq. (17) for discrete random fields reads
as Eq. (18).

ξ (θ) = 1√
λi

∫

D
E (x, θ) ψi (x) dD (18)

The introduction of the Karhunen-Loève expansion leads to
another modification of the formulation of the static equilib-
rium equation. In the same manner as the material proper-
ties, the nodal displacements could be represented with the
Karhunen-Loève expansions. The covariance function of the
solution is unknown and the solution process is dependent on
thematerial properties.Hence, an alternativeway to represent
the nodal displacements has to be found. In order to represent
the nodal displacements, the SSFEM uses polynomial chaos
expansions. If the random variables are consideredGaussian,
the nodal displacements take the form of Eq. (19):

μ (θ) = a0	0 +
∞∑

i1=1

ai1	1
(
ξi1 (θ)

)

+
∞∑

i1=1

ii∑

i2=1

ai1i2	2
(
ξi1 (θ)

)
,
(
ξi2 (θ)

) + · · · (19)

where 	n(ξi1, . . ., ξin) is the Polynomial Chaos of order
n in the variables (ξi1, . . ., ξin). This series represents the
nodal displacementμ(θ) as a nonlinear functional of the ran-
dommaterial properties ξi(θ). The expression for generating
Eq. (19) is given by Eq. (20):

	n
(
ξi1, . . . , ξin

) = e
1
2 ξT ξ (−1)n

∂n

∂ξii . . . ξin
e− 1

2 ξT ξ (20)

where ξ is the vector that contains the n random variables
(ξi1, . . ., ξin) [51]. For convenience an alternative expression
to Eq. (19) can be obtained by truncating the series after the
pth term and by introducing a one-to-one mapping to a set
with ordered indices represented by {γj(θ)}. The resulting
equation is (Eq. 21):

μ (θ) =
p∑

j=0

u jγ j (θ) (21)

The accuracy of the method depends on the number of ran-
dom variables ξi and increases with the number of terms
used in the Polynomial Chaos expansion. Recent methods
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Table 1 Software for the stochastic finite element method and reliability software (updated from [18])

Software package References MCS Ad. MCS SSFEM Response surface FORM/SORM Perturbation

ANSYS [66] • •
CalREL [67] • • •
OpenSees [67] • • •
FERUM [13,67] •
COSSAN [68,69] • •
NESSUS [70] • • • •
ParaFEM [62] •
PERMAS-RA/STRUREL [71] • • •
PHIMECA [72] •
PROBAN [73] • • • •
PROFES [74] • • • •
RFEM [10] •
SFESTA and SFEDYN [44] •
SFEQ8 [64] •
UNIPASS [75] • • • •

have been proposed to reduce the number of coefficients for
the Polynomial Chaos expansion thus reducing the compu-
tations of the SSFEM [52–54]. For the formulation of the
equilibrium equation, the reader should consult the original
text book [21] and later paper [45]. An efficient strategy to
reduce the solution time of the equilibrium equations gener-
ated by the SSFEM was developed by Ghanem and Kruger
[45].

The SSFEM and the spectral representation of random
variables have received more attention recently, because
the methodology tries to reduce the computational power
required to analyse a stochastic process in comparison to
the MCS. Since its early inception, further developments in
efficient algorithms have improved the capabilities and per-
formance of the original SSFEM.

3 Software for the SFEM

Software for SFEM was scarce until recently. Several soft-
ware developers have incorporated SFEM algorithms or cre-
ated specialized SFEM solvers and reliability tools to study
systems with random variations. A review of software pack-
ageswas given in a Special Issue of Structural Safety [18].All
the software considered for the Special Issue were “general-
purpose” packages capable of handling a wide type of appli-
cations which have additional tools to study the reliability
of a system. These software packages offer a wide range
of procedures to calculate the reliability of a system such
as MCS, Advanced Monte Carlo simulation (Ad. MCS)
[55], Response Surface Method [56], First-Order Reliabil-
ity Methods (FORM) and Second-Order Reliability Method

(SORM). A complete and concise explanation of the FORM,
SORM and response surface method can be found elsewhere
[37,57]. A more recent version of the capabilities of the gen-
eral purpose software COSSAN is available [58].

Gordon and Griffiths merged previously developed Finite
Element Analysis software [59] with specialized subroutines
for the SFEM using a MCS approach, calling the result-
ing application [10]. Some of the RFEM functionality has
been incorporated into the parallel finite element package
ParaFEM [60–62]. Kleiber and Hien have released SFESTA
and SFEDYN for 3D trusses and frames with their book
[44]. These programs are based on the Perturbation Method.
ShenShang andGun JinYun introduced theKarhunen-Loève
expansion merged with MCS into ABAQUS [63] with a sub-
routine called SFEQ8 (stochastic Q8 finite element) written
in FORTRAN [64]. A review paper by Eiermann et al. [65]
provides an overview of the computational aspects required
for the SFEM.

Table 1 lists the software packages described in this sec-
tion, together with the key references.

4 Applications of the SFEM

In this section, the authors present a number of examples
of how the SFEM is used in a range of different disciplines
in science and engineering. The articles that are reviewed
show how researchers adapt and combine other techniques
with the SFEM. Special attention is given to articles that
show how experimental data is used to inform the generation
of the random fields and validation of the models. Table 2
summarizes the applications that are extensively reviewed in
this paper.
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Table 2 Summary of reviewed applications

Material or object of study (reference) Objective Stochastic variable(s)

Polymer nanocomposites (PNC) To determine the mechanical properties
of PNC [76]

Material properties

Planar solid oxide fuel cells (SOFCs) To obtain the effective elastic coefficient of
thermal expansion and Young’s modulus of the
material [77]

Material properties

Porous materials To determine the influence of different types of
pores via stochastic homogenizations [78]

Geometry

Honeycomb structures To calculate the mechanical performance of this
type of structure during a compression test [79]

Material properties and geometry

Metal foams To develop a methodology to obtain the natural
frequencies and other material properties of
metal foam structures [80]

Material properties, geometry

Loblolly pine strands To obtain the ultimate tensile strength of loblolly
pine strands under a tensile test [81]

