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Abstract This article is a tutorial exposition of the template
approach to the construction of customized mass-stiffness
pairs for selected applications in structural dynamics. The
main focus is on adjusting the mass matrix. Two well known
discretization methods, described in FEM textbooks since
the late 1960s, lead to diagonally lumped and consistent
mass matrices, respectively. Those models are sufficient to
cover many engineering applications but for some problems
they fall short. The gap can be filled with a more general
approach that relies on the use of templates. These are alge-
braic forms that carry free parameters. Templates have the
virtue of producing a set of mass matrices that satisfy certain
a priori constraint conditions such as symmetry, nonnegativ-
ity, invariance and momentum conservation. In particular, the
diagonally lumped and consistent versions can be obtained
as instances. Availability of free parameters, however, allows
the mass matrix to be customized to special needs, such as
high precision vibration frequencies or minimally disper-
sive wave propagation. An attractive feature of templates for
FEM programming is that only one element implementation
as module with free parameters is needed, and need not be
recoded when the application problem class changes. The
paper provides a general overview of the topic, and illus-
trates it with one-dimensional structural elements: bars and
beams.
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1 Introduction

This paper addresses the construction of mass matrices for
dynamic models of structures treated by the finite element
method (FEM). The goal is to introduce a general approach
through which customized mass matrices can be constructed
for specific structural elements. This is called the method of
templates. The qualifier “customized” is defined more pre-
cisely later.

Two standard procedures for constructing FEM mass
matrices are well known. They are outlined in Appendix 2
to make this paper reasonably self-contained. They lead to
consistent and diagonally lumped forms, respectively. Con-
ventional forms of those models are denoted by MC and
ML , respectively, in the sequel, with additional subscripts
or superscripts as necessary or convenient. Abbreviations
consistent mass matrix (CMM) and diagonally lumped mass
matrices (DLMM), respectively, are also used. Collectively
those two models take care of many engineering applica-
tions in structural dynamics. Occasionally, however, they fall
short. The gap can be filled with a more general approach that
relies on templates. These are algebraic forms that carry free
parameters. The set of parameters is called the template sig-
nature. When given numerical values, the signature uniquely
characterizes a mass matrix instance.

This paper presents basic concepts and techniques that
underlie the template approach. This methodology is applied
to several one-dimensional (1D) structural elements as
expository examples.

The template approach has the virtue of generating a
set of mass matrices that satisfy certain a priori con-
straints; for example symmetry, nonnegativity, invariance
and linear momentum conservation. A mass matrix that
satisfies those will be called admissible. In particular, the
diagonally lumped and consistent mass matrices should

123



2 C. A. Felippa et al.

Table 1 Template customization scenarios

Acronym Customization

LFCF Low-frequency continuum fit: matching acoustic
branch (AB) to continuum model

AMC Angular momentum conservation: useful for
transverse motions

RHFP Reduced high-frequency pollution (spurious noise)
in direct time integration (DTI)

MSTS Maximum stable time step in conditionally stable
direct time integration (DTI)

RDAW Reduced directional anisotropy in wave propagation
(not relevant to 1D meshes)

be obtained as instances. Thus those standard models are
not excluded. Availability of free parameters, however,
allows the mass matrix to be customized to special require-
ments.

Several customization scenarios are listed in Table 1, along
with their acronyms. The last one: reduction of directional
anisotropy in wave propagation, is not applicable to 1D ele-
ments and therefore not treated in this paper.

The versatility of application will be evident from the
examples. It will be also seen that optimizing templates for
one scenario generally does not help with others, and in
fact may make things worse. Thus, ability to adapt the mass
matrix to particular needs as well as problem regions is an
important virtue. Note that mesh and freedom configuration
need not be modified in any way; only template signatures
are adjusted.

An attractive feature of templates for FEM programming
is that each “custom mass matrix” need not be coded and
tested individually. It is sufficient to implement the template
as a single element-level module, with free parameters as
arguments (alternatively, useful instances may be identified
by predefined mnemonic character strings, and converted to
numerical signatures internally). The signature is adjusted
according to goals and needs. In particular the same mod-
ule should be able to produce the conventional DLMM and
CMM models as instances. This can provide valuable cross-
checking with well established programs while doing bench-
marks.

In problems characterized by rapid transients, such as
contact-impact and fragmentation, templates allow a flexible
customization: reduced high-frequency pollution in elements
in or near shock regions while maintaining low-frequency
continuum fit away from such regions. In those scenarios,
signatures may evolve in time.

2 Is Customization Worth the Trouble?

The ability to customize a mass matrix is not free of devel-
opment costs. The presence of free parameters makes tem-

plate derivations considerably more complicated than those
based on the two standard procedures noticed in Sect. 1 and
outlined in Appendix 2. Reason: everything must be car-
ried along symbolically: geometry, material and fabrication
properties, in addition to the free parameters. Consequence:
hand computations rapidly become unfeasible, even for fairly
simple 1D elements. Help from a computer algebra system
(CAS) is needed to get timely results. A key issue is: when
is this additional work justified? Two specific cases may be
mentioned.

One is high fidelity systems. Dynamic analysis covers a
wide range of applications. There is a subclass that calls
for a level of simulation accuracy beyond that customary
in engineering analysis. Examples are deployment of pre-
cision space structures, resonance analysis of machinery or
equipment, adaptive active control systems, medical imag-
ing, phononics (long wave guidance at molecular level), vehi-
cle signature detection, radiation loss in layered circuits, and
molecular- and crystal-level simulations in micro- and nano-
mechanics.

In static structural analysis an error of 20 or 30 % in
peak stresses is not cause for alarm—such discrepancies
are usually covered adequately by safety factors. But a
similar error in frequency analysis or impedance response
of a high fidelity system can be disastrous. Achieving
acceptable precision with a fine mesh, however, can be
expensive. Model adaptivity comes to the rescue in sta-
tics. This approach is less effective in dynamics, how-
ever, on account of the time dimension and the fact that
irregular meshes are prone to develop numerical pollu-
tion. Customized elements may provide a practical solu-
tion: achieving adequate accuracy with a coarse regular
mesh.

Another possibility is that the stiffness matrix comes from
a method that avoids displacement shape functions (DSF).
For example, assumed-stress or strain elements. Or, it could
simply be an array of numbers provided by a black-box pro-
gram, with no documentation explaining its source. If this
happens the concept of CMM, in which velocity shape func-
tions (VSF) are taken to coincide with DSF, loses the comfort-
able variational meaning outlined in Sect. 1. An expedient
way out is to choose an element with similar geometry and
freedom configuration derived with DSF and take those as
VSF. But which element to pick? If time allows, construct-
ing and customizing a template avoids uncritically rolling the
dice.

3 Mass Parametrization Techniques

There are several ways to parametrize mass matrices. Tech-
niques found effective in practice are summarized below.
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General Description and 1D Examples 3

Most of them are illustrated in the worked out examples of
ensuing sections.

It is often advantageous to have several template expres-
sions for the same element configuration. For example, to
study the subset of DLMM it may be convenient to stream-
line the general form to one that produces only such matri-
ces. Likewise for singular mass matrices. In that case we
speak of template variants. These may overlap totally or par-
tially: the DLMM variant is plainly a subset of the general
mass template. The key difference between a template subset
and a variant is that the latter redefines free parameters from
scratch.

For the reader’s convenience, acronyms often used in this
paper are listed in Table 2. A set of definitions and abbrevi-
ations pertaining to templates are collected in Table 3.

Notational conventions for mathematical expressions that
appear in this paper are summarized in Table 4. Specific
conventions used for free template parameters are given in
Table 5. As a general rule, template parameters are always
dimensionless and denoted by lower case Greek letters.

3.1 Matrix-Weighted Parametrization

A matrix-weighted (MW) mass template for element e is
a linear combination of (k + 1) component mass matrices,
k ≥ 1 of which are weighted by parametersμi , (i = 1, . . . k):

Me def= Me
0 + μ1Me

1 + · · ·μkMe
k . (1)

Here Me
0 is the baseline mass matrix. This should be an

admissible mass matrix on its own if μ1 = . . . μk = 0.
The simplest instance of (1) is a linear combination of the
CMM and a DLMM:

Me def= (1 − μ)Me
C + μMe

L . (2)

This can be reformatted as (1) by writing Me = Me
C +

μ(Me
L − Me

C ) = Me
0 + μMe

1. Here k = 1, the base-
line is Me

0 ≡ Me
C , μ ≡ μ1 and Me

1 is the “mass devi-
ator” Me

L − Me
C . The specialization (2) is often abbrevi-

ated to “linear combination of consistent and diagonally
lumped masses,” with acronym LCDM; cf. Table 2. The
rationale behind (2) is that the CMM typically overesti-
mates natural frequencies while a DLMM usually under-
estimates them. Thus a linear combination has a good
chance of improving low-frequency accuracy for some μ ∈
[0, 1].

A MW mass template represents a tradeoff. It cuts down
on the number of free parameters. Such a reduction is
essential for 2D and 3D elements. It makes it easier to
satisfy conservation and nonnegativity conditions through
appropriate choice of the Me

i . On the minus side it gen-

Table 2 Acronyms used in paper

Acronym Stands for

AB Acoustic branch in DDD: has physical meaning in
continuum models

ABTS AB Taylor series in DWN κ , centered at κ = 0

BLCD Best linear combination (LFF sense) of the CMM and a
selected DLMM

BLFD Best possible DLMM (LFF sense); acronym also applies
to MS pair with this mass

BLFM Best possible FPMM (LFF sense); acronym also applies
to MS pair with this mass

CMM Consistent mass matrix: a special VDMM in which
VSM and DSF coalesce

CMS Component Mode Synthesis: model reduction
framework for structural dynamics

CMT Congruential (also spelled congruent) mass
transformation

COB Constant optical branch: OB frequency is independent
of wavenumber

COF Cutoff frequency: OB frequency at zero wavenumber
(lowest one if multiple OB)

DDD Dimensionless dispersion diagram: DCF � versus
DWN κ

DGVD Dimensionless group velocity diagram: γc = c/c0
versus DWN κ

DIMM Directionally invariant mass matrix: repeats with respect
to any RCC frame

DOF Degree(s) of freedom

DLMM Diagonally lumped mass matrix; qualifier “diagonally”
is often omitted

DSF Displacement shape functions to interpolate
displacements over element

DSM Direct Stiffness Method: the most widely used FEM
implementation

DTI Direct time integration of EOM

DCF Dimensionless circular frequency, always denoted by �

DWN Dimensionless wavenumber, always denoted by κ

EOM Equations of motion

FEM Finite Element Method

FFB Flexural frequency branch in Bernoulli–Euler or
Timoshenko beam models

FPMM Fully populated mass matrix (at element level); includes
CMM as special case

HF High frequency: short wavelength, small DWN,
typically κ > 1

LCDM Mass matrix obtained as linear combination of the
CMM and a selected DLMM

LF Low frequency: long wavelength, small DWN, typically
κ < 1

LFF Low frequency fitting of AB to that of continuum

LLMM Lobatto lumped mass matrix: a DLMM based on a
Lobatto quadrature rule

MOF Maximum overall frequency: largest frequency in DDD
over Brillouin zone
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4 C. A. Felippa et al.

Table 2 continued

Acronym Stands for

MSA Matrix Structural Analysis: invented by Duncan and
Collar at NPL [23,24]

NCT Non-continuum term: a term in the ABTS that is not
present in the continuum

NND Nonnegative definite; a qualifier reserved for symmetric
real matrices

PD Positive definite; a qualifier reserved for symmetric real
matrices

PVP Parametrized variational principle

OB Optical branch (or branches) in DDD: no physical
meaning in continuum models

OBTS OB Taylor series in DWN κ , centered at κ = 0

RCC Rectangular Cartesian Coordinate: qualifier to frame,
system, axes, etc.

SDAV Structural dynamics and vibration applications: low
frequency range important

SF Shape function

SFB Shear frequency branch in the Timoshenko beam model

SLMM Simpson lumped mass matrix: a LLMM based on
Simpson’s 3-pt quadrature rule

SMS Selective mass scaling: modifying a mass matrix by
adding a scaled stiffness

VDMM Variational derived mass matrix: Hessian of discretized
kinetic energy

VP Variational principle

VSF Velocity shape functions to interpolate velocities and
produce a VDMM

erally spans only a subspace of admissible mass matri-
ces.

3.2 Spectral Parametrization

A spectrally parametrized (SP) mass template has the form

Me def= HT Dμ H, Dμ = diag
[

c0μ0 c1μ1 . . . ckμk
]
.

(3)

in which H is typically a full matrix. Parameters μ0 . . . μk

appear as entries of the diagonal matrix Dμ. Scaling coef-
ficients ci may be introduced for convenience so the μi are
dimensionless. Often the values of μ0 and/or μ1 are preset
from conservation conditions.

Configuration (3) occurs naturally when Me is constructed
first in generalized coordinates, followed by congruential
transformation to physical coordinates via H. If the gener-
alized mass is derived using mass-orthogonal functions (for
example, Legendre polynomials in 1D elements), the unpara-
metrized generalized mass D = diag

[
c0 c1 . . . ck

]
is

diagonal. Parametrization is effected by scaling its entries.

Table 3 Template related nomenclature

Term or abbreviationMeaning

Template An algebraic expression for a FEM matrix that
contains free parameters

So far used to construct stiffness and mass
matrices of linear FEM models

Signature The set of free parameters that uniquely defines a
template

Instance Matrix (or matrices) obtained by setting the
signature to numeric values

Subset Generic term for template specialization:
includes families and variants

Family A template subset in which some free parameters
are linked by constraints

Variant A template subset that introduces free parameters
from scratch (the “subset“ may be the original
template if reparametrized)

Admissible Qualifier applied to instances that satisfy
predefined conditions such as positiveness,
element mass conservation, and fabrication
symmetries

MS template Mass-stiffness pair template: both M and K have
free parameters

FD template Frequency-dependent template: free parameters
may depend on frequency

FDM template Frequency-dependent mass template

FDS template Frequency-dependent stiffness template

FDMS template Frequency-dependent mass-stiffness template

EW template Entry weighted parametrization of a template;
see Sect. 3.3

ML template Multilevel parametrization of a template; see
Sect. 3.4

MW template Matrix weighted parametrization of a template;
see Sect. 3.1

SP template Spectral parametrization of a template; see
Sect. 3.2

As noted, some entries may be left fixed to satisfy a priori
constraints such as mass conservation.

Expanding (3) and collecting matrices that multiply each
μi leads to a matrix weighted combination form (1) in which
each Me

i is a rank-one matrix. The analogy with the spectral
representation theorem of symmetric matrices is obvious.
But in practice it is usually better to work directly with the
congruent representation (3).

As remarked later in Sect. 3.6, SP is especially convenient
for constructing singular mass matrices under customization
scenario RHFP of Table 1.

3.3 Entry-Weighted Parametrization

An entry-weighted (EW) mass template applies free para-
meters directly to each entry of the mass matrix, except for
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General Description and 1D Examples 5

Table 4 General notational conventions for mathematical expressions

Letter symbola Used for Examples

UC bold Matrices K, M

LC bold Vectors u, u̇

US roman Scalar coefficients or
functions

a, b, Q̄, u(x, t)

SS LC roman Subscripted variants of
scalar coefficients

ĉ1, ĉ2

SS LC roman Vector entries conforming
with vector symbol

ui : entries of u

DS UC roman Matrix entries conforming
with matrix symbol

Ki j : entries of K

Greek letters Dimensionless quantities
except as noted belowb

θ, ψ, �

Superposed dot Temporal differentiation ü ≡ d2u(t)/dt2

Prime 1D spatial differentiation,
usually with respect to x

v′(x) ≡ dv(x)/dx

a UC uppercase, LC lowercase, US unsubcripted, SS single
subscripted, DS double subscripted
b Exemption made for well established symbols: e.g. ω frequency, or ρ
mass density

Table 5 Notational conventions for template parameters

Symbola Used for

αi Free parameters in basic stiffness matrix template (not used
in this paper)

βi Free parameters in higher order stiffness matrix template

μi Original free parameters in mass template. Additional letter
subscripts may be appended as appropriate to distinguish
template families or variants

νi , χi Alternative notations for mass template parameters. Often
derived from the original μi to streamline expressions, or
to identify families or variants

a The subscript index is suppressed if only one parameter appears; e.g.
β, μ

a priori constraints on symmetry, invariance and conserva-
tion. As an example, for a 1D element with three translational
DOF we may start from

Me def= me

⎡

⎣
μ11 μ12 μ13

μ12 μ22 μ23

μ13 μ23 μ33

⎤

⎦, (4)

in which me is the total element mass, and the sum of all row
sums is one. EW is often applied to entries of a “deviator
matrix” that measures the change from a baseline matrix such
as MC . For example, see the three-node bar template (39).

Because of its generality, EW parametrization can be
expected to lead to optimal customized instances. But it is
restricted to simple (usually 1D) elements because the num-
ber of parameters grows quadratically in the matrix size,
whereas for the foregoing two schemes either it grows lin-
early, or stays constant.

3.4 Multilevel Parametrization

A hierarchical combination of parametrization schemes can
be used to advantage if the kinetic energy can be naturally
decomposed from physical considerations. For example, the
Timoshenko beam element covered in Sect. 7 uses a two-
matrix-split template combined by a weighted form similar
to (2) as top level (the energy split is between translational and
rotational inertia). The two components are constructed by
spectral and EW parametrization, respectively. Such combi-
nations fall under the scope of multilevel (ML) parametriza-
tion.

3.5 Selective Mass Scaling

Selective mass scaling (SMS), is a method proposed recently
(references given in Appendix Sect. 1.4), in which the mass
matrix is modified by a scaled version of the stiffness matrix.
Thus M becomes

MK = M + μK

ω2
re f

K. (5)

Here μK ≥ 0 is a dimensionless scaling factor whereas
ω2

re f is a “reference” frequency used to homogenize phys-
ical dimensions. The modification (5) may be done at the
element or system level. The objective is to “filter down”
high frequencies in explicit DTI for applications such as
contact-impact; e.g., vehicle crash simulation. Filtering aims
to reduce spurious noise as well as increasing the sta-
ble timestep. It thus follows under customization scenarios
RHFP and MSTS of Table 1. The basic idea can be explained
as follows. Let ωi and vi denote the natural frequencies
and associated orthonormalized eigenvectors, respectively,
whereas ω̂i and v̂i are their counterparts for the modified
eigenproblem (MK +ω̂2

i K) v̂i = 0. By inspection the eigen-
vectors are preserved: v̂i = vi . Taking the Rayleigh quotient
shows that the modified frequencies are

ω̂2
i = ω2

i

Ri
, in which Ri = 1 + μK

ω2
i

ω2
re f

. (6)

Choosing μK > 0 cuts down each frequency by Ri > 0. For
low frequencies the modification is negligible ifμK andω2

re f
are appropriately selected so that Ri ≈ 1. For nonphysical
high frequencies (mesh modes) the reduction can be signifi-
cant In fact note that if ω2

i >> μK /ω
2
re f , ω̂2

i cannot exceed

the fixed bound ω2
max = ω2

re f /μK . The downside is that low
frequency accuracy may suffer significantly, as illustrated
later.

Although SMS may be presented as a variant of the MW
parametrization technique of Sect. 3.1, it deserves to be con-
sidered on its own for the reasons stated in Appendix Sect.
1.4.
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3.6 Singular Mass Matrices

A thread linked to SMS but independently developed is that
of singular mass matrices. This has been primarily advocated
for multibody dynamics, as well as dynamical systems lead-
ing to differential-difference equations of motion (EOM) that
occur in active or passive control with time lags. References
are provided in Appendix Sect. 1.5. The objective is roughly
similar to SMS: reduce high frequency noise pollution trig-
gered by rapid transients and/or time lags. But now this is
done by raising the optical branch (OB) (or branches) so as
to widen the acoustoptical gap pictured described in Sect. 5.1
and illustrated in Fig. 8. Noisy frequencies that fall in the gap
decay exponentially.

There are several ways to produce such matrices. Under
the template framework, the use of SP is particularly con-
venient, as observed in Sect. 3.2. Other approaches include
reduced numerical integration, as well as injection of a con-
venient null space using mass matrix projection.

3.7 Constant Optical Branch Variant

Instead of rising the OB (or branches) by making Me sin-
gular, one may try to make the OB frequency independent.
Templates that accomplish that feat are tagged as having a
constant optical branch (COB) for short. They form subsets
collectively identified as the COB variant. The group veloc-
ity pertaining to a COB vanishes, so associated waveforms
with that particular frequency do not propagate. COB tem-
plates were discovered during the course of this work, and are
briefly studied in Sect. 5.13 for the three-node bar element.

3.8 Mass-Stiffness Template Pairs

The concept of template was first developed for element stiff-
ness matrices, as a natural generalization of its decomposition
into basic and higher order parts. A brief historical account is
provided in Appendix Sect. 1.6. Normally the stiffness tem-
plate is optimized by imposing superconvergence conditions
dealing with higher order patch tests while element aspect
ratios are kept arbitrary. That optimal instance, if found,
is kept fixed while a mass matrix template is subsequently
investigated.

Maximum customization for dynamics can be expected
if both stiffness and mass matrix templates can be simul-
tanously adjusted. This is known as a mass-stiffness (MS)
template. These may be of interest when improving dynamic
behavior is paramount. Presently there is relatively little
experience with this more ambitious approach. A note of
caution: highly optimized MS templates may be abnormally
sensitive to geometric or material perturbations away from a
regular mesh.

3.9 Frequency Dependent Templates

One final generalization should be mentioned: allowing free
parameters to be function of the frequency. If this is done for
the mass matrix, we speak of a frequency dependent mass
(FDM) template. If this is done for both the mass and stiffness
matrices, we call the combination a FDM-stiffness (FDMS)
template. Both cases are illustrated in Sects. 4.11–4.13 for
the two-node bar element.

Although this ultimate complication is largely a curios-
ity, it might be occasionally useful in problems that profit
from transformation to the frequency domain. For example:
a linear dynamic system driven by a harmonic excitation of
slowly varying frequency, if only the long term (steady-state)
response is considered. Such systems may arise in parametric
stability and active control.

4 The Two-Node Bar Element

The template approach is best grasped through an example
that involves the simplest nontrivial structural finite element:
a two-node prismatic bar of mass densityρ, area A and length

, that can only move along the longitudinal axis x . See
Fig. 1a. This element is often acronymed Bar2 for brevity’s
sake. The well known consistent and DLMM forms are

Me
C = me

6

[
2 1
1 2

]
, Me

L = me

2

[
1 0
0 1

]
. (7)

in which me = ρA
 is the total element mass. These are
derived in Sect. 1.

4.1 Bar2 Entry Weighted Template

The most general mass matrix form for Bar2 is the EW tem-
plate

Me =
[

Me
11 Me

12
Me

21 Me
22

]
= ρA 


[
μ11 μ12

μ21 μ22

]

= me
[
μ11 μ12

μ21 μ22

]
. (8)

The first form is merely a list of entries. Next the element
mass me = ρA 
 is factored out. The emerging parame-

(a) (b)

Fig. 1 The two-node prismatic bar element: a element configuration,
b direct mass lumping to end nodes
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General Description and 1D Examples 7

ters μ11 through μ22 are numbers, which illustrates a gen-
eral rule: template free parameters should be dimensionless.
This simplifies analysis and implementation. To cut down on
parameters one looks at configuration constraints. The most
obvious ones are:
Matrix symmetry Me = (Me)T . For the expression (8) this
requires μ21 = μ12.
Physical symmetry: For a prismatic bar, Me in (8) must
exhibit antidiagonal symmetry: μ22 = μ11.
Conservation of total translational mass: same as conser-
vation of linear momentum or of kinetic energy. Apply the
uniform velocity field u̇ = v to the bar. The associated nodal

velocity vector is u̇e = ve = v
[

1 1
]T

. The kinetic energy
is T e = 1

2 (v
e)T Meve = 1

2 mev2(μ11 + μ12 + ν2 + μ22).
This must equal 1

2 mev2, whence μ11 + μ12 + μ21 + μ22 =
2(μ11 + μ12) = 1.
Nonnegativity: Me should not be indefinite (this is not an
absolute must, and it is actually relaxed in some elements
discussed later). Whether checked by computing eigenval-
ues or principal minors, this constraint is nonlinear and of
inequality type. Consequently it is not often applied ab ini-
tio, unless the element is quite simple, as in this case, or can
be stated through simple expressions.

4.2 Bar2 One Parameter Mass Template

On applying the symmetry and conservation rules three para-
meters of (8) are eliminated. The remaining one, called μ,
is taken for convenience to be μ11 = μ22 = (2 + μ)/6 and
μ12 = μ21 = (1 − μ)/6. This rearrangement gives

Me
μ = 1

6ρA 


[
2 + μ 1 − μ

1 − μ 2 + μ

]
= (1−μ)Me

C +μMe
L . (9)

Expression (9) shows that the general Bar2 mass template can
be recast as a linear combination of the CMM and DLMM
instances listed in (7). Summarizing, we end up with a one-
parameter, matrix-weighted (MW) template that befits the
LCD form (2). If μ = 0 and μ = 1, (9) reduces to Me

C
and Me

L , respectively. This illustrates another requirement:
the CMM and DLMM forms must be instances of the mass
template.

Finally we can apply the nonnegativity constraint. For the
two principal minors of Me

μ to be nonnegative, 2 + μ ≥ 0
and (2 +μ)2 − (1 −μ)2 = 3 + 6μ ≥ 0. Both are satisfied if
μ ≥ −1/2. Unlike the others, this constraint is of inequality
type, and only limits the range of μ.

The remaining task is to select the parameter. This is done
by introducing an optimality criterion that fits the problem
at hand. This is where customization comes in. Even for this
simple case the answer is not unique. Thus the statement “the
best mass matrix for Bar2 is so-and-so” has to be qualified.

Two specific optimization criteria are considered in Sects. 4.4
and 4.5.

4.3 Bar2 Alternative Parametrization

An alternative template expression that is useful in some
investigations, such as those undertaken in Appendix 6, is
obtained by reparametrizing via χ = 1 + 2μ, the inverse of
which is μ = (χ − 1)/2. The resulting form is

Me
χ = 1

12 ρA 


[
3 + χ 3 − χ

3 − χ 3 + χ

]
. (10)

This is called the “χ form” of the general Bar2 mass template.
Because the determinant is ρA 
χ , Me

χ is seen to be singular
if χ = 0, and nonnegative if χ ≥ 0.

4.4 Bar2 Angular Momentum Conservation

This criterion can only be applied in multiple dimen-
sions, since element-transverse angular rotations do not
exist in 1D. Accordingly we allow the bar to move in
the {x, y} plane by expanding its nodal DOF to ue =
[

ux1 uy1 ux2 uy2
]T

, whence (9) becomes a 4 × 4
matrix

Me
μ = 1

6ρA 


⎡

⎢⎢
⎣

2 + μ 0 1 − μ 0
0 2 + μ 0 1 − μ

1 − μ 0 2 + μ 0
0 1 − μ 0 2 + μ

⎤

⎥⎥
⎦ (11)

Apply a uniform angular velocity θ̇ about the midpoint.
The associated node velocity vector at θ = 0 is u̇e =
1
2
θ̇

[
0 −1 0 1

]T
. The discrete and continuum energies are

T e
μ = 1

2 (u̇
e)T Me

μu̇e = 1
24ρA
3(1 + 2μ),

T e =

/2∫

−
/2
ρA
(
θ̇ x
)2

dx = 1
24ρA
3. (12)

Matching T e
μ = T e gives μ = 0. So according to this crite-

rion the optimal mass matrix is the consistent one (CMM).
Note that if μ = 1, T e

μ = 3T e, whence the DLMM overes-
timates the element rotational (rotary) inertia by a factor of
three.

4.5 Bar2 Fourier Analysis

For longitudinal motions, a more useful customization cri-
terion is to improve accuracy in the long wavelength, low-
frequency limit; this is labeled low frequency continuum fit
(LFCF) in Table 1. This is carried out by a well known
tool: Fourier analysis. Physical interpretation: probe the

123



8 C. A. Felippa et al.

(a)

(b)

(c) (d)

Fig. 2 Propagation of a harmonic plane wave over an infinite, pris-
matic, elastic bar: a propagation over a continuum bar, b FEM dis-
cretization as infinite regular lattice, c propagation of plane wave over

Bar2-discretized lattice, d extraction of a typical two-element patch. For
visualization convenience, the wave-profile axial displacement u(x, t)
is plotted normal to the bar

fidelity with which planes waves are propagated over a FEM-
discretized regular lattice, when compared to the propaga-
tion over a continuum bar. The essentials are illustrated in
Fig. 2. The top half depicts the continuum bar whereas the
bottom half shows stages of the Fourier analysis of its FEM-
discretized counterpart.