Material properties

Human spine To evaluate the main geometric parameters that
influence modelling of a human spine [82]

Geometry

Macaque cranium To study the effect of material property
variability on stress and strain values [83]

Material properties

Hip implant To statistically determined the main factors that
deteriorate a hip implant [84]

Material properties, loads and geometry

Total knee replacement To help to identify the most significant variables
to create a surgery plan and potential outcomes
of it [85]

Material properties, geometry

Bone mineral-collagen interface To investigate the influence of different types of
mineral-collagen interactions in the
microdamage accumulation on bone [86]

Material properties

Thoracic aortic aneurysm wall To propose a new criteria to predict an
aneurysm-rupture in human aortas [87]

Geometry

Geomaterials with voids To create a framework that determines the
effective material properties of geomaterials
with voids [88]

Material properties

Rock-rubble overlays To develop a methodology that is able to generate
different types of rock overlays and test them
with projectile impacts [89]

Material properties

Steel tubes To study the limit load of steel tubes with random
initial imperfections [90]

Geometry

Flexible pavements To estimate the performance caused by the air
voids phase in hot mix asphalt [91]

Material properties

Steel bridge To propose a method to analyse steel bridges
under different regime of loads caused by
different types of vehicles [92]

Loads

4.1 Materials Science

In Materials Science, the SFEM is used to investigate the
behaviour of complex materials such as composites and
fibrous structures. Several techniques have been developed
to depict the random properties of these specialized mate-
rials, six of which are presented here. In the first exam-
ple, a multiscale methodology is used to link the complex
microstructure of Polymer Nanocomposites (PNC) with its
bulk properties. In the second, the effective material prop-
erties of the composite Ni–YSZ are investigated by com-

bining the random generation of microstructure with deter-
ministic FEM. The third example provides a methodol-
ogy to obtain the elastic properties of porous materials by
combining stochastic homogenization with the perturbation
method. The fourth application models material imperfec-
tions in honeycomb structures by introducing geometric
and material imperfections. The fifth application provides
a framework to study the material properties of metal foams
using computer tomography. The final application of this
section studies the ultimate tensile strength of pine wood
strands.
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Fig. 2 Multiscale model based on Monte Carlo simulation to estimate the mechanical properties of PNC

Polymer nanocomposites (PNC) are a mix of polymers
and single-walled carbon nanotubes (SWCNT). PNC is con-
sidered a promising material for aerospace applications. The
addition of SWCNT to the polymer mix improves several
physical properties that are valuable to the aerospace indus-
try in comparison with other carbon-fiber-reinforced poly-
meric composites [93]. PNC exhibits complex mechanical
behaviour due to the random formation of bundles, agglom-
erates, and clusters during its manufacture. The random loca-
tions of these structures make the study of the mechanical
properties of PNC by normal means difficult. Spanos and
Kontsos proposed a multiscale methodology to fully charac-
terize the material using Stochastic Finite Element Analysis
[76]. In their study, PNC was considered a random heteroge-
neous medium where the heterogeneity is introduced by the
non-uniform spatial distribution of SWCNT inclusions. The
inclusions make it difficult to predict the behaviour of the
composite. The random location and structures of SWCNT
in their models are generated using a random field. Their
methodology involved: (1) Defining a representative mater-
ial region; (2) Characterising randomness to create a random
field model; (3) Homogenization and (4) Solution using the
Monte Carlo finite element method (Fig. 2).

ARepresentativeVolumeElement (RVE) [94]was used in
this research to obtain a portion of material that captures the
essential characteristics and bulk properties in a reproducible
way. Microscopy images and experiments were used to iden-
tify the effects and types of inclusions of SWCNT in the PNC
and their effect on behaviour. The lack of precise data for the
actual distribution of the different formations of SWCNT
forced the researchers to propose 3 different types of proba-
bility distribution, namely uniform, beta and log-normal. A
numerical solver developed in MATLAB was used to solve
each realization of the random field for a thin plate of PNC
subjected to a static load under plane stress condition. Each
individual element of the proposedmesh was fully character-
ized with a different volume fraction of SWCNT, hence each
element had a different value of Young’s Modulus. The char-
acterization of each element was complemented by a homog-
enization procedure, using the Mori-Tanaka (MT) method

[95,96]. Furthermore, for this homogenization scheme the
mechanical properties of SWCNT were obtained using a
model proposed by Odegard et al. [97]. When the whole
model is fully constructed the Young’s modulus and Pois-
son’s ratio of the PNC is estimated using a MCS approach.
The proposedmodel shows good resultswhen comparedwith
the experimental data presented in the article.

Another study that incorporates a multiscale model of a
complex fibrous material is described by Hatami-Marbini,
Shahsavari et. al [98]. Yavari and Kadivar also study fibre
composites [99].

In our second example forMaterials Science, Johnson and
Qu use the SFEM to estimate the effective elastic Young’s
Modulus and Coefficient of Thermal Expansion (CTE) for
the Ni–YSZ anode of a planar solid oxide fuel cell [77].
Solid oxide fuel cells (SOFCs) convert chemical fuels into
electricity. In general, fuel cells are considered to be more
efficient and more environmentally friendly than the usual
conventional energy systems [100]. SOFCs are usually com-
posed of layers of porous metal composites and solid ceram-
ics [101,102]. In Johnson and Qu’s paper, the Ni–YSZ anode
provides structural support, needs to provide enough space
for the transfer of fuels and must resist drastic changes of
temperature. To represent this porous composite the authors
created several digital realizations of the material that mimic
the microstructure and volume fractions of each phase. Then
these realizations were used to obtain the effective elastic
modulus and coefficient of thermal expansion.

The realizations of random media were based on a mod-
ified version of the simulated annealing methodology pro-
posed by Yeong and Torquato (Sect. 2.2) and used by oth-
ers [103,104]. Each phase of the Ni–YSZ was assigned the
experimental values of Elastic Modulus and Poisson’s Ratio
for nickel [105] and for YSZ [106]. The coefficient of ther-
mal expansion was considered to be temperature dependent
thus the equation proposed by Faisst was used to estimate the
behaviour of this material property [107]. The general proce-
dure to generate the realizations of porous NI–YSZ consists
of 6 steps: (1) Randomly generate a realization of the multi-
phase material matching the volume fraction of each mate-
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rial; (2) Estimate the probability distribution of the realiza-
tion; (3) Exchange the voxels in order to perform a change
of the energy of the system; the exchange of voxels must
maintain the same volume fraction of each phase; (4) Recal-
culate the new probability distribution and obtain the value of
the current energy of the realization; (5) Verify whether the
energy of the realization fulfils a given criterion; (6) Repeat
the process until the given criterion is satisfied.

The realizations were imported into the Finite Element
software ABAQUS to calculate the effective elastic modulus
at room temperature. The CTE was calculated over the range
of 0 to 1,000 ◦C.Twodifferent procedureswere tested tomea-
sure the convergence of the FE models: discretization error
and the representative volume element size (RVE). Finally,
both convergence methods are compared with experimental
results.

The third example describes a framework that combines
stochastic homogenization with the perturbation method to
analyse the elastic properties of porous materials. This paper
by Sakata et. al, [78] provides the mathematical background
to compute the elastic properties of porous materials and
compares these results with experimental data. A manufac-
turing process known as rapid prototyping was used to cre-
ate samples that recreate the geometries used in the compu-
tational experiments. The perturbation method was imple-
mented to create porous materials with periodic voids; this
approach enables the size, shape and volume fractions of the
pores to be controlled. The elastic properties of the material
are estimated with the combination of a stochastic homog-
enization scheme and the perturbation method. The homog-
enization theory of this article is based on reference [108].
Numerical examples are provided to illustrate the influence
of the shape, volume fraction and size of the pores on the
equivalent elastic coefficient of variance. In these examples
the elastic material properties are considered to be of epoxy
resin with a volume fraction of voids of 0.2. The accuracy
of the proposed perturbation method was measured by com-
parison with the results obtained using MCS. Test probes
manufactured with a rapid prototyping system with a 2D
distribution of voids were subjected to uniaxial tensile test to
compare with the numerical results.

An alternative procedure to analysematerialswith random
porosity in composites can be found in the study made by Yu
et. al [109].

The fourth application is reviewed by Asprone et. al
[79] and analyses mechanical performance during the com-
pression of honeycomb structures made of phenolic resin-
impregnated aramid paper (Nomex). The computational sim-
ulations try to reproduce the buckling, compression and
crushing response of the honeycomb structure observed in
experimental compression tests.

A single unit cell of honeycomb is used for the model.
Common manufacturing defects are simulated by variation

of the Young’s modulus and material thickness. The authors
provide some references that show evidence of the mate-
rial variability of honeycomb structures made of Nomex
[110,111]. The imperfections of the honeycomb structure
are modelled using a normal distribution for the variation
in Young’s modulus and material thickness. The constitutive
material behaviour of the model is that of an isotropic and
linearly elasto-perfectly plastic material. The geometry was
discretized using 9000 S4 shell elements. Several cases are
analysed, investigating the responses due to variation of the
thickness and Young’s modulus with coefficients of variance
of 5, 10, 15 and 20%. Moreover, the analysis is extended
to analyse a similar honeycomb structure made with Hexcel
AL-2052-H39, an aluminium honeycomb structure. In the
case of the aluminium the parameters of coefficient of vari-
ance used are 5 and 20%. The results of the numerical analy-
sis of both cases; Nomex and aluminium honeycomb struc-
tures are compared with experimental results. In the case of
the aluminium structure the results have a similar behaviour
as the experiments when the coefficient of variation was 5%,
due to the lower variability in aluminium honeycomb struc-
tures. The numerical results obtained for theNomex structure
show good agreement with the experimental results when the
Young’s modulus and thickness are included with a range of
coefficient of variation between 10 and 15%.

Two similar computational experiments that include ran-
dom variables in the study of honeycomb structures have
been published. Firstly a study of honeycomb structures
with random geometric parameters that uses the FEM
and a Gaussian process emulator to reduce the computa-
tional expense is proposed by [112]. Secondly, research by
Sotomayor et al. [113] creates different honeycomb struc-
tures with different levels of randomness controlled by the
regularity of the cells created using Voronoi tessellations.

In the fifth paper of this subsection, Geißendörfer et al.
[80] describe a multiscale approach in which computer mod-
els are generated from tomographic images of metal foams.
The results obtained using this methodology are compared
against experimental results for Duocel, a copper foam.

The proposed methodology consists of 7 steps, includ-
ing: data collection via tomographic imaging; digital image
reconstruction using the software MAVI [114]; extraction of
key geometric parameters from the 3D images such as vol-
ume fraction using minus-sampling edge correction [115];
generation of geometric representations of the microstruc-
ture using a power-tessellations generator [116]; implemen-
tation of the finite element method to analyse the generated
microstructures; use of the SFEM to analyse the microstruc-
ture and statistical analysis to obtain the material properties
from the results of the SFEM. Figure 3 shows the general
steps used.

After the generation of the foam microstructures, a sto-
chastic volume elements methodology is used to obtain sta-
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Fig. 3 Methodology steps of the proposed multiscale approach to study metal foams

tistical information of the elastic material properties of the
foam model. In this case a set of 100 models are created
using the power-tessellations generator [116] to determine
theYoung’smodulus and its influence on the natural frequen-
cies of the material. Two types of boundary conditions are
applied: the kinematic uniform boundary condition (KUBC)
and static uniform boundary condition (SUBC). Additional
analyses are performed in 15 computational generated beam
structures to determine the correlation functions for the linear
elastic material properties. The statistical information of the
previous steps is used to generate randomfields. The selected
randomfield generator produces non-Gaussian randomfields
with a truncated Karhunen-Loève expansion that discretizes
the randomfields. The procedure previously described is then
employed to create randomfields that are integrated in aMCS
procedure to calculate the bending frequencies of the realiza-
tions. The comparison between experimental and the mean
value of the computational predictions of the natural frequen-
cies gives a difference of 3%.