Symbols used for the analysis of plane wave propagation
are collected in Table 6 for the reader’s convenience (the
same notation is reused in later Sections). Corresponding
nomenclature for the FEM-discretized two-node bar lattice is
collected in Table 7. The continuum-versus-lattice notational
rule is: corresponding quantities use the same symbol but the
zero subscript is suppressed in the lattice. For example, the
continuum wavelength λ0 becomes the lattice wavelength λ.

Plane wave propagation over a regular spring-mass lattice
is governed by the semidiscrete linear EOM:

Mü+Ku = 0, (13)

in which M and K are infinite, tridiagonal Toeplitz matri-
ces. This EOM can be solved by Fourier methods. Figure 2b

displays two characteristic lengths: λ and 
. The element
length-to-wavelength ratio is calledϒ = 
/λ. The floor func-
tion of its inverse: Neλ = �λ/
� is the number of elements
per wavelength. Those ratios characterize the fineness of the
discretization, as illustrated in Fig. 2b.

Within constraints noted later the lattice can propagate
real, travelling, harmonic plane waves of wavelength λ and
grpup velocity c, as depicted in Fig. 2b, c. The wavenum-
ber is k = 2π/λ and the circular frequency ω = 2π/T =
2πc/λ = k c. The range of wavelengths that the lattice may
transport is illustrated in Fig. 3.

To study plane wave solutions it is sufficient to extract a
two-element patch, a process depicted in Fig. 2d. A harmonic
plane wave of amplitude B is described by the function

u(x, t) = B exp [ j (kx − ω t)]

= B exp
[

j
(
κx −� c0 t

)/


]
, j = √−1. (14)

Here the dimensionless wavenumber κ and dimensionless
circular frequency�were introduced as κ = k 
 = 2π
/λ =
2πχ and � = ω 
/c0, respectively. Here c0 = √

E/ρ is the
elastic bar group velocity, which for the continuum is the
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General Description and 1D Examples 9

Table 6 Nomenclature for harmonic plane wave propagation over con-
tinuum bar

Quantitya Meaning (physical dimension in brackets)

ρ, E, A Mass density, elastic modulus, and cross section area
of bar

()′, (̈) Abbreviations for derivatives with respect to space x
and time t , respectively

ρ ü0 = E u′′
0 Bar wave equation. Frequency domain forms:

−ω2
0u = c2

0 u′′ and u′′ + k2
0 u = 0

u0(x, t) Plane wave function u0 = B0 exp
(
i(k0x − ω0t)

)

[length], in which i = √−1

B0 Wave amplitude [length]

λ0 Wavelength [length]

k0 Wavenumber k0 = 2π/λ0 [1/length]

κ0 Dimensionless wavenumber κ0 = k0λ0

ω0 Circular (a.k.a. angular) frequency
ω0 = k0c0 = 2π f0 = 2πc0/λ0 [radians/time]

f0 Cyclic frequency f0 = ω0/(2π) [cycles/time: Hz if
time in seconds]

T0 Period T0 = 1/ f0 = 2π/ω0 = λ0/c0 [time]

�0 Dimensionless circular frequency
�0 = ω0T0 = ω0λ0/c0

c0 Group wave velocity
c0 = ω0/k0 = λ0/T0 = √

E/ρ [length/time].
Often abbreviated to wavespeed. Physically, c0 is
the longitudinal speed of sound

a Unsubscripted counterpart symbols, such as k or c, pertain to a discrete
FEM lattice; cf. Table 7

same as the phase velocity (in physical acoustics c0 is the
sound speed of the material). Using the well-known Bar2
static stiffness matrix and the mass template (9) gives the
patch equations

ρA


6

⎡

⎣
2 + μ 1 − μ 0
1 − μ 4 + 2μ 1 − μ

0 1 − μ 2 + μ

⎤

⎦

⎡

⎣
ü j−1

ü j

ü j+1

⎤

⎦

+ E A




⎡

⎣
1 −1 0

−1 2 −1
0 −1 1

⎤

⎦

⎡

⎣
u j−1

u j

u j+1

⎤

⎦ = 0. (15)

From this one takes the middle (node j) equation, which
repeats in the infinite lattice:

ρA


6

[
1 − μ 4 + 2μ 1 − μ

]
⎡

⎣
ü j−1

ü j

ü j+1

⎤

⎦

+ E A




[−1 2 −1
]
⎡

⎣
u j−1

u j

u j+1

⎤

⎦ = 0. (16)

Evaluate the wave motion (14) at x = x j−1 = x j − 
, x =
x j and x = x j+1 = x j + 
 while keeping t continuous.

Table 7 Nomenclature for harmonic plane wave propagation over Bar2
lattice

Quantitya Meaning (physical dimension in brackets)

u(x, t) Plane wave function (14) [length]

u Node displacement vector, built by evaluating
u(x, t) at nodes [length]

Mü+Ku = 0 Lattice wave equation (13). K and M are infinite
Toeplitz matrices

B Wave amplitude [length]


 Bar element length [length]

λ Wavelength λ = 2π/k = 2π
/κ [length]

k Wavenumber k = 2π/λ = κ/
 [1/length]

κ Dimensionless wavenumber κ = k 
 = 2π 
/λ

Neλ Elements per wavelength: �λ/
�: same as signal
sampling rate

ω Circular (a.k.a. angular) frequency ω = � c0/


[radians/time]

f Cyclic frequency f = ω/(2π) [cycles/time: Hz if
time in seconds]

T Period T = 1/ f = 2π/ω = λ/c [time]

� Dimensionless circular frequency � = ω 
/c0

c Group velocity over lattice:
c = ∂ω/∂k = c0(∂�/∂κ) [length/time]

γc Wavespeed ratio c/c0 = ∂�/∂κ from discrete to
continuum

a Quantities unchanged from continuum to lattice, such as E , are not
repeated in this Table. Note that the definition of� uses the continuum
wavespeed c0 = √

E/ρ; not the discrete wavespeed c

Substitution into (16) gives the wave propagation condition

ρA c2
0

3


[
6 − (2 + μ)�2 − (6 − (1 − μ)�2) cos κ

]

×
(

cos
� c0 t



− i sin

� c0 t




)
B = 0. (17)

If this is to be zero for any t and B, the expression in brackets,
called the characteristic equation, must vanish. Solving gives
the dimensionless frequency versus wavenumber relation

�2 = 6(1 − cos κ)

2 + μ+ (1 − μ) cos κ

= κ2 + 1 − 2μ

12
κ4 + C6 κ

6 + · · · (18)

in which C6 = (1 − 10μ+ 10μ2)/360. Its inverse is

κ = arccos

[
6 − (2 + μ)�2

6 + (1 − μ)�2

]

= �− 1 − 2μ

24
�3 + 9 − 20μ+ 20μ2

1920
�5 + · · · (19)
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10 C. A. Felippa et al.

Fig. 3 Selected plane waves of
various wavelengths, illustrating
the physical meaning of the
dimensionless wavenumber
(DWN) κ = k
 = 2π
/λ. a, b,
c, d show cases κ = 0, π/4, π
and 2π , respectively. The
number of elements per
wavelength is
Neλ = �λ/
� = �2π/κ�, in
which �.� denotes the floor
function. (This is equivalent to
the spatial sampling rate of filter
technology). The case λ = 2

pictured in c pertains to the
folding or Nyquist frequency, at
which κ = π, Neλ = 2, and the
group velocity c vanishes

(a)

(b)

(c)

(d)

Transforming (18) to physical wavenumber k = κ/
 and
circular frequency ω = � c0/
 gives

ω2 =
(

6c2
0


2

)
1 − cos(k
)

2 + μ+ (1−μ) cos(k
)

= c2
0 k2

(
1 + 1−2μ

12
k2 
2 + C6 k4
4 + · · ·

)
(20)

4.6 Bar2 Dispersion Diagrams

An equation that links frequency and wavenumber: � =
�(κ) as in (18), or ω = ω(k), as in (20), is a dis-
persion relation. A plot of the dispersion relation with k
and ω along horizontal and vertical axes, respectively, is
called a dispersion diagram. When this is done in terms
of dimensionless wavenumber κ and dimensionless fre-
quency �, the plot is called a dimensionless dispersion dia-
gram (DDD). Such diagrams exhibit a 2π period: �(κ) =
�(κ + 2πn) for integer n. Thus it is enough to plot
�(π) over either [−π, π ] or [0, 2π ], a range called a Bril-
louin zone. All DDD in this paper use the [0, 2π ] range
choice.

Why is � = 0 at κ = 2π? The wavelenth λ = 
 pictured
in Fig. 3d has the same value at all nodes for each time t .
This nodal sampling cannot be distinguished from the case

λ = ∞ (that is, κ = 0) shown in Fig. 3a. They must share
the same frequency, which is zero. Associated plane waves
propagate with the same speed but in opposite directions.
Similar arguments can be adduced to justify the dispersion
curve symmetry about wavenumber κ = π , as well as the
2π periodicity.

4.7 Best μ By Low Frequency Fitting

An oscillatory dynamical system is nondispersive if ω is
linear in k, in which case c = ω/k is constant and the
wavespeed (the group velocity) is the same for all frequen-
cies. The physical dispersion relation for the continuum bar
is c0 = ω0/k0 = √

E/ρ. Hence all waves propagate with
the same speed in this model. Group and phase velocities
coalesce.

The FEM-discretized lattice group velocity is c =
∂ω/∂k = c0(∂�/∂κ), which differs from c0 except at
ω = κ = 0. The Bar2 discrete model is dispersive for any
fixed μ, since from (20) we get

γc = c

c0
= ∂�

∂κ
= 1

κ

√
6(1 − cos κ)

2 + μ+ (1 − μ) cos κ

= 1 + 1 − 2μ

24
κ2 + 1 − 20μ+ 20μ2

1920
κ4 + · · · (21)
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General Description and 1D Examples 11

Fig. 4 Results from Fourier
analysis of Bar2 infinite regular
lattice for three choices of μ,
plus continuum: a DDD, b
dimensionless group velocity
diagram (DGVD)

(a) (b)

(a) (b)

Fig. 5 Fixed-free homogeneous prismatic elastic bar member used in
vibration test for Bar2 and Bar3 template instances. Both pictured dis-
cretizations display 4 elements. a Member modeled with Bar2 elements;

results reported in Table 8 and Fig. 6, b member modeled with Bar3
elements; results reported in Fig. 12

Plainly the best fit to the continuum for small wavenumbers
κ = k
<<1 is obtained by taking μ = 1/2, which makes
the second term of the series (18) or (21) vanish. So for
LFCF customization the best mass matrix is the average of
the lumped and consistent ones:

Me
BL F M = Me

μ

∣∣
μ= 1

2
= 1

2 Me
C + 1

2 Me
L = ρA


12

[
5 1
1 5

]
.

(22)

This instance is labeled BLFM, for best low-frequency
match. Figure 4a plots the dimensionless dispersion relation
(18) for the CMM (μ = 0), DLMM (μ = 1) and BLFM
(μ = 1

2 ) mass matrices, along with the continuum-bar rela-
tion�0 = κ0. The superior small-κ fit provided by the BLFM
is evident.

4.8 Folding Frequency

The maximum lattice frequency occurs at the folding
wavenumber κ = k
 = π or λ = 2
, which is waveform
(c) in Fig. 3. The sampling rate Neλ is then 2 elements per
wavelength. This is called the folding or Nyquist frequency,
and is denoted as

�2
a f = 12

1 + 2μ
. (23)

(The “a” in the subscript stands for AB; this notation is
explained in Sect. 5.1). This varies from�a f = √

12 = 2
√

3

for the CMM through �a f = 2 for the DLMM. Frequen-
cies higher than �a f cannot be propagated over the lattice.
As shown in Fig. 4b, the lattice wavespeed vanishes at the
folding wavenumber κ = π , and is negative over the range
(π, 2π ]. Waveforms in that rage move with negative speed:
c < 0. As discussed in Sect. 4.6, the waveform with 
 = λ,
or κ = 2π , cannot be distinguished from a rigid motion such
as that pictured in Fig. 3a, and the lattice frequency falls to
zero.

4.9 Bar2 Test: Vibrations of a Fixed-Free Bar Member

Natural frequency predictions of three Bar2 template
instances are compared for predicting natural frequencies of
longitudinal vibrations of the fixed-free elastic bar member
pictured in Fig. 5. The member is prismatic, with constant
E = 1, A = 1, and ρ = 1. The total member length is
taken as L = π/2 for convenience. With those numerical
properties the continuum eigenfrequencies are

ω0i = (2i − 1)π

2L

√
E

ρ
= 2i − 1, i = 1, 2, 3, . . . (24)

The member is divided into Ne identical elements, with
Ne = 1, 2, . . . 16. Figure 5a pictures the case Ne = 4. Three
template instances are compared: CMM (μ = 0), DLMM
(μ = 1) and BLFM (μ = 1/2). Numerical results obtained
for the first three frequencies are collected in Table 10.
The O(κ4) convergence of BLFM is obvious. For exam-
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12 C. A. Felippa et al.

Table 8 Bar2 instance results for vibrations of a fixed-free bar member

Instance Ne ω1 ω2 ω3

CMM 1 1.102658 * *

2 1.025859 3.583726 *

4 1.006437 3.174947 5.767394

8 1.001607 3.043539 5.202396

16 1.000402 3.010855 5.050339

DLMM 1 0.900316 * *

2 0.974495 2.352640 *

4 0.993587 2.829496 4.234640

8 0.998394 2.956815 4.801608

16 0.999598 2.989169 4.949951

BLFM 1 0.986247 * *

2 0.999188 2.781352 *

4 0.999950 2.987344 4.827222

8 0.999997 2.999237 4.989971

16 1.000000 2.999953 4.999389

* Frequency not provided by discrete FEM model

ple, 4 elements give ω2 correct to 4 digits while both CMM
and DLMM, which converge as O(κ2), give only 2. As
expected, CMM overestimates the continuum frequencies
while DLMM underestimates them.

The results of Table 8 are graphically reformatted in
Fig. 6, as accuracy versus elements log-log plots. The hori-
zontal axis shows number of elements Ne in log2 scale. The
vertical axis displays correct digits of computed frequency,
obtained as

d = − log10 |�ωi | , in which �ωi = ωi − ω0i . (25)

Here �ωi is the frequency error of computed values with
respect to continuum frequencies ω0i = 2 i − 1, given by
(24). The plots clearly show at a glance that, for the same Ne,

BLFM roughly doubles the number of correct digits provided
by the other two instances. It also illustrates that CMM and
DLMM give the same error magnitude (within plot accuracy)
although of different signs. Thus log-log plots such as those
in Fig. 6 are unable to show whether the convergence is from
above or below, because of the taking of absolute values in
(25). That visualization deficiency should be kept in mind
should error signs become important.

4.10 Other Customization Options

The last three customization options listed in Table 1 are not
relevant to this element. RHFP is unnecessary because the
dispersion diagram does not have an OB. MSTS is pointless
because the DLMM in (7) is unique. Finally, RDAW does
not apply to 1D elements.

4.11 Bar2 Frequency Dependent Mass

As noted in Sect. 3.9, it is occasionally useful to make the
mass and/or stiffness matrix frequency dependent. The goal
is to exactly match the continuum dispersion relation� = κ

for all frequencies, or at least a finite range that includes
� = κ = 0. Such an exact fit allows for coarser discretiza-
tions. The cost paid is that matrix entries become trigono-
metric functions of frequency. Both the EOM and associated
eigenproblems become trascendental.

Unless the frequency is specified beforehand (for example,
in pure harmonic excitation) an iterative process is unavoid-
able. Therefore “exactness” gains might be illusory: the
dog chases its own tail. Early publications that follow this
approach are cited in Sect. 1. For reasons indicated there,
those formulations are not necessarily instances of the gen-
eral template derived in Sect. 4.12.

The simplest way to introduce frequency dependency is to
allow the mass template parameter μ in (9) to be frequency

(a) (b) (c)

Fig. 6 Performance of selected Bar2 template instances in predict-
ing the first three natural frequencies ωi , i = 1, 2, 3 of the fixed-free
prismatic homogeneous bar shown in Fig. 5a. a, b, c compare against
frequencies ω1 = 1, ω2 = 3 and ω3 = 5, respectively. This is a graph-

ical, log-log representation of the results of Table 8. Horizontal axis
shows number of elements while vertical axis displays correct digits of
computed frequency. See text for details of what is shown along each
axis
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dependent, while the stiffness matrix is held fixed. To find
the expression ofμ, set κ → � in the characteristic equation
extracted from (17):

6 − (2 + μω)�2 − (6 − (1 − μω)�2) cos� = 0, (26)

in which μ has been renamed μω. Solving for it gives

μω = 1+ 6

�2 − 3

1− cos�
= 1

2
−�2

40
− �4

1008
− �6

28800
−· · ·
(27)

Since κ = � for the continuum,

μω = 1+ 6

κ2 − 3

1− cos κ
= 1

2
− κ2

40
− κ4

1008
− κ6

28800
−· · ·
(28)

As � → 0 or κ → 0 both (27) and (28) approach 0/0. The
indeterminacy is removed by the Taylor expansions given
above, which show that the limit is μω → 1

2 , as may be
expected. As � or κ grows, μω decreases so the template
gradually favors the CMM more. Two interesting values
should be noted. If κ = 3.38742306673364, μω = 0, which
makes the CMM frequency exact; this occurs at the intersec-
tion of the continuum and CMM dispersion curves in Fig. 4a.
If κ = κlim = 4.05751567622863, μω = −1/2, which
makes Me singular. If κ > κlim, Me becomes indefinite. It
follows that the match (27) or (28) is practically limited to
the DWN range 0 ≤ κ < 4.

4.12 Bar2 Frequency Dependent Mass-Stiffness Pair

The most general FDMS template for Bar2 has 8 free para-
meters. These are chosen as deviations from the optimal
frequency-independent matrices:

Me = CM

([
5 1
1 5

]
+
[
μω11 −μω12

−μω21 μω22

])
, Ke

= CK

([
1 −1

−1 1

]
+
[
βω11 −βω12

−βω21 βω22

])
, (29)

in which CM = ρ A
/12 and CK = E A/
. All parame-
ters may be frequency dependent. For brevity that depen-
dency will not be explicitly shown unless necessary. If all
μωi j vanish, Me reduces to (22), which is BLFM optimal.
If all βωi j vanish, Ke reduces to the well known stiffness
of a 2-node prismatic bar. Thus in the zero-frequency (sta-
tic) limit all parameters must vanish, which provides use-
ful checks. To cut down on parameters, we impose diagonal
and antidiagonal symmetry conditions a priori: μω21 = μω12,
μω22 = μω11, βω21 = βω12, and βω22 = βω11. In addition setting

βω12 = βω21 = βω11 avoids singularities in the static limit, as
noted later. Thus (29) reduces to

Me = CM

([
5 1
1 5

]
+
[
μω11 −μω12

−μω12 μ11

])
, Ke

= CK

([
1 −1

−1 1

]
+
[
βω11 −βω11

−βω11 βω11

])
. (30)

which has 3 free parameters: μω11, μω12 and βω11. These matri-
ces are nonnegative if

4 + μω11 + μω12 ≥ 0, 6 + μω11 − μω12 ≥ 0, 1 + βω11 ≥ 0.

(31)

Imposing the plane wave motion (14) on a two-element
patch, extracting the middle node equation and dropping
extraneous factors yields the complex characteristic equa-
tion
[
12(1+β11) − (5+μω11)�

2 − (12 + 12β11

+ (1−μω12)�
2) cos κ

]
exp( jκ) = 0. (32)

Since the complex exponential never vanishes, it may be
dropped and (32) reduces to the real equation

12 (1+βω11) − (5+μω11)�
2

− (12 + 12βω11 + (1−μω12)�
2) cos κ = 0. (33)

To match the continuum, � is replaced by κ , whence

fcm = 12 (1+βω11)− (5+μω11) κ
2 − (12 + 12βω11

+(1−μω12) κ
2) cos κ = 0. (34)

This establishes a linear constraint among the 3 parameters.
Consider these as functions of κ: βω11 = βω11(κ), μ

ω
11 =

μω11(κ), andμω12 = μω12(κ). Expanding in Taylor series about
κ = 0 yields

fcm = (6 βω11

∣∣
0 − μω11

∣∣
0 + μω12

∣∣
0

)
κ2

+
(

6
∂βω11

∂κ

∣∣
∣∣
0
− ∂μω11

∂κ

∣∣
∣∣
0
+ ∂μω12

∂κ

∣∣
∣∣
0

)
κ3 + · · · = 0,

(35)

This shows that in the static limit � = κ = 0 the continuum
equation is identically satisfied. If β12|0 
= βω11

∣∣
0, however,

a term in κ−2 appears in (35); this is the reason for presetting
βω12 = βω11.

Further developments depend on which parameter pair is
kept. Table 9 lists three possibilities: (βω11, μ

ω
11), (βω11, μ

ω
12),

and (μω11, μ
ω
12).

4.13 Bar2 Frequency Dependent Mass Instances

Some relatively simple FDM instances can be obtained by
setting βω11 = 0 in (30). Taking μω12 = μω11 and solving for
the latter gives
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14 C. A. Felippa et al.

Table 9 General FDMS template for Bar2

Free parametersa Linkage equation (top line); Taylor seriesb at
ω = κ = 0 (bottom line)

μω11, μ
ω
12 βω11 = (κ2(5 + μω11)+ (12 + κ2(1 −

μω12)) cos κ − 12)/(12(1 − cos κ))

βω11

∣
∣
κ→0 = [μω11

∣
∣
0 − μω12

∣
∣
0] κ2 + O(κ3)

βω11, μ
ω
12 μω11 = (12 + 12βω11 − 5κ2 − (12 + 12βω11 +

κ2(1 − μω12)) cos κ)/κ2

μω11

∣
∣
κ→0 = [μω11

∣
∣
0 − μω12

∣
∣
0] κ2 + O(κ3)

βω11, μ
ω
11 μω12 = (12 + 12βω11 + κ2 − (12 + 12βω11 −

κ2(5 + μω11)) sec κ)/κ2

μω12

∣∣
κ→0 = [μω11

∣∣
0 − μω12

∣∣
0] κ2 + O(κ3)

Parameter arguments are usually omitted to reduce clutter unless
necessary
a Template parameters are generally functions of κ or �; e.g.,
μω11 = μω11(κ) = μω11(�), etc.
b In the bottom-line series, βω11

∣
∣
0, μω11

∣
∣
0 and μω12

∣
∣
0 denote parameter

values at κ = � = 0

μω11 = μω12 = 1 + 12

κ2 − 6

1 − cos κ

= −κ
2

20
− κ4

540
− κ6

14400
− · · · (36)

The resulting Me is indefinite if κ > 4.05752. This is the
equivalent of the FDM instance considered in Sect. 4.11.
The difference between (36) and (28) lies in the choice of
baseline matrix for null free parameters. On the other hand,
setting μω12 = 0 along with βω11 = 0 yields

μω11 = −12 + 5κ2 + (12 + κ2) cos κ

κ2

= −κ
4

40
− 11κ6

14400
− · · · , (37)

This correction is smaller than (36) if κ < π/2. The resulting
Me is indefinite if κ > 4.46192.

5 The Three-Node Bar Element

The three-node bar element configuration is shown in Fig. 7a.
The element is prismatic with length 
 = Le, uniform cross

section area A and mass density ρ. Midnode 3 is at the center.

The element DOFs are arranged as ue = [u1 u2 u3
]T

. The
element name is often abbreviated to Bar3 in the sequel. We
will consider only frequency independent templates here.

Despite its simplicity, the Bar3 template is sufficiently
feature-rich so it can be used to illustrate most of the cus-
tomization scenarios listed in Table 1. Two reasons: it has
multiple dispersion branches, and the stiffness has a free para-
meter. But additional terminology on dispersion diagrams has
to be introduced first. Readers familiar with that topic should
skip to Sect. 5.2.

5.1 Dispersion Diagram Terminology

The characteristic equation of the Bar3 element, derived in
Sect. 5.5 below, gives two positive real frequencies for each
plane wave wavelength. The dimensionless forms are iden-
tified by �a and �o, ordered so �a ≤ �o. The functions
�a(κ) and�o(κ), in which κ is the dimensionless wavenum-
ber, are called acoustic and optical branches, respectively, of
the DDD. This terminology originated in crystal physics,
in which both branches have physical meaning in model-
ing molecular level oscillations (in crystallography, acoustic
waves are lower frequency waves caused by sonic-like distur-
bances, in which adjacent molecules move in the same direc-
tion. Optical waves are higher frequency oscillations caused
by interaction with light or electromagnetics, in which adja-
cent molecules move in opposite directions. Textbook refer-
ences are provided in Sect. 1).

In FEM discretization work, only the AB has physical
meaning because for small κ (that is, long wavelengths) it
approaches the continuum bar relation � = κ , as plainly
illustrated by the �2

a series in Sect. 4.5. On the other hand,
the OB is spurious. It is caused by the discretization and
pertains to higher frequency lattice oscillations, also known
as “mesh modes.’

Figure 8 displays nomenclature used for a two-branch
dispersion diagram, such as that exhibited by the Bar3 ele-
ment. As noted, the AB is the long-wavelength counter-
part of the continuum model, for which � = κ; thus
�a |κ→0 = 0. On the other hand, the OB has a nonzero

(a) (b)

Fig. 7 Three-node prismatic bar element: a configuration, b extraction of two-element patch from a regular lattice
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Fig. 8 Nomenclature for a
two-branch dispersion diagram
typical of 1D structural elements
such as Bar3. The stopping band
is the union of I and II
(symmetry and monotonicity
about the folding wavenumber
κ f = π is typical of prismatic,
simple 1D elements in regular
lattices; else those features are
typically lost. In addition,
multiple optical branches will
appear for characteristic
equations with more than two
roots for each κ)

frequency�oc = �o|κ→0 called the cutoff frequency (COF)
that cannot vanish, although it may go to infinity under cer-
tain conditions; such as a singular mass matrix. Also of
interest are the values of �a and �o at the folding fre-
quency κ f = π ; these are denoted by �a f and �of , respec-
tively. The lowest and highest values of �o are called �max

o
and �min

o , respectively, whereas the largest �a is called
�max

a . For the plots drawn in Fig. 8 (note disclaimer on the
right):

�max
a = �a f , �min

o = �of , �max
o = �oc. (38)

Often, but not always, �min
o and �max

a occur at κ = π ,
the folding (Nyquist) wavenumber at which group veloci-
ties vanish. In any case, if �min

o > �max
a , the frequency

range �min
o > � > �max

a is called the acoustopti-
cal frequency gap. Frequencies within the gap are said
to pertain to portion I of the stopping band or stop-
band, a term derived from filter technology. Frequen-
cies � > �max

o pertain to portion II of the stopping
band.

A frequency that falls within a stopping band cannot prop-
agate as plane wave over the FEM lattice, since there the
characteristic equation has complex roots with negative real
parts. This causes exponential attenuation so any periodic
disturbance with that frequency will die out.

5.2 Bar3 General Mass-Stiffness Template

We begin by introducing a general template for the MS pair.
The mass template is given four parameters:

Me
μ = me

30

⎡

⎣
4 + μ1 −1 + μ3 2 + μ4

−1 + μ3 4 + μ1 2 + μ4

2 + μ4 2 + μ4 16 + μ2

⎤

⎦

= Me
C M M + me

30

⎡

⎣
μ1 μ3 μ4

μ3 μ1 μ4

μ4 μ4 μ2

⎤

⎦. (39)

in which me = ρ A 
. Here Me
C M M is the CMM, obtained

for μ1 = μ2 = μ3 = μ4 = 0, which is derived in Sect. 1.
The template (39) incorporates matrix, geometric and fabri-
cation symmetries ab initio. It includes all DLMM by setting
μ3 = 1 and μ4 = −2. Because of its practical importance,
however, that “lumped mass subset” is studied in Sect. 5.8
using a two-parameter template variant.

For (39) to be nonnegative definite (NND), three inequal-
ity constraints have to be satisfied. Those are more elegantly
expressed in terms of the alternative “χ -form” derived in
Sect. 5.3.