An alternative method for generating stochastic foams
with Voronoi cells is described in [117].

The final example in this subsection is a SFEM study for
loblolly pine strands. In this study by Jeong and Hidnman
[81] the strength of wood is assumed to be a stochastic vari-
able that is linked to the variability of material properties in
wood. Wood can be considered a composite made of several
volume fractions of juvenile and mature wood. Different cell
thickness and fibril angle are found in juvenile and mature
wood, therefore there is distinct type of material variability
in each phase of wood. A deterministic analysis cannot fully
account for the material variability present in wood, thus the
authors decided to implement a SFEM in their analysis. The
objective of this study is to determine the ultimate tensile
strength of four strand orientation models. Four wood pat-
terns with different strand orientations that contain juvenile
andmature wood are proposed: radial, tangential, angled and
homogeneous grain or single grain. The homogeneous grain
is modelled deterministically and the other three are mod-
elled stochastically. In all the models the content of juvenile
and mature wood is distributed equally (50 and 50%). A 2-D
tensile computational experiment was set to test the ultimate
tensile strength of pine wood. The geometry of the model
forms a square prism. Boundary conditions are set at the top
and bottom of the prism, where the base is fixed in x and y
direction and a uniform displacement is set at the top end
of the geometry to simulate a tensile test under linear elastic
conditions. Experimental data was used by the researchers

to calibrate the random values for the strength of each type
of woods considered in the modelling [118]. AMCS scheme
is selected to obtain the ultimate tensile strength of the pine
wood with a Tsai-Hill failure criterion [119].

Computational results of average strengths and stress dis-
tributions are compared against experimental results. The
average strengths calculated with the SFEM were accurate
for a range of proposed cases.Adiscussion about stress distri-
butions for each case is presented by the authors. In addition
a sensibility analysis for the ultimate tensile strength with
different grain orientations is provided.

4.2 Biomechanics

The SFEM is starting to have a prominent position in the
field of Biomechanics due to the great variability of biologi-
cal structures.Material properties and geometry in biological
structures are strongly dependent on factors such as genetics,
age, environment and other external phenomena. Considera-
tion of random variations is crucial to fully understanding a
biological structure.

A review article that covers the use of SFEM in biome-
chanics is presented by Laz and Browne [120]. This gives a
summary of the analysis methods and provides some exam-
ples on how a probabilistic approach including the SFEM is
used in several types of application. The areas covered by the
application examples include structural reliability, kinemat-
ics, joint mechanics, musculoskeletal modelling and patient-
specific representation. Challenges such as the appropriate
selection of input parameters, bounds and the difficulties in
measuring several variables in biological systems are also
addressed.

Here, six recent examples are reviewed that typify the use
of SFEM in biomechanics. The first is an article that con-
cerns the variability of the geometry of the human spine.
The second investigates the effect of variability of material
properties in a craniofacial skeletal structure. In the third and
fourth paper the key parameters and factors that create an
ageing effect on a hip implant and a knee implant, respec-
tively, are determined with the SFEM. The fifth application
uses the SFEM to simulate the damage and bonding between
different type of bone phases. The application that closes this
section proposes a stress based criterion, determined using
the SFEM, to predict the rupture of aneurysms in human
aortas.

The human spine is a complex structure formed of several
components and tissues with different classes of materials.
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Many FEM models have been implemented to investigate
different types of normal motion and factors such as disease
or accident that could affect the normal function of the human
spine [121]. In the most recent work covered here, Niemeyer
el al. study the influence of the variability in spine component
geometry on how it behaves [82]. Additionally, they establish
the degree of influence of each parameter studied. The lead-
ing sources of variability considered by the authors include
natural variations of geometry and errors in measurement.
The study uses Probabilistic SensitivityAnalysis (PSA) com-
binedwithMCS.Amodel generator implemented inANSYS
Parametric Design Language (APDL) was used to create the
models and their random variations. The geometric complex-
ity of the human spine was replaced with simplified models
using geometric primitives. Ligaments and other structures
were also considered. The material properties considered in
this model were obtained from the literature. The spine was
subjected to compression, extension, flexion, lateral bend-
ing to the right and left and rotation to the left and right.
The selected response variableswere the intradiscal pressure,
range of motion, and contact forces. A priori power analysis
was performed to estimate the number of models required
to obtain a significant sample. The research confirmed that
geometry strongly affects the response variables.

In the secondBiomechanics example, the influence of ran-
dom material properties was studied in a macaque cranium
using MCS [83]. A number of hypotheses were proposed
to test whether the randomness of material properties had
a significant effect on the selected response variables. For
example, one hypothesis tested whether the variability of
the material properties of bone between individuals leads to
changes in the moderate-to-high stress regions occurring in
the cranium. Another considered whether the variability of
the material property values increased stress as the degree of
anisotropy in the material increases.

Six different models, based on the model of reference
[122], were created to verify each hypothesis. In the mod-
els, the material properties and coefficients of variation for
the different types of materials were varied. The randomized
material propertieswere themodulus of elasticity, shearmod-
ulus and Poisson’s ratio, determined using Gaussian distrib-
utions. Each model was run up to 144 times using ANSYS
APDL 13.0. Strain measures in 35 regions of the cranium
were used as response variables. Furthermore, the simula-
tions were divided into two sets, one using only empirical
data [123] and the other using the same empirical data, but
with a coefficient of variation of 0.20. To reduce the num-
ber of simulations required for the MCS, Latin hypercube
sampling was performed. The six models were assigned dif-
ferent types of material properties. Twomodels were consid-
ered isotropic and were divided into trabecular bone, cortical
bone and teeth. A further two models were divided into 35
regions with different isotropic material properties. In the

final two models, the material properties in the 35 regions
materials were considered to be orthotropic. The results of
the response variableswere analysed usingANSYSand com-
pared with in-vivo data [124]. Finally the researchers tested
each hypothesis with a statistical analysis of the response
variables of each model.