Conservation of total element mass ρ A 
 (invariance of
linear momentum) imposes the following homogeneous con-
straint:

2μ1 + μ2 + 2μ3 + 4μ4 = 0. (40)

This constraint is not always preimposed as it may compli-
cate intermediate expressions, but it is eventually applied at
some point. Conservation of angular momentum in 2D or 3D
requires μ1 = μ3, as verified by the CMM. This is ignored,
however, as it hinders customization.

As regards the stiffness matrix, the following one-
parameter template is used:

Ke = Ke
b + Ke

h = ke

⎡

⎣
1 −1 0

−1 1 0
0 0 0

⎤

⎦

+ 4 keβ

3

⎡

⎣
1 1 −2
1 1 −2

−2 −2 4

⎤

⎦ , (41)

in which ke = E A/
. Here Ke
b and Ke

h denote the basic and
higher-order stiffness matrices, respectively. This decompo-
sition was introduced by Bergan and coworkers in the 1980s
for the development of the Free Formulation; references are
provided in Appendix Sect. 1.7. The higher order stiffness is
scaled by the free parameter β ≥ 0. Setting β = 1 produces
the well known stiffness of the quadratic (isoparametric) dis-
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16 C. A. Felippa et al.

placement model, whereas β = 0 reduces Ke to the Bar2
stiffness considered in Sect. 4.2.

5.3 Bar3 Alternative Mass Template

An alternative configuration of the general Bar3 mass tem-
plate is obtained by changing the four μi free parameters to
three: χ1, χ2, and χ3, through the replacement rule

μ1 = χ1 + χ2 − 4, μ2 = 14 + 4χ1 − 4χ13,

μ3 = χ1 − χ2 + 1, μ4 = χ13 − 2χ1 − 2. (42)

in which χ13 = √
30

√
χ1−χ3. The mass conservation con-

dition (40) is identically satisfied by (42), which is why the
number of free parameters can be cut by one. Conversely, if
the μi are given and do satisfy (40), the χi can be computed
from

χ1 = 1
2 (3 + μ1 + μ3), χ2 = 1

2 (5 + μ1 − μ3),

χ3 = 1

480

[
4μ1(40 + μ2 − 2μ3)+ 40 (8 + μ2 + 4μ3)

−4μ2
1 − (μ2 − 2μ3)

2]. (43)

If μ1 = μ2 = μ3 = 0, this gives χ1 = 3/2, χ2 = 5/2
and χ3 = 2/3 for the CMM. On inserting (42) into (39) the
so-called “χ -form” of the Bar3 mass template emerges:

Me
χ = me

30

×
⎡

⎣
χ1 + χ2 χ1 − χ2 −2χ1 + χ13

χ1 − χ2 χ1 + χ2 −2χ1 + χ13

−2χ1 + χ13 −2χ1 + χ13 30 + 4χ1 − 4χ13

⎤

⎦

(44)

An attractive feature of (44) is that mass matrix admissibility
can be readily correlated to parameter values. Specifically,
Me
χ is positive definite (PD) if and only if χ1, χ2 and χ3 are

positive. This can be proven from the following properties:

λ1(Me
χ ) = me χ2

15
, det(Me

χ ) = me χ2 χ3

225
, det(Me

χ 2×2)

= me χ1 χ2

225
, (45)

The first equality gives one eigenvalue of Me
χ (the other two

have more complicated expressions), whence PD mandates
χ2 > 0. The last equalities give the determinants of Me

χ and
of its 2×2 upper principal minor, respectively. Accordingly,
PD requires also χ3 > 0 and χ1 > 0. For Me

χ to be NND,
simply change> to ≥. Those conditions can be harked back
to theμi of Me

μ using (43), but the expressions are noticeably
messier. The second equality of (45) gives another nice fea-
ture: Me

χ becomes singular if and only if χ2 = 0, or χ3 = 0,
or both.

The main advantage of Me
μ over Me

χ is the linear depen-
dence of entries on the μi . This simplifies patch analysis as

well as reparametrization for several template variants stud-
ied later.

5.4 Bar3 Patch Equations

To assess wave propagation and dispersion performance of
the MS template defined by (39) and (41), we carry out the
Fourier analysis of the infinite bar lattice shown in Fig. 7b.
Extract a typical two node patch as illustrated. The patch has
five nodes: three endpoints and two midpoints, which are
assigned global numbers j−2, j−1, . . . j+2. The unforced
semidiscrete dynamical equations of the patch are Mp üP +
Kp uP = 0, in which

Mp = me

30

×

⎡

⎢
⎢⎢
⎢
⎣

4 + μ1 2 + μ4 −1 + μ3 0 0
2 + μ4 16 + μ2 2 + μ4 0 0
−1 + μ3 2 + μ4 2(4 + μ1) 2 + μ4 −1 + μ3

0 0 2 + μ4 16 + μ2 2 + μ4

0 0 −1 + μ3 2 + μ4 4 + μ1

⎤

⎥
⎥⎥
⎥
⎦
,

Kp = ke

3

×

⎡

⎢⎢
⎢⎢
⎣

3 + 4β −8β −3 + 4β 0 0
−8β 16β −8β 0 0
−3 + 4 β −8β 6 + 8β −8β −3 + 4β
0 0 −8β 16β −8β
0 0 −3 + 4β −8β 3 + 4 β

⎤

⎥⎥
⎥⎥
⎦
,

uP = [
u j−2 u j−1 u j u j+1 u j+2

]T
. (46)

Note that the element mass conservation constraint (40) is
not preimposed as it would complicate intermediate expres-
sions. It is enforced later. Keep the second and third equa-
tions, namely those for nodes j − 1 and j . This selection
picks the equations for a typical corner and midpoint node.
Accordingly, the patch equations are

M̂püP + K̂puP = 0. (47)

The 2 × 5 matrices M̂p and K̂p result on deleting rows 1,4,5
of Mp and Kp, respectively.

5.5 Bar3 Fourier Analysis

We study the propagation of harmonic plane waves of wave-
length λ, wavenumber k = 2π/λ, and circular frequency ω
over the lattice of Fig. 7b. For convenience they are separated
into corner and midpoint waves:

uc(x, t) = Bc exp
(

j (kx − ωt)
)
,

um(x, t) = Bm exp
(

j (kx − ωt)
)
, j = √−1. (48)

Wave uc(x, t) propagates only over corner nodes and van-
ishes at midpoints, whereas um(x, t) propagates only over
midpoints and vanishes at corner nodes. Both have the same
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wavenumber and frequency but different amplitudes and
phases. (The wave pair (48) can be combined to form a single
waveform that propagates over all nodes. The combination
has two components that propagate at the same speed but in
opposite directions. This is useful when studying boundary
conditions or transitions in finite lattices, but unecessary for
a periodic infinite lattice.)

As in Sect. 4.5, we will work with the dimensionless fre-
quency � = ω 
/c0 with c0 = √

E/ρ, and the dimension-
less wavenumber κ = k
. Inserting (48) into (47), passing to
dimensionless variables, removing scale factors, and requir-
ing that solutions exist for any t yields the characteristic equa-
tion

[ 1
2 A3(160β−(16+μ2)�

2) −A1 A3(80β+(2+μ4)�
2)

−A1(80β+(2+μ4)�
2) 30+40β−(4+μ1)�

2+A1(−30+40β+(1−μ3)�
2)

] [
Bc

Bm

]
= 0. (49)

in which A1 = cos κ, A2 = cos(κ/2) and A3 = cos(κ/2)
− j sin(κ/2). For nontrivial solutions the determinant of the
characteristic matrix must vanish, which provides a quadratic
equation in�2. For each wavenumber κ , solving the equation
gives two squared frequencies. Their expressions, found by
Mathematica, are

�2
a = 5

P − √
Q

R
, �2

o = 5
P + √

Q

R
, (50)

in which coefficients P, Q, and R are given by

P = c1 + 3 c2 + c9 cos κ,

R = c5 − 4μ4 − μ2
4 + c8 cos κ,

Q = 192 β (cos κ − 1) (c5 − c3 + c8 cos κ)

+ (c1 + 3 c2 + c9 cos κ)2,

c1 = 4β (40 + 4μ1 + μ2 + 4μ4), c2 = 16 + μ2,

c3 = μ4 (4 + μ4),

c4 = 4 (5 + μ3 + μ4), c5 = 60 + 4μ2 + μ1 c2,

c6 = 16μ3 − c3,

c7 = 4β (μ2 + c4), c8 = c6 + μ2 (μ3 − 1)− 20,

c9 = c7 − 3 c2. (51)

Subscripts a and o stand for acoustic and optical branches,
respectively, a terminology explained in Sect. 5.1. If Me is
PD and the conservation condition (40) holds, the branch fre-
quencies (50) have small κ (low frequency, long wavelength)
Taylor series of the generic form

�2
a = κ2 + C4 κ

4

4! + C6 κ
6

6! + C8 κ
8

8! + · · · ,

�2
o = D0 + D2 κ

2

2! + D4 κ
4

4! + · · · , (52)

Coefficients Cn and Dn were obtained through the Math-
ematica built-in Series function up to n = 10 and are
displayed for some interesting instances below.

5.6 Bar3 Standard Template Instances

We start by considering two instances available in the FEM
literature since the mid 1960s. The CMM instance Me

C is
obtained for μ1 = μ2 = μ3 = μ4 = 0. Using β = 1 for
Ke we get P = 208 + 32 cos κ , Q = 128 (237 + 224 cos κ
− 11 cos(2κ)), and R = 20 (3 − cos κ). The squared fre-
quencies have the small-κ expansions

�2
a = κ2 + κ6

720
− 11 κ8

151200
+ · · · ,

�2
o = 60 − 20 κ2 + 19 κ4

3
+ · · · . (53)

The SLMM (Simpson-lumped diagonal mass matrix) instance
derived in (146) of Appendix 3.1 results if μ1 = 1, μ2 =
4, μ3 = 1, and μ4 = −2. Using β = 1 in (41) gives
P = 220 + 20 cos κ , Q = 200 (147 + 140 + cos(2κ)),
and R = 100. The squared frequencies have the small-κ
expansions

�2
a = κ2− κ6

1440
− κ8

48384
+· · · , �2

o = 24−2κ2+κ
4

12
+· · · .

(54)

For small κ , SLMM fits the continuum better than CMM.
Dispersion diagrams for the foregoing instances are plotted
in Fig. 9a, c. Corresponding group velocity diagrams are
shown in Fig. 9b, d. As in the case of the two-node bar, the
consistent mass overestimates the continuum frequency� =
κ for 0 ≤ κ ≤ π , whereas the lumped mass underestimates
it.

5.7 Bar3 Low-Frequency Fitting

Inspection of the AB coefficient of κ6 in (53) and (54) sug-
gests combining one third of Me

C with two thirds of Me
L to

cancel it. Setting

μ1 = 2/3, μ2 = 8/3, μ3 = −2/3, μ4 = 4/3, β = 1,

(55)
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18 C. A. Felippa et al.

(a) (b)

(c) (d)

Fig. 9 DDD and DGVD plots for two Bar3 template instances treated in Sect. 5.6. a, b Diagrams for CMM instance, c, d diagrams for SLMM
(Simpson DLMM) instance. Acoustic and optical branches shown in red and blue, respectively. Continuum case� = κ and γc = 1 shown in black.
(Color figure online)

in (41) gives

Me
BLC D = 1

3 Me
C + 2

3 Me
L = ρA


90

⎡

⎣
14 −1 2
−1 14 2
2 2 56

⎤

⎦. (56)

For this instance, labeled BLCD, P = 24 (9 + cos κ), Q =
32 (927+884 cos κ−11 cos 2κ), and R = 20 (13−cos κ)/3.
It has the small κ expansions

�2
a = κ2− κ8

37800
+· · · , �2

o = 30− 15 κ2

4
+ 11 κ4

32
+· · · .

(57)

Dispersion and group velocity diagrams are shown in
Fig. 10a, b. Despite the O(κ8) accuracy achieved in the
AB of BLCD, it is shown next that this instance is not
optimal.

Considering next the general MS template (39) –(41), let
us find the MS pair for which the AB �a best matches
the continuum � = κ for small κ . Given the expansion
of �2

a in (52), the goal is to make as many coefficients
beyond κ2 vanish as possible, and to minimize the mag-
nitude of the first surviving one. The analysis was actu-

ally performed using the χ -form (44) of the general mass
template. Four free parameters are available: χ1, χ2, χ3,
and β. Only a procedural summary and final results are
given.

It is possible to make C4 = C6 = 0 without difficulty,
which permits elimination of χ1 and χ2. But all solutions
of C8(χ3, β) = 0 are imaginary, so the term in κ8 cannot
be cancelled. Extremization of C8 with respect to χ3 and β
gives only one constraint: 160β2 −120βχ3 +9χ2

3 = 0, from
which χ3 = 4 (5 ∓ √

15β)/3. Both signs give the same C8.
Taking β = 1 for convenience, the − sign in χ3, and working
back we get

χ1 = 85

6
− 2

√
3

5
∓ 2

4
√

375, χ2 = 5 − 1
2

√
15,

χ3 = 4

3

(
5 − √

15
)
, β = 1. (58)

The − sign for χ1 gives better conditioned mass matrices
and still the same C8, so we pick that one. The numeric
values to 16 places are χ1 = 2.7835604012611213, χ2 =
3.0635083268962915, and χ3 = 1.50268887172344. The
resulting minimum of |C8| is C8best = 64/3 − 28

√
3/5 =

−0.355373. This is about 3 times smaller than the C8 =
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 DDD and DGVD plots for RHFP instances derived in Sect. 5.7
and Sect. 5.8. a, b Diagrams for the BLCD instance (56), c, d diagrams
for the BLFM instance (60), d, e diagrams for the BLFD instance (66).

Acoustic and optical branches shown in red and blue, respectively. Con-
tinuum case � = κ and γc = c/c0 = 1 shown in black. (Color figure
online)

−8!/37800 = −16/15 from (56). Converting to theμi para-
meters via (42) yields

μ1 = 91−12 a1−7 a2

6
, μ2 = 32−8 a2

3
,

μ3 = 61−12 a1−a2

6
, μ4 = −46+6 a1+4 a2

3
, (59)

in which a1 = 31/4 53/4 = 4
√

375 and a2 = √
15. Numer-

ical values to 16 places are μ1 = 1.8470687281574132,
μ2 = 0.3387110767802213, μ3 = 0.7200520743648302,
and μ4 = −1.3682381704561768. The resulting mass
matrix, labeled BLFM (for best low frequency match), given
to 16 places, is
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Me
BL F M = me

⎡

⎣
0.1949022909385804 −0.0093315975211724 0.0210587276514608

−0.0093315975211724 0.1949022909385804 0.0210587276514608
0.0210587276514608 0.0210587276514608 0.5446237025593408

⎤

⎦. (60)

Its eigenvalues (to 6 places) are positive: 0.547077,
0.204234, and 0.183117 times me = ρA 
. Hence this
mass matrix is admissible and well scaled. For this instance
P = 8 (35 − 2

√
15 − (5 − 2

√
15) cos κ), Q = 1920 (15 +

4
√

15 + (15 − 4
√

15) cos κ) cos(κ/2)2, and R = 20 (53 −
10

√
15+(7−2

√
15) cos κ)/3. It has the small-κ expansions

�2
a = κ2 + 1127 − 291

√
15

3024(5 − √
15)3

κ8 + · · ·

�2
o = 30

5 − √
15

− 5(29 − 8
√

15))

32(5 − √
15)3

κ2 − · · · (61)

Dispersion and group velocity diagrams are shown in
Fig. 10c, d. Note that values at the folding (Nyquist)
wavenumber κ = π are identical: �2

a(π) = �2
o(π) =

12(10 −√
15)/(23 − 4

√
15) = 9.792694126734647, which

is amazingly close to the continuum value of π2 =
9.86960440108935 (in fact, the AB for κ < π and the con-
tinuum are indistinguishable at plot resolution). There is no
acoustoptical gap; instead we observe a bifurcation point.

5.8 Bar3 Lumped Mass Template Variant

Although DLMM plainly form a subset of the general tem-
plate (39), their practical importance justifies the use of a
more compact two-parameter form. This is done by taking

μ1 = μL1+1, μ2 = μL2+4, μ3 = 1, μ4 = −2. (62)

Replacing into (39) produces the lumped mass template vari-
ant

Me
L = ρA


30

⎡

⎣
5 + μL1 0 0
0 5 + μL1 0
0 0 20 + μL2

⎤

⎦

= Me
SL M M + ρA


30

⎡

⎣
μL1 0 0
0 μL1 0
0 0 μL2

⎤

⎦. (63)

The baseline mass matrix is the DLMM (146) produced by
Simpson’s 3-point integration rule, and now labeled SLMM.
The stiffness matrix template is still (41). Parameters μL2

and β can be eliminated in favor of μL1 through

2μL1 + μL2 = 0, β = (10 − μL1)
2

20 (5 − μL1)
. (64)

The first constraint expresses element mass conservation
while the second one enforces C4 = 0 and makes the
AB agree with the continuum through κ4 in the expansion
(52) (this agreement is considered essential as otherwise
there would be no advantage in using this element instead
of Bar2). As only one parameter remains, customization is
straightforward. The admissible range in μL1 for PD mass is
−5 < μL1 < 10, but if μL1 > 5, β < 0 and Ke becomes
indefinite.

On applying (64), the first nonzero term in the ABTS
beyond κ2 is C6 κ

6/6!, in which C6 = (5 − 3μL1 +
μ2

L1)/(μL1 − 10). Trying to attain O(κ6) accuracy by set-
ting C6 = 0 is futile since the μL1 roots are complex con-
jugate. Solving ∂C6/∂μL1 = 0 gives two real solutions:
μL1 = 5(2 ± √

3). Of these only the one with −√
3 keeps

Me admissible. Replacing into (64) gives the signature

μL1 = 5(2 − √
3), μL2 = −2 μL1 = −10(2 − √

3),

β = 3

4(
√

3 − 1)
. (65)

Numerical values to 16 places are μL1 = 1.339745962155
614, μL2 = −2.679491924311228, and β = 1.024519052
838329. The κ6 term in the AB is about 36 % smaller than
that of SLMM:≈ −κ6/2246 versus−κ6/1440. The template
instance, labeled BLFD, is

Me
BL F D = ρA


30

⎡

⎣
5
√

3 − 5 0 0
0 5

√
3 − 5 0

0 0 20 − 10
√

3

⎤

⎦ ,

Ke
BL F D = E A




⎡

⎣
1 −1 0

−1 1 0
0 0 0

⎤

⎦

+ 4E A


 (
√

3 − 1)

⎡

⎣
1 1 −2
1 1 −2

−2 −2 4

⎤

⎦. (66)

The Taylor series of the dispersion branches are

�2
a = κ2 − 10

√
3 − 10

720
κ6 − · · · ,

�2
o = 12

(
√

3 − 1)2
−

√
3

4
√

3 − 6
κ2 − · · · (67)

The DDD and DGVD are shown in Fig. 10e, f. As in the case
of the BLFM, pictured in (c,d) of that figure, the branches
intersect at κ = π , where �2

a f = �2
of = (6 − 2

√
3)/(2 −√

3) ≈ 9.4641.
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5.9 Bar3 Maximum Stable Time Step Customization

Since DLMM are often used in explicit DTI, it is of some
interest to find whether the stable time stepsize can be max-
imized while still satisfying O(κ4) accuracy. This goal per-
tains to the MSTS customization of Table 1. Let�max be the
maximum of�a and�o over the Brillouin zone κ ∈ [0, 2π ].
To maximize the stable time step, one minimizes �max over
free parameters, while trying to keep both mass and stiffness
admissible. This procedure can be streamlined by assum-
ing a DDD configured as in Fig. 8, whence only frequency
values at κ = 0 and κ = π need to be considered. Since
�a |κ=0 = 0, the search only involves �oc, �a f and �of ,
or (for convenience) their squares. For the DLMM template
variant (63) under the accuracy constraints (64) the process
boils down to solving the max-min problem in one variable:

min
μL1

max
(
�2

oc,�
2
a f ,�

2
of

)

= min
μL1

max

(
60(10 − μL1)

25 − μ2
L1

,
4(10 − μL1)

μL1 − 5
,

60

5 + μL1

)

.

(68)

A simple plot shows that the cutoff frequency dominates for
admissible μL1 ∈ (−5, 5), so it is sufficient to minimize
with respect to �2

oc. This again leads to the solution (65).
Consequently the BLFD instance also maximizes the explicit
DTI time step. The reward, however, is marginal with respect
to SLMM: only about a 3.5 % gain.

To get a more significant improvement, it is necessary to
keep β free, and accept that O(κ4) accuracy is lost. It may be
verified that the largest possible stable timestep is produced
by the signature

μL1 = 5/2, μL2 = −2μL1 = −5, β = 3/8. (69)

which apportions nodal masses as 1:1:2, while substantially
modifying the stiffness matrix. Setting (69) gives an instance
with a COB�2

o = 8. Its stable stepsize is 1.673 times that of
BLFD. But its LF performance is exactly the same as that of
the lumped-mass Bar2, which does not have an OB. So it is
largely a curiosity.

5.10 Reducing High Frequency Pollution

The presence of the OB does not affect vibration calculations
in structural dynamics. One simply ignores those eigenfre-
quencies as nonphysical. However, the OB may become a
nuisance in direct time integration (DTI) for problems that
involve discontinuities, such as pulse propagation, or contact-
impact, because it may feed spurious noise. To alleviate this
problem three approaches may be tried at the template level:

1. Singular Mass Matrix If Me is made singular with an
appropriate null eigenvector, the OB is raised. In fact
it becomes infinite at κ = 0. The net effect is that the
acoustoptical gap is increased at low wavenumbers. This
heps to filter out frequencies that fall in the gap, since they
will decay exponentially. One drawback of singularity is
that explicit DTI is excluded, even if Me is diagonal.

2. SMS A scaled stiffness matrix is added to the mass. As
discussed in Sect. 3.5, eigenvectors are unchanged but
higher natural frequencies are effectively reduced. The
effect is similar to that of adding stiffness proportional
damping, but without altering vibration modes. It may
be done at the element or assembly (master) level. In the
study of Sect. 5.12 it is done at the element level.

3. COB A constant optical branch (COB) is one indepen-
dent of wavenumber. It stays at a constant frequency
�o = �oc over the entire Brillouin zone, and has zero
group velocity since ∂�oc/∂κ = 0. To be effective in
cutting noise pollution, �oc ≥ �a f , in which �a f is
the folding acoustic frequency. If that holds, the stopping
band above�a f is effectively maximized (even if a mesh
frequency hits�oc exactly, it will not propagate since its
group velocity vanishes). A COB template is one that
possesses that property (for each OB in case there are
multiple ones).

The three foregoing approaches are studied below for the
Bar3 element.

5.11 Bar3 Spectral Mass Variant

Making Me singular is not sufficient. It is important to have
the correct null eigenvector. To achieve that it is convenient
to use the SP outlined in Sect. 3.2. Select three generalized
coordinates: g0, g1 and g2 as amplitudes of three physically
transparent eigenmotions:

g0 Amplitude of rigid body motion: v0 = [ 1 1 1 ]T .
g1 Amplitude of acoustic bar motion: : v1 = [−1 1 0 ]T .
g2 Amplitude of optical bar motion: : v2 = [ 1 1 −2 ]T .

Those three vectors are mutually orthogonal. To make
them orthonormal, divide by

√
3,

√
2 and

√
6, respectively.

Stacking the orthonormalized vectors as columns, the link-
age between physical and generalized coordinates can be
expressed as

ue = [u1 u2 u3
] =

⎡

⎣
1/

√
3 −1/

√
2 1/

√
6

1/
√

3 1/
√

2 1/
√

6
1/

√
3 0 −2/

√
6

⎤

⎦

=
⎡

⎣
g0

g1

g2

⎤

⎦ = HT g. (70)
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The inverse relation is g = H ue because H is orthogonal by
construction, and thus H−1 = HT . As mass matrix in gener-
alized coordinates we stipulate the 3 × 3 diagonal matrix Dμ
of entries meμS0/3, meμS1/45, and meμS2/15, in which
me = ρ A 
, and the scaling factors were chosen for con-
venience in cleaning up downstream expressions. Element
mass conservation will require μS0 = 1, so the first entry
is simply me/3. Transforming to physical coordinates yields
the spectral mass template variant

Me
S = me

45
HT

⎡

⎣
15 0 0
0 μS1 0
0 0 3μS2

⎤

⎦

H = me

90

⎡

⎣
10 + μS1 + μS2 10 − μS1 + μS2 10 − 2μS2

10 − μS1 + μS2 10 + μS1 + μS2 10 − 2μS2

10 − 2μS2 10 − 2μS2 10 + 4μS2

⎤

⎦ .

(71)

The variant (71) is a subset of the general template (39) that
results by taking

μ1 = 1
3 (μS1+μS2−2), μ2 = 1

3 (4μS2−38),

μ3 = 1
3 (13−μS1+μS2), μ4 = 1

3 (4−2μS2). (72)

By construction, the eigenvalues of (71) are me/3, meμS1/45
and me μS2/15, whence the nonnegativity condition is ful-
filled if μS1 and μS2 are nonnegative. To make Me

S singular,
set μS2 = 0, which produces

Me
S = HT Dμ H = me

90

⎡

⎣
10 + μS1 10 − μS1 10
10 − μS1 10 + μS1 10
10 10 10

⎤

⎦ .

(73)

Solving C4 = 0 and C6 = 0 yields two solutions for β
andμS1, of which we pick that with largerμS1 (to get a better
conditioned nonsingular subspace). This gives

μS1 = 3(5 + √
10)

2
= 12.24341649025257,

β = 5 + √
10

12
= 0.6801898050140316, (74)

in addition to μS2 = 0. Inserting into (76) gives the instance
labeled BSSM for Best Singular Spectral Mass. The mass
matrix, with numerical values given to 6 places, is

Me
BSSM = me

180

⎡

⎣
M11 M12 M13

M12 M22 M23

M13 M23 M33

⎤

⎦

≈ me

⎡

⎣
0.247149 −0.024927 0.111111

−0.024927 0.247149 0.111111
0.111111 0.111111 0.111111

⎤

⎦.

(75)

in which M11 = M22 = 35 + √
10, M12 = 5 − 3

√
10, and

M13 = M23 = M33 = 20. The associated stiffness matrix,
with numerical values given to 6 places, is

Ke
BSSM = ke

9

⎡

⎣
K11 K12 K13

K12 K22 K23

K13 K23 K33

⎤

⎦

≈ ke

⎡

⎣
1.906920 −0.093080 −1.813839

−0.093080 1.906920 −1.813839
−1.813839 −1.813839 3.627679

⎤

⎦.

(76)

in which ke = E A/
, K11 = K22 = 14 + √
10, K12 =

−4 + √
10, K13 = K23 = −10 − 2

√
10 and K33 = 20 +

4
√

10. Dispersion and group velocity diagrams are shown in
Fig. 11a, b. The Taylor series of the dispersion branches are

�2
a = κ2 − κ8

6048
− · · · , �2

o = 240 κ−2 + 5κ4

126
+ · · ·

(77)

The O(κ8) AB accuracy of this element is comparable to
that of BLCD and BLFM, but its OB gets out of the way. Is
this the template instance for all seasons? Only future exper-
imentation in DTI will tell.

5.12 Bar3 Selective Mass Scaling Variant

In the SMS approach outlined in Sect. 3.5, the mass matrix is
modified by adding a scaled version of the stiffness matrix:

Me
K = Me

u + cK Ke. (78)

Here Me is an unmodified mass matrix, and cK a scaling
coefficient with appropriate physical dimensions. Both Me

and Ke may be template forms. Since Me and Ke have differ-
ent physical dimensions, it is convenient to change the raw
expression (78) to

Me
K = Me

u + μK se Ke, (79)

in which se is a scaling coefficient with dimension of mass-
over-stiffness (equivalently, 1/se has dimensions of squared
physical frequency) while μK is a dimensionless free para-
meter. For the Bar3 element we take se = (ρ A 
)/(E A/
) =
ρ 
2/E . This can be maneuvered to the following equivalent
form, which is convenient for implementation:

Me
K = Me

u + μK me K̂e. (80)

Here me = ρA
 is (as usual) the element mass, whereas
K̂e

u is a dimensionless stiffness matrix obtained by setting
E = 1, A = 1 and 
 = 1. To reduce the overall number of
parameters, we pick Me

u to be the diagonally lumped template
subset (63); this agrees with the common use of SMS in
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explicit DTI. The general stiffness template (41) with unit
E, A and 
 is used for K̂e. Hence

Me
K = me

⎛

⎝ 1

30

⎡

⎣
5 + μL1 0 0
0 5 + μL1 0
0 0 20 + μL2

⎤

⎦

+4β μK

3 


⎡

⎣
1 1 −2
1 1 −2

−2 −2 4

⎤

⎦

⎞

⎠. (81)

Mass conservation is enforced if μL2 = −2μL1. Inserting
this in (81) we have three free parameters: μL1, μK and β.
This Me

K with μL2 = −2μL1 is a particular case of the
general mass template if

μ1 = 1 + μL1 + 10 (4β + 3)μK ,

μ2 = 4 − 2μL1 + 160 βμK ,

μ3 = 1 + 10 (4β − 3)μK , μ4 = −2 − 80 βμK. (82)

Unlike previous variants, nowβ appears in the mass template.
The linkage (82) becomes linear if β is preset, for example
to 1, and nonlinear otherwise.

Further experimentation with the SMS template variant
(81) was confined to μL1 = μL2 = 0, which takes SLMM
as original mass matrix. That leaves out two free parameters:
μK and β. Suppose μK is chosen. Then O(κ4)AB accuracy
can be maintained by taking

β = 1

1 − 12μK
. (83)

IfμK > 1/12, β < 0 and Ke becomes indefinite. But setting
0 ≤ μK ≤ 1/12 hardly change the higher frequencies. For
that one needs a much larger μK ; say μK = O(1). If so,
adjusting Ke as per (83) is precluded: the cure is worst than
the disease. One may as well set β = 1. The high frequencies
are cut down, but LF accuracy is seriously lost.

This tradeoff is vividly displayed in the vibration bench-
marks reported in Sect. 5.14. Three instances labeled SMS1,
SMS2 and SMS3, are tested there. Their signatures are
{μK = 1/24, β = 2}, {μK = 1/2, β = 1}, and {μK =
2, β = 1}, respectively. Dispersion and group velocity dia-
grams for SMS2 are shown in Fig. 11c, d. The poor LF fit is
obvious.

5.13 Bar3 Constant Optical Branch Variant

The investigation of the general Bar3 template (39)–(41)
for COB instances was done under two preset conditions:
C4 = 0, which enforces order O(κ4) accuracy in the AB
(AB), and β = 1 in the stiffness template (41). Several one-
parameter families satisfying these conditions were found.
The two that produced simpler mass matrices were retained,

reparametrized, and labeled COBA and COBB. Associated
mass matrices are subscripted accordingly.

The COBA family is defined by

Me
C O B A = me

12

⎡

⎣
6 − νA 2 − νA −2 + 2νA

2 − νA 6 − νA −2 + 2νA

−2 + 2νA −2 + 2νA 4 − 4νA

⎤

⎦ .

(84)

in which me = ρ A 
. The determinant is (1 − νA)/18.
MC O B A is PD if νA < 1. Parameter νA is linked to those
of the general template (39) by

μ1 = 11 − 5νA

2
, μ2 = −2(3 + 5νA), μ3 = 6 − 5νA

2
,

μ4 = −7 + 5νA. (85)

The COBB family is defined by

Me
C O B B

= me

432

⎡

⎣
96 − 36νB − ν2

B 24 − 12νB + ν2
B −48 + 24νB

24 − 12νB + ν2
B 96 − 36νB − ν2

B −48 + 24νB

−48 + 24νB −48 + 24νB 384

⎤

⎦ .

(86)

The determinant is (36−12νB −ν2
B)

2/34992. MC O B B is PD
if −6(

√
2 + 1) < νB < 6(

√
2 − 1). Parameter νB is linked

to those of the general template (39) by

μ1 = 8

3
− 5νB

2
− 5ν2

B

72
, μ2 = 32

3
,

μ3 = 8

3
− 5νB

6
+ 5ν2

B

72
, μ4 = −16 + 5νB

3
.

(87)

These two families are taken to collectively define the Bar3
template variant identified as COB. They coalesce only for
νA = −5/3 and νB = −6, which produces an instance dis-
cussed below. An interesting result is that the AB is identical
for all COB instances:

�2
a = 12(1 − cos κ)

5 + cos κ
= κ2 − κ6

240
− κ8

6048
− · · · (88)

whereas the constant OB value is family and parameter
dependent:

�2
ocA = 16

1 − νA
, �2

ocB = 432

36 − 12νB − ν2
B

. (89)

It follows that the only role played by νA and νB is to adjust
the “OB height” along the vertical DDD axis. As noted in
Sect. 5.10, it should equal or exceed the folding acoustic
frequency�2

a f = 6, which is the same for all COB instances
on account of (88). This requires νA ≥ −5/3 and νB ≥ −6.
As νA → 1 and νB → 12 the OB moves to ∞ and the mass
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 DDD and DGVD plots for three RHFP instances derived in
Sects. 5.11–5.13. a, b Diagrams for the BSSM instance (56), c, d dia-
grams for the SMS2 instance (60), e, f diagrams for the COB0 instance:

first of (90). Acoustic and optical branches shown in red and blue,
respectively. Continuum case � = κ and γc = c/c0 = 1 shown in
black. (Color figure online)

matrices assume different limits. For COBA, Me
C O B A

∣∣
νA→1

is the optimal Bar2 matrix (22), which is PD. On the other
hand the limit Me

C O B B

∣∣
νB→12 falls in the indefinite range.

Three noteworthy instances of the mass matrices produced
by these two families are

Me
C O B0 = me

36

⎡

⎣
23 11 −16
11 23 −16

−16 −16 32

⎤

⎦ ,

Me
C O B1 = me

6

⎡

⎣
3 1 −1
1 3 −1

−1 −1 2

⎤

⎦ ,

Me
C O B2 = me

18

⎡

⎣
4 1 −2
1 4 −2

−2 −2 16

⎤

⎦. (90)

Me
C O B0 is the unique mass matrix for which�2

oc = �2
a = 6;

that is, the COB passes through the folding (Nyquist) fre-
quency. It emerges by setting either νA = −5/3 in (84) or
νB = −6 in (86). Me

C O B1 which gives �2
ocA = 16, is the

simplest mass matrix that produces a COB. It is obtained
by setting νA = 0 in (84). Finally MC O B2, which yields
�2

ocB = 12, was the first COB instance discovered, as noted
in Appendix Sect. 1.7. It is obtained by setting νB = 0 in (86).
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Table 10 Bar3 instances compared in fixed-free bar vibrations tests

Instance name Variant ref. Eqs. Full or diag Me Signature First NCT in ABTSa Cutoff & folding fr.b

�oc �a f �of

CMM (39) F β=1, μ1=μ2=μ3=μ4=0 +κ6/720 7.746 3.162 3.464

SLMM (63) D β=1, μL1=μL2=0 −κ6/1440 4.899 2.828 3.464

BLCD (39) F See (55) −κ8/37800 5.477 2.928 3.464

BLFM (39) F See (59) −κ8/113458 5.159 3.129 3.129

BLFD (63) D See (65) −κ6/2246 4.732 3.076 3.076

BSSM (71) F See (74) −κ8/6048 ∞ 2.711 5.714

SMS1 (81) F β=2, μK =1/24 −κ6/640 4.000 2.828 3.098

SMS2 (81) F β=1, μK =1/2 −κ4/2 1.359 1.265 1.309

SMS3 (81) F β=1, μK = 2 −2κ4 0.700 0.686 0.692

COB0 (84) F β=1, νA = −5/3 −κ6/240 2.449 2.449 2.449

a NCT non-continuum term, ABTS AB Taylor series of �2
a wrt κ , centered at κ = 0

b �oc : �o at κ = 0; �a f : �a at κ = π; �of : �o at κ = π

Dispersion and group velocity diagrams for COB0 are
shown in Fig. 11e, f. The DDD for COB1 and COB2 would
possess an identical AB branch but the flat OB would appear
higher, whereas the DGVD would be identical. Those four
diagrams are omitted to save space.

5.14 Bar3 Test: Vibrations of a Fixed-Free Bar Member

The natural frequency benchmark test presented in Sect. 4.9
for three Bar2 discretizations is repeated for the ten Bar3
template instances listed in Table 10. The fixed-free bar
member is pictured in Fig. 5b. It is prismatic, with constant
E = 1, A = 1 ρ = 1. The total member length is L = π/2.
With those numerical properties, the continuum eigenfre-
quencies ω0i are given by (24). The member is divided into
Ne identical elements, with Ne = 1, 2, . . . 16.

To reduce cluttering the instances in Table 10 are divided
into two groups of five each. Results are presented in number
of correct digits versus number of elements for the first three
frequencies, exactly as described for the Bar2 test in Sect. 4.9.
Group 1 include CMM and SLMM as well as instances con-
structed with optimal LFF customization in mind: BLCD,
BLFM and BLFD. Results are displayed in Fig. 12a–c. Group
2 includes instances derived with RHFP in mind: BSSM,
SMSx (x = 1, 2, 3) and COB0. Results are displayed in
Fig. 12d–f.

BLFM is the clear winner in the first group, with BLCD
close behind, while the others, with only O(κ4)AB accuracy,
lag appreciably. In the second group, BSSM is the clear win-
ner, with performance comparable to BLFM and BLCD of
the first group. SMS1 and COB0 are way behind, while SMS2
and SMS3 are highly inaccurate (as observed in Sect. 5.12,
SMS1 would hardly effect any HF reduction, so its reason-
able LF accuracy is misleading).

6 The Bernoulli–Euler Plane Beam Element

This Section and the next one study templates for two-node
plane beam elements constructed from the Bernoulli–Euler
(BE) and Timoshenko models, respectively. To keep the
material relatively compact, two restrictions are observed:

• Only mass matrix templates are developed.
• The only customization is LFCF

To enforce the first one, the optimal stiffness matrix for
statics (“optimal” means that it satisfies the homogeneous
static equilibrium equations over the element) is chosen and
kept fixed. Simultaneous adjustment of the mass and stiffness
templates to form MS pairs is relegated to future research.
Prior experience in this regard, cited in Appendix Sect. 1.7,
suggests that the improvement is marginal.

6.1 The BE Beam Mass Template

The BE beam model is a special case of the Timoshenko
model treated in Sect. 7. Nevertheless it is useful to build
its mass template separately, since results provide a valuable
cross check with the more complicated Timoshenko beam.
The well known CMM of this element is derived in Appendix
Sect. 3.2, to which the reader is referred for notation; the
derivation assumes a prismatic two-node element with four
nodal DOF with the standard cubic shape functions. This
matrix is augmented to produce the following EW template:

Me
μ

= me

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

13
35 + μ11

( 11
210 + μ12

)

 9

70 + μ13 − ( 13
420 + μ14

)



( 1
105 + μ22

)

2

( 13
420 + μ23

)

 − ( 1

140 + μ24
)

2

13
35 + μ11 − ( 11

210 + μ12
)



symm
( 1

105 + μ22
)

2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

(91)
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Performance of ten Bar3 template instances in predicting the first three natural frequencies ωi , i = 1, 2, 3 of the fixed-free prismatic
homogeneous bar shown in Fig. 5b. See text in Sect. 4.9 for a detailed description of the log-log plots

in which me = ρ A 
. The parameters in (91) are μi j , in
which i j identifies the mass matrix entry. The template (91)
accounts for matrix symmetry and some physical symme-
tries. Three more conditions can be imposed right away:

μ14 = μ23, μ13 = −μ11,

2μ12 = μ11 + 2μ22 + 2μ23 − 2μ24. (92)

The first comes from prismatic fabrication, and the oth-
ers from conservation of total translational mass and angu-
lar momentum, respectively. Four free parameters remain:
{μ11, μ22, μ23, μ24}. For the stiffness matrix we take the
well known one for a plane prismatic homogeneous BE beam
element

Ke = E I


3

⎡

⎢⎢
⎣

12 6
 −12 6

4
2 −6
 2
2

12 −6

symm 4
2

⎤

⎥⎥
⎦ (93)

in which I = Izz is the second moment of inertial of the
cross section with the respect to z, which is chosen to go
along the neutral axis. If the FEM model contains only pris-
matic beams, this Ke is nodally exact, and consequently sta-
tically optimal (it can also be derived from the equilibrium
equations). This stiffness is kept fixed throughout the Fourier
analysis.

6.2 BE Beam Template Fourier Analysis

The Fourier analysis procedure should be by now familiar to
the reader. An infinite lattice of identical beam elements of
length 
 is set up. This will look like Fig. 2b–d, except that the
member is now a plane beam. Plane waves of wavenumber k
and frequency ω propagating over the lattice are represented
by

v(x, t) = Bv exp
(

j (kx − ωt
)
, θ(x, t)

= Bθ exp
(

j (kx − ωt
)
, j = √−1. (94)

At a typical lattice node j there are two DOF: v j and θ j .
Two patch equations are extracted, and converted to dimen-
sioneless form on defining κ = k
 and� = ωc0/
, in which
c0 = E I/(ρA
4) is a reference phase velocity. The condition
for wave propagation gives the characteristic matrix equation

det

[
Cvv Cvθ
Cθv Cθθ

]
= CvvCθθ − CvθCθv = 0, (95)

in which

Cvv = (840−2(13+35μ11)�
2

− (840+(9−70μ11)�
2) cos κ

)
/35,

−Cθv = Cvθ = j
(
2520 + (13+420μ23)�

2) sin κ/210,
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Cθθ = (1680 − 4(1+105μ22)�
2

+ (840 + 3(1+140μ24)�
2) cos κ

)
/210. (96)

The condition (95) gives a quadratic equation in�2 that pro-
vides two dispersion solutions: AB �2

a(κ) and OB �2
o(κ).

The AB represent genuine flexural modes, whereas the OB
is a spurious byproduct of the FEM discretization. The small-
κ (low frequency, long wavelength) expansions of these roots
are

�2
a = κ4 + C6κ

6 + C8κ
8 + C10κ

10 + C12κ
12 + · · · ,

�2
o = D0 + D2κ

2 + D4κ
4 + · · · , (97)

in which C6 = −μ11 −2μ22 −4μ23 +2μ24, C8 = 1/720 +
μ2

11 + 4μ2
22 + 2μ23/3 + 16μ22μ23 + 16μ2

23 + μ11(1/12 +
4μ22 +8μ23 −4μ24)−μ24 −8μ22μ24 −16μ23μ24 +4μ2

24,
etc.; and D0 = 2520/(1 + 420μ22 − 420μ24), etc. Mathe-
matica calculated these series up to C14 and D4.

The continuum dispersion curve is �2 = κ4, which auto-
matically matches �2

a as κ → 0. Thus four free parameters
offer the opportunity to match coefficients of four powers:
{κ6, κ8, κ10, κ12}. But it will be seen that the last match is
unfeasible if Me is to stay nonnegative. We settle for a scheme
that agrees up to κ10. Setting C6 = C8 = C10 = 0 while
keeping μ22 free yields two sets of solutions, of which the
most useful one is

μ11 = 4μ22 − 67/540 − (4/27)
√

38/35 − 108μ22,

μ23 = 43/1080 − 2μ22 +√95/14 − 675μ22/54,

μ24 = 19/1080 − μ22 +√19/70 − 27μ22/27. (98)

The positivity behavior of Me
μ as μ22 is varied is shown

in Fig. 13a. M(e) is indefinite for μ22 < μmin
22 = (27 −

4
√

35)/5040 = 0.0006618414419844316. At the other
extreme the solutions of (98) become complex if μ22 >

μmax
22 = 19/1890 = 0.010052910052910053.
Figure 13b plots C12(μ22) = (−111545 − 3008ψ +

15120(525 + 4ψ)μ22)/685843200, with ψ = √
70

√
19 − 1890μ22. This has one real rootμz

22 = −0.02830257
472322391, but that gives an indefinite mass matrix. For μ22

in the legal range [μmin
22 , μmax

22 ], C12 is minimized for μb
22 =

(25
√

105−171)/30240 = 0.0028165928951385567, which
substituted gives the optimal mass matrix:

Me
L F F O = me

30240

⎡

⎢⎢
⎣

a11 1788
 a13 −732

a22


2 732
 a24

2

a33 1788

symm a44


2

⎤

⎥⎥
⎦

= me

⎡

⎢⎢
⎣

0.389589 0.059127
 0.110410 −0.024206

0.012340
2 0.024206
 −0.005548
2

0.389589 −0.059127

0.012340
2

⎤

⎥⎥
⎦.

(99)

in which a11 = a33 = 12396 − 60
√

105, a13 = 2724 +
60

√
105, a22 = a44 = 117 + 25

√
105 and a24 = −219 +

5
√

105. For this set, C12 = (25
√

105 − 441)/91445760 =
−2.021 10−6. Another interesting value isμ22 = 13/3150 =
0.004126984126984127, which substituted in (98) yields
rational values for the other parameters: μ11 = −μ13 =
23/2100, μ12 = −μ14 = −μ23 = 23/4200, μ24 =
23/4200 andμ24 = −17/12600. Substitution into (91) gives

Me
BL F M = me

12600

⎡

⎢⎢
⎣

4818 729
 1482 −321

172
2 321
 −73
2

4818 −729

symm 172
2

⎤

⎥⎥
⎦

= me

⎡

⎢
⎢
⎣

0.382381 0.057857
 0.117619 −0.025476

0.013651
2 0.025476
 −0.005794
2

0.382381 −0.057857

symm 0.013651
2

⎤

⎥
⎥
⎦.

(100)

For this matrix, C12 = −41/18144000 = −2.26 10−6. Its
magnitude is only about 10 % higher than for the truly LFF
optimal (99). Since its entries are simpler, (100) is adopted
as BLFM matrix for the BE element, and used as a baseline
for the Timoshenko beam element investigated in Sect. 7.

Fig. 13 Behavior of Me
μ as

function of μ22 with other
parameters given by (98): a
determinants dk of principal
minors of order k of Me

μ,
showing legal positivity range
{μmin

22 , μmax
22 }, b coefficient C12

of κ12 in ABTS series

(a) (b)
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7 The Timoshenko Plane Beam Element

This last example is far more elaborate than the previous ones.
The goal is to construct a mass template for the prismatic,
plane beam Timoshenko model, a name often abbreviated to
Ti-beam. It includes the BE model as special case; conse-
quently results can be crosschecked with those of Sect. 6.2.
One interesting feature of this model is that the continuum
dispersion diagram has two branches, both of which are phys-
ical.

The “acoustical-like branch”, which has zero frequency at
zero wavenumber, corresponds to lower-frequency bending
oscillations in which the beam displaces transversely. The
“optical-like branch”, which exhibits a nonzero cutoff fre-
quency, corresponds to higher frequency shear oscillations.
Because of these interpretations, they are called the flex-
ural frequency branch (FFB) and the shear frequency branch
(SFB), respectively. They are identified by subscripts f and
s, respectively, for the continuum model, while a and o are
reused for the FEM discretization. Both branches are dis-
persive, meaning that group velocity depends on wavenum-
ber. Those velocities tend to finite values, except in the BE
limit.

The upshoot of these complications is that LFCF cus-
tomization, which was so clear-cut with Bar3, becomes
ambiguous: do we want to fit the FFB or the SSB? For thin
beams, (as well as in the BE limit, in which case the SSB
moves to ∞) the FFB is dominant. But as the beam becomes
progressively thicker (as measured by a slenderness coeffi-
cient introduced in Sect. 7.1) the situation is less clear: for an
extremely thick beam the shear oscillations may well dom-
inate (of course in that case the Timoshenko model is ques-
tionable).

The continuum model is first studied in some detail, since
frequency expansion formulas applicable to template cus-
tomization by characteristic root fitting are not available in
the literature.

7.1 Ti-Beam Continuum Elastodynamic Analysis

Consider a structural beam member modeled as a shear-
flexible Timoshenko plane beam (Ti-beam), as illustrated in
Fig. 14. This figure provides the notation used below. Sec-
tion properties {ρ, E, A, As, I, IR} are constant along x . The
beam is transversally loaded by line load q(x, t) (not shown
in figure), with dimension of force per length. The primary
kinematic variables are the transverse deflection v(x, t) and
the total cross-section rotation θ(x, t) = v′(x, t) + γ (x, t),
where γ = V/(G As) is the mean shear rotation. The kinetic
and potential energies in terms of those variables are

T [v, θ ] = 1
2

L∫

0

(
ρA v̇2 + ρ IR θ̇

2) dx, �[v, θ ]

=
L∫

0

(
1
2 E I (v′′)2 + 1

2 G As(θ−v′)2 − qv
)

dx .

(101)

where superposed dots denote time derivatives. The equa-
tions of motion (EOM) follow on forming the Euler equations
from the Lagrangian L = T −�:

δL

δv
= 0 → G As (θ

′ − v′′)+ ρAv̈ = q,
δL

δθ
= 0 → E I θ ′′

+G As (v
′ − θ)− ρ IR θ̈ = 0. (102)

An expedient way to eliminate θ is to rewrite the coupled
equations (102) in transform space:

[
ρAs2 − G As p2 G As p
G As p E I p2 − G As − ρ IR s2

] [
ṽ

θ̃

]
=
[

q̃
0

]
,

(103)

in which {p, s, ṽ, θ̃ , q̃} denote transforms of {d/dx, d/dt, v,
θ, q}, respectively (Fourier in x and Laplace in t). Eliminat-

Fig. 14 Plane beam member modeled as Ti-beam, illustrating notation followed in Sect. 7.1. Transverse load q(x) not shown to reduce clutter.
Infinitesimal deflections and deformations grossly exaggerated for visibility

123



General Description and 1D Examples 29

ing θ̃ and returning to the physical domain yields

E I v′′′′ + ρAv̈ −
(
ρ IR + ρAE I

G As

)
v̈′′ + ρ2 AIR

G As

....
v

= q − E I

G As
q ′′ + ρ IR

G As
q̈. (104)

This derivation does not preset I ≡ IR , as usually done in
textbooks. For the unforced case q = 0, (104) has plane
wave solutions v = B exp

(
i (k0 x − ω0 t)

)
. The propaga-

tion condition yields a characteristic equation relating k0 and
ω0. To render it dimensionless, introduce a reference phase
velocity c2

0 = E I/(ρAL4) so that k0 = ω0/c0 = 2π/λ0, a
dimensionless frequency � = ω0 L/c0 and a dimensionless
wavenumber κ = k0 L .

As dimensionless measures of relative bending-to-shear
rigidities and rotary inertia take

�0 = 12E I/(G As L2), r2
R = IR/A, �0 = rR/L .

(105)

The resulting dimensionless characteristic equation is

κ4 −�2 − ( 1
12�0 +�2

0 ) κ
2�2 + 1

12�0�
2
0 �

4 = 0. (106)

This is quadratic in �2. Its solution yields two kinds of
squared-frequencies, which will be denoted by �2

f and �2
s

because they are associated with flexural and shear modes,
respectively. Their expressions are listed below along with
their small-κ (long wavelength) Taylor series:

�2
f = 6

P − √
Q

�0�
2
0

= κ4 − ( 1
12�0 +�2

0 ) κ
6

+
(

1

144
�2

0 + 1
4�0�

2
0 +�4

0

)
κ8

− (
1

1728
�3

0 + 1

24
�2

0�
2
0 + 1

2�0�
4
0 +�6

0 ) κ
10 + · · ·

= A4κ
4 + A6κ

6 + A8κ
8 + · · · . (107)

�2
s = 6

P + √
Q

�0�
2
0

= 12

�0�
2
0

+
(

12

�0
+ 1

�2
0

)

κ2 − κ4

+ ( 1
12�0 +�2

0 )κ
6 + · · · = B0 + B2κ

2 + · · · ,
(108)

in which P = 1+κ2(�2
0 + 1

12�0) and Q = P2 − 1
3κ

4�0�
2
0 .

The dispersion relation�2
f (κ) defines the flexural frequency

branch (FFB) whereas �2
s (κ) defines the shear frequency

branch (SFB). If �0 → 0 and �0 → 0, which reduces
the the Ti model to BE, (106) collapses to �2 = κ4 or (in
principal value) � = κ2. This surviving branch pertains to
flexural motions whereas the shear branch disappears; more
precisely, �2

s (κ) → ∞.
It is easily shown that the radicand Q in the exact expres-

sions is strictly positive for any {�0 > 0, �0 > 0, κ ≥ 0}.
Thus for any such triple, �2

f and �2
s are real, finite and

distinct with �2
f (κ) < �2

s (κ). Further {�2
f ,�

2
s } increase

indefinitely as κ → ∞. Following the dispersion-diagram
nomenclature introduced in Fig. 8, the value �s at κ = 0 is
called the cutoff frequency.

To see what branches look like, consider a beam of nar-
row rectangular cross section of width b and height h, fab-
ricated of isotropic material with Poisson’s ratio ν. Accord-
ingly E/G = 2(1 + ν) and As/A ≈ 5/6 (actually a more
refined As/A ratio would be 10(1 + ν)/(12 + 11ν), but that
makes little difference in the results). We have A = bh,
I = IR = bh3/12, r2

R = IR/A = h2/12, �2
0 = r2

R/L2 =
1

12 h2/L2 and�0 = 12E I/(G As L2) = 12(1 + ν)h2/(5L2).
Since �0/12 = 12(1 + ν)�2

0/5, the first-order effect of
shear on �2

f , as measured by the κ6 term in (107), is 2.4 to
3.6 times that from rotary inertia, depending on ν. Replacing
into (107) and (108) yields

�2
f

�2
s

}
= 60 + κ2(17 + 12ν)�2 ∓

√(
60 + κ2(17 + 12ν)�2

)2 − 240κ4(1 + ν)�4

2(1 + ν)�4

=
⎧
⎨

⎩

κ4 − 1
60 (17 + 12ν)�2 κ6 + 1

3600 (349 + 468ν + 144ν2)�4κ8 + · · ·
60 + (17 + 12ν)�2κ2 − (1 + ν)�4 κ4 + . . .

(1 + ν)�4
(109)

in which� = h/L . Dispersion curves�(κ) for� = h/L =
1
4 and ν = {0, 1

2 } are plotted in Fig. 15a. Phase velocities
�/κ are shown in Fig. 15b. The figure also shows the flex-
ural branch of the BE model. The phase velocities of the
Timoshenko model tend to finite values in the shortwave,
high-frequency limit κ → ∞, which is physically correct.
The BE model is physically wrong in that limit because it
predicts an infinite propagation speed.

7.2 Ti-Beam Element

The shear-flexible plane beam member of Fig. 14 is dis-
cretized by two-node elements. An individual element of this
type is shown in Fig. 16, which illustrates its kinematics. The
element has four nodal freedoms arranged as

ue = [ v1 θ1 v2 θ2
]T

(110)

123



30 C. A. Felippa et al.

(a) (b)

Fig. 15 Spectral behavior of continuum Ti-beam model for a narrow b×h rectangular cross section. a Dispersion curves�(κ) for� = h/
 = 1/4
and two Poisson’s ratios; Timoshenko flexural and shear branches in red and blue, respectively; BE curve � = κ2 in black, b Wavespeed ∂�/∂κ .
(Color figure online)

Fig. 16 Two-node element for Timoshenko plane beam, illustrating
kinematics

Here θ1 = v1 + γ1 and θ2 = v2 + γ2 are the total cross sec-
tion rotations evaluated at the end nodes. The dimensionless
properties (105) that characterize relative shear rigidity and
rotary inertia are redefined using the element length:

� = 12E I/(G As

2), r2

R = IR/A, � = rR/
.

(111)

If the beam member is divided into Ne elements of equal
length, 
 = L/Ne whence � = �0 N 2

e and � = �0 Ne.
Thus even if �0 and �0 are small with respect to one, they
can grow without bound as the mesh is refined. For example
if�0 = 1/4 and�2

0 = 1/100, which are typical values for a
moderately thick beam, and we take Ne = 32, then� ≈ 250
and �2 ≈ 10. Those are no longer small numbers, a fact
that will impact performance as Ne increases. The stiffness
matrix to be paired with the mass template is taken to be that
of the equilibrium element:

Ke = E I


3(1 +�)

⎡

⎢⎢
⎣

12 6
 −12 6

6
 
2(4 +�) −6
 
2(2 −�)

−12 −6
 12 −6

6
 
2(2 −�) −6
 
2(4 +�)

⎤

⎥⎥
⎦.

(112)

This is known to be optimal in static analysis for a prismatic
beam member. It will be kept fixed in the ensuing derivations.
It reduces to the stiffness matrix (93) of the BE model if
� = 0.