The third application investigates the parameters and fac-
tors that significantly contribute to the deterioration of a hip
implant. This particular hip implant is used during a total hip
arthroplasty, which is the replacement of the hip joint. In this
example by Donaldson et al. [84] the SFEM is used to intro-
duce random variations to the geometry, material properties
and loading conditions. Two types of models are considered,
a deterministic model that serves as a baseline to validate the
numerical calculations with mechanical tests and stochastic
models that are used to determine the variables that con-
tribute to the damage processes in the hip implant. Two parts
of the hip implant are considered, a taper (head sleeve) and a
trunnion (neck post). A surface-to-surface contact is assigned
between the taper and trunnion. The mechanical properties
in both parts are considered to be linear elastic. The study is
carried out using the software ANSYS and consists of two
simulations for the deterministic case and 400 realizations
for the stochastic case.

The geometry for the deterministic analysis is a hip
implant with a 3:1 scale, and mechanical properties of 6061
aluminum. The reason this size and material properties are
chosen is to match the size and material properties of test
specimens. The two sets of hip implants are manufactured to
have different angular mismatches. Larger size hip implant
specimens are selected due to the difficulties in measuring
micro-motions and taper angles in real size samples. The
validation via experimental results showed a similar trend
and values to the deterministic numerical analysis.

In the stochastic analysis, the material properties are
CoCrMo/TiAIV and come from an ASMMaterials database.
The geometry is assumed to be the same size as a standard
hip implant. Geometry, loading andmaterial properties of the
hip implant are stochastically distributed. Firstly, the taper
and trunnion are assigned with seven stochastically geomet-
ric parameters; the values for these geometric parameters are
selected into a range where most of the implants for a total
hip arthroplasty are designed. Secondly, the loading condi-
tions consist of two parts, an impact that is composed of 5
parameters that follow a statistical distribution and two twin
gait loading cycles that are stochastically distributed. To cal-
ibrate the loading parameters several experimental sources
are combined and adapted tomatchwith common data values
for patients. Thirdly, the elastic modulus, Poisson’s ratio and
coefficient of friction between the CoCrMo/TiAIV implant
are treated as random variables. The values for bothmaterials
are obtained fromexperimental data. The stochastic variables
in the model are shown in Fig. 4.
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Fig. 4 Stochastic variables considered in the modelling of a hip
implant

The damage produced in the implant is tracked with three
key response variables are measured, the contact pressure,
micro-motion and frettingwork done. A statistical analysis is
done to determinewhich stochastic variables havemore influ-
ence in the change of the variables of interest. The stochastic
variables that were correlated with the response variables
were the taper-trunnion angular mismatch, patient weight
and center offset.

Research carried out by Arsene and Gabrys [85] serves as
our fourth application example, in which the authors imple-
ment the SFEM to investigate the importance of 77 input sto-
chastic variables for total knee replacement surgery. The aim
of this study is to help surgeons make informed decisions in
their surgical plan and to predict the peak pressure generated
by the changes produced after the surgery. Key geometric
and material properties parameters are determined from a
statistical analysis calculated with a MCS methodology and
the response surface method.

The boundary and loading conditions try to reproduce the
motions and conditions of stair ascension of a patient.Bar
elements are used to represent the muscles and apply the
forces. Two software packages are used to perform the analy-
ses PamOpt [125] and PamCrash [126]. Both software pack-
ages are capable of performing parallel computations.

The SFEM study is divided into four stages; two stages
with two different methodologies. The first methodology
uses MCS with 77 input stochastic parameters. The second
uses a response surface method with the same number of
input parameters. Afterwards the same methodologies are
used but with a reduced set of 22 key stochastic parame-
ters. The 77 input parameters are obtained from experimen-
tal and computational sources found in the literature. The 8
response variables defined include the kinematics and peak
contact pressure of patella-femoral and tibio-femoral joints.
These response variables are considered to be the ones that
determine the comfort of the patient after a surgery. The first
stage of the study the MCS with 77 stochastic variables is
used to generate results that serve as a baseline and a point of

comparison with the rest of the stages. 800 realizations are
used in this MCS scheme.

A comparison between each stage is compared in the
study. From these results the key parameters that have a
stronger influence on the response variables are reported. The
authors highlight the possibility of obtaining good quality
results with a reduced number of random variables, allowing
surgeons to make quick and informed decisions during the
planning of the surgery.

The fifth example combines a cohesive element technique
and SFEM to analyze the effects and damage of three inter-
facial interactions in bone [86]. The micro-damage accumu-
lation in bones serves as a principal mechanism to release
energy in bone. The direct study of micro-fractures in bones
via experiments is difficult to carry out, thus researchers have
opted to analyze this phenomenon with the FEM.

The bone tissue of lamellar bone is composed of layers
of mineral and collagen with a 2-D plane-strain model. The
layers are composed by intercalated mineral and collagen
sections. The mineral and collagen layers have a thickness
of a unit and a length of 300 units. The layers of bone tis-
sue are subjected to a tensile load. In order to propagate the
damage an initial imperfection is placed at the center of the
model were a mineral layer is placed. A linear elastic behav-
ior is assigned to the mineral sections; meanwhile a non-
linear behavior is assigned to the collagen sections. Three
interfaces of mineral-collagen in bone are proposed to real-
ize this study: strong, intermediate and weak interfaces. The
interfaces are characterized by the type of structures, opening
modes and sliding mode between the mineral and collagen.
For the strong interface an electrostatic interaction is mod-
elled for the opening and sliding mode, the structures where
the interactions occur are anionic macromolecules present in
collagen and cationic mineral crystals. In the intermediate
interface, a thin layer of water is considered to be present
in-between the mineral and collagen phases. This addition
of a thin layer of water causes a hydrogen opening bond and
a van der Waals sliding mode. The weak interaction intro-
duces a thick water layer as interface that causes a van der
Waals opening mode and a viscous shear sliding mode. The
interface between the layers of mineral and collagen are sim-
ulated with the inclusion of cohesive elements to represent
the connections that maintain the phases together. Random
fields are used to model the variability of elastic modulus for
the mineral phase. The random fields generator and calibra-
tion is based on the work carried on by Dong et al. [127] and
Tai et al. [128]. The values generated for the random fields
follow a Gaussian normal distribution. The realizations are
analyzed with MCS. For each analysis of the realizations a
failure analysis is performed.