7.3 The Ti-Beam Mass Template

FEM derivations usually split the 4 × 4 mass matrix of this
element into Me = Me

v+Me
θ , where Me

v and Me
θ come from

the translational inertia and rotary inertia terms, respectively,
of the kinetic energy functional T [v, θ ] of (101). The most
general mass template would result from applying a EW
parametrization of those two matrices. This would require
a set of 20 parameters (10 in each matrix), reducible to 9
through 11 on account of invariance and conservation con-
ditions. Attacking the problem this way, however, leads to
unwieldy algebraic equations even with the help of a CAS,
while concealing the underlying physics. A divide and con-
quer approach works better. This is briefly outlined next and
covered in more detail in the next subsections.

(I) Express Me as the one-parameter matrix-weighted
form Me = (1 − μ0)Me

F + μ0 Me
D . Here Me

F is full and
includes the CMM as instance, whereas Me

D is 2 × 2 block
diagonal and includes the DLMM as instance. This is plainly
a generalization of the LC linear combination (2).

(II) Decompose the foregoing mass components as Me
F =

Me
FT + MF R and Me

D = Me
DT + Me

DR , where T and R sub-
scripts identify their source in the kinetic energy functional:
T if coming from the translational inertia term 1

2ρA v̇2 and
R from the rotary inertia term 1

2ρ IR θ̇
2.

(III) Both components of Me
F are expressed as parame-

trized spectral forms, whereas those of Me
D are expressed as

EW. The main reasons for choosing spectral forms for the
full matrix are reduction of parameters and physical trans-
parency. No such concerns apply to Me

D .
The analysis follows a “bottom up” sequence, in order

(III)–(II)–(I). This has the advantage that if a satisfactory
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custom mass matrix for a target application emerges during
(III), stages (II) and (I) need not be carried out, and that matrix
directly used by setting the remaining parameters to zero.

7.4 Ti-Beam Full Mass Parametrization

As noted above, one starts with full-matrix spectral forms. Let
ξ denote the natural iso-P coordinate that varies from −1 at
node 1 to +1 at node 2. Two element transverse displacement
expansions in generalized coordinates are introduced:

vT (ξ) = L1(ξ) cT 1 + L2(ξ) cT 2 + L3(ξ) cT 3

+ L4(ξ) cT 4 = LT cT ,

vR(ξ) = L1(ξ) cR1 + L2(ξ) cR2 + L3(ξ) cR3

+ L̂4(ξ) cR4 = LR cR,

L1(ξ) = 1, L2(ξ) = ξ, L3(ξ) = 1
2 (3ξ

2 − 1),

L4(ξ) = 1
2 (5ξ

3 − 3ξ),

L̂4(ξ) = 1
2

(
5ξ3 − (5 + 10�)ξ

) = L4(ξ)− (1 + 5�)ξ.
(113)

The vT and vR expansions are used for the translational and
rotational parts of the kinetic energy, respectively. The inter-
polation function set {Li } used for vT is formed by the first
four Legendre polynomials over ξ = [−1, 1]. The set used
for vR is the same except that L4 is adjusted to L̂4 to produce
a diagonal rotational mass matrix. All amplitudes cT i and
cRi have dimension of length.

Unlike the usual Hermite cubic shape functions, the poly-
nomials in (113) have a direct physical interpretation. L1:
translational rigid mode; L2: rotational rigid mode; L3: pure-
bending mode symmetric about ξ = 0; L4 and L̂4: bending-
with-shear mode antisymmetric about ξ = 0.

With the abbreviation (.)′ ≡ d(.)/dx = (2/
)d(.)/dξ , the
associated cross section rotations are compactly expressed as

θT = v′
T +γT = L′

T cT +γT , θR = v′
R+γR = L′

R cR+γR,

(114)

in which the mean shear distortions are constant over the
element:

γT = �
2

12
v′′′

T = 10�



cT 4, γR = �
2

12
v′′′

R = 10�



cR4.

(115)

The kinetic energy of the element in generalized coordinates
is

T e = 1
2


∫

0

(
ρA v̇2

T + ρ IR θ̇
2
R

)
dx

= 


4

1∫

−1

(
ρA v̇2

T + ρ IR θ̇
2
R

)
dξ

= 1
2 ċT

T DT ċT + 1
2 ċT

R DR ċR, (116)

Both generalized mass matrices turn out to be diagonal as
expected:

DT = me diag
[

1 1
3

1
5

1
7

]
,

DR = 4me �2 diag
[

0 1 3 5
]
, (117)

in which as usual me = ρ A 
. To convert DT and DR to phys-
ical coordinates (110), vT , vR, θT and θR are evaluated at the
nodes by setting ξ = ±1. This establishes the transforma-
tions ue = GT cT and ue = GR cR . Inverting: cT = HT ue

and cR = HR ue with HT = G−1
T and HR = G−1

R . A sym-
bolic calculation yields for HT :

HT = 1

60(1 +�)

⎡

⎢⎢
⎣

30(1 +�) 5
(1 +�) 30(1 +�) −5
(1 +�)

−36 − 30� −3
 36 + 30� −3

0 −5
(1 +�) 0 5
(1 +�)

6 3
 −6 3


⎤

⎥⎥
⎦ .

(118)

Matrix HR differs only in the second row:

HR = 1

60(1 +�)

⎡

⎢⎢
⎣

30(1 +�) 5
(1 +�) 30(1 +�) −5
(1 +�)

−30 15
� 30 15
�
0 −5
(1 +�) 0 5
(1 +�)

6 3
 −6 3


⎤

⎥⎥
⎦ .

(119)

The difference comes from adjusting L4 to L̂4 in (113). To
map this into a spectral template, inject six free parameters
in the generalized masses while moving 4�2 inside DRμ:

DTμ = me diag
[

1 1
3μT 1

1
5μT 2

1
7μT 3

]
, DRμ

= me diag
[

0 μR1 3μR2 5μR3
]
. (120)

The transformation matrices (118) and (119) can be reused
without change to produce Me

F = HT
T DTμHT +HT

RDRμHR .
If μT 1 = μT 2 = μT 3 = 1 and μR1 = μR2 = μR3 = 4�2

one obtains the well known CMM as a valuable check. The
configuration (120) already accounts for linear momentum
conservation, which is why the upper diagonal entries are not
parametrized. Enforcing also angular momentum conserva-
tion requiresμT 1 = 1 andμR1 = 4�2, whence the template
is reduced to four parameters:
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Me
F = me HT

T

⎡

⎢⎢
⎣

1 0 0 0
0 1

3 0 0
0 0 1

5μT 2 0
0 0 0 1

7μT 3

⎤

⎥⎥
⎦HT

+ me HT
R

⎡

⎢⎢
⎣

0 0 0 0
0 4�2 0 0
0 0 3μR2 0
0 0 0 5μR3

⎤

⎥⎥
⎦HR . (121)

Since both HT and HR are nonsingular, choosing all parame-
ters in (121) to be nonnegative guarantees that Me

F is nonneg-
ative. This property eliminates lengthy a posteriori checks.

Setting μT 2 = μT 3 = μR2 = μR3 = 0 and � = 0
yields the correct mass matrix for a rigid beam, including
rotary inertia. This simple result highlights the physical trans-
parency of spectral forms.

7.5 Ti-Beam Block-Diagonal Mass Parametrization

Template (121) has a flaw: it does not include the DLMM. To
remedy the omission, a block diagonal form, with four free
parameters: νT 1, νT 2, νR1, and νR2 is separately constructed:

Me
D = me

⎡

⎢⎢⎢
⎢
⎣

1
2 νT 1
 0 0
νT 1
 νT 2


2 0 0
0 0 1

2 −νT 1


0 0 −νT 1
 νT 2

2

⎤

⎥⎥⎥
⎥
⎦

+ me

⎡

⎢⎢⎢⎢
⎣

0 νR1
 0 0
νR1
 νR2


2 0 0
0 0 0 −νR1


0 0 −νR1
 νR2

2

⎤

⎥⎥⎥⎥
⎦
. (122)

Four parameters can be merged into two by adding the fore-
going matrices:

Me
D = me

⎡

⎢⎢
⎣

1
2 ν1
 0 0
ν1
 ν2


2 0 0
0 0 1

2 −ν1


0 0 −ν1
 ν2

2

⎤

⎥⎥
⎦. (123)

in which ν1 = νT 1 + νR1 and ν2 = νT 2 + νR2. Sometimes
it is convenient to use the split form (122), for example in
lattices with varying beam properties or lengths, a topic not
considered there. Otherwise (123) suffices. If ν1 = 0, Me

D is
diagonal. However for computational purposes a block diag-
onal form is just as good and provides additional customiza-
tion power. Terms in the (1,1) and (3,3) positions must be as
shown to satisfy linear momentum conservation. If angular
momentum conservation is imposed a priori it is necessary
to set ν2 = 1

2�
2, and only one parameter: ν1, remains.

The general template is obtained as a linear combination
of Me

F and Me
D:

Me = (1 − μ0)Me
F + μ0Me

D (124)

In summary, there is a total of 7 parameters to play with: 4
in Me

F , 2 in Me
D , plus μ0. This is less that the 9-to-11 count

that would result from a full EW parametrization, so not all
possible mass matrices for this element are included by (124).

7.6 Ti-Beam Fourier Analysis

An infinite lattice of identical Ti-beam elements of length 

is set up in th usual manner. As in Sect. 6.2, plane waves of
wavenumber k and frequency ω propagating over the lattice
are represented by

v(x, t) = Bv exp
(
i(kx−ωt

)
, θ(x, t) = Bθ exp

(
i(kx−ωt

)
.

(125)

At each typical lattice node j there are two freedoms: v j

and θ j . Two patch equations are extracted, and converted to
dimensionless form on defining κ = k
 and � = ω c/
, in
which c = E I/(ρA
4) is a reference phase velocity (these
should not be confused with c0). The condition for wave
propagation gives the characteristic matrix equation

det

[
Cvv Cvθ
Cθv Cθθ

]
= CvvCθθ − CvθCθv = 0, (126)

in which the coefficients are complicated functions computed
by Mathematica and omitted for brevity. Solving the equation
provides two equations: �2

a and �2
o, where a and o denote

acoustic and OB, respectively. These are expanded in powers
of κ for matching to the continuum. For the full mass matrix
one obtains

2
�
a

=κ4+C6κ
6+C8κ

8+C10κ
10+· · · , �2

o=D0+D2κ
2+· · ·
(127)

Coefficients of terms up to κ12 were computed by Mathe-
matica. Those relevant for parameter selection are

C6 = −�/12 −�2,

C8 = [2 − 15μR2 − μT 2 + 5�(1 +�)

+ 60(1 + 3�)�2 + 720�4 ]/720,

C10 = [− 44 + 35μT 2 − 3μT 3 − 282�+ 525μR2(1 +�)

− 105μR3(1 +�)

+ 1575μR2�(1 +�)−�(3μT 3 − 35μT 2(4 + 3�)

+ 35�(17 + 5�(3 +�)))

+ (−2940 + 12600μR2(1 +�)+ 420(2μT 2(1 +�)
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− 5�(7 + 6�(2 +�))))�2

− 25200(2 +�(7 + 6�))�4

− 302400(1 +�)�6 ]/[302400(1 +�)
]
,

D0 = 25200(1 +�)/
[
7 + 105μR2 + 3μT 3 + 2100�2�2],

D2 = [2100(1 +�)(−56 − 35μT 2 + 3μT 3 − 63�

+ 3μT 3�+ 105μR3(1 +�)

− 525μR2(1 +�)2 − 35μT 2�(2 +�))

+2100(1 +�)(3360�+ 6300�2

+ 2100�3)�2 + 52920000�2(1 +�)�4]/[7

+ 105μR2 + 3μT 3 + 2100�2�2]2. (128)

For the block-diagonal template (123):

�2
a = κ4 + F6κ

6 + F8κ
8 + F10κ

10 + · · · ,
�2

o = G0 + G2κ
2 + · · · (129)

in which

F6 = −24ν2 −�,

F8 = 2880ν2 − 5�+ 360ν2�− 1 − 5�+ 5�2

720

G0 = 6

ν2(1 +�)
, G2 = 24ν2 +�− 2

2ν2(1 +�)
. (130)

Expansions for the 7-parameter template (124) are consider-
ably more involved than the above ones, and are omitted for
brevity.

7.7 Ti-Beam Selected Template Instances

Seven useful instances of the foregoing templates are iden-
tified and described in Table 11. Table 12 lists the tem-
plate signatures that produce those instances. These tables
include two well known mass matrices (CMM and DLMM)
re-expressed in the template context, and five new ones. The
latter were primarily obtained by matching series such as
(128) and (129) to the continuum ones (107) and (108), up
to a certain number of terms as indicated in Table 12.

For the spectral template it is possible to match the flexure
branch up to O(κ10). Trying to match O(κ12) leads to com-
plex solutions. For the diagonal template the choice is more
restrictive. It is only possible to match flexure up to O(κ6),
which leads to the instance called FLMM. Trying to go fur-
ther gives imaginary solutions. For the 7-parameter template
(124) it is again possible to match up to O(κ10) but no fur-
ther. The instance that exhibits least truncation error while
retaining positivity is FBMG. This is globally optimal for the
BE limit � = � = 0, but the results are only slightly better
for the reasons discussed below. Matching both flexure and
shear branches leads to instances SBM0 and SBM2, which
have the disadvantages noted in Table 11.

The exact dispersion curves of these instances are shown
in Fig. 17 for� = 48/125 and�2 = 1/75, which pertains to
a thick beam. On examining Fig. 17 it is obvious that trying
to match the shear branch is quite difficult; the fit only works
well over a tiny range near κ = 0.

7.8 Ti-Beam Vibration Analysis Example

The vibration analysis performance of the seven Ti-beam
template instances listed in Tables 11 and 12 is evaluated on
a simply supported (SS) prismatic plane beam. The beam has
length L and is divided into Ne identical elements. The cross
section is rectangular with width b and height h. The mate-
rial is isotropic with Poisson’s ratio ν = 0. Three different
height-to-span ratios h/L that characterize a thin, moderately
thick and thick beam, respectively, are considered. Results
for the three configurations are collected in Figs. 18, 19 and
20, respectively, for the first three vibration frequencies. All
calculations are rendered dimensionless using appropriate
scaling.

The accuracy of the computed frequencies is depicted
using log-log plots of dimensionless natural frequency error
versus Ne. The error is displayed as d = log10(|�comp −
�exact |, which gives at a glance the number of correct digits
d, versus log2 Ne for Ne = 1 through 32. If the LF error is
approximately controlled by a truncation term of the form
∝ κm , the log-log plot should be roughly a straight line of
slope ∝ m, inasmuch as κ = k
 = kL/Ne (note that the
accuracy curves for CMM and FLMM are virtually on top of
each other for Ne ≥ 4, although errors have opposite signs;
that is why their average CDLA does much better).

The results for the BE model, shown in Fig. 18, agree per-
fectly with the truncation error in the �2

f branch as listed
in Table 11. For example, the top performers FBMG and
FBMS gain digits twice as fast as CMM, DLMM and SBM2,
since the formers match �2

f to O(κ10) whereas the latter

do that only to O(κ6). Instances CDLA and SMB0, which
agree through O(κ8), come in between. The highly compli-
cated FBMG is only slightly better than the much simpler
FBMS. The case for their high accuracy should be empha-
sized. For example, four FBMS elements give �1 to six fig-
ures: 9.86960281 . . . versus π2 = 9.86960440 . . ., whereas
CMM gives less than three: 9.87216716 . . .. The “accuracy
ceiling” of about 11 digits for FBMS and FBMG observable
for Ne > 16 is due to the eigensolver working in double pre-
cision (≈ 16 digits). Rerunning with higher (quad) floating
point precision, the plots continues marching up as straight
lines before leveling off at approximately 25 digits.

On passing to the Timoshenko model, the well ordered BE
world of Fig. 18 unravels. The culprits are � and �. These
figure prominently in the branch series and grow without
bound as Ne increases, as discussed in Sect. 7.2. Figure 19
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Table 11 Ti-beam selected template instances

Instance name Description Comments

CMM Consistent mass matrix derived in Sect. 1. Matches FFB up
to O(κ6)

A popular choice. Fairly inaccurate, however, as beam gets
thicker. Grossly overestimates intermediate frequencies

FBMS FFB matched to O(κ10) with spectral (Legendre) template
(121)

Converges faster than CMM. Performance degrades as beam gets
thicker, however, and becomes inferior to CDLA

SBM0 SFB matched to O(κ0) while flexure fitted to O(κ10) Custom application: to roughly match SBF and cutoff frequency
as mesh is refined. Warning: indefinite for certain ranges of �
and �: use with caution

SBM2 SBF matched to O(κ2) while flexure fitted to O(κ8) Custom application: to finely match SFB and cutoff frequency as
mesh is refined. Warning: indefinite for wide ranges of � and
�: use with extreme caution

FLMM Diagonally lumped mass matrix with rotational mass picked
to match FFB to O(κ6)

Obvious choice for explicit DTI. Accuracy degrades
significantly, however, as beam gets thicker. Underestimates
frequencies. Becomes singular in the BE limit

CDLA Average of CMM and FLMM. Matches FFB to O(κ8) Robust all-around choice. Less accurate than FBMS and FBMG
for thin beams, but becomes top performer as beam gets thicker.
Easily constructed if both CMM and FLMM are available

FBMG FFB matched to O(κ10) with 7-parameter template (124) Known to be the globally optimal positive-definite choice for
matching flexure in the BE limit. Accuracy, however, is only
marginally better than FBMS. As in the case of the latter,
performance degrades as beam gets thicker

Table 12 Signatures of selected Ti-beam template Instances

Instance name Templ. form Template signature Fit to continuum freqs.

μT 2 μT 3 μR2 μR3 ν1 ν2 μ0 �2
f (flexural) �2

s (shear)

CMM (121) 1 1 4�2 4�2 up to κ6 none

FBMS (121) 2 26/3 4�2+�/3 c1 up to κ10 none

SMB0 (121) 2 −7/3 4�2+�/3 20��2 up to κ10 up to κ0

SMB2 (121) 2 −7/3 c2 20��2 up to κ8 up to κ2

FLMM (123) 0 �2/2 up to κ6 none

CDLA (124) 1 1 4�2 4�2 0 �2/2 1/2 up to κ8 none

FBMG (124) c3 c4 c5 c6 1/12 �2/2 c7 up to κ10 none

c1 = (25�3 + 120�2 +�2(45 − 300�2)+ 3�(7 − 20�2 + 1200�4)
)
/
(
15(1 +�)

)
,

c2 = (− 19 + 10�2(90�2 − 1)− 30�(1 − 26�2 + 120�4)
)
/
(
75(1 +�)2

)
,

c3 = (9 + √
105)/10, c4 = (61

√
105 − 483)/18, c5 = (

√
105 − 1)�/30,

c6 = (− 48�+ 727�2 + 840�3 + 22128�2 + 19848��2 − 10080�2�2 − 113040�4

+120960��4 + 5
√

105 (48�+ 87�2 + 40�3)− 24(6 + 21�+ 20�2)�2

+720(3 + 8�)�4
)
/
(
60(21 + √

105)(1 +�)
)
, c7 = (3 − 5

√
5/21)/8

collects results for a moderately thick beam with h/L = 1/8,
which corresponds to �0 = 3/80 and �2

0 = 1/768. The BE
top performers, FBMS and FBMG, gradually slow down and
are caught by CDLA by Ne = 32. All other instances trail,
with the standard ones: CMM and FLMM, becoming the
worst performers. Note that for Ne = 32, CMM and FLMM
provide only 1 digit of accuracy in �3, although there are
32/1.5 ≈ 21 elements per wavelength.

Figure 20 collects results for a thick beam with h/L =
2/5, corresponding to �0 = 24/625 and �2

0 = 1/75. The
trends of Fig. 19 are exacerbated, with FBMS and FBMG
running out of steam by Ne = 4 and CDLA clearly emerging
as best for Ne ≥ 8. Again CMM and FLMM trail badly.

The reason for the performance degradation of FBMS and
FBMG as the Ti-beam gets thicker is unclear as of this writ-
ing. Eigensolver accuracy is not responsible since rerunning
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Fig. 17 DDD for selected Ti-beam mass template instances with � = 48/125 and �2 = 1/75

Fig. 18 Accuracy of first 3 natural vibration frequencies of SS pris-
matic beam using mass matrices of instances listed in Tables 11 and
12. BE model with �0 = �0 = 0. Exact (12-decimal) frequencies

�1 = π2 = 9.869604401089, �2 = 4π2 = 39.478417604357 and
�3 = 9π2 = 88.826439609804. Cutoff frequency +∞

the cases of Figs. 19 and 20 in quad precision did not change
the plots. A numerical study of the�2

f truncation error shows
that FBMS and FBMG fit the continuum branch better than
CDLA even for very thick beams. Possible contamination of
vibration mode shapes with the shear branch was not inves-
tigated.

8 Conclusions and Future Work

It is clear from the previous studies that mass matrix cus-
tomization by templates can be effective in structural dynam-
ics. The examples of Sects. 4.9, 5.14 and 7.8 illustrates two
typical advantages:
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Fig. 19 Accuracy of first 3 natural vibration frequencies of SS pris-
matic beam using mass matrices of instances listed in Tables 11 and
12. Timoshenko model with �0 = 3/80 = 0.0375 and �2

0 =
1/768 = 0.00130, pertaining to a rectangular x-section with h/L = 1/8

and ν = 0. Exact (12-decimal) frequencies �1 = 9.662562122511,
�2 = 36.507937703548 and �3 = 75.894968024537. Cutoff fre-
quency �cut = 12/(�0�

2
0 ) = 495.741868314549

Fig. 20 Accuracy of first 3 natural vibration frequencies of SS pris-
matic beam using mass matrices of instances listed in Tables 11 and
12. Timoshenko model with �0 = 24/625 = 0.384 and �2

0 =
1/75 = 0.0133, pertaining to a rectangular x-section with h/L = 2/5

and ν = 0. Exact (12-decimal) frequencies �1 = 8.287891683498,
�2 = 24.837128591729 and �3 = 43.182948411234. Cutoff fre-
quency �cut = 12/(�0�

2
0 ) = 48.412291827593

• Orders of magnitude improvements in frequency accu-
racy can be achieved for the same computational effort.

• The space discretization need not be changed at all. Only
the template free parameters need to be adjusted by sup-
plying the appropiate signature.

These should be attractive to engineers for practical FEM
computations. The last one is particularly important, since
redoing a structural dynamics model not amenable to mesh
generation may take a significant portion of a design and
analysis process.

Would availability of customized templates eliminate the
need for h and p adaptivity? Certainly not. Elements have

performance limits, so such refinement schemes cannot be
ruled out. It should be noted, however, that mesh adaptivity
is less effective in dynamics, particularly in problems with
rapid transients and shocks. Irregular meshes and high order
elements are notorious sources of HF pollution, and adap-
tivity can make things worse by exacerbating nonphysical
dispersion.

As regards future work, the most ambitious plan is exten-
sion to multiple space dimensions. Additional challenges
emerge there:

• Directionality. This means that the dynamic accuracy of
the FEM model, as compared to the continuum, depends
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on the direction of plane wave propagation. This is a
phenomenon missing in 1D. Integration averaging over
propagation angles necessarily appears as another com-
ponent of the Fourier analysis.

• Material property dependence. Optimal free parameters
become dependent on additional elastic material proper-
ties missing from the 1D treatment. For example if the
material is isotropic Poisson’s ratio appears. This is not
actually unique to mass templates, but affects stiffness
templates as well.

• Multiple plane wave types. In isotropic 2D and 3D con-
tinua, one needs to consider two types: pressure (P-
waves) and shear (S-waves). Plainly this impacts cus-
tomization. If the medium is non-isotropic, more com-
plicated wave types may have to be considered.

• Parameter explosion. This can be expected to hinder
symbolic calculations. At first sight it seems inevitable
given the rapidly increasing size of the element matrices.
Growth can be controlled, however, by making use of a
priori reduction techniques such as those mentioned in
Sects. 3.1, 3.2, and 3.4.

These challenges are illustrated for a simple 2D element
(three-node linear triangle) in Appendix 5.

Less ambitious research thrusts may focus on extending
the results presented here for 1D elements. For example:

• Assess the performance of different template variant con-
struction approaches to reduce high-frequency pollution
caused in DTI. Three were described for the Bar3 ele-
ment: singular mass, SMS and constant OB. As of this
writing, no comparative rating based on numerical exper-
iments is available.

• Find out whether the impressive gains in accuracy
observed in LFF-customized templates survive in irreg-
ular meshes and/or heterogeneous element mixtures.

• Unfinished business remains for the Timoshenko beam.
First, the unexpected deterioration in vibration accu-
racy as the coefficients � and � increase is presently
unexplained. Could the degradation be arrested using
MS template pairs? Prior experience with the BE-beam,
referenced in Appendix Sect. 1.7, shows only modest
improvements, but such continuum model is compara-
tively well behaved. Second, the relative performnace of
the various template instances listed in Tables 11 and 12
for direct time integration (DTI) remains to be assessed.
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Appendix 1: A Short History of Mass Matrices

This Appendix summarizes previous developments on vari-
ous topics addressed by this paper.

Appendix 1.1: Pre-FEM Work

The first appearance of a structural mass matrix in a journal
article occurs in two papers by Duncan and Collar [23,24],
which appeared in the mid 1930s. The authors were mem-
bers of the world famous aeroelasticity team at the National
Physics Laboratory in Teddington (UK), led by Frazier. As
narrated in [32] those two papers actually represent the birth
of Matrix Structural Analysis (MSA). Befitting the overde-
signed aircraft structures of the time, the focus is on dynamics
and vibrations rather than on statics. In [23] the mass matrix
is called “inertia matrix” and denoted by [m]. The first exam-
ple [23, p. 869] displays the 3 × 3 diagonal mass of a triple
pendulum. In the 1938 book [45], which collects that early
work plus intermediate papers, the notation changes to A.

DLMM were strongly preferred in early publications. In
fact they dominate all pre-1963 work. Three reasons may be
adduced for the preference:

• The three-century astronomical heritage of Newtonian
Mechanics. For unperturbed orbit calculations, celestial
bodies were idealized as point masses regardless of actual
size.

• Computational simplicity in vibration analysis and explicit
direct time integartion (DTI).

• Direct lumping gives an obvious way to account for non-
structural masses in simple discrete models of the spring-
dashpot-point-mass variety. For example, in a multistory
building “stick model” wherein each floor is treated as
one DOF in lateral sway under earthquake or wind action,
it is natural to take the entire mass of the floor (including
furniture, insulation, etc.) and assign it to that freedom.

Nondiagonal (but not consistent) masses pop up ocassionally
in pre-1960 aircraft matrix analysis—e.g. wing oscillations in
[45, §10.11] as a result of measurements. As such they neces-
sarily account for nonstructural masses due to fuel, avionics
equipment, etc.
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Appendix 1.2: Consistent Mass Matrices Appear

The formulation of the CMM in structural mechanics by
Archer [5,6] was a major advance. Most of the CMM derived
in Appendix 3 appear in those papers. The underlying idea,
however, is older. In fact, Irons and Ahmad observe [62] that
consistent masses had been used in acoustics for over two
decades before Archer’s papers; see e.g., the textbook [116].

The CMM at the system (master) level follow directly
from the Lagrange dynamic equations established in the
late XVIII Century [67]. If T is the kinetic energy of a
FEM-discretized structural system occupying volume V , and
u̇i (xi ) the velocity field defined by the nodal velocities col-
lected in u̇, the master CMM is simply the Hessian of T with
respect to nodal velocities:

T = 1
2

∫

V

ρ u̇i u̇i dV, ui = ui (u̇), M = ∂2T

∂u̇ ∂u̇
. (131)

This matrix is constant if T is quadratic in u̇, as happens
in linear structural dynamics. Two key decisions had to be
reached, however, before this idea was applicable to FEM.
Localization: (131) is applied element by element, and the
master M assembled through the standard steps of the Direct
Stiffness Method (DSM).
Consistent Interpolation: the interpolation of velocities and
displacements is identical. That is, VSF and DSF coincide.

These in turn had to wait until three major ingredients
became slowly established during the 1960s: (i) the DSM of
Turner [105,106], (ii) the concept of shape functions progres-
sively evolving in early FEM publications [26,28,60,61,74],
and (iii) the FEM connection to Rayleigh-Ritz. The last
one was critical. It was established in Melosh’s thesis work
[74,75]. The link to dynamics was closed with Archer’s con-
tributions, and CMM became a staple of FEM. But only a
loose staple. Problems persisted:

(a) Nonstructural masses are not naturally handled by CMM.
In vehicle systems such as ships or aircraft, the structural
mass is only a fraction (10–20 %) of the total.

(b) It is inefficient in explicit DTI, since M is never diagonal.
(c) It may not give the best results compared to other alterna-

tives. Why? If K results from a conforming displacement
interpolation, pairing it with the CMM is a form of the
conventional Rayleigh-Ritz, and thus guaranteed to pro-
vide upper bounds on natural frequencies. This is not
necessarily a good thing. In practice it is observed that
errors increase rapidly as one moves up the frequency
spectrum. If the response is strongly influenced by inter-
mediate and high frequencies, as in contact-impact and
wave propagation dynamics, the CMM may give poor
results.

(d) For elements derived outside the assumed-displacement
framework, the DSF may be either unknown or altogether
missing.

Problem (a) can be addressed by “rigid mass elements”
accounting for inertia (and possibly gravity or centrifugal
forces) but no stiffness. Nodes of these elements are linked
to structural (elastic) nodes by multifreedom kinematic con-
straints. This is more of an implementation issue than a
research topic, although numerical difficulties typical of
multibody dynamics may crop up.

Problems (b,c,d) can be attacked by parametrization. Mac-
Neal was the first to observe [4,71,73] that averaging the
DLMM and CMM of Bar2 produced better results than using
either alone. This idea was further examined by Belytschko
and Mullen [8] using Fourier analysis; they also studied the
CMM and SLMM of Bar3 but not their parametrizations.
Krieg and Key [66] had emphasized that in transient analy-
sis by DTI the introduction of a time discretization operator
brings new compensation phenomena, and consequently the
time integrator and the mass matrix should not be chosen
separately. The template approach addresses this problem by
allowing and encouraging customizing of the mass and stiff-
ness to the problem at hand.

Appendix 1.3: Dynamic Model Reduction

Concurrently with advances in variational mass lumping
leading to the CMM, the 1960s and early 1970 were a fertile
time for the development of reduced order dynamic models
based on component mode synthesis (CMS), a name coined
by Hurty [58,59]. These were motivated by the high cost of
dynamic and vibration analysis in the computers of the time,
and blended well with the emerging use of substructuring
methods in aerospace engineering, as summarized in [88].

Seminal publications of the period include [20,52,72,
91], which originated the widely used Craig-Bampton and
MacNeal–Rubin CMS methods. There is abundant litera-
ture since. Good textbook-level descriptions are provided in
[21,48].

Appendix 1.4: Selective Mass Scaling

The SMS method, proposed in the mid 2000s [78,79], has
attracted attention for rapid-transient simulations involving
contact-impact, such as vehicle crash or explosions. Those
are typically treated by explicit DTI, in which ephemeral
high frequencies produced by transient shocks may require
extremely small timesteps for stability, as well as produc-
ing significant spurious noise (pollution). In this approach,
a DLMM is augmented by a scaled version of the stiffness
matrix. The underlyting idea is to knock down the high fre-
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quency of the “mesh modes,” as quantitatively shown in
Sect. 3.5

The derivation of the SMS variant for Bar3 in Sect. 5.12
shows that for the three-node bar, SMS can be presented as a
subset of the general mass template. Nevertheless, it deserves
consideration on its own because of two attractive features:

• It involves only one free parameter, which may be
adjusted during the response simulation process. This
makes it especially suitable for multidimensional ele-
ments.

• It does not depends on knowledge of element shape func-
tions. In fact it may be used without knowing the source
of the FEM matrices, which is an attractive feature for
some commercial codes.

These are counteracted, however, by two disadvantages:

• Loss of low-frequency accuracy in the AB. Consequently
SMS is not recommended for conventional structural
dynamics and vibration analysis.

• Adding the stiffness term necessarily makes M nondi-
agonal, complicating explicit DTI. If the stiffness con-
tribution is relatively small, however, DLMM diagonal
dominance might be retained, which permits the use of
iterative schemes [81].

The method has been further explored in several recent pub-
lications, some of which focus on the use of singular mass
matrices as well as connection with parametrized variational
principles (PVP) [64,90,101,102]. The variational connec-
tion outlined in Appendix 5, in which VSF and DSF are
independent, has the potential to link templates to that recent
line of research as well as earlier work cited there.

Appendix 1.5: Singular Mass Matrices

This approach to RHFP has been primarily developed with
an applied mathematics flavor and with multibody dynam-
ics as focus [14,107–110]. The key idea is to get the OB
(or branches) out of the way at low frequencies to increase
the acoustoptical gap. It can be readily subsumed under tem-
plates through spectral parametrization, as worked out for
the Bar3 element in Sect. 5.11. While the BSSM instance
constructed there shows promise in meeting both LFCF and
RHFP customization goals, more numerical experimentation
will be required to substantiate that promise.

Appendix 1.6: Frequency Dependent Matrices

Making mass and stiffness frequency dependent (FD) was
proposed by Przemieniecki [88], who expanded both Me(ω)

and Ke(ω) as Taylor series in ω2. An indirect deriva-
tion scheme, which preceeds [88], consists of starting from
dynamic transfer matrices and convert them to mass and stiff-
ness by partial inversion [117]. The procedure is described
in detail in [85]. It is restricted to 1D elements.

The idea was subsequently pursued by other authors.
Pilkey [86,87] derived such matrices by using exact solutions
of the unforced EOM as shape functions. For the two-node
bar, those matrices are not instances of the FDMS template
presented in Sect. 4.12 because the baseline mass matrix for
zero frequency is the CMM.

Since such exact solutions are available only for a lim-
ited number of 1D models, the approach is hardly extendible
beyond prismatic bars and beams. More general 1D elements
have been handled by numerical ODE integration [69,70] on
the way to transfer matrices.

The approach can be generalized to the template context
by making free parameters frequency dependent, as illus-
trated in Sect. 4.12 for Bar2. As noted there, this extension
might be of interest for problems dominated by a driving
frequency, such as some electronic and optical devices. For
more general use, keeping the parameters frequency indepen-
dent is far more practical. In multiple dimensions it merges
with boundary integral and spectral element methods in elas-
todynamics. These are specialized topics beyond the scope
of this historical review; for recent work and references, see
[69,92,94,115].

Appendix 1.7: Templates

The template approach originally evolved in the late 1980s
and early 1990s to construct high-performance stiffness
matrices [30,31]. Its roots can be traced back to the Free For-
mulation of Bergan [10–13,29], in which the stiffness matrix
was decomposed into basic and higher order components. A
historical account is provided in a tutorial chapter [36]. The
general concept of template as parametrized forms of FEM
matrix equations is discussed in [31,35,39].

Mass templates in the form presented here were first
described in [33,34] for a BE plane beam analyzed with
Fourier methods. The study addressed MS pairs. The idea
was extended to other elements in [40].

The Bar3 stiffness template (41) was first stated in [30],
in which the only free parameter has a slightly different def-
inition. The Timoshenko beam model first appeared in [99];
see also [100]. The symbolic derivation scheme used for the
Timoshenko beam EOM in (104) is due to Flaggs [43]; see
also [82–84]. The optimal static stiffness matrix (112) for
the Ti-beam element appeared originally in [104]. A detailed
derivation may be found in [88, §5.6]. It is an instance of a
template given in [38].

Two powerful customization techniques used regularly for
templates are Fourier analysis and modified differential equa-
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tions (MoDE). Fourier analysis is limited to separable sys-
tems but is straightforward to apply, requiring only under-
graduate mathematics (as tutorials for applied Fourier analy-
sis, Hamming’s textbooks [53,54] are highly recommended).
MoDE methods, first published in correct form in 1974 [112]
are less restrictive but more demanding on two fronts: math-
ematical ability and support of a CAS. Processing power
limitations presently restrict MoDE to two-dimensional ele-
ments and regular meshes. In the present exposition, only
Fourier methods are used since those are likely to be more
familiar to potential readers.

The selection of a priori constraint criteria for template
free parameters is not yet on firm ground. For example: is con-
servation of angular momentum useful in mass templates?
The answer seem to depend on element type and complexity.

Appendix 1.8: Multidimensional Elements

Stiffness templates for 2D and 3D structural elements have
been considered since a modest beginning in the 1980s, as
Free Formulation plate elements that incorporated a scaling
parameter for the higher order stiffness [13,29]. A significant
number has been developed since; see references in Appen-
dix Sect. 1.7. The development of mass matrix templates for
multidimensional elements has lagged because of four com-
plications:

• Mesh directionality effects that require angular averaging
• Additional dependence on elastic material properties
• Multiple plane wave types (pressure and shear waves in

the case of an isotropic material)
• The free parameter explosion as matrices get larger

The first study of this nature for a nontrivial 2D element has
appeared as a 2012 thesis [50], which dealt with triangular
membrane elements with and without corner node drilling
freedoms. An example extracted from this thesis is presented
in Appendix 5.

Appendix 1.9: Connection To Molecular Physics

DLMM results for regular lattices of structural elements have
counterparts in a very different area: molecular physics. More
precisely, the wave mechanics of crystalline solids created in
the XX Century by particle mechanicians; e.g., [15,89,118].
In crystal models, lattice nodes are occupied by molecules
interacting with adjacent ones. Thus the “element dimen-
sion” 
 acquires the physical meaning of molecular gap. Both
acoustic and optical branches have physical significance.

In such models masses are always lumped at molecule
locations, and atoms vibrate as harmonic oscillators in the
potential well of the force fields of their neighbors. Disper-
sion curves govern energy transmission. In a linear atomic

chain, the dimensionless wavenumber range κ ∈ [−π, π ],
or κ ∈ [0, 2π ], is called the first Brillouin zone [16,63].
The happy connection of mass templates to periodic mate-
rials may be of interest as FEM and related discretization
methods are extended into multiscale applications of crystal,
micro- and nano-mechanics, and phononics [7,22].

Appendix 2: Standard Mass Matrix Derivation Methods

Appendix 2.1: Overview

This Appendix and the next one are written for read-
ers unfamiliar with the standard (a.k.a. classical, conven-
tional) approaches for constructing finite element mass matri-
ces. The intention is to make the overall paper reasonably
self-contained. Readers knowledgeable of those techniques
should skip this material.

As a general rule, the construction of the master (sys-
tem level) mass matrix M largely parallels that of the master
stiffness matrix K. Mass matrices for individual elements
are formed in local coordinates, transformed to the global
frame if necessary, and merged into the master mass matrix
following exactly the same techniques used for K. In practi-
cal terms, the assemblers for K and M, before application of
boundary conditions, can be made identical (except for obvi-
ous indexing shortcuts in the case of diagonal mass matri-
ces). This procedural uniformity is one of the strengths of
the DSM.

A notable difference with the stiffness matrix is the pos-
sibility of using a DLMM based on direct lumping to nodes.
A master DLMM can be stored as a vector. If all entries
are nonzero, it is easily inverted in place, since the inverse
of a diagonal matrix is also diagonal. Plainly the use of a
DLMM entails significant computational advantages in cal-
culations that involve M−1; for example explicit DTI [9,111]
and some symmetric eigenproblem solution methods [80].
This is counteracted by negative features.

Appendix 2.2: Element Mass Matrix Construction

The master mass matrix is built up from element contribu-
tions, and we start at that level. The construction of the mass
matrix of individual elements with continuous mass density
can be carried out through several methods. These can be cat-
egorized into three groups: direct mass lumping, variational
mass lumping, and template mass lumping. The last group is
more general in that includes others through parameteriza-
tion; in fact it covers all admissible mass matrices. Variants
of direct and variational lumping are by now standard in the
literature at the textbook level; see e.g., [18,21,48,88,93],
and references therein. They are implemented in all general
purpose FEM codes. This Appendix covers the two standard
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approaches. Template mass lumping is the subject of the main
body of the paper.

Appendix 2.2.1: Direct Mass Lumping

This is the simplest procedure. The total mass of element e
is directly apportioned to nodal freedoms, ignoring any cross
coupling. The goal is to build a DLMM, denoted here by Me

L .
As the simplest example, consider a 2-node prismatic bar

element with length 
, cross section area A, and mass density
ρ, which can only move in the axial direction x , as depicted
in Fig. 21a. The total mass of the element is me = ρA
.
This is divided into two equal parts and assigned to each end
node. The element is endowed with the two freedoms shown
in Fig. 21b. Thus

Me
L = 1

2ρA


[
1 0
0 1

]
= 1

2 me I2, (132)

in which me = ρA
 is the element mass and I2 denotes
the 2 × 2 identity matrix. As sketched in Fig. 21, we have
effectively replaced the continuum bar with a dumbbell: two
masses separated by a massless connector.

This process conserves the translational kinetic energy
or, equivalently, the linear momentum. To check this prop-
erty for the bar example, take the constant x-velocity vec-
tor u̇e = v[1 1]T . The kinetic energy of the element is
T e = 1

2 (u̇
e)T Me

L u̇e = 1
2ρA
 v2 = 1

2 mev2. Thus the lin-
ear momentum pe = ∂T e/∂v = mev is preserved. When
applied to simple elements that can rotate, however, the
direct lumping process may not necessarily preserve angular
momentum.

Historical motivations for direct lumping are noted in
Appendix Sect. 1.1. Most crucial, it covers naturally the case
where concentrated (point) masses are natural part of model
building. For example, in aircraft engineering it is common
to idealize nonstructural masses (fuel, cargo, engines, etc.) as
concentrated at given locations (such concentrated masses in
general have rotational freedoms; rotational inertia lumping
is then part of the modeling process).

Appendix 2.2.2: Variational Mass Lumping

The second standard procedure is based on a variational for-
mulation. This is done by taking the kinetic energy as part of
the governing functional. The kinetic energy of an element
of mass density ρ that occupies the domain �e and moves
with velocity field �ve is

T e = 1
2

∫

�e

ρ(�ve)T �ve d�e. (133)

Following the conventional FEM philosophy, the element
velocity field is interpolated using shape functions: �ve =
Nv u̇e, in which u̇e are node DOF velocities and Nv a shape
function matrix (for 1D elements, Nv is a row vector). Insert-
ing into (133) and taking the node velocities out of the integral
yields

T e = 1
2 (u̇

e)T
∫

�e

ρ(Nv)T Nv d� u̇e def= 1
2 (u̇

e)T Me u̇e,

(134)

whence the element mass matrix follows as the Hessian of
T e:

Me = ∂2T e

∂u̇e∂u̇e =
∫

�e

ρ (Ne
v)

T Nv dst�. (135)

If the same shape functions used in the derivation of the stiff-
ness matrix are chosen, that is, Ne

v = Ne
u , (135) is called

the CMM. It is denoted here by Me
C . A better name for

(135) would be stiffness-consistent mass matrix. The shorter
sobricket has the unfortunate implication that other choices
are “inconsistent,” which is far from the truth. In fact, the
consistent mass is not necessarily the best performer, a fea-
ture already noted. The shorter name is, however, by now
ingrained in the FEM literature.

For the 2-node prismatic bar element moving along x ,
pictured in Fig. 21a, the well known stiffness shape functions
are N1 = 1− (x−x1)/
 = (1−ξ)/2 and N2 = (x−x2)/
 =
(1+ξ)/2, in which ξ = 2(x − x1)/
−1 is the isoparametric
natural coordinate that varies from −1 at node 1 to +1 at node
2. With dx = 1

2
 dξ , the consistent mass is easily obtained
as

Me
C =


∫

0

ρ A (Ne)T Ne dx

= 1
4ρ 
A

+1∫

−1

[
1 − ξ

1 + ξ

] [
1 − ξ 1 + ξ

]
dξ

= 1
6 me

[
2 1
1 2

]
. (136)

It can be verified that this mass matrix preserves linear
momentum along x . If allowed to move in the xy plane, as
considered in Appendix Sect. 2.5, it also preserves angular
momentum about z.

Appendix 2.3: Mass Matrix Properties

Mass matrices must comply with conditions that can be used
for verification and debugging at the element level. They
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Fig. 21 Direct mass lumping
for two-node prismatic bar
element: a lumping element
mass to end nodes, b assigning
degrees of freedom

(a) (b)

are: matrix symmetry, physical symmetries, conservation and
positivity.
Matrix Symmetry This means (Me)T = Me, which is easy to
check. For a variationally derived mass matrix this follows
directly from the definition (135), whereas for a DLMM is
automatic.
Physical Symmetries Also called geometric or fabrication
symmetries. They are dictated by the physical configuration.
For example, the CMM or DLMM of the prismatic Bar2
element must be symmetric about the antidiagonal: M11 =
M22. To see this, flip the end nodes: the element remains the
same and so does the mass matrix.
Conservation At a minimum, total element mass must be pre-
served (we are talking about classical mechanics here; in rel-
ativistic mechanics mass and energy can be exchanged). This
is easily verified by applying a uniform translational veloc-
ity and checking that linear momentum is conserved. Higher
order conditions, such as conservation of angular momen-
tum, are optional and not necessarily desirable.
Positivity For any nonzero velocity field defined by the node
values u̇e 
= 0, (u̇e)T Meu̇e ≥ 0. That is, Me must be non-
negative. Unlike the previous three conditions, this constraint
is nonlinear in the mass matrix entries. It can be checked in
two ways: through the eigenvalues of Me, or the sequence of
principal minors. The second technique is more practical if
the entries of Me are symbolic.

A stricter form of the last condition requires that Me be
PD: (u̇e)T Meu̇e > 0 for any u̇e 
= 0. This is physically reas-
suring because one half of that form is the kinetic energy
associated with the velocity field defined by u̇e. In a con-
tinuum T can vanish only for zero velocities (a rest state).
But allowing T e = 0 for some nonzero u̇e makes life easier
in some situations; e.g., elements with rotational or multi-
plier freedoms, or in the rapid-transient applications noted in
Appendix Sect. 1.4.

The u̇e for which T e = 0 collectively form the null space
of Me. Because of the conservation requirement, a rigid
velocity field (that is, the time derivative u̇e

R of a rigid body
mode ue

R) cannot be in the mass matrix null space, as it would
imply zero total mass. This scenario is dual to that of the ele-
ment stiffness matrix. For the latter, Keue

R = 0 because a

rigid body motion produces no strain energy. Thus ue
R must

be in the null space of the stiffness matrix.

Appendix 2.4: Rank and Numerical Integration

Suppose the element has a total of ne
F freedoms. A mass

matrix Me is called rank sufficient or of full rank if its rank
is re

M = ne
F . Because of the positivity requirement, a rank-

sufficient mass matrix must be PD. Such matrices are pre-
ferred from a numerical stability standpoint.

If Me has rank re
M < ne

F the mass is called rank deficient
by de

M = ne
F −re

M . Equivalently Me is de
M times singular. For

a numerical matrix the rank is easily computed by taking its
eigenvalues and looking at how many of them are zero. The
null space can be extracted by functions such asNullSpace
in Mathematica without the need of computing eigenvalues.

The computation of Me by the variational formulation
(135) is often done using Gauss numerical quadrature. Each
Gauss points adds nD to the rank, where nD is the row dimen-
sion of the shape function matrix Ne, up to a maximum of ne

F .
For most elements nD is the same as element spatial dimen-
sionality; that is, nD = 1, 2 and 3 for 1, 2 and 3 dimensions,
respectively. This property can be used to pick the minimum
Gauss integration rule that makes Me PD.

Appendix 2.5: Globalization

Like their stiffness counterparts, mass matrices are often
developed in a local or element frame. Should globaliza-
tion be necessary before merge, a congruent transformation
is applied:

Me = (Te)T M̄eTe. (137)

Here M̄e is the element mass referred to a local frame x̄i

(a.k.a. element frame), whereas Te is the local-to-global dis-
placement transformation matrix. The recipe (137) follows
readily from the Principle of Virtual Work, or equivalently
the invariance of the first variation of the element kinetic
energy:
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δT̄ e = ( ˙̄ue)T M̄e δ ˙̄eu = (u̇e)T (Te)T M̄e Te δu̇e

= ( ˙̄ue)T Me δu̇e = δT e. (138)

Matrix Te is in principle the same used for the stiffness glob-
alization. Some procedural differences, however, must be
noted. For stiffness matrices Te is often rectangular if the
local stiffness has lower dimensionality. For example, two-
node bar, shaft and spar elements have 2×2 local stiffnesses.
Globalization to 2D and 3D involves application of 2×4 and
2 × 6 transformation matrices, respectively. This works fine
because the local element has zero stiffness in some direc-
tions, and those zero rows and columns may be omitted at
the local level.

In contrast to stiffnesses, translational masses never van-
ish. One way to realize this is to think of an element mov-
ing in a translational rigid motion u R with acceleration ü R .
According to Newton’s second law, fR = meü R , where me is
the element translational mass. Regardless of direction, this
inertia force cannot vanish.

The conclusion is: all translational masses must be
retained in the local mass matrix. A two-node prismatic
bar moving in the {x, y} plane as in Fig. 22, furnishes a
simple illustration. With the element freedoms arranged as

ue = [ux1 ux2 uy1 uy2
]T

, the local mass matrix constructed
by variationally consistent and diagonalized lumping are,
respectively,

M̄e
C = 1

6 me

⎡

⎢⎢
⎣

2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

⎤

⎥⎥
⎦ ,

M̄e
L = 1

2 me

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ = 1

2 me I4, (139)

in which me = ρ A 
. For 3D, repeat the diagonal block once
more.

Appendix 2.5.1: Directional Invariance

For the case illustratedin in Fig. 22 the local-to-global free-
dom transformation ūe = Te ue is

⎡

⎢⎢
⎣

ūx1
ūx2
ū y1
ū y2

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

c 0 s 0
0 c 0 s

−s 0 c 0
0 −s 0 c

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

ux1
ux2
uy1
uy2

⎤

⎥⎥
⎦ , in which

c = cosϕ, s = sin ϕ. (140)

Now apply (137) to either Me
C or Me

L of (139) using
(140). The result is Me

C = M̄e
C and Me

L = M̄e
L : no change.

Fig. 22 Diagonally lumped mass Bar2 element moving in 2D

We say that these mass matrices repeat. Verification for the
DLMM is easy because Te is orthogonal: (Te)T M̄e

L Te =
1
2 me (Te)T I4Te = 1

2 me (Te)T Te = 1
2 me I4. For the

CMM, however, repetition is not obvious. It can be shown to
hold by expressing Me

C and Te in 2 × 2 partitioned form

M̄e
C =

[
M̃ 0
0 M̃

]
, Te =

[
cI2 sI2

−sI2 cI2

]
,

with M̃ = 1
6 me

[
2 1
1 2

]
. (141)

Carrying out the congruent transformation in block form
gives

Me
C = (Te)T MC Te =

[
(c2 + s2)M̃ (cs − cs)M̃
(cs − cs)M̃ (c2 + s2)M̃

]

=
[

M̃ 0
0 M̃

]
= M̄e

C . (142)

A mass matrix that repeats upon transformation to any global
frame is called a directionally invariant mass matrix, or
DIMM. Note that the contents and order of M̃ are irrele-
vant to the result (142). Hence the following generalization
follows. If upon rearranging the element DOF so they are
grouped node by node:

(i) M̄e has a repeating block diagonal form, and
(ii) Te is configured as the block form shown above,

then local and global matrices will coalesce. For (ii) to hold,
it is sufficient that all nodal DOF be translational and be
referred to the same coordinate system. The same conclu-
sion is easily extended to 3D, and to any arrangement of the
element freedoms. This repetition rule can be summarized
as follows:

A local mass matrix is DIMM if all element DOFs are

translational and all of them are referred to the same

global system.

(143)
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Fig. 23 Diagonal mass
lumping for 3-node bar element
a lumping as per Simpson’s
integration rule, b assigning
element

x231

massless connector

m  1 m  3
m  2

(b)(a)

m  1 

ux1 ux2ux3

Element total mass is m  = ρAe

m  =2  mem  =1  me

m  =3  me

This property should be taken advantage of to skip super-
fluous local-to-global transformations. Such operation may
cost more than forming the local mass matrix. If the rule fails
on actual computation, something (mass matrix or transfor-
mation) is wrong and must be fixed.

Appendix 2.5.2: Failure of Repetition Rule

The repetition rule can be expected to fail if M̄e is not a
DIMM. This occurs under the following scenarios:

1. The element has non-translational freedoms; for exam-
ple node rotations, or displacement derivatives (occasion-
ally the rule may work, but that should not be taken for
granted).

2. The mass blocks are different in content and/or size.
This occurs if different continuum models are used in
different local directions. Examples are furnished by
beam-column elements, shell elements, and elements
with curved sides or faces.

3. Nodes are referred to different coordinate frames in the
global system. This can happen if certain nodes are
referred to special frames to facilitate the application of
boundary conditions.

Appendix 3: Standard Mass Matrix Derivation Examples

In this Appendix the DLMM and CMM of a few simple
1D and 2D elements are worked out to illustrate the standard
lumping methods outlined in Appendix 2. Since all examples
pertain to the element level, overbars to distinguigh local and
global frames are omitted for brevity.

Appendix 3.1: The Three-Node Bar

The three-node bar element, usually abbreviated to Bar3, is
shown in Fig. 7a. It is prismatic with length 
, area A, and
uniform mass density ρ, Midnode 3 is at the center. The

DOFs are arranged ue = [ux1 ux2 ux3
]T

. The shape func-

tion matrix is

Ne = [ N1(ξ) N2(ξ) N3(ξ)
]

= [ ξ(1 − ξ)/2 ξ(1 + ξ)/2 1 − ξ2
]
. (144)

in which ξ is the isoparametric natural coordinate pictured
in Fig. 7a. The consistent mass follows as

Me
C M M = ρA

1∫

−1

(Ne)T Ne J dξ = me

30

⎡

⎣
4 −1 2

−1 4 2
2 2 16

⎤

⎦ ,

(145)

in which the Jacobian J = dx/dξ = 
/2, and me = ρ A 
.
To produce a DLMM, the total mass of the element is divided
into three parts: αρA
, αρA
, and (1 − 2α)ρA
, which are
assigned to nodes 1, 2 and 3, respectively. See Fig. 23. As dis-
cussed below the standard choice is α = 1/6. Consequently
2/3 of the total mass goes to the midpoint, and what is left
to the corners, giving

Me
SL M M = 1

6 me

⎡

⎣
1 0 0
0 1 0
0 0 4

⎤

⎦ . (146)

The 1:1:4 allocation happens to be Simpson’s rule for inte-
gration, whence the label SLMM. This meshes in with the
interpretation of diagonal mass lumping as a Lobatto inte-
gration rule, a topic discussed in Appendix Sect. 4.2. Both
(145) and (146) are DIMM, and may be used as 3 × 3 build-
ing blocks to expand the element to 2D or 3D space. The
repetition rule (143) holds.

Appendix 3.2: The Plane BE Beam

The two-node plane BE-beam element has length 
, cross
section area A and uniform mass density ρ. Only the trans-
lational inertia due to the lateral motion of the beam is con-
sidered in the kinetic energy T = 1

2

∫ 

0 ρv̇(x̄)

2 dx̄ of the ele-
ment, whereas its rotational inertia is ignored. The freedoms

are arranged as ue = [ v1 θ1 v2 θ2
]T

. The natural coordinate
ξ varies from ξ = −1 at node 1 (x = 0) to ξ = +1 at node 2
(x = 
), whence dx/dξ = 1

2
 and dξ/dx = 2/
. The well
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known cubic shape functions in terms of ξ are collected in
the shape function matrix

Ne =
[

1
4 (1 − ξ)2(2 + ξ) 1

8
(1 − ξ)2(1 + ξ)

1
4 (1 + ξ)2(2 − ξ) − 1

8
(1 + ξ)2(1 − ξ)
]

(147)

The CMM obtained by analytical integration is

Me
C M M = ρA

1∫

−1

J (Ne)T Ne dξ

= me

420

⎡

⎢⎢
⎣

156 22
 54 −13

22
 4
2 13
 −3
2

54 13
 156 −22

−13
 −3
2 −22
 4
2

⎤

⎥⎥
⎦ . (148)

in which the Jacobian J = dx/dξ = 
/2 and me = ρ A 
.
The mass matrices obtained with Gauss integration rules of
1, 2 and 3 points are

C1

⎡

⎢⎢
⎣

16 4
 16 −4

4
 
2 4
 −
2

16 4
 16 −4

−4
 −
2 −4
 
2

⎤

⎥⎥
⎦ ,

C2

⎡

⎢⎢
⎣

86 13
 22 −5

13
 2
2 5
 −
2

22 5
 86 −13

−5
 −
2 −13
 2
2

⎤

⎥⎥
⎦ ,

C3

⎡

⎢⎢
⎣

444 62
 156 −38

62
 11
2 38
 −9
2

156 38
 444 −62

−38
 −9
2 −62
 11
2

⎤

⎥⎥
⎦ , (149)

in which C1 = me/64, C2 = me/216, and C3 = me/1200.
Their eigenvalue analysis shows that all three are singular,
with rank 1, 2 and 3, respectively. The result for 4 and more
points agrees with (148), which has full rank. The main pur-
pose of this example is to illustrate the rank property stated
in Appendix Sect. 2.4: each Gauss point adds one to the rank
up to 4, since the problem is 1D.