The results obtained for the three types of interfaces
present different types of damage and defects. The results
obtained for the strong interface show partial damage via the
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cohesive elements, thus the phases remained together. The
intermediate interface experienced propagation of damage
across the simulated geometry. The weak interface produced
larger damaged regions at a quicker rate than the other two
interfaces. The researchers showed through their study some
mechanisms of how bones accumulate micro-damage.

The final paper on Biomechanics is by Celi and Berti [87]
in which they use SFEM to predict the possible rupture of
an aneurysm in a human aorta. The maximum diameter of
an aneurism is the principal criterion to predict the risk of an
aneurism-rupture. Nevertheless, there is evidence that risk of
rupture is dependent on other factors. An alternative way to
predict the rupture of human aorta is proposed; that is the esti-
mation of themechanical stress on the arch segment produced
by the aneurysm. The authors propose two methodologies to
create the geometry of study, first a patient-specific 3Dmodel
generated from computer tomography and a second method
that uses a bank of morphological features obtained from the
computer tomography to reproduce the aneurysm in the arch
segment region.

A data bank of 18 electrocardiographic CT datasets was
processed with an in-house code programmed in Matlab to
obtain the patient-specific models and the key geometrical
parameters of thoracic aortic aneurysms. From these para-
meters three morphological variables are used to represent
the thoracic aortic aneurysm, these variables are the maxi-
mum diameter ratio, the lesion extension ratio and the lesion
position along the thoracic arch. The upper and lower bound
values for each variable are determined to represent the mor-
phologic parameters of the 3D models.

In this research, the 18 patient-specific cases are consid-
ered as the deterministic FEM.Themechanical properties are
isotropic, hyperelastic and remain constant. The wall thick-
ness is also considered constant. Pressure is applied to the
inner surface of the simulations to replicate the conditions of
a human heart.

The stochastic analysis includes three geometric parame-
ters for the maximum diameter ratio, the lesion extension
ratio and the lesion position.AMCS is used to study the influ-
ence of randomized geometric parameters of the aneurism on
the stresses generated in the region of study.

The authors concluded that the maximum diameter and
eccentricity ratio have the strongest correlation with the
stresses measured in the models. An additional conclusion
from the authors is that FEM and SFEM modeling can help
to predict possible aneurisms through stress analysis.

4.3 Engineering

The final example applications are related to Engineering.
In this discipline, the SFEM is used to estimate the relia-
bility and performance of materials and structures such as
soils, bridges, structures, components of machines or struc-

tures and concrete. To exemplify the use of the SFEM in this
discipline, several examples are provided. The first concerns
using random fields to study geomaterials with voids and the
second studies impact of projectiles on randomly generated
rock-rubble concrete. As a third example the initial imper-
fections of tubes are introduced to the mechanical modelling
of shell structures. The fourth application investigates the
effects of air voids on the mechanical performance of hot
mix asphalt. The final application is a review on the damage
produced by random traffic loadings on steel bridges.

Foundations are constructed in very diverse types ofmate-
rials, such as clay, soluble rocks, limestone and dolomite. The
last threemay contain a significant quantity of large voids that
can have a considerable effect on the settlement of a founda-
tion. AnMCS approach has been used to obtain the effective
elastic parameters of materials with voids [88,129]. To rep-
resent materials with voids, these researchers have adapted
random field generators from the RFEM [10]. Geometry and
boundary conditions were generalized for each realization.
A cube formed of 50×50×50 8-node hexahedra was con-
sidered as the basic geometry of the model. A tied freedom
approach was applied to ensure that the displacements on
cubic elements deformed at the same rate and to maintain
a similar geometry as the initial state. The boundary con-
ditions consist of a vertical force applied to compress the
cube at the top face, with the base of the cube bounded
in the z direction (same direction as the force). With this
group of boundary conditions, the effective Young’s Mod-
ulus and Poisson’s ratio can be easily calculated from lin-
ear elastic theory. After the boundary conditions were set in
the 3D cube models, voids were assigned randomly to the
model using the Local Average Subdivision method (LAS)
[26]. The voids of the random field were mainly character-
ized through the correlation length. This quantity represents
the distance over which a region of the given correlation
length has similar values. In this case a large correlation
length will produce a few voids, while smaller values will
create larger regions with voids. The elements that were not
voidswere assigned constantmaterial properties,whereas the
voids were assigned a Young’s Modulus that was 100 times
smaller than the intact elements. The Poisson’s ratiowas con-
sidered equal for all the elements. Next, all the realizations
of the model were solved using the preconditioned conjugate
gradient (PCG) method [62]. The random fields, boundary
conditions and FEM here form an MCS process. The out-
puts of the elastic analysis considered were the vertical and
horizontal deformations of the block. The results of 2D sim-
ulations considered in previous work [129] were compared
with other independent and theoretical results. Also a com-
parison between 2D and 3D simulations are given. Finally a
similar methodology with a probabilistic study was used to
interpret the influence of voids on the settlement of a strip
footing.
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Fig. 5 General steps for the study of tubes with random initial imperfections

A compilation of several applications of the SFEM in
Geotechnical Engineering can be found in Fenton and Grif-
fith’s book [10]. Another example from Geotechnical Engi-
neering uses the Perturbation Method for modelling ground-
water flow (Yao et al. 2010). There are many applications of
the SFEM in Civil Engineering. Two examples for bridges
are described by Cavdar et al. [131,132].

The second example in this section addresses the perfor-
mance of rock-rubble overlays subjected to impacts of pro-
jectiles [89]. The authors produced several algorithms to gen-
erate rock-rubble particles with random geometries. These
particles are then integrated with grouted concrete to gener-
ate FE models. A parametric study shows the influence of
the percentage fraction and size of the rock-rubble on per-
formance.