The matrix (148) conserves linear and angular momen-
tum. So do the reduced-integration mass matrices (149) if
the number of Gauss points is 2 or greater.

To get a DLMM is trickier. Obviously the translational
nodal masses must be the same as that of a bar: 1

2ρA
. See
Fig. 24. But there is no easy road to get rotational masses. To
accommodate these variations, it is convenient to leave the
latter parametrized as follows

Fig. 24 Direct mass lumping for two-node plane BE beam element

M̄e
L = me

⎡

⎢⎢
⎣

1
2 0 0 0
0 α
2 0 0
0 0 1

2 0
0 0 0 α
2

⎤

⎥⎥
⎦ , α ≥ 0. (150)

Here α is a nonnegative parameter, typically between 0
and 1/100. The choice of α has been argued in the FEM liter-
ature over several decades, but the whole discussion is largely
futile. Matching the angular momentum of the beam element
gyrating about its midpoint gives α = −1/24. This violates
the positivity condition. It follows that the best possible α
as opposed to possible best is zero. This choice gives, how-
ever, a singular mass matrix. This is undesirable in scenarios
where a mass-inverse appears.

This result can be readily understood physically. The me/2
translational end node masses grossly overestimate (in fact,
by a factor of 3) the angular momentum of the element. Hence
adding any rotational lumped mass only makes things worse.

Appendix 3.3: The Plane Timoshenko Beam

The Timoshenko beam (Ti-beam) incorporates two refine-
ments over the BE model:

1. For both statics and dynamics: plane sections remain
plane but not necessarily normal to the deflected mid-
surface. See Fig. 16 for the kinematics. This assumption
allows the averaged shear distortion to be included in
both strain and kinetic energies.

2. In dynamics: the rotary inertia is included in the kinetic
energy.

This model is more important for dynamics and vibration
than BE, and indispensable for rapid transient and wave prop-
agation analysis. More specifically, the BE beam has infi-
nite phase velocity, because the EOM is parabolic, and thus
becomes useless for high-fidelity wave propagation.

According to the second assumption, the kinetic energy
of the Ti-beam element is given by
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T = 1
2


∫

0

(
ρA v̇(x)2 + ρ IR θ̇ (x)

2) dx . (151)

Here IR is the second moment of inertia to be used in the
computation of the rotary inertia and θ = v′ + γ is the
cross-section rotation angle shown in Fig. 16; γ = V/(G As)

being the section-averaged shear distortion. The element

DOF are ordered ue = [ v1 θ1 v1 θ2
]T

. The lateral displace-
ment interpolation is

v(ξ) = v1 N e
v1(ξ)+ v′

1 N e
v′1(ξ)+ v2 N e

v2(ξ)

+ v′
2 N e

v′2(ξ), ξ = 2x



− 1, (152)

in which cubic interpolation functions are used. A com-
plication over BE is that the rotational freedoms are θ1

and θ2 but the interpolation (152) is in terms of the neu-
tral surface end slopes: v′

1 = (dv/dx)1 = θ1 − γ and
v′

2 = (dv/dx)2 = θ2 − γ . From a kinematic analysis we
can derive the relation

[
v′

1
v′

2

]
= 1

1 +�

[
−�



1 + �
2

�



−�2
−�



−�2 �



1 + �
2

]
⎡

⎢⎢
⎣

v1

θ1

v2

θ2

⎤

⎥⎥
⎦ ,

(153)

in which the dimensionless parameter� = 12E I/(G As 

2)

characterizes the ratio of bending and shear rigidities. The
end slopes of (153) are replaced into (152), the interpolation
for θ obtained, and v and θ inserted into the kinetic energy
(151).

After lengthy algebra the CMM emerges as the sum of
two contributions:

Me
C M M = Me

CT + Me
C R

= CT

⎡

⎢⎢
⎢⎢
⎣

13
35+ 7

10�+ 1
3�

2
( 11

210+ 11
120�+ 1

24�
2
)

 9

70+ 3
10�+ 1

6�
2 − ( 13

420+ 3
40�+ 1

24�
2
)

( 1

105+ 1
60�+ 1

120�
2
)

2

( 13
420+ 3

40�+ 1
24�

2
)

 − ( 1

140+ 1
60�+ 1

120�
2
)

2

13
35+ 7

10�+ 1
3�

2
( 11

210+ 11
120�+ 1

24�
2
)



symmetric
( 1

105+ 1
60�+ 1

120�
2
)

2

⎤

⎥⎥
⎥⎥
⎦

+ CR

⎡

⎢⎢
⎣

6
5

( 1
10 − 1

2�
)

 − 6

5

( 1
10 − 1

2�
)

( 2

15 + 1
6�+ 1

3�
2
)

2

(− 1
10 + 1

2�
)

 − ( 1

30 + 1
6�− 1

6�
2
)

2

6
5

(− 1
10 + 1

2�
)



symmetric
( 2

15 + 1
6�+ 1

3�
2
)

2

⎤

⎥⎥
⎦ . (154)

in which CT = ρ A 
/(1 + �)2 = me/(1 + �)2 and
CR = ρ IR/((1 +�)2 
). Matrices MCT and MC R account
for translational and rotary inertia, respectively. Caveat: the
I in � = 12E I/(G As 


2) is the second moment of inertia

that enters in the elastic flexural elastic rigidity. If the beam
is homogeneous IR = I , but that is not necessarily the case
if, as sometimes happens, the beam has nonstructural attach-
ments that contribute rotary inertia.

The scale factor of Me
C R can be further transformed to

facilitate parametric studies by introducing r2
R = IR/A

as cross-section gyration radius and � = rR/
 as ele-
ment slenderness ratio. Then CR = ρ IR/((1 +�)2 
) =
ρA 
�2/(1 +�)2 = me �2/(1+�)2. If� = 0 and� = 0,
Me

C R vanishes and Me
CT in (154) reduces to (148).

A DLMM can be obtained through the HRZ scheme
explained in Appendix Sect. 4.1. The optimal lumped mass
is derived in Sect. 7.5. via templates.

Appendix 3.4: The Plane Stress Linear Triangle

We consider the three-node linear displacement triangle to
model a plate in plane stress. The element will be identified
as Trig3 in the sequel. Its formulation using triangular nat-
ural coordinates ζi is available online [42]. For the following
Me derivations, the plate is assumed to have constant mass
density ρ, area A, and uniform thickness h. The motion is
restricted to the {x, y} plane.

The six DOFs are arranged as ue = [
ux1 uy1 ux2 uy2

ux3 uy3
]T . The CMM is obtained using the well known DSF,

which are simply the triangular coordinates ζi . Accordingly
the shape function matrix is

Ne =
[
ζ1 0 ζ2 0 ζ3 0
0 ζ1 0 ζ2 0 ζ3

]
. (155)

Expanding (Ne)T Ne gives a 6×6 matrix quadratic in the tri-
angular coordinates. This can be area-integrated with formu-
las exemplified by

∫
�e ζ

2
1 d� = A/3,

∫
�e ζ1ζ2 d� = A/6,

etc. The result is
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Fig. 25 Diagonal mass lumping for the Trig3 element in plane stress

Me
C M M = ρh

∫

�e

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

ζ1ζ1 0 ζ1ζ2 0 ζ1ζ3 0
0 ζ1ζ1 0 ζ1ζ2 0 ζ1ζ3
ζ2ζ1 0 ζ2ζ2 0 ζ2ζ3 0

0 ζ2ζ1 0 ζ2ζ2 0 ζ2ζ3
ζ3ζ1 0 ζ3ζ2 0 ζ3ζ3 0

0 ζ3ζ1 0 ζ3ζ2 0 ζ3ζ3

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

d�

= me

12

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

(156)

in which me = ρAh. This computation may be done by
numerical integration, using Gauss rules. Since the order
of Me is 6, and each Gauss point adds two (the number of
space dimensions) to the rank, a rule with 3 or more points
is required to reach full rank, as can be verified by simple
numerical experiments.

The DLMM is constructed by taking the total element
mass element, which is ρAh, dividing it by 3 and assigning
those to the corner nodes. See Fig. 25. This process produces
a diagonal matrix:

Me
DL M M = ρAh

3
diag

[
1 1 1 1 1 1

] = me

3
I6.

(157)

If this element is used in three dimensions (for example
as membrane component of a shell element), it is necessary
to insert the normal-to-the-plate z mass components in either
(156) or (157). According to the invariance rule (143) the
globalization process is trivial because Me

C or Me
L becomes

a DIMM upon grouping element DOFs component-wise, and
the local element mass matrix repeats in the global frame.

Appendix 3.5: The Plane Stress Bilinear Quadrilateral

We finally consider the 4-node, 8 DOF bilinear quadri-
lateral modeling a plate in plane stress. The element is
identified as Quad4 in the sequel. It is assumed homoge-
neous with density ρ and constant thickness h. It moves
in the x, y plane. The nodal displacement vector is ue =

[
ux1 uy1 ux2 . . . uy4

]
. The shape functions and

appropriate Gauss quadrature rules are described in [42].
The integration is carried out numerically using a p×p

Gauss product rule, with p variable. Testing the mass matrix
module on a rectangular element of dimensions a and b in
the x and y directions, respectively, returns the following
CMMs for the 1×1 and 2×2 Gauss rules:

Me
C M M1 = C1

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

, Me
C M M2

= C2

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

4 0 2 0 1 0 2 0
0 4 0 2 0 1 0 2
2 0 4 0 2 0 1 0
0 2 0 4 0 2 0 1
1 0 2 0 4 0 2 0
0 1 0 2 0 4 0 2
2 0 1 0 2 0 4 0
0 2 0 1 0 2 0 4

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

in which C1 = ρabh/32 = me/32 and C2 = ρabh/72 =
me/72. The mass given by 1-point integration has rank 2 and
6 zero eigenvalues, and thus it is rank-deficient by 6. The
mass given by the 2×2 rule is rank-sufficient and PD. Either
matrix repeats on globalization. Using rules with 3 or more
points returns the same matrix. The DLMM is obtained by
assigning one fourth of the total element mass me = ρabh
to each freedom.

For a quadrilateral of general geometry, use of the 2 × 2
Gauss quadrature rule is recommended, as it provides full
mass matrix rank.

Appendix 4: Mass Diagonalization Methods

The construction of the CMM is fully defined by the choice
of kinetic energy functional and shape functions. No sig-
nificant procedural deviation is possible, other than possi-
bly using reduced integration to obtain a singular matrix.
On the other hand, the construction of a DLMM is not so
clear cut, except for simple elements in which the lumping is
uniquely defined by conservation and symmetry considera-
tions. A consequence of this ambiguity is that various meth-
ods have been proposed in the literature, ranging from heuris-
tic through algorithmic. A good discussion of mass diago-
nalization schemes starting from the CMM can be found in
the textbook by Cook et al. [19]. Its use in explicit DTI is
well covered in [9]. This Appendix gives a quick overview
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of proven methods, as well as a promising but as yet untried
one.

Appendix 4.1: HRZ Lumping

This scheme is acronymed after the authors of [57]. It pro-
duces a DLMM given the CMM. Let me denote the total
element mass. The procedure is as follows.

1. For each coordinate direction, select the DOFs that con-
tribute to motion in that direction. From this set, separate
translational DOF and rotational DOF subsets.

2. Add up the CMM diagonal entries pertaining to the trans-
lational DOF subset only. Call the sum S.

3. Apportion me to DLMM entries of both subsets on divid-
ing the CMM diagonal entries by S.

4. Repeat for all coordinate directions.

The see HRZ in action, consider the three-node prismatic
bar with CMM given by (145). Only one direction (x) is
involved and all DOFs are translational. Excluding the fac-
tor ρA
/30, which does not affect the results, the diag-
onal entries are 4, 4 and 16, which add up to S = 24.
Apportion the total element mass ρA
 to nodes with weights
4/S = 1/6, 4/S = 1/6 and 16/S = 2/3. The result is the
DLMM (146).

Next consider the 2-node BE plane beam element. Again
only one direction (y) is involved but now there are
translational and rotational freedoms. Excluding the factor
ρA
/420, the diagonal entries of the CMM (148), are 156,
4
2, 156 and 4
2. Add the translational DOF entries: S =
156+156 = 312. Apportion the element mass ρA
 to the
four DOFs with weights 156/312 = 1/2, 4
2/312 = 
2/78,
156/312 = 1/2 and 4
2/312 = 
2/78. The result is the
DLMM (150) with α = 1/78.

The procedure is heuristic but widely used on account of
three advantages: easy to explain and implement, applicable
to any element as long as a CMM is available, and able to
retain nonnegativity. The last attribute is particularly impor-
tant: it means that the DLMM is physically admissible, pre-
cluding numerical instability headaches. As a general assess-
ment, it gives reasonable results if the element has only trans-
lational freedoms. If there are rotational freedoms the results
can be poor compared to customized templates.

Appendix 4.2: Lobatto Mass Lumping

A DLMM with ne
F diagonal entries mi is formally equivalent

to a numerical integration formula with ne
F points for the

element kinetic energy:

Table 13 1D Lobatto integration rules

Points Abscissas ξi ∈ [−1, 1] Weights wi

2 −ξ1 = 1 = ξ2 w1 = w2 = 1

3 −ξ1 = 1 = ξ3, ξ2 = 0 w1 = w3 = 1
3 , w2 = 4

3

4 −ξ1 = 1 = ξ4, −ξ2 =
1/

√
5 = ξ3

w1 = w4 = 1
6 , w2 = w3 = 5

6

Common names: Trapezoidal rule and Simpson’s rule for p = 2, 3,
respectively. In the p = 4 rule, interior points are not thirdpoints, since
1/

√
5 ≈ 0.447213596 
= 1

3 . Lobatto rules with 5 ≤ p ≤ 10, rarely
important in FEM work, are tabulated in [1, Table 25.6]

T e =
ne

F∑

i=1

mi Ti , where Ti = 1
2 u̇2

i (158)

Assume the element is 1D, possesses only translational DOF,
and that its geometry is described by the natural coordinate
ξ that varies from −1 through 1 at the end nodes. Then (158)
can be placed in correspondence with the so-called Lobatto
quadrature in numerical analysis (also called Radau quadra-
ture by some authors, e.g. [17]; however the handbook [1,
p. 888] says that Lobatto and Radau rules are slightly differ-
ent).

A Lobatto rule is a 1D Gaussian quadrature formula in
which the endpoints of the interval ξ ∈ [−1, 1] are sample
points. If the formula has p ≥ 2 abscissas, only p−2 of those
are free. Abscissas are symmetric about the origin ξ = 0 and
all weights are positive. The general form is

1∫

−1

f (ξ) dξ = w1 f (−1)+ wp f (1)+
p−1∑

i=2

wi f (ξi ). (159)

The rules for p = 2, 3, 4 are collected in Table 13. Compar-
ing (158) with (159) clearly indicates that if the nodes of a
1D element are placed at the Lobatto abscissas, the diagonal
masses mi are simply the weights wi . This correspondence
was first observed in [46], and further explored in [76,77].
For the type of elements noted, the equivalence works well
for p = 2, 3. For p = 4 a minor difficulty arises: the inte-
rior Lobatto points are not at the thirdpoints, as can be seen
in Table 13. If the element nodes are collocated there, one
must switch to the “Simpson 3/8 rule”, which is a Newton–
Cotes formula listed in Table 14 and adjust diagonal masses
accordingly.

As a generalization to multiple dimensions, for concise-
ness we call FEM Lobatto quadrature one in which the DOF-
endowed element nodes are sample points of an integration
rule (sample points at other than nodal locations are pre-
cluded). If so, the equivalence with (158) still holds. But one
quickly runs into difficulties:
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Table 14 1D Newton–Cotes integration rules

PointsAbscissas ξi ∈ [−1, 1] Weights wi

2 Same as 2-point Lobatto; see Table 13

3 Same as 3-point Lobatto; see Table 13

4 −ξ1 = 1 = ξ4, −ξ2 = 1/3 =
ξ3

w1 = w4 = 1
4 , w2 = w3 = 3

4

5 −ξ1 = 1 = ξ5, −ξ2 = 1/2 =
ξ4, ξ3 = 0

w1 = w5 = 7
90 ,

w2 = w3 = 32
90 , w3 = 12

90

Common names for p = 4, 5: Simpson’s 3/8 rule and Boole’s rule,
respectively. Additional NC formulas may be found in [1, Table 25.4].
For p > 5 they have negative weights

Negative Masses If one insists in higher order accuracy,
weights of 2D and 3D Lobatto rules are not necessarily posi-
tive, a feature noted in [28]. The subject is studied in detail in
[46]. This shortcoming can be alleviated, however, by accept-
ing lower accuracy, or sticking to product rules in suitable
geometries. For example, applying a product 1D Lobatto rule
over each side of a triangle or quadrilateral. Of course a more
flexible alternative is provided by templates, because these
allow the stiffness to be concurrently adjusted.
Rotational Freedoms If the element has rotational DOF,
Lobatto rules do not exist. Any attempt to extend (159) to
node rotations inevitably leads to translation-rotation cou-
pling.
Varying Properties If the element is nonhomogeneous or has
varying properties (for instance, a tapered bar element, or
a plate of variable thickness) the construction of accurate
Lobatto rules runs into additional difficulties, for the problem
effectively becomes the construction of a quadrature formula
with non-unity kernel.

As a general assessment, Lobatto mass lumping is useful
when the diagonalization problem happens to fit a Gaussian
quadrature rule with element nodes as sample points and
nonnegative weights. Formulas of that type were developed
for multidimensional domains of simple geometry during the
1950s and 1960s. They are can be found in handbooks such
as [95,96], along with many other rules. As noted above,

an obvious hindrance is the emergence of negative weights
as the rule degree gets higher. This feature excludes those
from contention except under extreme caution, whereas zero
weights are less deadly. Rules useful for FEM work are com-
piled in [37], as well as Appendix I of [41], for seven element
geometries.

The six-node plane stress triangle, shown in Fig. 26(a),
illuminates obstacles typically encountered in multiple space
dimensions. The total element mass is me = ρ A h, in which
A denotes the plane area and h the plate thickness, assumed
uniform. There are two 3-point Gauss quadrature rules of
degree 2 for a constant metric triangle, shown in Fig. 26b, c,
which is extracted from [42]. The midpoint rule, illustrated
in Fig. 26c, is also a Lobatto rule for this element, but the
3-interior-point rule pictured in Fig. 26b is not.

Using the midpoint rule to build the DLMM results in three
masses of me/3 collocated at the midpoints, while all corner
masses vanish [28]. The HRZ scheme leads to the same result.
This DLMM has rank 6 and rank deficiency 6. To attain full
rank one must take some mass from the midpoints and move
it to the corners: not a well defined process. An heuristic way
out would be to apply the Simpson rule line lumping along
the three edges. This results in me/9 at corners and 2me/9
at midpoints but the degree drops to 1. To retain accuracy,
a simultaneous change of the stiffness matrix could be tried
within the template framework.

For a curved-side six-node triangle with variable metric,
a case illustrated in Fig. 27, node and sample points remain
at the same location in terms of natural coordinates, but local
Jacobian determinants enter the formula.

Appendix 4.3: Nonconforming Velocity Shape Functions

This is a variational technique based on assuming VSF that
differ from the usual DSF. To produce a diagonal mass matrix,
the VSF must satisfy additional “mass orthogonality” condi-
tions that effectively decouples each VSF with respect to all
others in the kinetic energy integral. This can be practically
realized by making each VSF vanish at all points of a Gauss

(a) (b) (c)

Fig. 26 A pair of degree-2, 3-point Gauss quadrature rules for the six-
node plane stress triangle with constant metric: a node configuration, b
the 3-interior point rule, c the 3-midpoint rule, which is a Lobatto rule

for this node configuration. All weights are 1/3. Lines within triangle
mark triangular natural coordinates (a.k.a. barycentric coordinates) of
constant value, to illustrate constant metric
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(a) (b) (c)

Fig. 27 As in Fig. 26, but triangle has now curved sides and variable metric

integration rule except one. Which rule? That appropriate to
the correct integration of the kinetic energy over the element.

Rather than explaining the technique further, the inter-
ested reader may want to study the examples provided in
Appendix 6.

Appendix 4.4: Congruential Mass Transformation

A congruential mass transformation, or CMT, is a general
framework than can be applied to transform a given source
mass matrix into a target one. In particular all model reduc-
tion techniques mentioned in Appendix Sect. 1.3. Here it is
specialized to the following case of importance in diagonal-
ization:

(i) The source mass matrix MS is nondiagonal and PD; for
example a CMM.

(ii) The target mass matrix MT is diagonal and nonnegative
(that is, zero diagonal entries are permitted)

Both matrices have order nDO F . The congruential trans-
formation that converts source to target is

MT = HT MS H. (160)

If H is nonsingular, the inverse mapping is MS = GT MT G,
in which G = H−1. We will say that MS and MT are congru-
entially linked through H. Even if MS and MT are both given
and parameter-free, there are generally many H matrices that
satisfy (160). In fact the number of solutions typically grows
exponentially with nDO F .

One particular form, however, is unique under conditions
(i)-(ii). Perform the Cholesky factorization MS = LS LT

S =
LS US , where LS is lower triangular and US = LT

S is upper
triangular. If MS is PD, this factorization is unique and both
LS and US are nonsingular [113]. Let M1/2

T be the principal
square root of MT , obtained by taking the positive square
root of each diagonal entry. By inspection

H = US M1/2
T , HT = M1/2

T L−1
S . (161)

This will be called the Cholesky form of H, and identified by
subscript ‘CF’ if necessary. Since the inverse of a nonsingular

upper triangular matrix is also lower triangular, and scaling
by the diagonal matrix M1/2

T does not alter that configuration,
HT and H are lower and upper triangular, respectively.

As an example, the CMM and DLMM of the two-node
prismatic bar given in (7) are linked by the Cholesky form

HC F = 1√
2

[√
3 −1

0 2

]
=
[

1.22474 −0.707107
0 1.41421

]
.

(162)

For the CMM and DLMM of the three-node prismatic bar
studied in Sect. 5.2, the Cholesky form is

HC F =
⎡

⎣

√
5/2 1/(2

√
3) −√

2/3
0 2/

√
3 −√

2/3
0 0

√
3/2

⎤

⎦

=
⎡

⎣
1.180303 0.288675 −0.816497
0 1.154701 −0.816497
0 0 1.224745

⎤

⎦ . (163)

The Cholesky form of (160) is unique and easy to obtain,
but does not link naturally to the algebraic Riccati equation
mentioned below. For that purpose finding a symmetric H is
more convenient. Those will be identified by subscript ’Sy’ if
necessary. Symmetric forms are not unique; in fact typically
one generally finds 2nDO F different solutions. It is rather easy,
however, to extract a principal solution.

For the two-node prismatic bar, the transformation (160)
from CMM to DLMM with symmetric H has 22 = 4 solu-
tions. The only one with positive eigenvalues is

HSy = 1
2

[
1 + √

3 1 − √
3

1 − √
3 1 + √

3

]

=
[

1.366025 −0.366025
−0.366025 1.366025

]
. (164)

For the 3-node pristamic bar, one gets 23 = 8 solutions.
The only one with all eigenvalues positive is (only given
numerically, as its analytical expression is complicated):

HSy=
⎡

⎣
1.2051889 0.2051889 −0.1472036
0.2051889 1.2051889 −0.1472036

−0.1472036 −0.1472036 1.1518024

⎤

⎦. (165)
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The determination of H in (160) is related to the quadratic
matrix equation XT AX = B, where MS → A and MT → B
are data and H → X the unknown. If H → X is symmet-
ric so XT = X, the equation X AX = B is a specializa-
tion of the algebraic Riccati equation extensively studied in
optimal control systems [3,68]. Hopefully this interdiscipli-
nary resource could be eventually be applied to devise robust
mass diagonalization schemes using a matrix function library
[56,114]. But as of now, templates remain the most practical
method to find optimal diagonalizations.

Appendix 5: A Two-Dimensional Template

This appendix presents an example of the construction and
LFF customization of a mass template for the simplest two-
dimensional element, namely the three-node plane stress
(membrane) linear triangle, identified as Trig3 in the sequel.
The example is intended to illustrate three additional features
that must be considered in multiple dimensions; in particular
mesh directionality, multiple plane wave types, and (for an
isotropic material) Poisson’s ratio. It is the only multidimen-
sional template presented in this paper, since the subject has
barely lifted off the ground. The results are taken from the a
recent thesis [50] in which intermdiate calculation details
(omitted here for brevity) may be found. The thesis also
works out a more complicated version of this element type
that includes corner drilling freedoms. That development is
too complex to be briefly covered here.

Appendix 5.1: Longitudinal Wave Propagation in a
Continuum Thin Plate

Wave propagation in continuum models of elastic solids is
a classical subject of elastodynamics that is well covered
in several textbooks and monographs; e.g., [2,27,49,55,65].
Here we consider longitudinal waves propagating in an
isotropic, homogeneous, elastic flat thin plate. Thickness
effects are ignored. The continuum model has elastic modu-
lus E , Poisson’s ratio ν, shear modulus G = E/(2(1 + ν)),
mass density ρ, and uniform thickness h. Two plane wave
types are possible in that model:
Pressure waves or P-waves, in which material points har-
monically oscillate in the direction of the wave propagation.
Also known as longitudinal, dilatational and “push” waves.
A P-wave propagates at speed cP0, in which c2

P0 = Ê/ρ,
with Ê = E/(1 − ν2).
Shear waves or S-waves, in which material points harmoni-
cally oscillate in the direction normal to wave propagation.
Also known as transverse, rotational and “shake” waves. An
S-wave propagates at speed cS0, in which c2

S0 = G/ρ. The
dispersion equations are

ω2
P0 = c2

P0 k2, ω2
S0 = c2

S0 k2, (166)

in which k is the wavenumber while ωP0 and ωS0 denote the
characteristic frequencies for the P- and S-wave, respectively.
In dimensionless variables κ = k a, �2

P0 = ω2
P a2/c2

P0, and
�2

S0 = ω2
S a2/c2

S0, these reduce to

�2
P0 = κ2, �2

S0 = κ2. (167)

Note that both plane wave types are nondispersive (i.e., speed
is independent of frequency) and can propagate along any in-
plane direction, as befits isotropy. That is not the case in a
FEM lattice of Trig3 elements, as studied next.