The generation of rock-rubble particles start with the ran-
dom generation of a quadrilateral that is then modified until
an octahedron is created. A series of points are calculated
from the octahedron to create a random polyhedron. The
polyhedron is then modified until a number of conditions
are fulfilled. Several particles of rock-rubble are generated
to be integrated into a FEM model. The authors generated
an algorithm to simulate the dropping and compacting of
the rock-rubble and grouted concrete. The algorithm can be
summarized as follows: (1) Randomly drop the rock-rubble
particles; (2) Ensure that the particles have been placed into
a burst layer, if not the particles are repositioned: (3) Repeat
step 2 until all the particles are placed into the bursting layer;
(4) A final inspection checks that the particles are not over-
lapping. If this happens, the particles are rotated to fulfil
this condition. After placing the rock-rubble particles the
process of compaction starts. When the rock-rubble particles
are dropped the volume percentage is constantly computed.
If the desired volume fraction is not obtained a sinusoidal
forced vibration is simulated at the bottom of the bursting
layer to accommodate the particles and obtain the desired
percentage fraction of rock-rubble. At the end of the process
the position of each particle is calculated. This position is
used to map the boundaries of each phase of the material and
then to generate the mesh of the FE model. When the map-
ping ends, each material is assigned with either the material
properties of the rock-rubble particles or grouted concrete.

The authors selected the LS-DYNA hydrocode [133]
using FORTRAN and APDL (ANSYS Parametric Design

Language) to analyse the resistance of the rock-rubble over-
lays to the impact of projectiles. Additional models were
considered to simulate the materials of the projectiles and
the target [134,135]. Furthermore, the contact and friction
effects between the rock-rubble, grouted concrete and the
projectile were added to the model, with the contact eroding
“surface to surface” in LS-DYNA. Some of the finite ele-
ments become highly distorted due to the impact. An erosion
technique is used to remove these elements. Two criteriawere
selected for the materials of the target, the concrete material
and the rock-rubble. The criterion for the concrete depends
on a threshold of maximum principal strain and shear strain.
For the rock-rubble elements the criterion depends upon a
maximum principal strain value.

The results obtained from the simulations were compared
with experiment [136]. Furthermore, a parametric study was
performed to analyse the influence of the size of the rock-
rubble and rock-volume fraction.

The third example studies the limit load of steel tubes
with random initial geometric imperfections. The research
by Vryzids et. al [90] implements the method of separation
combinedwith a spectral representationmethod to create ini-
tial geometric imperfections in the modelling of steel tubes.
Figure 5 summarizes the fundamental steps and products of
each step.

Figure 5 starts with the acquisition of the input values
for the random field from a data bank that contains informa-
tion about geometric imperfections in steel tubes [137]. After
this the evolutionary power spectrum is calculated using the
method of separation [138]. When the evolutionary power
spectrum is determined, the spectral representation method
[139] is used to create the randomfield that represents the ini-
tial defects. The the geometry of the tubes with imperfections
is determined from an initial perfect geometry using a mean
function that represents the imperfections and a zero-mean
non-homogeneous Gaussian stochastic field. The authors
selected the MCS to analyse the random fields, thus a mesh
sensibility analysis was done to obtain a balance between
accuracy of the analyses and computation time. When the
mesh is determined the imperfect geometries of the steel
tubes are analysed under several loading conditions. Fifty
nonlinear analyses are made on tubes with initial geometric
imperfections under axial load, lateral pressure, combined
axial load and lateral pressure. Each of the loading condi-
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tions is compared with their deterministic counterpart show-
ing that geometric imperfections cause premature failure of
the steel tubes.

Other suggested methodologies that are similar to the last
reviewed application can be found in literature. An example
by Combescure for thin walled structures [140], Kamiński
and Świta [141] for steel tanks, Chryssanthopoulos andPoggi
[142] and Papadopoulos [143] for imperfect shells.

The fourth example concerns flexible pavements [90].
These are manufactured using a hot mix asphalt compris-
ing asphalt binder, aggregates and air voids. The properties
of the asphalt depend on three factors: the properties of each
phase, the material properties of the mixture as a whole and
the manufacture of the material. The presence of air voids in
hot mix asphalt greatly determines performance of the mate-
rial. The objective of this study is to take into account the
influence of air voids in the modelling of hot mix asphalt.
Two probabilistic models were used. The first approach sim-
ulates the quantity and distribution of air through a single
randomized quantity of material properties and the second
approach considers the spatial variability of material proper-
ties represented with several values calculated with random
fields.

The authors provide experimental evidence obtained from
several sources of the distribution and volume fraction of
air voids calculated using X-ray computed tomography data.
The distribution of voids in hot mix asphalt depend on the
depth of the material. Large voids represent 11% of the vol-
ume fraction of the top layer. The middle section contains
5% of air voids and around voids make up 5–9% of the bot-
tom layer. The content of air voids are directly related to
the material properties of hot mix asphalt and deterioration
processes such as oxidation and moisture damage.

The model considers a pavement structure composed by
four layers: an asphalt course, an unbounded granular base
layer, unbounded granular sub-base and a layer of sub-grade.
Only the top layer of asphalt is considered to be represented
by a single random value or a random field. Both approaches
assume that the top layer has a stochastic linear viscoelastic
material behaviour, meanwhile the rest of the layers are con-
sidered to be linear elastic, homogeneous and deterministic.
A mechanical load is applied at the top of the geometry to
determine the performance of the layer structure. Boundary
conditions are applied at the edges of the structure in the X
and Y direction. The SFEM analysis was carried out using
the software Abaqus. In total 100 realizations are analysed
for both procedures, following a MCS scheme.

The response variable that measures the mechanical per-
formance of the hot asphalt mix is the horizontal strain. The
variability in the single random material property approach
is smaller than the spatial variability approach with random
fields. Furthermore, the maximum horizontal displacement
values of both approaches are used to generate a probability

density function that shows a larger variability in the case of
the random field approach. Hence the authors showed that
the spatial variability of air voids has an influence on the
response and performance of the hot asphalt mix in compu-
tational analysis.

The final example in this subsection is an analysis of
fatigue in steel bridges due to random vehicle loading [92].
Steel bridges are subjected to continuous loading from traffic
that after a certain time starts to generate fatigue in the com-
ponents of the bridge. Several types of instruments can be
placed on a bridge to track the effects of traffic loading e.g.
strain gauges, displacement sensors, accelerometers, etc. The
authors selected the 50 year old Throgs Neck Bridge for their
study because it has been instrumented to track its fatigue.
Some existing cracks had been registered in several locations
on the Throgs Neck Bridge. Data generated by instruments
known as weight-in-motion devices can record the overall
weight of a vehicle and axle weights. Furthermore, camera
recordings allow researchers to confirm the type of vehicle
that is being driven through the bridge.

The FEM modelling is divided into two stages; a deter-
ministic stage to validate and calibrate the parameters for the
model and a stochastic stage where the random loadings are
included. The deterministic analysis is computedwith the aid
of the FEM software ANSYS. In the deterministic case, a lin-
ear elastic analysis with a deterministic moving unit load is
applied in several load steps. The model is then recalibrated
and compared against strains recorded at the bridge to val-
idate the deterministic results. For the stochastic case two
random number generators are used to compute uniformly
distributed values that determine which line of the bridge
was going to be loaded and the type of vehicle that is going
to be used for the loading during the analysis. Moreover,
another set of random numbers are generated to character-
ize the vehicle (axle weights and axle spacing) with Latin
Hypercube Sampling. A total of 50 realizations are created
to evaluate the fatigue and reliability of the bridge. TheSFEM
is computed inMatlab using in-house software created by the
authors.

The authors propose this methodology tomonitor bridges,
predict possible damage to the bridge caused by the fatigue
of certain elements and to reduce the frequency of direct
monitoring of bridges.

5 Summary

This section of the paper summarizes the main features that
need to be considered when using the SFEM in practical
applications. It also reviews the advantages and disadvan-
tages of each of themain branches of the SFEM, thus guiding
the reader in which method to select for their own applica-
tions.
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5.1 Considerations for the SFEM

The SFEM requires a deep understanding of the FEM theory.
Several alterations andmodifications to the FEMformulation
are required to construct the systemof equations and select an
appropriate solution strategy. In addition to the formulationof
theSFEMseveral experimental procedures andmathematical
tools are required to analyse a stochastic model.

Generating the finite element mesh for an SFEM analysis
needs to take into account additional factors that do not arise
in the deterministic FEM. The description of a random field
is governed by the number of random variables, element size,
the scale of fluctuation and the correlation length [7]. Careful
selection of the number of random variables and elements is
required to avoid creating simulations that are unnecessarily
large. The use of small elements may cause high correlation
length between neighbouring elements. The scale of fluctua-
tion should be smaller than the distance between the centroids
of elements, again to avoid high correlation lengths between
nearby elements [144].

Realistic methods that involve the SFEM require addi-
tional techniques to developmore realistic assumptions of the
variability of the system. Techniques such as Image-based
modelling characterization, RVE, multiscale approaches,
homogenization and randommedia techniqueswould greatly
benefit the understanding, representation and treatment of
stochastic modelling.

The lack of experimental procedures tomeasure the spatial
variability of the mechanical properties of materials remains
as one of open issues of the SFEM. Only a few studies in the
literature use experimental data to justify the variability of
the material properties. The quality of a research that imple-
ments the SFEM largely depends on the experimental data
and assumptions of the characteristics of the model. Further-
more, the validation of the simulations is rarely compared
with experimental data.

Other problems in the acquisition of data is that some vari-
ables are difficult measure. This is particulary true in Biome-
chanics [120]. In areas such as engineering where material
properties tend to be better known, repositories of materials
data do not always contain enough information to justify the
type of random field that is going to be used.

5.2 Comparison Between the Different SFEM Techniques

The MCS has proved to be the most general and simple
approach of the SFEM. It is suitable for a wide range of
applications and can be used for nonlinear problems. Accu-
rate approximations can be calculated when the determin-
istic solution for the problem is known [17]. Moreover, the
interfaces of modern FEM software allow the implementa-
tion of the SFEM. In some cases, the MCS is already a fea-
ture in several applications. For its simplicity and indepen-

dence between tasks, the computations and steps of MCS
are considered to be embarrassingly parallel. A scheme for
the parallelization of theMCS is proposed by [40]. Neverthe-
less, theMCS requiresmore computational power than either
the Perturbation Method or the SSFEM for the same prob-
lem, as indicated by a comparison of the computational times
betweenprocedures for a foundation settlement analysis [13].
Even so, the MCS method is the most general procedure of
the SFEM.

The Perturbation Method is an efficient method to cal-
culate the mean, variance and correlation coefficients of a
stochastic model. Furthermore, the computational cost of
estimating these quantities is quite low in comparison to
the MCS. The Perturbation Method is suitable for linear,
nonlinear and eigenvalue problems [17]. Another valuable
advantage of this method is that the calculated results are
distribution free [13]. The main disadvantage of the Pertur-
bation Method is that is limited to low coefficients of varia-
tion of around 10 or 15 per cent the mean value of the vari-
able of interest [3]. This limitation is more problematic when
the problem is nonlinear [2]. Moreover the accuracy of the
method is also dependent on the number of terms of the Tay-
lor series that calculate the response variables.

The newest branch of the SFEM, the SSFEM performs
well for linear analysis and can be used for nonlinear analy-
sis. However, some researchers consider it impractical for
nonlinear analysis [16]. At the early stages this method could
not be used for reliability analysis, though this has recently
changed [145]. The size of the linear system of equations
to solve a problem with the SSFEM is given by the num-
ber of degrees of freedom of the model (N) and the order
of expansion that is used to calculate the response (P). The
size of system of equations can be calculated as NP x NP.
A common value for the order of the expansion (P) tends to
be around 10-35, thus for large problems the computational
cost can be prohibitive [145]. Nevertheless, this method has
attracted the attention of several researchers and hybrids have
been merged with the MCS to extend its use.

This paper is a compilation of several other previous
reviewpapers. It summarizes themainbranches of theSFEM,
lists supporting software and gives a number of examples
illustrating how researchers apply this methodology in their
respective disciplines.
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