Appendix 5.2: Trig3 LCD Template

The Trig3 mass template is assumed to be of the LCD form
(2): it linearly combines the CMM and DLMM given in (156)
and (157), respectively, through a weight parameter:

Me
μ = (1 − μ)Me

C M M + μMe
DL L M

= me(1 − μ)

12

⎡

⎢⎢⎢⎢⎢⎢
⎣

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎤

⎥⎥⎥⎥⎥⎥
⎦

+ me μ

3
I6

(168)

This is paired with the well known Trig3 stiffness Ke, which
is kept fixed. To study the performance of (168) an infinite
2D regular lattice such as pictured in Fig. 28a was chosen.
The triangles form square cells of side a. To account for the
effect of wave directionality in the FEM lattice, the direc-
tion of propagation of the P- and S-waves is assumed to be
always along the x axis. The lattice is rotated by an angle φ
with respect to x , as illustrated in Fig. 28b. Thus the mesh
symmetry axes {xm, ym} forms an angle φ with the propaga-
tion axis {x, y}. The advantage of this choice, as opposed to
rotating the propagation direction, is that the wave functions
are kept simple. The kinematic expressions for the P- and
S-waves are

P-wave: ux = Bx exp(k x − ωP t), uy = 0,

S-wave: ux = 0, uy = By exp(k x − ωS t). (169)

in which Bx and By are nonzero amplitudes. Note that the
wavenumber k is kept the same in both expressions. All cal-
culations summarized below were carried out symbolically
with Mathematica.
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(a)

(b)

(c)

Fig. 28 Mesh for Fourier analysis of Trig3 LCD mass template: a infinite regular lattice of square cells, b rotated lattice to account for wave
propagation directionality, forming angle φ with respect to wave propagation direction (x-axis), c six-triangle, seven-node patch

Appendix 5.3: Trig3 Template Fourier Analysis

From the 2D infinite lattice pictured in Fig. 28b, extract a
(repeating) six-triangle, seven-node patch highlighted in (c)
of that Figure. Assemble the 14 × 14 patch mass matrix Mp

from (168), and the 14 × 14 patch stiffness matrix Kp. From
these extract the 2 × 14 mass matrix M̂p and the 2 × 14
stiffness matrix K̂p for the patch center node. The dynamic
force residual equations at that node are

r = (K̂p − ω2 M̂p)uB, (170)

in which r = [
rx ry

]T
is the residual vector measuring

force equilibrium in the x and y directions, and up is a 14-
vector containing wave displacements of the seven patch
nodes. Two uP : upP and upS are constructed by evalu-
ating the P- and S- plane waves, respectively at the patch
nodes, and inserted in (170). For the P-wave, uy = 0 and
setting rx = 0 we solve forω2, renamed ω2

P . For the S-wave,
ux = 0 and setting ry = 0 we solve for ω2, renamed ω2

S .
Thse are then Taylor series expanded at k = 0 in powers
of k, up to k4. Passing to dimensionless variables: κ = k a,
�2

P = ω2
P a2/c2

P0, and �2
S = ω2

S a2/c2
S0, the result for the

P-wave is

�2
P = κ2− 2C1 + 2(1 − 3ν) cos(4φ)+ C2 sin(2φ)− 3(1 + ν) sin(6φ)

384
κ4+· · ·
(171)

in which C1 = 32μ + 3ν − 17 and C2 = 32μ + 9ν − 23.
For the S-wave:

�2
S = κ2 − 2D1 + 2(5 + ν) cos(4φ)+ D2 sin(2φ)+ 3(1 + ν) sin(6φ)

192(1 − ν)
κ4 + · · ·
(172)

in which D1 = 7ν + 16μ(1 − ν) − 13 and D2 = 7ν +
16μ(1 − ν)− 25. Comparing to the continuum expressions
(167), which may be rewritten we observe a O(κ4) error than
depends on φ and ν. To eliminate the effect of φ we integrate
that error term over φ ∈ [−π/2, π/2] and divide by π to
get an average error. Setting that to zero and solving for μ,
we get two “averaged-optimal” values for the free parameter,
one for each wave type, denoted by μP and μS :

μP (ν) = −45 + 40
√

3 − (45 − 24
√

3)ν

48
,

μS(ν) = 45 − 16
√

3 + (45 + 32
√

3)ν

24(1 − ν)
, (173)

These are plotted as functions of Poisson’s ratio in Fig. 29.
As can be observed, the dependence on ν is failrly mild. For
the S-wave it is approximately 0.5 whereas for the S-wave
it varies from 0.72 to 1.00. Which one to pick? Assuming
the given ν is uniform, select either μP or μS according to
the wave type expected to dominate the solution. This may
require some interaction. If S-waves dominate μ = 1/2 is
recommended for any Poisson’s ratio.

Appendix 5.4: Can Plane Waves Actually Propagate Over a
2D FEM Lattice?

The answer to the title question is: only for selected direction
angles. To check that for the P-wave, pick the frequency ω2

P
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Fig. 29 Best ψ-averaged values of free parameter μ as function of
Poisson’s ratio ν, for two plane wave types (P and S)

obtained by solving rx = 0, and insert that solution into ry .
It will be observed that for φ ∈ [−90◦, 90◦], ry = 0 is only
satisfied exactly at φ = ±90◦, φ = ±45◦, and φ = 0◦. For
those angles the assumption of plane wave propagation is
exact. Othwerwise ry 
= 0 means that the plane wave is dis-
torted by the FEM discretization even if the lattice is regular.
A similar result is obtained for the S-wave on replacing ω2

S
into rx . In practice the distortion is not of great concern since
the goal of this analysis is to find reasonable values for the
free parameter, rather than finding a solution to the dynamic
problem. Those are two distict objectives.

Appendix 6: Mass Templates in a Variational Framework

A question that may be interest to FEM theoreticians: can
any mass template be produced by a conventional variational
framework? By “conventional” is meant based on shape func-
tions injected in the kinetic energy. More precisely: velocities
are interpolated over the element from nodal velocities using
VSF, and the element kinetic energy T e evaluated by inte-
gration. The mass matrix follows as the Hessian of T e with
respect to nodal velocities, as per (135). In short, a variation-
ally derived mass matrix (VDMM). For practical template
construction and customization, the variational interpreta-
tion is superfluous, since templates can be expediently pos-
tulated and algebraically customized. The reformulation may
be worthwhile, however, for mathematical investigations, as
well as linkage to work conducted by other researchers.

Presently it is unknown whether the template-to-VDMM
connection for arbitrary elements can be established. It has
been only investigated for the two simplest bar elements:
Bar2 and Bar3. In both cases, the general template was con-
sidered. The findings may be summarized as follows:

(1) VSF that reproduce the general template as a VDMM can
be found. They are not unique.

(2) For any template instance that deviates from the CMM,
the VSF do not coincide with the DSF used in the deriva-
tion of the element stiffness.

(3) VSF that deviate from the DSF are noninterpolatory and
nonconforming with respect to nodal velocities computed
from the displacements by time differentiation. They do
not necessarily satisfy the unit-sum condition (also called
partition of unity in the literature). A uniform velocity
field, however, must produce the exact kinetic energy.

Two simple elements are analyzed below.

Appendix 6.1: Variationally Derived Bar2 Mass Template

We investigate whether the general one-parameter Bar2 mass
template (9) can be produced as a VDMM. The veloc-
ity field derived from the axial displacement ue(x, t) is
u̇e(x, t) = de(x, t)/dt . Evaluation at the nodes yields the

nodal velocities u̇1 and u̇2, collected in u̇e = [
u̇1 u̇2

]T
.

Let N1(ξ) = (1 − ξ)/2 and N2(ξ) = (1 + ξ)/2 denote the
well known displacement shape functions (DS)F of Bar2, ξ
being the usual iso-P natural coordinate. The element veloc-
ity interpolation is taken to be

ve(ξ) = u̇1 Nv1(ξ)+ u̇2 Nv2(ξ), (174)

in which the VSF Nv1 and Nv2 are linked to the DSF through
the linear map

Nv1(ξ) = (1 + 1
2δ1) N1(ξ)+ 1

2δ2 N2(ξ),

Nv2(ξ) = 1
2δ2 N2(ξ)+ (1 + 1

2δ1) N1(ξ). (175)

In (175), δ1 and δ2 are functions of the template parame-
ter (but not of ξ ), representing the deviations of the VSF
from the DSF. Note that prismatic bar symmetry is built-
in: Nv1(ξ) = Nv2(−ξ). The associated kinetic energy T e

is ρ A (
/2)
∫ 1
−1

(
ve(ξ)

)2
dξ , which can be evaluated either

analytically or through 2-point Gauss integration. Taking its
Hessian with respect to u̇e gives a mass matrix denoted by
Me
δ below. As for the Bar2 template, it is preferable to use the

alternative form Me
χ of (10) rather than Me

μ of (9) because
solutions are simpler. Summarizing, the two matrices to be
matched are

Me
δ = 1

24 ρ A 


[
ψ11 ψ12

ψ21 ψ22

]
,

Me
χ = 1

12 ρA 


[
3 + χ 3 − χ

3 − χ 3 + χ

]
,

ψ11 = ψ22 = 2(4 + 4δ1 + 2δ2 + δ2
1 + δ1δ2 + δ2

2),

ψ12 = ψ21 = 4 + 4δ1 + 8δ2 + δ2
1 + 4δ1δ2 + δ2

2,
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χ = 1 + 2μ, μ = 1
2 (χ − 1), (176)

in which (10) is reproduced for convenience.
On equating Me

δ = Me
χ we get four solutions: {δ1 =

−3−√
χ, δ2 = −1+√

χ}, {δ1 = −1−√
χ, δ2 = 1+√

χ},
{δ1 = −3+√

χ, δ2 = −1−√
χ}, and {δ1 = −1 +√

χ, δ2 =
1−√

χ}. Only the last one reduces the VSF to DSF when
μ = 0 or χ = 1. Inserting it into (175) and simplifying
yields

Nv1(ξ) = 1
2 (1 − ξ

√
χ) = 1

2 (1 − ξ
√

1 + 2μ),

Nv2(ξ) = 1
2 (1 + ξ

√
χ) = 1

2 (1 + ξ
√

1 + 2μ). (177)

These VSF satisfy the conservation condition Nv1+Nv2 = 1
for anyμ and ξ . They are plotted in Fig. 30 for three instances:
μ = 0 (CMM) μ = 1

2 (BLFM), and 1 (DLMM). If μ 
= 0,
the VSF depart from the DSF, and are plainly nonconforming.

The two VSF for μ = 1, namely (1 ± ξ
√

3)/2, display a
distinguishing geometric feature: each VSF vanishes at one
of the sample points ξ = ±1/

√
3 of the 2-point Gauss rule;

see Fig. 30c. This effectively orthogonalizes them in the sense
that the kinetic energy cross integral

∫ 1
−1 Nv1 Nv2 dξ is zero.

The result is the diagonal mass matrix Me
L of (7).

Comparing the results (177) with the ansatz (175), clearly
shows that the latter was too elaborate. Little harm is done,
however, for this simple element. For more complicated ones,
such as the Bar3 studied next, a recursive adjustment is rec-
ommended using an interactive CAS.

Appendix 6.2: Variationally Derived Bar3 Mass Template

Next we find whether the general mass template for Bar3 can
be derived variationally. The well known DSF are N1(ξ) =
−ξ(1 − ξ)/2, N2(ξ) = ξ(1 + ξ)/2, and N3(ξ) = 1 − ξ2.
The velocity interpolation is assumed to be

ve(ξ) = u̇1 Nv1(ξ)+ u̇2 Nv2(ξ)+ u̇3 Nv3(ξ), (178)

in which

Nv1(ξ) = N1(ξ)− 1
2ξ(δ1 − δ2 ξ),

Nv2(ξ) = N2(ξ)+ 1
2ξ(δ1 + δ2 ξ),

Nv3(ξ) = N3(ξ)+ (δ3 + δ4 ξ
2). (179)

Here δ1 through δ4 are functions of the template parame-
ters to be determined. The VSF ansatz (179) was obtained
after some simplifying initial computations. Note that pris-
matic bar symmetry is preimposed: Nv1(ξ) = Nv2(−ξ) and
Nv3(ξ) = Nv3(−ξ). The associated kinetic energy T e can
be evaluated either analytically or from 3-point Gauss inte-
gration. Taking its Hessian with respect to u̇e gives the mass
matrix

Me
δ = ρ A 


30

⎡

⎣
ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33

⎤

⎦ ,

ψ11 = ψ22 = 2(2 + 5δ1 + 5δ2
1 + 3δ2 + 3δ2

2),

ψ12 = ψ21 = −1 − 10δ1 − 10δ2
1 + 6δ2 + 6δ2

2,

ψ13 = ψ23 = ψ31 = ψ32 = (1 + 2δ2)(2 + 5δ3 + 3δ4),

ψ33 = 2(8 + 15δ2
3 + 4δ4 + 3δ2

4 + 10δ3(2 + δ4)). (180)

It is convenient to match Me
δ to the 3-parameter,χ -form of

mass matrix template (44) instead of against (39). Matching
entries gives 8 solutions, of which the one that yields δ1 =
δ2 = δ3 = δ4 = 0 for the CMM (χ1 = 5/2, χ2 = 3/2, χ3 =
2/3) is picked:

δ1 = φ1 − 1/2, δ2 = φ2 − 1/2, δ3 = 3φ3/2 − 1,

δ4 = 1 − 2φ2 + φ3 − 5φ4/2, (181)

in which φ1 = √
χ2/10, φ2 = √

χ1/6, φ3 = √
χ3/χ1, and

φ4 = √
5(1 − χ3/χ1). Except for the CMM, these VSF do

not verify the strong (pointwise) unit sum condition Nv1 +
Nv2 + Nv3 = 1 for each ξ , but do satisfy the more lenient
element mass conservation constraint

1
2

1∫

−1

(Nv1 + Nv2 + Nv3)
2 dξ = 1. (182)

In terms of the δi , (182) is 12δ2
2 + 15δ2

3 + 10δ3(3 + δ4) +
δ4(10 + 3δ4)+ 4δ2(5 + 5δ3 + 3δ4) = 0.

The VSF produced by (181) are plotted in Fig. 31 for
nine Bar3 mass instances, as labeled therein. Except for the
CMM they depart from the DSF, and are nonconforming.
Some mass matrix properties can be discerned visually:

• For the diagonally lumped instances SLMM and BLFD
shown in Fig. 31b, e, two VSF vanish at each of the
sample points ξ ∈ {0,±√

3/5} of the 3-point Gauss
rule. Those points are marked in the Figure. This feature
effectively energy-orthogonalizes the VSF in the sense of
kinetic energy, since all cross integrals

∫ 1
−1 Nvi Nv j dξ

for i 
= j vanish. As a result, diagonal mass matrices are
produced.

• The VSF for the singular mass instance BSSM shown
in Fig 31f, clearly displays linear dependence among the
VSF.

Aside from those special cases, it is difficult to draw
general conclusions from a glance at Fig. 31 as to perfor-
mance. For example, why does the VSF displayed in Fig. 31d
provides the best low frequency matching? Shapes for say,
(a) through (e), look quite similar (once you’ve seen one
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(a) (b) (c)

Fig. 30 VSF that produce the general Bar2 mass template (8) in a variational framework, for three instances

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 31 VSF that produce the general Bar3 mass template (44) in a variational framework, for the nine labeled instances

parabola...). The obvious conclusion: Fourier analysis is a
much sharper tool in dynamics.

Appendix 6.3: A Comment on the Variational Formulations
of Elastodynamics

The use of VSF that differ from DSF dates back to the
early days of FEM. It was done, for example, in [28]

for the HCT plate bending element, following sugges-
tions by R. W. Clough (the consistent mass of that tricu-
bic macroelement was too complicated for hand deriva-
tions in 1966). The idea can be incorporated into the
well-known stationary-action variational principle (VP)
of elastodynamics, called Hamilton-Kirchhoff by Gurtin
[51, p. 225], by weakening the temporal kinematic
link.
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Fig. 32 Organization of Bar3 template analysis modules presented in this Appendix

That minor generalization of the primal VP of elastody-
namics should not be confused with the use of dual (also
called complementary or reciprocal) forms. Research in that
subject took off with Toupin’s formulation [103] of a dual
form of Hamilton’s principle for a system of mass particles
with interaction impulses as unknown variables. For cor-
rections and evolution into continua see [25,98] and refer-
ences therein. FEM applications to vibrations and dynamics
emerged during the early 1970s; see e.g., [44,47,97], but
have stagnated since. Reason: impulse DOF are foreign to
the DSM, which dominates general purpose codes.

Appendix 7: Implementation of Bar3 Template

This Appendix presents the computer implementation of the
MS template pair for the three-node bar element, abbreviated
to Bar3. It is written in the Mathematica language. Although
the element is admittedly simple it is not trivial. In fact the
implementation illustrates the use of template variants to sim-
plify customization. Why Mathematica?. As observed in the
Introduction, use of a CAS is essential for template devel-
opment because analytical derivations soon exceed human
endurance. Once the development phase is completed, a pro-
duction version in a compilable language such as C can be
easily produced. But the CAS version should not be dis-
carded.

The hierarchical organization of the modules presented in
this Appendix is shown in Fig. 32. The bottom-up description

that follows starts from the lowest level of that chart, going
up and traversing against the arrows.

Appendix 7.1: Auxiliary Modules

The two outside modules at the lowest level of the chart of
Fig. 32 provide auxiliary services to modules at all levels.

Appendix 7.1.1: Name To Signature Mapper

Auxiliary module Bar3TempSignature, listed at the top
of Fig. 33, maps an abbreviated template instance name to
its full signature definition. It is invoked by

tsign = Bar3TempSignature[name] (183)

The only argument is name: a character string of 3 or 4 let-
ters that abbreviates a template instance. Examples: “CMM”
for the CMM or “SLMM” for Simpson-lumped mass matrix.
Names currently implemented can be gathered by examining
the code. Some of these are also listed in Table 10.

The function returns tsign as template signature. This
is a list of the form

{tvar, {kpars }, {mpars } } (184)

Here tvar is a character string that identifies template vari-
ants,kpars a list of stiffness parameters, andmpars a list of
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Fig. 33 Two auxiliary
modules. Bar3Temp-
Signature maps a template
name to its signature.
Bar3MassVarParMap
returns a replacement rule that
maps the general mass template
to a target variant

Table 15 Bar3 template signature list specification

Template variant Ref. Eqs. # Of pars Signature format, identified
as tsign in Mathematica
code

Mass conservation constrainta

General, μi pars (39) 5 { “GEN”,{β },{μ1, μ2, μ3, μ4 } } 2μ1+μ2+2μ3+4μ4 = 0

General, χi pars (44) 4 { “GEX”,{β },{χ1, χ2, χ3 } } preimposed

Lumped (63) 3 { “LUM”,{β },{μL1, μL2 } } 2μL1+μL2 = 0

Spectral (71) 3 { “SPE”,{β },{μS1, μS2 } } preimposed

Selective mass scaling (81) 4 { “SMS”,{β },{μL1, μL2, μK } } 2μL1+μL2 = 0

Constant optical branchb (84), (86) 1 { “COBA”,{ 1 },{νA } }or
{ “COBB”,{ 1 },{νB } }

preimposed

a When doing symbolic work, the mass conservation constraint is not always preimposed in some template variants, as that may complicate
intermediate expressions
b For this variant, two families: COBA and COBB, are implemented. Cf. Sect. 5.13

mass parameters. Configuration details for this data structure
are given in Table 15. If name is not recognized, a warning
message is printed and “CMM” is assumed.

Example: Bar3TempSignature[“SLMM”] returns
{ “LUM”,{ 1 },{ 0,0 } } as function value.

Appendix 7.1.2: Mass Template Variant Parameter Mapper

Auxiliary module Bar3MasVarParMap, listed at the bot-
tom of Fig. 33, returns a replacement rule that maps the
four μ parameters of the Bar3 general mass template
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(39) to those of a variant. The latter is called the target form.
The rule is used to specialize results such as dispersion equa-
tions; cf. the link drawn in Fig. 32. It is invoked by

rule = Bar3MasVarParMap[gmpars,tsign] (185)

The arguments are:

gmpars A list of symbols used for the free parameters of of
the Bar3 mass template (39). Normally the parame-
ters are labeled {μ1, μ2, μ3, μ4 }. Those symbols
will appear in the left side of the replacement rule.

tsign Signature of the target form.

Items ingmparsmust be individual symbols, while those
intsignmay be symbolic or numeric (see examples below).
Note that β intsign is used if the target pertains to the SMS
variant.

The function returns

rule Replacement rule. If the target is not recognized, the
empty list { } is returned.

Example 1 Let gmpars={μ1, μ2, μ3, μ4 } and tsign=
{ “LUM”,{ β },{μL1, μL2 } }. The module call Bar3
MasVarParMap[tsign,gmpars] returns {μ1 ->μL1
+1,μ2->μL2+4, μ3->1,μ4->-2 }, a rule that maps the
general template (39) to the lumped mass variant as per (62).

Example 2 Same gmpars as above but now tsign=
{ “LUM”,{ β },{ 0, 0 } }. The call returns {μ1->1,μ2

->4,μ3->1,μ4->-2 }, a replacement rule that produces
the SLMM instance.

Appendix 7.2: Element Level Modules

This section describes element modules that return mass and
stiffness templates.

Appendix 7.2.1: Element Mass and Stiffness Modules

The Bar3 element mass and stiffness template modules are
calledBar3ElemMassTemp andBar3ElemStiffTemp,
respectively. They are listed in Fig. 34. The call sequences
are

Me = Bar3ElemMassTemp[Le,rho,A,tsign,numer]
(186)

Ke = Bar3ElemStiffTemp[Le,Em,A,tsign,numer]
(187)

The arguments are:

Le Element length

Em,A,rho Elastic modulus, cross section area, and mass
density, respectively, of bar

tsign Template signature. See Table 15 for configura-
tion details.

numer Logical flag. If True, process in floating point.
If False, process symbolically.

As function values the modules return

Me 3 × 3 element mass matrix
Ke 3 × 3 element stiffness matrix

Appendix 7.3: Assembly Level Modules

This section covers modules that work at the assembly (mas-
ter) level. These are the midlevel four pictured in Fig. 32.

Appendix 7.3.1: Lattice Master Mass and Stiffness Modules

Modules Bar3ElemMassTempLattice and Bar3
StiffTempLattice, listed in Fig. 35, assemble the mas-
ter mass and stiffness matrices, respectively, of a prismatic
homogeneous bar member discretized as a regular lattice with
a given number of elements. Since all elements are identi-
cal, only one call to the appropriate element-level module is
made. The returning matrix is reused in the merge loop. The
call sequences are similar:

M = Bar3MassTempLattice[numele,Le,rho,A,
tdef,numer] (188)

K = Bar3StiffTempLattice[numele,Le,Em,A,
tdef,numer] (189)

The arguments are:

numele Number of elements in lattice. The number of
freedoms is numdof=2*numele+1

Le Element length. Total member length will be
Le*numele

Em,A,rho Elastic modulus, cross section area, and mass
density, respectively, of bar

tdef Template definition argument. Two possibili-
ties:
If a list, tdef is taken to be the template signa-
ture tsign configured as shown in Table 15,
and thus passed directly to the element module
If a character string (for example: “CMM”),
tdef is interpreted as a template instance
abbreviation and Bar3TempSignature
called as per (185) to build tsign, which is
then passed to the element modules

numer Logical flag; see Sect. 1
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Fig. 34 Bar3 element mass and
stiffness template modules

Fig. 35 Bar3 master mass and
stiffness assembler modules
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Fig. 36 Bar3 mass and stiffness
patch extraction modules

As function values the modules return

M Master mass matrix of order ndof×ndof
K Master stiffness matrix of order ndof×ndof

Appendix 7.3.2: Lattice Patch Modules

ModulesBar3ElemMassPatch andBar3StiffPatch,
listed in Fig. 36, return the assembled mass and stiffness
matrices, respectively, of a patch of two identical Bar3 ele-
ments. This is done by calling Bar3MassTempLattice
and Bar3StiffTempLattice with numele=2 and
returning only the second and third equations. The call
sequences are similar:

M = Bar3MassTempPatch[Le,rho,A,tdef,numer]
(190)

K = Bar3StiffTemppatch[Le,Em,A,tdef,numer]
(191)

The arguments are identical to those for the lattice master
mass and stiffness modules, respectively, described in Sect. 1,
except that numele is not supplied.

As function values the modules return

Mp Patch mass equations as a coefficient matrix of order
2 × 5; see (46)–(47)

Kp Patch stiffness equations as a coefficient matrix of order
2 × 5; see (46)–(47)

Appendix 7.4: Dispersion Analysis and Display Modules

This section describe modules that produce and display dis-
persion diagrams. Those are the top three shown in Fig. 32.

Appendix 7.4.1: Characteristic Equation Module

Module Bar3CharFreq, listed in Fig. 37, forms the char-
acteristic equation of a plane wave propagating over a regular
Bar3 lattice patch and solves it for the two characteristic fre-
quencies. The calling sequence is

{detCm,�2aco,�2opt } = Bar3CharFreq[wavars,
tdef,numer] (192)

The arguments are:

wavars A list of symbols representing plane wave dis-
persion analysis variables, configured as the list
{ κ, ζ,�,�2, τ ,Bc,Bm }, in which

κ Dimensionless wavenumber κ = k 

ζ Dimensionless space coordinate ζ = x/
 ∈

[−1, 1] over patch.
� Dimensionless characteristic frequency ω 
/c0

�2 Dimensionless characteristic squared frequency
τ Dimensionless time τ = tc0/


Bc,Bm Corner and midpoint wave component amplitudes,
respectively
These must be individual symbols. No numbers or
expressions should be in this list, because they are
internally used as variables. For instance, entering
� ∗� or �ˆ2 for �2 will cause errors.

tdef Template definition argument; see Appendix Sect.
7.3.1

numer Logical flag; see Appendix Sect. 7.3.1

The module returns the list { detCm,�2aco,�2opt }, in
which

detCm Determinant of characteristic matrix Cm as a func-
tion of κ and �2

�2aco Dimensionless characteristic squared frequency
�2

a of AB, expressed as function of κ
�2opt Dimensionless characteristic squared frequency

�2
a of OB, expressed as function of κ

The last two expressions: �2aco and �2opt, collectively
define the DDD for the template specified by tdef.

Appendix 7.4.2: Dispersion Branches And Taylor Series

Given a Bar3 template (or instance) definition, module
Bar3Dispersion, listed in Fig. 38, returns the dimen-
sionless characteristic squared frequencies�2

a and�2
o of the

AB and OB as function of the dimensionless wavenumber
κ . This module was built by inlining symbolic results pro-
duced by Bar3CharFreq with the goal of speeding up
direct retrieval of those expressions. In addition, this module
can compute and return their Taylor series expansions about
κ = 0 up to specified orders. The calling sequence is
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Fig. 37 Bar3 characteristic
equation module

Fig. 38 Bar3 dispersion
module that returns
dimensionless characteristic
squared frequencies as function
of dimensionless wavenumber,
and their Taylor series up to
given order about κ = 0

{�2aco,�2opt,�2acos,�2opts }
= Bar3Dispersion[κ,tdef, {ma,mo },slevel]

(193)

The arguments are:

κ Dimensionless wavenumber
tdef Template definition argument; see Sect. 1

ma If ma ≥ 0, return AB Taylor series (ABTS): �2
a

expanded in κ about κ = 0, up to and including
order ma. If a negative integer, return Null.

mo If mo ≥ 0, return OB Taylor series (OBTS): �2
o

expanded in κ about κ = 0, up to and including
order mo. If a negative integer, return Null.

slevel Simplification level for output results: an integer
0, 1 or 2.

0 : (or negative): no simplifications
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Fig. 39 Bar3 dispersion
diagram plotting module

1 : ordinary simplification using the Simplify
function

2 : more exhaustive simplification using the Full
Simplify function. Note: this level should be
used with caution. Reason: full simplification may
return unexpected weird results with terms involv-
ing Abs, or conditional expressions.

The module returns the list{ �2aco,�2opt,�2acos,�
2opts }, in which

�2aco AB dimensionless characteristic squared fre-
quency �2

a expressed as function of κ
�2opt OB dimensionless characteristic squared fre-

quency �2
o expressed as function of κ

�2acos ABTS about κ = 0 up to and including order ma.
If ma < 0, Null is returned.

�2ocos OBTS about κ = 0 up to and inclusing order ma.
If mo < 0, Null is returned.

Appendix 7.4.3: Dispersion Diagram Plotting

Given a Bar3 template instance (that is, with all-numeric sig-
nature) module Bar3DispersionPlot, listed in Fig. 39,
can plot its DDD, which includes the acoustic and optical
branches returned by Bar3Dispersion. It may also plot
its DGVD, which is the ratio γc = c/c0 of the FEM plane
wave speed c to that of the continuum wave speed c0. The
module has been used to produce all Bar3 dispersion plots
of this paper.

The call sequence is

Bar3DispersionPlot[κ,tdef,plotwhat,
κrange,DVrange,imgsiz,title] (194)

The arguments are:

κ Dimensionless wavenumber
tdef Template definition argument; see Section 1

plotwhat A character string of the form “D”, “V”,
or “DV”. If the letter D appears, plot the
DDD (the so-called “D-plot”). If the letter V
appears, plot the DGVD (the so-called “V-
plot”). If none of those strings is given, no
plot is produced.

κrange A 2-item list { κmin,κmax } that specifies
the (horizontal) plot range for κ . It is used for
both DDD and DGVD plots. Usual range is
{ 0,2 Pi }.

DVrange A list of the form { Drange,Vrange }.
Drange is in turn a two-item list: {�min,
�max } that specifies the DDD plot range
for �. Vrange has a similar configuration:
{ γcmin,γcmax } and specifies the DGVD
range for γc = c/c0. Both lists must be sup-
plied even if only one plot is requested. Com-
mon specifications are { 0,8 } for Drange
and {−2,2} for Vrange.

imgsiz Width of plot in points. Normally set to 300
to 400.

title An optional character string to be printed
before the plot. If “ ” no title appears.
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The module does not return a value. Its output is the
plot image object written to the Mathematica default dis-
play function. (Its name changed in Version 6.0 from
$DisplayFunction to Print).
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